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Abstract

In computational psycholinguistics, Merkx and
Frank (2021) demonstrated that surprisal values
from Transformers exhibit a closer fit to mea-
sures of human reading effort than those from
Recurrent Neural Networks (RNNs), suggest-
ing that Transformers’ attention mechanisms
may capture cue-based retrieval-like operations
in human sentence processing. Meanwhile,
explicit integration of syntactic structures has
been shown to improve language models’ abil-
ity to model human sentence processing—for
example, Hale et al. (2018) demonstrated that
Recurrent Neural Network Grammars (RN-
NGs), which integrate RNNs with explicit
syntactic structures, account for human brain
activities that vanilla RNNs cannot capture.
In this paper, we investigate the psychome-
tric predictive power of Composition Atten-
tion Grammars (CAGs), which integrate Trans-
formers with explicit syntactic structures, to
test whether they provide a better fit to hu-
man reading times than both vanilla Trans-
formers and RNNGs. We hypothesized that
CAGs’ syntactic attention mechanisms capture
cue-based retrieval-like operations over syntac-
tic memory representations—operations that
may be involved in human sentence process-
ing. The results of our strictly controlled exper-
iments demonstrate that CAGs outperformed
vanilla Transformers and RNNGs, suggesting
that syntactic attention mechanisms of CAGs
may serve as a mechanistic implementation of
cue-based retrieval from syntactic memory.

1 Introduction

In computational psycholinguistics, language mod-
els (LMs) developed in Natural Language Process-
ing (NLP) have been evaluated for their ability to
model human sentence processing. Recurrent Neu-
ral Networks (RNNs; Elman, 1990), which pro-
cess sequential representations recurrently, have
traditionally been considered a practical imple-
mentation that demonstrates strong correspondence

with human sentence processing, with their sur-
prisal values successfully correlating with human
reading times (Goodkind and Bicknell, 2018) and
brain activities (Frank et al., 2015). Recently,
Transformers (Vaswani et al., 2017), which have
achieved state-of-the-art results on various down-
stream tasks, have also been tested for their power
to predict human reading effort. Merkx and Frank
(2021) demonstrated that Transformers outper-
formed RNNs in predicting human reading times
and brain activities, suggesting that Transform-
ers’ attention mechanisms may provide a computa-
tional parallel to cue-based retrieval (Van Dyke and
Lewis, 2003), a theory of human memory retrieval
proposed in psycholinguistics.

While RNNs and Transformers primarily pro-
cess sequential representations, the previous litera-
ture on computational psycholinguistics has empir-
ically shown that explicit integration of syntactic
structures can significantly improve LMs’ ability
to model human sentence processing. For instance,
Hale et al. (2018) showed that Recurrent Neural
Network Grammars (RNNGs; Dyer et al., 2016),
which integrate RNNs with explicit syntactic struc-
tures, capture variance in human brain activities
that cannot be accounted for by vanilla RNNs.!

Given that (i) Transformers may capture cue-
based retrieval-like operations in human sentence
processing and (ii) LMs integrated with explicit
syntactic structures may capture variance in human
syntactic processing, we investigate whether the
integration of these two approaches might provide
a better fit to measures of human reading effort

"More recently, Wolfman et al. (2024) showed that sur-
prisal values from Transformer Grammars (TGs; Sartran et al.,
2022), which integrate Transformers with explicit syntactic
structures, also explain human brain activities that vanilla
Transformers cannot predict. While their work and ours are
similar in that both investigate the advantage of explicit in-
tegration of syntactic structures on Transformers, we addi-
tionally investigate the advantage of syntactic attention over

syntactic recurrence, a research question not addressed in
Wolfman et al. (2024).
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than LMs employing either approach in isolation.
Specifically, we investigate the psychometric pre-
dictive power of Composition Attention Grammars
(CAGs; Yoshida and Oseki, 2022), which integrate
Transformers with explicit syntactic structures, to
test whether they provide a better fit to human read-
ing times than both vanilla Transformers and RN-
NGs. We hypothesize that CAGs’ syntactic atten-
tion mechanisms capture cue-based retrieval-like
operations over syntactic memory representations—
operations that may be involved in human sentence
processing. The results of our controlled experi-
ments demonstrate that CAGs outperformed vanilla
Transformers and RNNGs, suggesting that syntac-
tic attention mechanisms of CAGs may serve as a
mechanistic implementation of cue-based retrieval
from syntactic memory.’

