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Abstract

This paper introduces VORM, an unsupervised
morphological segmentation system, leverag-
ing translation data to infer highly accurate
morphological transformations, including less-
frequently modeled processes such as infixa-
tion and reduplication. The system is evaluated
on standard benchmark data and a novel, ty-
pologically diverse, dataset of 37 languages.
Model performance is competitive and some-
times superior on canonical segmentation, but
more limited on surface segmentation.

1 Introduction

While supervised neural models achieve near-
ceiling performance on morphological segmenta-
tion (Batsuren et al., 2022), unsupervised systems
leave ample room for improvement, despite recent
progress (Virpioja et al., 2013; Narasimhan et al.,
2015; Eskander et al., 2020; Xu et al., 2020). Super-
vised techniques can furthermore only be used for
several dozen languages, whereas corpus data and
word lists are available for many more. Progress on
unsupervised learning is thus desirable to improve
the cross-linguistic scope of morphological seg-
mentation. The downstream benefit of morphologi-
cal segmentation for training language models has
been debated (Sälevä and Lignos, 2023), but mor-
phological segmentation has further applications
in comparative linguistics: for instance, to study
patterns in massively parallel corpora (Liu et al.,
2023), or to support semi-automated interlinear-
glossing methods (McMillan-Major, 2020).

Contribution #1 of this paper is an unsupervised
morphological segmentation system that leverages
parallel translation data and best-first heuristics in-
spired by Lignos (2010) to constrain the hypothesis
space. This allows it to accurately infer a broader
array of morphological processes (infixation, redu-
plication). The system outperforms, for metrics
that reflect canonical than surface segmentation,

state-of-the-art unsupervised morphological mod-
els for many languages.

With those linguistic goals in mind, evaluation
on a more diverse set of languages is further desir-
able. Existing benchmark datasets reflect only a
small part of the diversity in morphological typol-
ogy, with notable absences of extremely common
processes like reduplication (Todd et al., 2022).
Furthermore, all languages come from the Eurasian
continent, thus reflecting an areally narrow set of
languages. Contribution #2 of this paper is to
present a method of using a corpus of interlinearly-
glossed fieldwork data in 37 typologically and are-
ally more diverse languages (Seifart et al., 2024) to
generate (both supervised and unsupervised) train-
ing data as well as evaluation data with a repro-
ducible training/development/test split.

Materials for the project are at https://github.
com/dnrb/vorm. After further introducing the
backgrounds to this work (§2), I will introduce the
novel system (§3) and the cross-linguistic data (§4).
The experimentation will be set out in §5, with its
empirical results in §6.

2 Background

2.1 Unsupervised morphological segmentation

The Morfessor model (Virpioja et al., 2013) forms
a baseline for unsupervised morphological segmen-
tation. It leverages word-internal statistical patterns
of character sequences, leading to surface segmen-
tations of the input string. A recent, linguistically
inspired, model that similarly leads to surface seg-
mentations is Eskander et al. (2020)’s MorphA-
Gram, which trains Adaptor Grammars (Johnson
et al., 2006) on surface strings, representing seg-
mentation as a context-free grammar parsing prob-
lem.

Other unsupervised models leverage the insight
that morphological processes do not merely carve
up a surface string, but transform base forms into
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derived forms, that are often not just superstrings
of the base form – transforming believe into
believing requires dropping the e.1 Modeling
such processes accurately would allow us to repre-
sent the canonical segmentation (Kann et al., 2016)
of a surface string, i.e., recognizing that believe
in the (surface segmented form) believ+ing con-
tains the same canonical morpheme as believe+s.

An early exponent of this class of models is
Morsel (Lignos, 2010), which uses a best-first
heuristic that maximizes the data coverage of the
inferred transformations, leading to derivations con-
sisting of chains of transformations. A similar
model pair, leveraging more global optimization
over the search space of transformations, is Mor-
phochains (Narasimhan et al., 2015) and Morpho-
forests (Luo et al., 2017). Like Morphoforests,
ParaMA2 (Xu et al., 2020) explicitly considers
paradigms, groups of transformations that co-occur
as a further building block to their model, on top of
using the idea that transformations form chains.

Here, I adopt many of the premises of the cited
works: heuristic search, constrained by using word
pairs and paradigms, and representing morphologi-
cal processes as transformations.

2.2 Leveraging translations
Parallel translation data has, in several domains,
been proven to help guide (otherwise) unsupervised
models towards the right regions of the hypothe-
sis space. Most pertinently, Rice et al. (2024) use
translations of a target language to a reference lan-
guage to provide an additional semantic signal in a
supervised system, in similar ways to Narasimhan
et al. (2015) and Schone and Jurafsky (2001), to
determine morphological segmentation: formally
overlapping words in the target language translat-
ing to the same or semantically similar words in
the reference language are thus more likely to be
segmented similarly.

Beyond morphology, translation data has been
used to project structure of a better-resourced ref-
erence language to a target language – examples
are PoS tagging and grammatical structure (Jo-
hannsen et al., 2016). Word-sense disambiguation
has been shown to benefit from using translation
data, given that distinct senses often translate dif-
ferently (Apidianaki, 2008; Hauer and Kondrak,
2023). Shared between all cases is the idea that a
reference language provides insight in the latent

1Character strings are represented throughout with the
typewriter font.

structure (semantic distinctions, grammatical rela-
tions, shared morphological material) of the tar-
get language, either through the projection of that
structure or through the variation in the patterns of
translation themselves. My approach leverages this
latter type of signal.

2.3 Morphological typology
When we approach unsupervised morphological
segmentation as a task of being able to induce
for any language the (canonical or superficial)
morphological segments without having access to
the correct segments to train on, it is paramount
to consider the variation in morphological pro-
cesses across languages. A typologically-oriented
overview of morphology is Haspelmath and Sims
(2010), who draw on the distinction between free
morphemes (which can occur as a word by them-
selves) and bound morphemes (which cannot) to
list the following basic processes:

First, affixation involves concatenating bound
morphemes to a free morpheme, such as believe
+ -ing. This includes infixation, whereby a bound
morpheme is located inside the free morpheme –
such as the Tagalog ‘agent trigger’ morpheme -um-
forming s-um-alat ‘wrote’ out of salat ‘write’.
Next, compounding involves concatenating two or
more free morphemes, like boathouse from boat
and house. Third, reduplication means reproduc-
ing a part of a free morpheme on either end of
that morpheme – marginal in English (e.g., house
house ‘a real house’), but widely productive in
other languages, e.g. duhp ‘dive’ → du-duhp ‘be
diving’ (Ponapean). Fourth, base modification in-
volves changing the string ‘inside of’ the free mor-
pheme, e.g. English ablaut (gave as the past tense
of give) or stem-internal gemination as the mor-
phological causative in Standard Arabic (waqafa
‘stop (intransitive)’ → waqqafa ‘stop (transitive)’).
Finally, in conversion the form is unaltered but
the grammatical category changes, e.g., English
hammer can be used as a noun or verb.

Given this diversity, the focus on non-
reduplicative affixation alone is narrow. Redupli-
cation is, for instance, extremely common: over
80% of languages have some form of it (Rubino,
2013). A smaller set of languages has stem-internal
modifications such as ablaut or tone change (Bickel
and Nichols, 2013) – Yu (2007) finds infixation in
111 languages from 26 language families.