2 Background

2.1 Psychometric predictive power

In psycholinguistics, it is well established that hu-
mans predict the next word during sentence pro-
cessing (i.e., expectation-based theories), and the
less predictable the next word is, the more effort
is required to process it. The computational psy-
cholinguistics literature (Hale, 2001; Levy, 2008)
quantifies this predictability as surprisal, the nega-
tive log probability of a word given the context:

surprisal = — log p(word|context). (1)

Previous work has employed this information-
theoretic complexity metric to link LMs’ proba-
bility estimates with human reading effort (Smith
and Levy, 2013; Goodkind and Bicknell, 2018).
Building upon this paradigm, the computational
psycholinguistics community has investigated LMs
with high psychometric predictive power—i.e.,
LMs that can compute surprisal values with trends
similar to measures of human reading effort—by
comparing surprisal from various models with read-
ing times or brain activities from humans (Frank
and Bod, 2011; Fossum and Levy, 2012; Frank
et al., 2015; Hale et al., 2018; Brennan and Hale,
2019; Wilcox et al., 2020; Brennan et al., 2020;
Merkx and Frank, 2021; Kuribayashi et al., 2022;
Wolfman et al., 2024, inter alia).

2Code for reproducing our results is available at https:
//github.com/osekilab/CAG-EyeTrack.

2.2 Sequential recurrence vs. sequential
attention

RNNs (Elman, 1990) process sequential informa-
tion (i.e., word embeddings) in a recurrent manner;
they maintain a single vector representing a “‘con-
text” and, at each time step, update this context
vector with the embedding of the current input
word (implementing sequential recurrence; Fig-
ure la). In contrast, recently introduced Trans-
formers (Vaswani et al., 2017) employ an attention
mechanism; they maintain all previous word em-
beddings and, at each time step, generate a context
vector by selectively attending to them (implement-
ing sequential attention; Figure 1b). Taking advan-
tage of direct access to previous information, Trans-
formers have been shown to outperform RNNs in
various NLP tasks (cf. Wang et al., 2018, 2020).

Recently, the computational psycholinguistics
community has also investigated whether Trans-
formers have an advantage over RNNs in psycho-
metric predictive power. Merkx and Frank (2021)
compared Transformers and RNNs on their pre-
dictive power for human reading times and brain
activities. The results showed that Transformers
generally outperformed RNNSs, suggesting that se-
quential attention, implemented by Transformers,
captures aspects of human reading effort that se-
quential recurrence, implemented by RNNs, cannot
account for.

Based on these findings, Merkx and Frank (2021)
argued that the explained effort might be attributed
to cue-based retrieval-like operations during hu-
man sentence processing (Van Dyke and Lewis,
2003). The cue-based retrieval theory posits that
human sentence processing involves memory re-
trieval, where elements are retrieved from working
memory based on cues provided by the current in-
put word. Merkx and Frank’s (2021) argument was
that Transformers’ attention mechanism—selective
attention to previous word embeddings based on
Queries from current input and Keys from previous
words—might serve as a mechanistic implemen-
tation of this cue-based memory retrieval. Conse-
quently, surprisal values from the attention mech-
anism would show similar trends to human read-
ing effort, serving as the causal bottleneck (Levy,
2008).%

3Complementary research has examined the relationship
between attention-based metrics (such as attention entropy)
and human reading effort to assess the validity of attention
mechanisms as a mechanistic implementation of cue-based
retrieval (Ryu and Lewis, 2021; Oh and Schuler, 2022).

408


https://github.com/osekilab/CAG-EyeTrack
https://github.com/osekilab/CAG-EyeTrack

a. sequential recurrence

(o—o—>

{ { {
The bird

C. syntactic recurrence

@"ff‘r}

{ { {

(S NP (VP

sings sings
The bird
b. sequential attention d. syntactic attention
I 1
I W W | { { {
The bird  sings (S NP (VP sings
—

The bird

Figure 1: Four types of architectures. Previous work has investigated three types of architectural comparisons: (i)
recurrence vs. attention in sequential architectures (a vs. b), (ii) sequential vs. syntactic in recurrent architectures
(a vs. ¢), and (iii) sequential vs. syntactic in attention architectures (b vs. d). In this paper, we complete this
comparison framework by directly comparing recurrence vs. attention in syntactic architectures (c vs. d).