Surface segmentation models such as Morfessor
and MorphAGram inherently rule out infixation

603



wr ct m

cảm $danke$ danke
cảm fuehl bauchgefuehl ehrgefuehl fuehl

fuehle fuehlen fuehlst fuehlt
fuehlte fuehlten gefuehl
gefuehle gefuehlen gefuehllos
(40 more)

Table 1: Examples of extracted morphological families.
Orthography follows the Morphochallenge 2010 format.

and base modification, and typically do not iden-
tify reduplication as distinct from regular affixa-
tion (but see Todd et al., 2022). Most models of
canonical segmentation do not consider processes
of reduplication and base modification, with no-
table exceptions being ParaMA2 (Xu et al., 2020).
The present work develops this line of research.

3 The VORM model

The proposed model, VORM (‘Vertaling Onderste-
unt Redelijke Morfologie’ – Dutch for ‘Translation
supports reasonable morphology’) is a heuristic
system that leverages translation equivalency in a
reference corpus to find an initial set of morpho-
logical transformations, which it then applies more
broadly. The model consists of three steps: De-
termining potential morphological families [S1],
which guide the learning of productive morpho-
logical transformations [S2]. Next, the learned
transformations are applied beyond the potential
morphological families by propagating the inferred
transformations to the full vocabulary [S3]. Figure
1 presents a simplified illustration of the model to
follow along with the technical introduction.

3.1 S1: Determining morphological families

One common challenge in unsupervised systems
that use word pairs (Narasimhan et al., 2015; Xu
et al., 2020) is to avoid oversegmentation. Re-
current phonotactic or orthographic patterns may
lead to the induction of spurious transformations.
Narasimhan et al. (2015) use distributional seman-
tic information to nudge the model away from un-
related pairs and towards related pairs, building
on the insight of Schone and Jurafsky (2001) that
distributional semantic representations are often
similar for morphological variants. Here, I propose
to use another way to constrain the comparison,
namely bitexts and word alignments.

The general procedure is as follows: we con-
sider a bitext B of translations between a target

language t and a reference language r, defined
as B = [⟨u1r , u1t ⟩, ⟨u2r , u2t ⟩, . . . ⟨unr , unt ⟩], mean-
ing that B consists of an ordered list of paired
translation-equivalent utterances ⟨ur, ut⟩. Let fur-
ther the utterances u1l . . . u

n
l for a language l be

made up of words from some vocabulary Vl.
The goal is to retrieve sets of word types in t that

are likely morphologically related to each other, to
feed into the next step. We call such a set a ‘mor-
phological family’ (cf. Nagy et al., 1989), denoted
m ∈ M , where M is a set of morphological fami-
lies. Several functions could be defined mapping
the bitext B onto a set of morphological families
M . Word alignment models are a sensible candi-
date, except for the fact that morphologically rich
target languages have a long tail of morphologically
complex words which risk not getting accurately
aligned, as indeed found by Beekhuizen (2025).

Instead, I use here the forward step of the Con-
ceptualizer model of Liu et al. (2023), which, given
a seed word wr in the reference language r, iter-
atively finds character substrings [c1t , c

2
t , . . . c

n
t ] of

words in t whose distribution across the utterances
in B is statistically most strongly associated with
the distribution of wr. Each such substring ct de-
fines a morphological family m as all word types
w1
t , w

2
t , . . . w

n
t that (1) contain ct as a substring,

and (2) occur in an utterance uit whose aligned
counterpart in r, uir, contains the seed word wr.

Table 1 presents examples of morphological fam-
ilies, using the seed language (Vietnamese) and cor-
pora introduced below. Vietnamese cảm ‘feel’ has
two ct: $danke$ ($ = word boundary) and fuehl.
The morphological family of $danke$ definition-
ally only contains danke itself, whereas fuehl
matches many (related) words in the bitext in which
it co-occurs with cảm. Figure 1a presents a mor-
phological family found for an English-to-Dutch
mapping, used here as our guiding example.

3.2 S2: Learning productive transformations
The morphological families are next used to learn
productive transformations in Step 2. This proce-
dure closely follows Morsel (Lignos, 2010). This
step starts with initializing a set F of candidate
transformations f1, f2, . . . , fn. The procedure iter-
ates over all m ∈ M . For each m, each possible
pair ⟨wi

t, w
j
t ⟩ in m is considered. All transforma-

tions from a set of allowed transformations Fall that
transform wi

t into wj
t are added to F .

Fall is defined to represent the typological diver-
sity of morphological processes. The following are
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(a) Step 1: Determining morphological families. (b) Step 2: Retrieving all possible pairwise transformations.

(c) Step 2: Best-first pass determining derivations. (d) Step 3: Expanding the transformations.

Figure 1: Simplified illustration of the 3 steps of VORM, given English (reference) and Dutch (target).

the allowed types of transformations on the right
edge of the string (mirrored transformations are
defined for the left edge):
Suffixation: add characters to the right edge of
wi
t so that the result is wj

t . For instance: belief–
beliefs is modeled by -s suffixation;
Suffixation with assimilation: remove 1 or 2 char-
acters from the right edge of wi

t and then add any
string of characters to the (new) right edge, so that
the result is wj

t : believe–believing is modeled
by -e/ing suffixation;
Full right reduplication; a string of length n on
the right edge of wi

t is suffixed to wi
t to form wj

t :
The Fanbyak pair ini–inini ‘to shoot’ is mod-
eled by full right reduplication of ∼ni (with tildes
representing reduplication);
Partial-V right reduplication; all strings of one
or more vowels2 in wi

t and wj
t are replaced by a

wildcard symbol @, forming the new strings wi′
t and

wj′
t . Next, a string s of the length n on the right

edge of wi′
t is suffixed to wi′

t to form wj′
t : Gorwaa

guus–guusas are modeled this way, reduplicating
the final consonant s, preceded by a.
Partial-C right reduplication; all strings of one
or more consonants in wi

t and wj
t are replaced by

the rightmost consonant in the string, forming the
new strings wi′

t and wj′
t . Next, a string s of the

length n on the right edge of wi′
t is suffixed to wi′

t

to form wj′
t . Partial-C left reduplication is more

2Vowels are characters that, when stripped of diacritics,
are one of {a,e,i,o,u,y}. Any other character is a consonant.

common: Pangasinan (Rubino, 2001) transforms
plato ‘plate’ into paplato ‘plates’ by taking the
leftmost single consonant and vowel of a string and
adding them to the left edge of that string.

Right infixation; for a pair of words wi
t and wj

t ,
removing a string si of length n from an anchor a in
wi
t results in a new string wi′

t , and removing a string
sj of length m from the same anchor a in wj

t results
in a string wj′

t . If wi′
t is identical to wj′

t , the pair
of words is modeled by a-anchored right infixation.
Anchors are structural positions in the orthographic
string constraining where the infix is combined
(Yu, 2007), and I use 4 here: before vs. after the
last consonant cluster, and before vs. after the last
vowel cluster. English give-gave are modeled by
replacing si = i for sj = a, given that wi′

t =wj′
t =gve,

anchored on a = before-last-consonant-cluster.

Figure 1b illustrates the set of transformations
(labels on the directed edges) for the guiding ex-
ample: the morphological family $va reflects two
‘real’ lemmas: vang ‘catch [someone]’ and vat
‘catch [a disease]’. Not ‘knowing’ this, the model
tries all possible transformations (as defined below)
between any pair of word forms, such as -te suffix-
ation between vat and vatte, but also (incorrectly)
ng-infixation between vat and vangt.

Next, a best-first heuristic extracts a set of pro-
ductive transformations Fp ⊆ F . The intuition
here is that a productive morphological transforma-
tion is one that models many word pairs. Let P be
the set of all word pairs ⟨wi

t, w
j
t ⟩ such that there
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is at least one morphological family m for which
wi
t ∈ m∧wj

t ∈ m, and Pf all such word pairs mod-
eled by a transformation f . We then define the best
transformation fbest = argmaxf |Pf |.3 Once fbest
is found, the word pairs in Pfbest are removed from
P , as are all other word pairs whose second word
is modeled by fbest. The procedure is repeated until
|Pfbest | < θf , where θf is a pre-set threshold.

Figure 1c illustrates a possible resulting state
in our example: common suffixes like -t and -en
are extracted to form derivations between vang
and vangt or vangen, while transformations with
fewer instances, such as -t/ngen modeling the
transformation from vat to vangen, are eliminated
at this stage.

The derivations found through the best-first
heuristic afford two sources of constraints on the
application of Fp in the full vocabulary in the next
Step. First, derivations form chains: bookings
may have been derived from booking with -s suf-
fixation, after which booking was derived from
book through -ing suffixation. We denote the
chain or derivation d as ⟨-ing, -s⟩, and we collect
all attested chains of transformations. Secondly,
chains co-occur with other chains – this can simi-
larly help prevent oversegmentation in ways set out
below. For now, we define a pair of chains of trans-
formations di, dj to co-occur if there is at least one
base form that both models some wi through di and
some other wj through dj .

An additional procedure allows us to find com-
pounds, using the morphological families. We do
so by inferring a set of compound templates, strings
of n elements. The template consists of n− 1 fixed
elements, and a blank spot where another word
wt ∈ Vt can go. We find the set of reliable com-
pound templates by iterating over all m ∈ M .
For each word w ∈ m, we find all of its exhaus-
tive splits wi, wj for which wi ∈ Vt ∧ wj ∈ Vt

and wi ∈ m ∨ wj ∈ m. The latter constraint
provides evidence that this is indeed a compound.
For example, bauchgefuehl in Table 1 yields two
potential compound patterns ⟨bauch + ⟩ and
⟨ + gefuehl⟩, as both bauch ‘belly’ ∈ Vf and
gefuehl ∈ Vf , with the latter moreover being part
of m as well (as can be seen in the table). If a pair
wi, wj is found that forms a reliable compound
template, we recursively apply the procedure to
each element of the pair to see if further splits can

3Ties are broken first by morphological type, where the
ordering given above is followed, then by affix length (longer
affixes are preferred).

be found. The count of the reliable compound
templates is tracked across M , and all reliable com-
pound templates with a frequency of θc or greater
are kept to constrain compounding in Step 3.

3.3 S3: Propagation to the full word list
The derivations obtained in Step 2 are typically ac-
curate, but only capture a small part of a language’s
vocabulary. First, not all morphologically related
words in the bitext are found in the same morpho-
logical family m (such as Dutch gevangen, the
past participle of vang in Figure 1d), but perhaps
more importantly, we would like the unsupervised
model to be able to generalize beyond the bitext
itself. As such, Step 3 models the propagation of
the productive transformations Fp, constrained by
the set of chains and chain co-occurrences, to a
wordlist L, where L may consist of all words in B,
or some external source.

First, for each word w ∈ L, all transformations
chains that can apply to it are extracted and added
to a set of potential analyses A(w) of w. A chain
d = ⟨f1, f2, . . . , fn⟩ is applicable to a word w if,
for every transformation f , a new string w′ can be
derived by removing the string added by f from
the previously derived string w, where new strings
do not have to be in Vt. The resulting new string
after successfully applying d to w is denoted s for
stem, and is added to a list of potential stems S.

Every stem s ∈ S now defines a set of words
D(s) = {wi, . . . , wn}, each of which derives s
through the application of a chain d. However,
some s with very large D(s) did not reflect coher-
ent morphologically related groups of words. For
that reason, we impose a further constraint, such
that every derivational chain d modeling the rela-
tion between a word w ∈ D(s) and s has to be
found to co-occur, as defined in Step 2, with the
derivational chains of at least half the other words
in D(s). If this is not the case, the word whose
derivation co-occurs with the fewest derivations
of the other words of D(s) is removed from D(s).
This procedure is repeated until the set consists of
one member, or the derivations of all words in D(s)
co-occur with at least half the other words in D(s).

The central mechanism of this step is a best first
pass, similar to Step 2, except the model now iter-
atively finds the stem sbest that models the largest
D(s) (with ties broken by stem length, preferring
shorter stems). Once found, all words in D(sbest)
are removed from D(s′) for all stems s′ ∈ S, and
a new sbest is determined. Figure 1d illustrates: the
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words vatten and gevangen are not part of the
morphological family but can be modeled with pro-
ductive transforms that form attested chains from
words that are in the morphological family.

After this pass is done, compounds are extracted
over all extracted sbest by applying the reliable
compound templates from Step 2. If the substring
s filling the blank is a word in Vt, compounding
applies, and the new derivation has more than one
stem (potentially each with their own derivations).

4 DORECO-MORPH: crosslinguistic data

The representational potential of VORM, includ-
ing reduplication and infixation, exceeds the set of
morphological phenomena present in the datasets
typically used. Reduplication and infixation are
absent from widely used benchmark sets such
as Morphochallenge 2010 (Kurimo et al., 2010).
A corpus that can be fill this gap is DoReCo
(https://doreco.huma-num.fr/; Seifart et al.,
2024), consisting of collections of transcribed field-
work materials in 52 languages. Much of these
materials have interlinear glosses, exemplified in
Table 3, where for each word, the morphological
analysis is given. Such data allow us to derive a
list of words with their morphological analyses,
which in turn can be used to train (un)supervised
morphological segmentation systems and evaluate
them.

The Supplemental Materials for this paper con-
tain a script for deterministically transforming the
corpus data into a dataset in the same format
as the Morphochallenge data, with word types
linked to their canonical and surface segmenta-
tion(s). In particular, the unique words (the w
layer in Table 3) are linked to all their morpho-
logical analyses, represented as combinations of
the morphemes (m) and the glosses (g). An
analysis of Savosavo ghavilighue would thus
be: ‘ghavi:paddle -li:3SG.M.O -ghu:NMLZ
=e:EMPH’. Some preprocessing to normalize or-
thography and glossing was applied.

These data can be readily used for computational
morphology (and perhaps other tasks such as inter-
linear gloss induction, cf. McMillan-Major, 2020).
The script also generates a train/development/test
split over the data to facilitate experimentation.
While the derived data cannot be published un-
der the corpus licence, their generation is exactly
reproducible. The datasets used, along with rele-
vant statistics on the derived data, are presented in

Table 2 in the Appendices. This table also gives
the citation for each individual language, required
as part of the user agreement of the corpus.

Morphological profiles of the 37 languages are
presented in Appendix A (alongside similar pro-
files for the MC10 and MC22 data, for compari-
son). The average number of morphemes ranges be-
tween 1.17 and 3.26 per language in the DORECO-
MORPH dataset, representing a broad variety of
morphological complexity. Moreover, for all lan-
guages, there is at least some difference between
the canonical forms and the surface strings (cf. Fig-
ure 5), suggesting that more than the mere place-
ment of surface string boundaries is necessary to
adequately represent the morphological structure
of most languages. While little evidence of (the
annotation of) infixation or base modification was
found among the languages, reduplication is exten-
sively represented in the corpus: a majority (22/37)
of languages display some form of reduplication,
with some languages having over 10% of their word
types display reduplication. This underscores the
point of Todd et al. (2022) that being able to repre-
sent reduplication is necessary for a truly multilin-
gual unsupervised morphological model.