More recently, Michaelov et al. (2021) replicated
Merkx and Frank’s (2021) results and presented ad-
ditional analysis suggesting that Transformers can
better capture human semantic facilitation effects
than RNNs.

2.3 Sequential vs. syntactic

Although RNNs and Transformers have shown non-
negligible results in psychometric predictive power,
these architectures are fundamentally ‘“‘sequen-
tial” models that process sequential information—
without explicitly modeling the hierarchical syntac-
tic structures of natural languages. The distinction
between vanilla LMs and syntactic LMs such as
RNNGs lies in this structural aspect—syntactic
LMs not only generate a word sequence but also
explicitly construct its underlying syntactic struc-
ture. Specifically, syntactic LMs jointly generate
sentences and their syntactic structures through
next-action prediction for the following three ac-
tions:

* (X: Generate a non-terminal symbol (X, where
X represents a phrasal tag (e.g., NP). The vec-
tor representing the phrasal tag is placed on
top of the stack, which maintains a list of vec-
tors corresponding to the current context in
syntactic LMs.

* w: Generate a terminal symbol w, where w
represents a word (e.g., bird). The vector

representing the word is placed on top of the
stack.

* ): Close the most recent open non-terminal
symbol. The vectors that constitute the closed
phrase (i.e., the closed phrasal tag and its con-
stituent vectors) are typically combined into
a single vector representation using a compo-
sition function and placed on top of the stack.
However, some syntactic LMs omit this com-
position step and simply place a vector repre-
senting the phrase closure on top of the stack
(henceforth, we denote this type of syntactic
LM with the subscript _comp).

Computational psycholinguistics studies have
shown that syntactic LMs outperform their vanilla
LM counterparts in psychometric predictive power,
suggesting that syntactic LMs can capture non-
trivial variance in human syntactic processing. For
instance, RNNGs, which recurrently summarize
the stack state using RNNs (Dyer et al., 2015)
(implementing syntactic recurrence; Figure 1c),
can predict patterns in human brain activity (Hale
et al., 2018) and human reading time (Yoshida et al.,
2021) that vanilla RNNs cannot. Hale et al. (2018)
also showed the advantage of the composition func-
tion, demonstrating that RNNGs_ o cannot ex-
plain the brain activity that RNNGs can.

More recently, Wolfman et al. (2024) demon-
strated that Transformer Grammars (TGs; Sartran
et al., 2022), which summarize the stack state by se-
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lectively attending to previous vectors using Trans-
formers (implementing syntactic attention; Fig-
ure 1d), also explain human brain activities more
successfully than vanilla Transformers.*

3 Syntactic recurrence vs. syntactic
attention

As reviewed in Section 2, previous work has in-
vestigated three types of architectural compar-
isons: (i) recurrence vs. attention in sequential
architectures (Merkx and Frank, 2021; Michaelov
et al., 2021) (Figure la vs. 1b), (ii) sequential vs.
syntactic in recurrent architectures (Hale et al.,
2018; Yoshida et al., 2021) (Figure 1a vs. 1¢), and
(ii1) sequential vs. syntactic in attention architec-
tures (Wolfman et al., 2024) (Figure 1b vs. 1d). In
this paper, we complete this comparison framework
by directly comparing recurrence vs. attention in
syntactic architectures (Figure 1c vs. 1d).

We hypothesize that syntactic attention—where
previous vectors “in the stack” are selectively at-
tended to based on Queries from current input and
Keys from previous vectors—might show superior
psychometric predictive power over syntactic recur-
rence by capturing cue-based retrieval-like opera-
tions over “‘syntactic memory representations”—
operations that may be involved in human sen-
tence processing. This hypothesis extends Merkx
and Frank’s (2021) argument that sequential atten-
tion (implemented by vanilla Transformers) out-
performs sequential recurrence (implemented by
RNNSs), capturing cue-based retrieval-like opera-
tions over sequential memory representations.