5 Evaluation

Evaluation data First, VORM is compared with
other models on two benchmarks: Morphochal-
lenge 2010 (MC10; Kurimo et al., 2010), with gold
data for English, Finnish, Turkish, and German
canonical and surface (for all but German) segmen-
tation, and the SIGMORPHON 2022 task on sur-
face segmentation (SGM22; Batsuren et al., 2022)
for eight languages. Next, we consider the novel
DORECO-MORPH dataset of 37 languages.
Evaluation metrics The standard metrics were
applied. First, EMMA-2 (Virpioja et al., 2011)
measures the precision and recall between the gold
(canonical) segmentation and the predicted segmen-
tation by inferring mappings between gold and pre-
dicted morpheme labels that optimize Precision
and Recall, thus solving the problem of poten-
tially differing morpheme labels. It is applied to
both datasets with canonical forms: MC10 and
DORECO-MORPH. Second, Boundary Precision
and Recall (BPR; Batsuren et al., 2022) measures
the F1 score of the proportion of predicted bound-
aries found in the gold data (precision) and con-
versely the proportion of gold data boundaries pre-
dicted (recall) for all datasets. While commonly
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language (glottocode; family; area; reference) language (glottocode; family; area; reference)

Yali (apah1238; Nuclear Trans New Guinea; PNS; Riesberg, 2024) Nisvai (nisv1234; Austronesian; PNS; Aznar, 2024)
Arapaho (arap1274; Algic; NAM; Cowell, 2024) N——ng (nngg1234; Tuu; AFR; Güldemann et al., 2024)
Baı̈nounk Gubëeher (bain1259; Atlantic-Congo; AFR; Cobbinah, 2024) Northern Kurdish (nort2641; Indo-European; ERS; Haig et al., 2024)
Beja (beja1238; Afro-Asiatic; AFR; Vanhove, 2024) Northern Alta (nort2875; Austronesian; PNS; Garcia-Laguia, 2024)
Bora (bora1263; Boran; SAM; Seifart, 2024) Fanbyak (orko1234; Austronesian; PNS; Franjieh, 2024)
Cabécar (cabe1245; Chibchan; NAM; Quesada et al., 2024) Pnar (pnar1238; Austroasiatic; ERS; Ring, 2024)
Cashinahua (cash1254; Pano-Tacanan; SAM; Reiter, 2024) Daakie (port1286; Austronesian; PNS; Krifka, 2024)
Dolgan (dolg1241; Turkic; ERS; Däbritz et al., 2024) Ruuli (ruul1235; Atlantic-Congo; AFR; Witzlack-Makarevich et al., 2024)
Evenki (even1259; Tungusic; ERS; Kazakevich and Klyachko, 2024) Sanzhi Dargwa (sanz1248; Nakh-Daghestanian; ERS; Forker and Schiborr, 2024)
Goemai (goem1240; Afro-Asiatic; AFR; Hellwig, 2024) Savosavo (savo1255; Isolate; PNS; Wegener, 2024)
Gorwaa (goro1270; Afro-Asiatic; AFR; Harvey, 2024) Nafsan (sout2856; Austronesian; PNS; Thieberger, 2024)
Hoocak (hoch1243; Siouan; NAM; Hartmann, 2024) Sümi (sumi1235; Sino-Tibetan; ERS; Teo, 2024)
Jahai (jeha1242; Austroasiatic; ERS; Burenhult, 2024) Tabasaran (taba1259; Nakh-Daghestanian; ERS; Bogomolova et al., 2024)
Jejuan (jeju1234; Koreanic; ERS; Kim, 2024) Teop (teop1238; Austronesian; PNS; Mosel, 2024)
Kakabe (kaka1265; Mande; AFR; Vydrina, 2024) Texistepec Popoluca (texi1237; Mixe-Zoque; NAM; Wichmann, 2024)
Kamas (kama1351; Uralic; ERS; Gusev et al., 2024) Mojeño Trinitario (trin1278; Arawakan; SAM; Rose, 2024)
Komnzo (komn1238; Yam; PNS; Döhler, 2024) Urum (urum1249; Turkic; ERS; Skopeteas et al., 2024)
Movima (movi1243; Isolate; SAM; Haude, 2024) Vera’a (vera1241; Austronesian; PNS; Schnell, 2024)
Dalabon (ngal1292; Gunwinyguan; AUS; Ponsonnet, 2024)

Table 2: Languages in the DORECO-MORPH dataset. The macroareas are: PNS = Papunesia, NAM = North
America, SAM = South America, AFR = Africa, ERS = Eurasia, AUS = Australia.

w melo bo lo ghavilighue.
m melo bo lo ghavi -li -ghu =e
g tuna go 3SG.M paddle -3SG.M.O

-NMLZ =EMPH
f “he went and fished bonito with it.”

Table 3: Interlinear Gloss; Savosavo (Wegener, 2024)

used, it is a less linguistically insightful metric, as
(per Figure 5) non-identity between the canonical
morphemes and the surface string is crosslinguisti-
cally extremely common.
Training data The bitexts used for MC10 and
SGM22 were (up to) a million words of bitext from
Opus2018 (Lison and Tiedemann, 2016) subtitles
from www.opensubtitles.org/. Vietnamese was
chosen as the reference language as it has little
morphology. Bitexts for German and Turkish were
orthographically normalized with the test data. For
the DORECO-MORPH experiment, bitexts were
generated from the corpora, using the w and f lay-
ers (cf. Table 3). Free translations were mostly in
English, with some in Malay, Spanish, and others.
Comparison models For the MC10 and SGM22,
I compare VORM against published results, but
add Morfessor2 (Virpioja et al., 2013) to the lat-
ter as an unsupervised baseline. For DORECO-
MORPH, I run Morfessor2, ParaMA2 (Xu et al.,
2020), and MorphAGram (Eskander et al., 2020)
(in the language-independent setting) as unsuper-
vised models, and Chipmunk (Cotterell et al.,
2015), as a supervised model. The unsupervised
models were trained on the full wordlists, and Chip-
munk on the training split (48% of the data), and

were tested on the test split (40% of the data).
Tuning Models were tuned on each dataset in-
dividually, using the standard splits of MC10 and
SGM22, and the proposed split (12% of the data of
each language) for DORECO-MORPH. To better un-
derstand the performance of the VORM model, an
ablation experiment was furthermore run, leaving
out Step 1 (‘-S1’) by instead having one single mor-
phological family containing all vocabulary items,
not extracting compounds (‘-C’), and leaving out
Step 3 (‘-S3’). As the optimal hyperparameters for
these settings may differ from the unablated ver-
sion of VORM, tuning was done on each individual
ablation variant. Details and results (hyperparame-
ter settings and accuracy metrics) of the tuning for
all models and ablation variants can be found in
Appendix B. Below, I will report test data results on
the best-tuned model per model/ablation variant.

6 Results

6.1 Results by dataset

MorphoChallenge 2010 results. Table 4 presents
the results for MC10. First, we focus on the metric
for canonical segmentation, EMMA-2. Across the
four languages, VORM has the highest average F1

score at 90.0. For the individual languages, we
find that VORM presents a substantial improvement
over MorphAGram and Morfessor for Finnish, Ger-
man, and Turkish, but not for English, where Mor-
phAGram outperforms VORM. Considering the
ablation steps, we find that for some languages
not using the translation equivalences in Step 1
(‘-S1’) or not finding compounds (‘-C’) improves
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EMMA-2 BPR
morf AG VORM -C -S1 -S3 morf AG VORM -C -S1 -S3

English 85.9 88.7 84.1 84.1 91.2 56.6 75.2 80.0 54.0 52.9 43.1 40.6
Finnish 73.4 77.7 94.9 95.0 92.9 46.4 62.8 71.1 24.8 23.6 25.1 40.6
German 80.9 85.9 93.7 93.9 93.2 41.3 n/a
Turkish 61.3 69.3 87.3 86.0 78.9 28.3 64.6 78.9 24.2 23.3 23.2 19.0

avg. 75.3 80.4 90.0 89.7 89.0 43.1 67.5 76.7 34.3 33.3 30.5 24.1

Table 4: Model comparison on the development sets for Morphochallenge 2010 [MC10], comparing Morfessor
(Morf) and the best MorphAGram (AG) model against VORM with ablation variants, on EMMA-2 and BPR F1

scores. The best result per language and per metric is boldfaced.