LMs that implement syntactic attention in-
clude Transformer Grammars (TGs; Sartran et al.,
2022) and Composition Attention Grammars
(CAGs; Yoshida and Oseki, 2022). Both TGs
and CAGs are syntactic LMs based on Trans-
formers and employ composition functions. For
our investigation, we employ CAGs for three rea-
sons. First, CAGs’ implementation includes word-
synchronous beam search (Stern et al., 2017), an
inference technique commonly used in computa-
tional psycholinguistics to model human local am-
biguity resolution through parallel parsing (Hale
et al., 2018; Sugimoto et al., 2024) (see Section 4.3
for details), whereas TGs lack this capability. Sec-
ond, CAGs’ probability estimation aligns more

“Yoshida et al. (2025) also demonstrated that attention
entropy derived from TGs can predict human reading times
more successfully than vanilla Transformers.

closely with human offline grammaticality judg-
ments than TGs (Yoshida and Oseki, 2022). Third,
CAGs employ bidirectional LSTMs for the compo-
sition function, which is the same implementation
used in RNNGs, while TGs implement the com-
position function via attention masks. This design
choice enables a more controlled comparison be-
tween syntactic recurrence and syntactic attention,
as the architectures differ only in their stack sum-
marization process.

4 Method

We evaluate four LMs that employ either selec-
tive attention or recurrent processing on word se-
quences or syntactic structures, comparing their
psychometric predictive power for human reading
times using the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo; Hollenstein et al., 2018).
Following Hale et al. (2018), we also include de-
graded versions of syntactic LMs that lack the com-
position function. The following subsections de-
scribe our experimental settings in detail.

4.1 Language models

In our experiment, we trained LMs with strictly
controlled hyperparameters following Yoshida and
Oseki (2022), as their model sizes were made max-
imally comparable.

LSTM (sequential recurrence) Long Short-
Term Memories (LSTMs; Hochreiter and Schmid-
huber, 1997) are LMs that perform recurrent pro-
cessing on word sequences. We used 2-layer
LSTMs with 301 hidden and input dimensions
(model size: 16.59M).”

RNNG (syntactic recurrence) Recurrent Neural
Network Grammars (RNNGs; Dyer et al., 2016)
are LMs that perform recurrent processing on syn-
tactic structures. RNNGs are equipped with a com-
position function based on bidirectional LSTMs.
We used stack-only RNNGs (Kuncoro et al., 2018;
Noji and Oseki, 2021) with 2-layer stack LSTMs
with 276 hidden and input dimensions (model size:
16.61M).°

RNNG _¢omp (degraded syntactic recurrence)
RNNGS_comp (Choe and Charniak, 2016; Hale
et al., 2018) are a degraded version of RN-
NGs without the composition function. We used

>We implemented LSTMs using the PyTorch package
(https://github.com/pytorch/pytorch).
®https://github.com/aistairc/rnng-pytorch
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RNNGs _¢omp with 2-layer LSTMs with 301 hidden
and input dimensions (model size: 16.58M).

Transformer (sequential attention) Transform-
ers (Radford et al., 2018) are LMs that perform
selective attention on word sequences. We used
3-layer 4-head Transformers with 272 hidden and
input dimensions (model size: 16.62M).”

CAG (syntactic attention) Composition Atten-
tion Grammars (CAGs; Yoshida and Oseki, 2022)
are LMs that perform selective attention on syntac-
tic structures. CAGs are equipped with a composi-
tion function based on bidirectional LSTMs. We
used 3-layer 4-head CAGs with 256 hidden and
input dimensions (model size: 16.57M).8

CAG_comp (degraded syntactic attention)
CAGs_comp (Qian et al., 2021) are a degraded
version of CAGs without the composition func-
tion. We used 3-layer 4-head CAGS_comp with
272 hidden and input dimensions (model size:
16.63M).°

4.2 Training data

All LMs were trained using BLLIP-LG, which
comprises 1.8M sentences and 42M tokens sam-
pled from the Brown Laboratory for Linguistic In-
formation Processing 1987-89 Corpus Release 1
(BLLIP; Charniak et al., 2000). The train-dev-test
split followed Hu et al. (2020). Following Qian
et al. (2021), sentences were tokenized into sub-
words using a Byte Pair Encoding tokenizer (Sen-
nrich et al., 2016) from the Huggingface Trans-
formers package (Wolf et al., 2020).

All LMs were trained at the sentence level:
LSTMs and Transformers were trained on terminal
subwords, whereas RNNGs, RNNG_¢opp, CAGs,
and CAG_¢omp were trained on both terminal sub-
words and syntactic structures, which were parsed
by Hu et al. (2020) using a state-of-the-art con-
stituency parser (Kitaev and Klein, 2018). All
LMs shared the same training hyperparameters:
a learning rate of 1073, a dropout rate of 0.1, the
Adam optimizer (Kingma and Ba, 2015), and a
minibatch size of 256. Training was conducted
for 15 epochs. We selected the checkpoint with

"We implemented Transformers using the Hugging-
face Transformers package (https://github.com/
huggingface/transformers).

8https://github.com/osekilab/CAG

https://github.com/IBM/
transformers-struct-guidance

the lowest loss on the development set for evalua-
tion and conducted experiments three times with
different random seeds.

4.3 Eye tracking data

We used reading times from the Zurich Cognitive
Language Processing Corpus (ZuCo; Hollenstein
et al., 2018) to evaluate whether LMs can suc-
cessfully predict human reading effort. ZuCo is
a collection of single sentences from the Stanford
Sentiment Treebank and the Wikipedia relation ex-
traction corpus, accompanied by simultaneous eye-
tracking and electroencephalography (EEG) record-
ings from 12 native English speakers. Although
ZuCo comprises data from both normal reading
and task-specific reading tasks, we used only 700
sentences from the natural reading task, follow-
ing previous work (e.g., Hollenstein et al., 2021).
During the natural reading task, sentences were
displayed one by one, and participants read them
at their own pace. During preprocessing by Hol-
lenstein et al. (2018), fixations that were (i) shorter
than 100 ms or (ii) recorded when EEG amplitude
exceeded +90 pV were removed due to irrelevance
to reading activity or data quality concerns.

In this paper, first-pass reading time (the sum of
all fixation times on a word before the eye moves
away from it) was used as the prediction target.'”
Following the convention of psycholinguistic stud-
ies, we excluded words with missing values (e.g.,
non-fixations) or at sentence-initial and sentence-
final positions from our statistical analysis. We
further removed words that were out of vocabu-
lary (OOV) in the large corpus (Wikitext-2; Merity
et al., 2017) or words following OOV words, as fre-
quency values are required for our baseline regres-
sion model. Consequently, 80,853 data points were
included in the statistical analysis out of 161,597
total data points. The high proportion of deleted
data points during preprocessing was mainly due
to the large number of missing values (52,240 data
points).

In previous computational psycholinguistic re-
search, there was often a mismatch between
LMs’ processing level and human data collection
procedures—for instance, LMs trained at the sen-
tence level were evaluated against human data col-

10We first conduct validation using reading time as the most
accessible and interpretable human data source, given that the
specific event-related potential (ERP) components of EEG
that would best reflect cue-based retrieval-like operations over
syntactic memory representations remain to be determined.
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lected during document-level reading (cf. Wilcox
et al., 2020). In this paper, we address this gap
by conducting more strictly controlled experiments
using ZuCo, a corpus where eye-tracking data was
recorded during sentence-level reading.!!

Since only word sequences were input dur-
ing surprisal calculation, we employed word-
synchronous beam search (Stern et al., 2017) to
infer syntactic structures for CAGs and RNNGs.
Word-synchronous beam search retains a collec-
tion of the most likely syntactic structures given a
partial word sequence and marginalizes their prob-
abilities to approximate next-word probabilities.
Hale et al. (2018) argued that the combination of
syntactic LMs and word-synchronous beam search
successfully captured human local ambiguity reso-
lution during online sentence processing.'?

4.4 Statistical analysis

We analyzed how well surprisal from each LM
predicts human reading time, measuring improve-
ments in regression model fit when adding surprisal
values as predictors. For each LM, we included
both the surprisal of the current word and the previ-
ous word to account for spillover effects (Mitchell,
1984).13 As a measure of psychometric predictive
power, we evaluated the per-token increase in log-
likelihood (ALogLik) on the entire dataset. This
evaluation was conducted for each random seed,
and we report the mean psychometric predictive
power with standard deviation.

Following previous studies such as Merkx and
Frank (2021), the baseline regression model con-
trolled for several predictors relevant to reading
activity:

* order (integer): sentence display order during
the reading task;

* position (integer): word position in the sen-
tence;

' An alternative approach would be to train LMs at the doc-
ument level and evaluate them on document-level reading data.
However, we adopt the sentence-level setting because syntac-
tic LMs are conventionally trained on sentences, and RNNGs
and CAGs lack implementations applicable to document-level
training.

2We set the action beam size to 100, word beam size to
10, and fast-track to 1. Word beam size corresponds to the
number of syntactic structures to be marginalized.

BFollowing the convention of previous studies (e.g., Wilcox
et al., 2020; Kuribayashi et al., 2021), the word-level surprisal
was calculated as the cumulative surprisal of its constituent
subwords.