DeepSPIN-3 morf VORM -C S1 S3

Czech 93.84 28.71 28.18 27.12 25.75 6.34
English 93.63 49.90 41.85 33.17 40.63 10.80
French 95.73 23.63 20.33 21.67 20.31 3.99
Hungarian 98.72 34.47 34.43 33.67 32.44 32.44
Italian 97.43 11.84 11.35 12.50 11.40 2.39
Latin 99.39 17.77 12.92 13.25 12.98 4.10
Russian 99.35 11.46 15.60 18.56 14.42 0.65
Spanish 99.04 9.23 17.99 19.06 17.96 1.25

avg. 97.29 23.38 20.82 20.67 20.07 7.41

Table 5: Model comparison on the tests sets for the
SIGMORPHON 2022 challenge comparing DeepSPIN-
3 (supervised) and Morfessor2 against VORM and its
ablation variants on the Batsuren et al. (2022) evaluation
measure. The best unsupervised result per language is
boldfaced; the best result overall underlined.

the quality of the model, suggesting that further
development of these components might be neces-
sary. Removing the extension to the full vocabulary
(‘-S3’) is, however, consistently detrimental.

On the surface segmentation measure of BPR,
VORM is substantially outperformed by Morfessor
and MorphAGram. This effect may be due to the
differences between the metrics: EMMA-2 favours
canonical morpheme identity, but does not penal-
ize allomorphy, which is indistinguishable from
undersegmentation to the model. The same under-
segmentation leads to extremely low (often single
digit) recall scores on the BPR measure for VORM.

SIGMORPHON 2022 results. For the SGM22,
only surface segmentation is considered, using the
metric provided by the task. The results are pre-
sented in Table 5. While no unsupervised model
performs even close to the supervised models (here,
the best-performing supervised model DeepSPIN-
3, Peters and Martins, 2022, is given as a reference
point), VORM without compounding (‘-C’) occa-
sionally outranks Morfessor2 in its performance.
This further underscores the previous observation
that VORM does not excel in surface segmentation.

DORECO-MORPH. Finally, Table 6 present the
aggregated results for VORM and comparison mod-
els over the 37 DORECO-MORPH languages, with
Table 15 in the appendices presenting the EMMA-
2 scores per language. For the EMMA-2 scores,
unablated VORM outperforms the other unsuper-
vised models for 20/37 languages (32 if considering
the ablated variants). MorphAGram is the optimal
model for 1 language. Considering average model
performance, we find VORM outperforming other
unsupervised models by a substantial margin, com-
ing within a 2% range of the supervised Chipmunk
model. Notably, the language VORM performs
worst on still reaches an EMMA-2 score of 78.0,
while Chipmunk only scores 69.9 on its worst case
– with Morfessor also performing robustly at 77.1.
In the ablation experiment, we find that the effects
of leaving out compounding (‘-C’) are negligible,
and that not having Step 1 in many cases improves
performance (indeed, the worst case without Step 1
is slightly better than the worst case of unablated
VORM). Omitting Step 3 (‘-S3’) in all cases leads
to a substantial drop in performance.

For surface segmentation (BPR), however, the
performance is more mixed: here, Chipmunk is
the best overall model with a large margin, with
ParaMA2 being the best model for 15 languages,
and VORM for 21. Notably, leaving out Step 3 here
frequently leads to an improvement for VORM, ow-
ing perhaps to the fact that these are small datasets
for which the complete vocabulary is captured in
Step 1 (as opposed to the MC10 data, where the
corpus data only contained a subset of the test data),
and that as such extension beyond the morpholog-
ical families leads to more Precision errors than
improvement of Recall.

6.2 Discussion

On the whole, the results suggest that VORM is a
competitive model of canonical segmentation. On
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EMMA-2 BPR
chip morf para AG vorm -S1 -C -S3 chip morf para AG vorm -S1 -C -S3

max? 4 1 20 11 1 1 15 5 1 15
avg. 91.4 86.1 80.3 84.6 89.9 88.6 89.9 69.1 86.9 56.9 57.0 34.3 58.8 46.6 58.2 60.4
worst 69.9 77.1 69.7 71.3 78.0 78.3 78.0 35.3 65.6 31.0 35.7 13.3 32.9 29.4 32.7 29.6

Table 6: Aggregated EMMA-2 & BPR F1 scores for the DORECO-MORPH dataset for [chip]munk (supervised),
[Morf]essor2, [Para]MA2 , Morph[AG]ram, and VORM with its ablation variants. Best unsupervised results in bold;
best overall results underlined.

word babarak vivirigĕm
gold ba∼:RED∼ bara:long -k:TAM1 vi∼:RED∼ virigĕ:rush -m:TAM1

chip babarak vivirig + ĕm
morf2 babara + k vivi + rig + ĕm
para babara + -k vi rig + -vi- + -em
AG babara + k vivi + rig + ĕm

vorm ba∼ + bara + -k vi∼ + virigĕ + -m

Table 7: Examples of reduplication in Vera’a (Schnell,
2024) and their analysis across models. Underscores
mark the infix slot; tildes mark reduplicative affixes.

morphologically complex languages like Finnish
and Turkish, its improvement over other unsuper-
vised models is substantial. The ablation experi-
ments paint a complicated picture of what leads
to these results – the addition of a compounding
component, and the ‘narrowing’ of the hypothe-
sis space through the use of morphological fami-
lies in Step 1 have only a small, and sometimes
even a negative, effect. The Precision-oriented fo-
cus of the compounding component may lead to
limited extraction of compounds. Step 1 may be
redundant with the filtering mechanisms of Step
2: when all words are compared with each other,
low-frequency transforms will be eliminated by
the frequency threshold, and frequent, but spurious,
transforms may be weeded out by being pre-empted
by a more frequent transform in the best-first pass.
However, for some languages (Turkish in MC10,
several DORECO-MORPH languages), the omis-
sion of Step 1 does come at a cost, suggesting that
narrowing by translation equivalence is not always
redundant.

On surface segmentation VORM does not per-
form as competitively. This can be attributed to
the lower Recall the model achieves here, and its
focus on canonical segmentation leading to vari-
able boundaries on the surface string. Importantly,
this contrast suggests that canonical and surface
segmentation are substantially different tasks.

The examples in Table 7 demonstrate the
model’s capacity to analyze reduplication. We see
that only VORM analyses the forms correctly, both

in its surface segmentations as well as in its canoni-
cal analysis, i.e., recognizing ba∼ and vi∼ as redu-
plicative morphemes. Other models either under-
segment the left edge of the words, or missegment
the word (paraMA, Morfessor).

None of our languages has productive base mod-
ification processes, but German has some, in nomi-
nal plurals and past tense. Given the low type fre-
quency of such Ablaut processes, the tuned model
did not learn these patterns, but a model with a
lower θf = 30, did analyze huehnerbesitzer
‘chicken owner’ correctly as hu hn + -e- + -er +
besitz + -er and geldbetraege ‘sums of money’
as geldbetra g -e- + -e.

7 Conclusion

This paper introduces VORM, a novel unsupervised
morphological segmentation system, which uses
translation-equivalency to narrow down the set of
word pairs on which the inferred morphological
transformations are based. Aside from affixation,
the model can represent base-modifying transfor-
mations and reduplication. Generalizing models
are induces through a pair of heuristic, best-first
processes. In doing so, the model stands in a tradi-
tion of unsupervised morphological segmentation
that does not consider very large parts of the hy-
pothesis space (Lignos, 2010; Xu et al., 2020) in
order to maintain high precision.