* length and prev_length (integer): number
of characters in the current and previous word;

* freq and prev_freq (continuous): log-
transformed frequencies of the current and
previous word.

Previous words’ values were included for modeling
the spillover effect. All numeric factors were z-
transformed.

The baseline regression model was a linear
mixed-effects model (Baayen et al., 2008) with
these fixed effects and a by-subject random inter-
cept: 14

log(RT) ~ order + position +
length 4 prev_length +
freq + prev_freq +
(1]subj). (2)

Before evaluating psychometric predictive
power, we conducted baseline regression model-
based data omission, removing data points beyond
three standard deviations. This removed 559 data
points, leaving 80,294 data points for the final sta-
tistical analysis.

4.5 Nested model comparison

We conducted nested model comparisons (Wurm
and Fisicaro, 2014) to evaluate whether the dif-
ferences in ALogLik are statistically significant.
Specifically, we extended Equation 2 by adding
surprisal values from two LMs versus adding sur-
prisal values from only one LM, and tested the
statistical significance of the deviance using the 2
test (p < 0.05). Following Aurnhammer and Frank
(2019), we used surprisal values averaged across
different random seeds for these nested model com-
parisons.

5 Results

5.1 Opverall

The Psychometric Predictive Power (PPP, per-
token ALogLik) of each LM is summarized in Fig-
ure 2. The psychometric predictive power averaged
across different random seeds (the vertical axis) is
plotted against the LMs investigated in this paper
(the horizontal axis). Error bars denote standard
deviations across random seeds. We confirmed that
the psychometric predictive power was statistically

“We implemented the regression model using the Ime4
package (Bates et al., 2015) in R (R Core Team, 2024).
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Figure 2: Psychometric Predictive Power (PPP, per-token ALogLik) of each LM. The psychometric predictive
power averaged across different random seeds (vertical axis) is plotted against the LMs investigated in this paper
(horizontal axis). Error bars denote standard deviations across random seeds.

significant for all LMs under nested model com-
parisons against the baseline regression model, and
the direction was appropriate for reading time—
that is, higher surprisal values corresponded to
longer reading times. The results demonstrated that
CAGs achieved the highest psychometric predic-
tive power: CAG > RNNG > Transformer > LSTM
> CAG_¢omp > RNNG_omp, showing that the ar-
chitecture performing syntactic attention captures
the most variance in human reading time.

Reproduction of sequential recurrence vs. se-
quential attention In our experiment, Transform-
ers outperformed LSTMs in psychometric predic-
tive power. To confirm that this difference is sta-
tistically significant, the result of the nested model
comparison is shown in the top block of Table 1.
The nested model comparison revealed that Trans-
formers significantly outperformed LSTMs, cor-
roborating Merkx and Frank’s (2021) finding that
Transformers, which implement sequential atten-
tion, capture variance in human reading effort that
RNNs, which implement sequential recurrence,
cannot."”

Reproduction of sequential vs. syntactic In
our experiment, RNNGs and CAGs outperformed
LSTMs and Transformers, respectively. To confirm
that these differences are statistically significant,
the results of nested model comparisons are shown
in the middle block of Table 1. The nested model

15 Incidentally, Merkx and Frank (2021) found the advan-
tage of Transformers on self-paced reading times and EEG but
obtained mixed results on first-pass reading time. Our more
definitive findings may be attributed to our strictly controlled
experimental settings, where Transformer advantages could
become more consistently observable.

comparisons revealed that RNNGs and CAGs sig-
nificantly outperformed LSTMs and Transformers,
respectively, supporting the findings of Hale et al.
(2018) and Wolfman et al. (2024) that syntactic
LMs can account for human reading effort that
vanilla LMs cannot predict.

In addition, RNNGs and CAGs also significantly
outperformed RNNGs_¢omp and CAGs_¢omp, Te-
spectively, corroborating Hale et al.’s (2018) argu-
ment that the composition function is crucial for
syntactic LMs to capture human syntactic process-
ing. As a side note, RNNGs_¢omp and CAGSs_comp
underperformed LSTMs and Transformers, respec-
tively. This implies that stack representations with-
out the composition function not only harm the
ability to account for syntactic processing but also
cause a loss in simulating general human predictive
processing. Hale et al. (2018) also showed a null
result when comparing the psychometric predictive
power of RNNGs_omp to that of LSTMs.