Further exploration on the DORECO-MORPH

dataset could identify more specific modeling chal-
lenges by breaking down the full dataset into lin-
guistically interesting subsets (cases with redupli-
cation, cases where the canonical form deviates
substantially from the surface form through assimi-
lation processes, etc.). Through such exploration,
and more detailed analysis of model performance
on different challenges, the landscape of what un-
supervised learners have to contend with might
become more clear. With this paper, I hope to have
made a first move in that direction.
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Ramy Eskander, Francesca Callejas, Elizabeth Nichols,
Judith L Klavans, and Smaranda Muresan. 2020.
Morphagram, evaluation and framework for unsuper-
vised morphological segmentation. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 7112–7122.

Diana Forker and Nils Norman Schiborr. 2024. Sanzhi
Dargwa DoReCo dataset. In Frank Seifart, Ludger
Paschen, and Matthew Stave, editors, Language Doc-
umentation Reference Corpus (DoReCo) 2.0. Labora-
toire Dynamique Du Langage (UMR5596, CNRS &
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611

https://doi.org/10.34847/nkl.2801565f
https://doi.org/10.5281/zenodo.13950591
https://doi.org/10.5281/zenodo.13950591
https://doi.org/10.34847/nkl.ad7f97xr
https://doi.org/10.34847/nkl.6a71xp0p
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.36f5r1b6
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.c5e6dudv
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.02084446
https://doi.org/10.34847/nkl.efea0b36
https://doi.org/10.34847/nkl.efea0b36
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.ca10ez5t
https://doi.org/10.34847/nkl.b57f5065


Andrew Harvey. 2024. Gorwaa DoReCo dataset. In
Frank Seifart, Ludger Paschen, and Matthew Stave,
editors, Language Documentation Reference Corpus
(DoReCo) 2.0. Laboratoire Dynamique Du Langage
(UMR5596, CNRS & Université Lyon 2), Lyon.
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A Morphological profiles of the languages

A.1 Number of morphemes
The number of morphemes, as given in the gold
standard datasets is presented in Figures 2 (for
DORECO-MORPH), 3 (for MC10) and 4 (for
MC22).

A.2 Number of insertions and deletions
Only for the DORECO-MORPH data do we have
both the surface forms and the canonical forms; for
MC10, despite canonical morphemes being given,
the inflectional morphemes are mostly given in a
featural notation (‘+PL’, ‘+SUP’) and as such a
canonical string of phonological/orthographic seg-
ments cannot be faithfully extracted. For MC22,
only suface string segmentations are given.

The difference between the surface form and
the canonical form was calculated by running a
Wagner-Fisher algorithm (see Navarro, 2001, for
the complexity of authorship attribution of this al-
gorithm) on the two strings to compute the path of
maximal string overlap, allowing only for character
insertion and deletion operations. Any insertions
(the canonical form has more characters than the
surface form; e.g., believing for believe + -ing)
and deletions (the surface form has more characters
than the canonical form; e.g., barring for bar +
-ing) were counted.

Figure 5 presents the number of insertions and
deletion going from the surface form to the canoni-
cal form.

A.3 Prevalence of morpheme types
Per language, it was determined heuristically
whether a morpheme was free, reduplicative and
bound, or affixal and bound. Reduplicative mor-
phemes are consistently tagged with a tilde (‘∼’)
on their left or right edge in the DORECO-MORPH

data (and are absent from the MC10 data). Affixal
morphemes are marked with capitalized glosses
in DORECO-MORPH and either a grammatical
feature-style notation starting with ‘+’ (e.g., ‘+PL’)
or a grammatical category marking as ‘p’ (prefix)
or ‘s’ (suffix) in the MC10 data. Morpheme types
are undefined for the MC22 data.

Figure 6 presents the counts for the DORECO-
MORPH data, while Figure 7 presents the counts
for the MC10 data.
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Figure 2: Histogram of the number of morphemes in the DORECO-MORPH data.
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Figure 3: Histogram of the number of morphemes in the MC10 data.

Figure 4: Histogram of the number of morphemes in the MC22 data.
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Figure 5: Heatmap of the number of insertions (rows) and deletions (columns) going from the surface form to the
canonical form in the DORECO-MORPH data (darker means more instances).

617



Figure 6: Histogram of the combinations of three morphological types in the lexical items of the DORECO-MORPH
languages. ‘base’ = morphologically symplex, ‘a’ = affixation; ‘r’ = reduplication; ‘c’ = compounding
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Figure 7: Histogram of the combinations of three morphological types in the lexical items of the DORECO-MORPH
languages. ‘base’ = morphologically symplex, ‘a’ = affixation; ‘r’ = reduplication; ‘c’ = compounding
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B Tuning experiments

The model was tuned on the development split
(12% of the data for each language) in the
DORECO-MORPH data, the training split for MC10
and the development split for SGM22. For each
task, and for each metric (EMMA-2 or BPR), the
best-performing set of hyperparameters of each
model (and of each ablation variant of the VORM

model) was selected.

B.1 DORECO-MORPH data

For VORM, the free parameters θf ∈
{3, 5, 10, 20} (minimum number of word
pairs modeled by a transformation in Step 2)
and θc ∈ {1, 5, 10, 20} (minimum number of
compound template occurrences for it to be used
in Step 3) using a grid search over the values. The
ablation over model components (-CMPD: no
compounding, -S1: no Step 1, i.e. comparing all
of the vocabulary in Step 2, -S3: no Step 3) was
done simultaneously, as optimal values for θf and
θc can be expected to vary across ablation steps.

Tuning scores are given in Table 8. As the op-
timal parameter settings do not line up across the
two measures, the parameter setting with the high-
est average across the two scores was selected per
ablation setting. In the main text, we report on
θf = 20, θc = 1 for no ablation and -CMPD,
θf = 20, θc = 20, for -S1, and θf = 3, θc = 1
for -S3.

For Morfessor, the model was tuned on the
three ways of using token counts (token counts
or: ‘token’, no counts or: ‘type’, and ‘log-counts’).
Scores are given in Table 9. Log-counts is on aver-
age the best-performing setting.

For ParaMA (Xu et al., 2020), I varied the mini-
mum stem length (∈ {1, 3}) and whether the model

ablation θc θf EMMA-2 BPR

1 3 90.48 42.48
1 5 90.60 46.57
1 10 89.62 51.51
1 20 85.73 56.62
5 3 90.63 42.43
5 5 90.80 46.47
5 10 89.78 51.37
5 20 85.82 56.42

10 3 90.65 42.43
10 5 90.83 46.46
10 10 89.80 51.25
10 20 85.86 56.29
20 3 90.65 42.43
20 5 90.83 46.46
20 10 89.80 51.22
20 20 85.88 56.15

-CMPD n/a 3 90.65 42.43
-CMPD n/a 5 90.83 46.46
-CMPD n/a 10 89.80 51.22
-CMPD n/a 20 85.88 56.09

-S1 1 3 87.25 30.02
-S1 1 5 87.88 30.21
-S1 1 10 88.52 33.21
-S1 1 20 88.71 40.80
-S1 5 3 87.42 30.03
-S1 5 5 88.53 30.24
-S1 5 10 89.39 33.23
-S1 5 20 89.21 40.70
-S1 10 3 87.42 30.03
-S1 10 5 88.53 30.24
-S1 10 10 89.69 33.25
-S1 10 20 89.52 40.63
-S1 20 3 87.42 30.03
-S1 20 5 88.53 30.24
-S1 20 10 89.69 33.25
-S1 20 20 89.77 40.52

-S3 1 3 76.71 59.74
-S3 1 5 76.48 59.53
-S3 1 10 76.17 59.06
-S3 1 20 75.55 58.42
-S3 5 3 76.70 59.70
-S3 5 5 76.48 59.45
-S3 5 10 76.17 59.00
-S3 5 20 75.55 58.39
-S3 10 3 76.70 59.69
-S3 10 5 76.47 59.45
-S3 10 10 76.16 58.93
-S3 10 20 75.56 58.33
-S3 20 3 76.70 59.69
-S3 20 5 76.47 59.44
-S3 20 10 76.17 58.92
-S3 20 20 75.55 58.27

Table 8: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the VORM model.
Best model scores per ablation (none, -CMPD, -S1, -S3)
boldfaced, best overall score (per metric) underlined.
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parameters EMMA-2 BPR

token 86.6 51.5
type 85.6 33.2
log-counts 88.2 48.4

Table 9: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the Morfessor model.
Best model scores boldfaced

parameters EMMA-2 BPR

−compound, min stem ≥ 1 78.7 41.5
+compound, min stem ≥ 1 78.7 41.5
−compound, min stem ≥ 3 83.3 53.5
+compound, min stem ≥ 3 83.3 53.5

Table 10: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the ParaMA model.
Best model scores boldfaced

parameters EMMA-2 BPR

default 86.7 23.1
reported 86.1 22.2
vaguer-G 85.8 22.4
sharper-G 86.2 22.1

Table 11: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the MorphAGram
model. Best model scores boldfaced

tried to find compounds. Table 10 presents the re-
sults. Compounding and a minimal stem length of
≥ 3 leads to the best setting on both metrics.

For MorphAGram (Eskander et al., 2020), the
primary two settings were the model defaults and
the reported values (in which the Gamma param-
eters of the py-cfg model (Johnson et al., 2006)
were set to pyb-gamma-s = 10 and pyb-gamma-
c = 0.1. As these parameters were found to be
effective before, tuning was undertaken in both di-
rections, resetting them to the default (‘vaguer-G’:
pyb-gamma-s= 1 and pyb-gamma-c= 1) and mak-
ing them more extreme (as suggested in the py-cfg
documentation: ‘sharper-G’: pyb-gamma-s= 100
and pyb-gamma-c= 0.01). No tuning of the Alpha
and Beta parameters of the py-cfg model was done
as the optimal tuned in the paper was the default.
Table 11 presents the results; the default setting
was consistently the optimal one.

For Chipmunk, no parameters were found that
would lead to differences in model performance.

B.2 MC10
For the MC10 data, only novel results were gen-
erated for VORM, with the other results being
cited from other papers. The free parameters
θf ∈ {30, 60, 100} (minimum number of word
pairs modeled by a transformation in Step 2) and
θc ∈ {10, 30, 60} (minimum number of com-
pound template occurrences for it to be used in
Step 3) were tuned using a grid search over the
values. As with the DORECO-MORPH data, the
ablation variants were tuned separately. The re-
sults are given in Table 12. The best average
parameter settings used for the test phase were
θf = 100, θc = 10 for no-ablation, both metrics,
θf = 100 for -C, θf = 100, θc = 100 for -S1,
EMMA-2, and θf = 100, θc = 30 for -S1, BPR,
and finally θf = 30, θc = 100 for -S3, EMMA and
θf = 60, θc = 100 for -S3, BPR.

B.3 MC22
For the MC22 data, the free parameters of VORM
θf ∈ {30, 60, 100} (minimum number of word
pairs modeled by a transformation in Step 2) and
θc ∈ {10, 30, 100} (minimum number of com-
pound template occurrences for it to be used in
Step 3) were tuned using a grid search over the
values. The results are given in Table 13. For
EMMA-2, values of θf = 100, θc = 100 were
found to be on average optimal for the no-ablation
variant, -S1 and -C, and θf = 30, θc = 100 for the
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EMMA-2 BPR
ablation θc θf eng fin ger tur avg. eng fin tur avg.

10 30 92.93 96.17 95.77 90.48 93.84 42.34 26.09 23.40 30.61
10 60 92.59 96.26 95.37 92.84 94.26 53.11 26.95 22.45 34.17
10 100 92.22 96.27 94.46 94.16 94.28 55.87 25.60 24.05 35.17
30 30 92.93 96.17 95.77 90.48 93.84 42.34 26.09 23.40 30.61
30 60 92.59 96.26 95.37 92.84 94.26 53.11 26.95 22.45 34.17
30 100 92.22 96.27 94.46 94.16 94.28 55.87 25.60 24.05 35.17
100 30 92.93 96.17 95.77 90.48 93.84 42.34 26.09 23.40 30.61
100 60 92.59 96.26 95.37 92.84 94.26 53.11 26.95 22.45 34.17
100 100 92.18 96.28 94.47 94.21 94.28 55.87 25.60 24.05 35.17

-C n/a 30 92.97 96.26 95.86 90.46 93.89 42.05 25.49 23.21 30.25
-C n/a 60 92.62 96.26 95.41 92.81 94.28 52.32 26.14 21.98 33.48
-C n/a 100 92.20 96.36 94.49 94.11 94.29 54.90 24.66 23.30 34.29

-S1 10 30 93.87 90.09 91.93 82.60 89.62 34.69 25.55 20.27 26.84
-S1 10 60 94.29 94.14 93.55 87.01 92.25 38.83 24.50 21.05 28.13
-S1 10 100 92.90 95.37 95.13 90.31 93.43 43.78 25.65 23.23 30.89
-S1 30 30 93.87 90.09 91.93 82.60 89.62 34.69 25.55 20.27 26.84
-S1 30 60 94.29 94.14 93.55 87.01 92.25 38.83 24.50 21.05 28.13
-S1 30 100 92.90 95.37 95.13 90.31 93.43 43.78 25.65 23.23 30.89
-S1 100 30 93.87 90.09 91.93 82.60 89.62 34.69 25.55 20.27 26.84
-S1 100 60 92.88 94.14 93.55 87.01 91.90 39.23 24.50 21.05 28.26
-S1 100 100 92.89 95.65 95.24 90.16 93.48 43.78 25.62 23.34 24.48

-S3 10 30 73.40 58.59 53.77 43.00 57.19 39.94 14.73 21.05 25.24
-S3 10 60 73.36 58.58 53.77 42.97 57.17 39.69 14.72 21.39 25.27
-S3 10 100 73.07 58.58 53.76 43.02 57.11 39.24 14.37 21.12 24.91
-S3 30 30 73.40 58.59 53.77 43.00 57.19 39.94 14.73 21.05 25.24
-S3 30 60 73.36 58.58 53.77 42.97 57.17 39.69 14.72 21.39 25.27
-S3 30 100 73.07 58.58 53.76 43.02 57.11 39.24 14.37 21.12 24.91
-S3 100 30 73.40 58.59 53.77 43.00 57.19 39.94 14.73 21.05 25.24
-S3 100 60 73.36 58.58 53.77 42.97 57.17 39.69 14.72 21.39 25.27
-S3 100 100 73.11 58.50 53.76 43.15 57.13 39.24 14.37 21.06 24.89

Table 12: EMMA-2 and BPR scores on MC10 tuning data for the VORM model. Best model scores per ablation
variant and per metric boldfaced
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-S3 variant. For BPR, θf = 100, θc = 100 was
found to be the optimal setting for no-ablation and
-C, and θf = 100, θc = 30 for -S1 and -S3.

For Morfessor, the model was again tuned on
the three ways of using token counts (token counts
or: ‘token’, no counts or: ‘type’, and ‘log-counts’).
Scores are given in Tables 14. Across languages,
the ‘type’ setting performed the best.
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ablation θc θf ces eng fra hun ita lat rus spa avg.

10 30 27.68 33.61 21.65 35.21 12.44 13.22 18.95 19.14 22.74
10 60 30.93 35.49 20.78 34.10 12.47 12.67 16.30 18.08 22.60
10 100 28.18 41.85 20.33 34.43 11.35 12.92 15.60 17.99 22.83
30 30 27.68 33.61 21.65 35.21 12.44 13.22 18.95 19.14 22.74
30 60 30.93 35.49 20.78 34.10 12.47 12.67 16.30 18.08 22.60
30 100 28.18 41.85 20.33 34.43 11.35 12.92 15.60 17.99 22.83
100 30 27.68 33.61 21.65 35.21 12.44 13.22 18.95 19.14 22.74
100 60 30.93 35.49 20.78 34.10 12.47 12.67 16.30 18.08 22.60
100 100 28.18 41.85 20.33 32.44 11.35 12.92 15.60 17.99 22.58

-CMPD n/a 30 27.12 33.17 21.67 33.67 12.50 13.25 18.56 19.06 22.38
-CMPD n/a 60 28.86 34.24 20.73 32.34 12.48 12.72 15.20 17.95 21.82
-CMPD n/a 100 25.32 40.62 20.34 31.77 10.50 12.89 14.42 17.96 21.73

-S1 10 30 21.55 30.41 17.12 34.06 16.70 26.67 13.19 13.19 21.61
-S1 10 60 22.92 29.22 16.74 34.67 16.19 23.42 14.82 17.37 21.92
-S1 10 100 24.77 28.24 17.07 34.97 16.53 19.51 17.34 16.05 21.81
-S1 30 30 21.55 30.41 17.12 34.06 16.70 26.67 13.19 13.19 21.61
-S1 30 60 22.92 29.22 16.74 34.67 16.19 23.42 14.82 17.37 21.92
-S1 30 100 24.77 28.24 17.07 34.97 16.53 19.51 17.34 16.05 21.81
-S1 100 30 21.55 30.41 17.12 34.06 16.70 26.67 13.19 13.19 21.61
-S1 100 60 22.92 29.22 16.74 34.67 16.19 23.42 14.82 17.37 21.92
-S1 100 100 25.75 40.63 20.31 32.44 11.40 12.98 14.42 17.96 21.99

-S3 10 30 6.50 10.91 4.05 2.70 2.42 4.10 0.68 1.27 4.08
-S3 10 60 6.45 10.85 4.02 2.69 2.40 4.09 0.67 1.26 4.05
-S3 10 100 6.34 10.80 3.99 2.67 2.39 4.10 0.65 1.25 4.02
-S3 30 30 6.50 10.91 4.05 2.70 2.42 4.10 0.68 1.27 4.08
-S3 30 60 6.45 10.85 4.02 2.69 2.40 4.09 0.67 1.26 4.05
-S3 30 100 6.34 10.80 3.99 2.67 2.39 4.10 0.65 1.25 4.02
-S3 100 30 6.50 10.91 4.05 2.70 2.42 4.10 0.68 1.27 4.08
-S3 100 60 6.45 10.85 4.02 2.69 2.40 4.09 0.67 1.26 4.05
-S3 100 100 6.34 10.80 3.99 32.44 2.39 4.10 0.65 1.25 7.75

Table 13: BPR scores on MC22 tuning data for the VORM model. Best model scores per language and per ablation
boldfaced.

ces eng fra hun ita lat rus avg.

morflogtoken 14.79 46.75 23.59 35.03 12.14 17.70 12.34 23.19
morftoken 10.37 40.52 20.94 34.13 11.23 17.68 10.60 20.78
morftype 28.71 49.90 23.63 34.47 11.84 17.77 11.46 25.39

Table 14: BPR scores on MC22 tuning data for Morfessor. Best model scores boldfaced
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C Further quantitative breakdown of
results

This Appendix supplements section 6 with the re-
sults broken down along several axes.

• Table 15 displays the results on the DORECO-
MORPH dataset, broken down per language.
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chip morf para AG vorm S1 -C S3

apah1238 90.2 85.8 83.8 80.3 86.6 88.9 86.6 69.0
arap1274 92.9 90.4 70.2 90.6 93.8 90.8 93.8 64.1
bain1259 95.8 77.1 80.3 93.1 92.6 93.8 92.6 53.1
beja1238 89.8 85.0 80.9 89.7 95.0 95.2 95.0 50.8
bora1263 87.3 80.4 67.3 87.2 93.5 94.3 93.5 35.4
cabe1245 94.2 82.6 82.7 77.0 92.5 89.5 92.5 82.5
cash1254 95.0 87.0 81.9 88.1 91.6 91.9 91.6 65.9
dolg1241 95.9 87.2 81.6 88.6 92.2 92.2 92.2 65.9
even1259 69.9 81.5 81.4 79.4 84.8 85.9 84.8 72.2
goem1240 95.5 90.7 84.2 80.5 94.3 87.3 94.3 88.4
goro1270 82.6 82.0 79.4 80.7 88.1 87.6 88.1 71.8
hoch1243 90.4 89.0 79.0 87.1 90.6 86.4 90.6 60.2
jeha1242 93.4 92.8 90.0 85.4 91.7 91.5 91.7 87.1
jeju1234 93.8 86.4 82.0 86.5 90.7 91.0 90.7 65.7
kaka1265 82.7 83.6 82.5 80.0 87.7 88.6 87.7 73.2
kama1351 95.3 90.7 87.5 91.6 95.5 95.3 95.5 68.8
komn1238 92.5 86.7 78.8 91.8 93.5 93.6 93.5 57.7
movi1243 89.8 86.2 76.1 85.1 89.2 87.0 89.2 62.6
ngal1292 94.8 89.2 67.9 87.7 83.6 78.3 83.6 60.5
nisv1234 94.7 89.4 85.7 87.2 90.3 90.1 90.3 75.9
nngg1234 91.6 89.5 80.5 71.3 87.3 82.9 87.3 87.8
nort2641 93.6 85.3 85.5 84.5 91.1 91.0 91.1 79.9
nort2875 86.8 84.2 79.6 84.7 89.8 89.0 89.8 69.0
orko1234 88.9 84.5 78.2 76.2 86.7 82.2 86.7 86.1
pnar1238 95.1 90.4 84.1 85.9 91.3 89.9 91.3 73.4
port1286 90.3 84.8 83.6 73.9 90.0 84.9 90.0 89.9
ruul1235 91.9 86.8 74.0 87.8 90.7 90.1 90.7 53.1
sanz1248 94.4 86.3 76.3 85.1 78.0 80.2 78.0 63.7
savo1255 90.9 88.3 83.8 88.4 90.7 90.5 90.7 70.0
sout2856 92.7 89.1 84.7 84.3 89.3 87.6 89.3 77.8
sumi1235 94.2 87.0 85.1 86.6 92.1 93.7 92.1 57.8
taba1259 91.8 82.5 81.3 86.4 88.2 83.0 88.2 64.6
teop1238 89.5 84.1 77.2 74.0 84.3 81.8 84.3 86.0
texi1237 92.2 80.0 76.2 85.5 87.9 85.8 87.9 62.9
trin1278 96.7 85.4 73.0 91.1 90.0 90.1 90.0 50.5
urum1249 95.8 89.3 86.1 86.4 92.1 92.4 92.1 69.1

Table 15: EMMA-2 results for the DoReCo dataset for Chipmunk (supervised), Morfessor, ParaMA2, MorphAGram,
and Vorm (with ablation variants).
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