Syntactic recurrence vs. syntactic attention In
our experiment, CAGs outperformed RNNGs in the
absolute value of psychometric predictive power.
To confirm that the difference between CAGs and
RNNG:s is statistically significant, the result of the
nested model comparison is shown in the bottom
block of Table 1. The nested model comparison
revealed that CAGs significantly outperformed RN-
NGs, suggesting that CAGs, which implement syn-
tactic attention, can successfully capture variance
in human reading time that RNNGs, which imple-
ment syntactic recurrence, cannot account for.
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x> df
Sequential recurrence vs. sequential attention

LSTM < TF 16.75 2 0.00023
Sequential vs. syntactic

LSTM < RNNG 3157 2 <0.0001

TF < CAG 3085 2 <0.0001

RNNG_. <RNNG 369.8 2 <0.0001

CAG_.. <CAG 3720 2 <0.0001

Syntactic recurrence vs. syntactic attention
RNNG < CAG 1142 2 0.00331

Table 1: Results of nested model comparisons from
three perspectives: (i) reproduction of sequential re-
currence vs. sequential attention, (ii) reproduction of
sequential vs. syntactic, and (iii) syntactic recurrence
vs. syntactic attention. TF and _ indicate Transformer
and _¢omp, TEspectively.

5.2 Longer and shorter sentences

To investigate under what conditions syntactic at-
tention has an advantage over syntactic recurrence,
we split the data points in ZuCo into two subsets
based on sentences longer or shorter than the av-
erage sentence length, following Merkx and Frank
(2021). Merkx and Frank (2021) conducted this
analysis expecting that longer sentences could ac-
centuate Transformers’ advantage of direct access
to previous information. The longer and shorter
subsets include 37,578 and 43,275 data points, re-
spectively. We removed 601 and 703 data points
that were beyond three standard deviations, leaving
37,307 and 42,997 data points for the final statisti-
cal analysis, respectively.

The psychometric predictive power of CAGs and
RNNGs on longer and shorter sentences is shown in
Figure 3. The results show that CAGs and RNNGs
achieve comparable psychometric predictive power
on shorter sentences, but CAGs outperformed RN-
NGs on longer sentences. To confirm that these
differences are statistically significant, the results
of nested model comparisons are shown in Table 2.
The nested model comparisons revealed that CAGs
significantly outperformed RNNGs only on longer
sentences, consistent with their performance on the
complete dataset.

6 Discussion

In this paper, we reproduced the results of (i)
sequential recurrence vs. sequential attention
(cf. Merkx and Frank, 2021), (ii) sequential vs.
syntactic (cf. Hale et al., 2018; Wolfman et al.,

Short Long
sentences sentences
0.004 0.004
Ealsa
0.003 0.003
I
-
o I:I RNNG
Q. 0.002 0.002
: mES
0.001 0.001
0.000 0.000

Figure 3: Psychometric predictive power (PPP, per-
token ALogLik) of CAGs and RNNGs on longer and
shorter sentences. The psychometric predictive power
averaged across different random seeds (vertical axis)
is plotted against the LMs (horizontal axis). Error bars
denote standard deviations across random seeds.

x?  df p

Short sentences
RNNG < CAG 0.8359 2

Long sentences
RNNG < CAG

0.6584

14793 2 0.0006133

Table 2: Results of nested model comparisons on longer
and shorter subsets of ZuCo

2024), and (iii) demonstrated that CAGs, which
implement syntactic attention, achieve higher psy-
chometric predictive power than both vanilla Trans-
formers and RNNGs. Given that Merkx and Frank
(2021) and Hale et al. (2018) suggest that atten-
tion mechanisms and syntactic LMs can serve as
mechanistic implementations of human cue-based
retrieval and syntactic processing, respectively, our
results suggest that syntactic attention in CAGs
may serve as a mechanistic implementation of cue-
based retrieval from syntactic memory. This inter-
pretation is also consistent with psycholinguistic
studies demonstrating that memory costs derived
from syntactic structures successfully predict read-
ing times and brain activities (Isono, 2024; Shain
et al., 2022)—findings that support the cognitive
plausibility of syntactic memory representations
and operations over them.

Furthermore, the analyses of longer versus
shorter sentences suggest that cue-based retrieval-
like operations over syntactic memory representa-
tions may become more prominent when process-
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ing longer sentences. Merkx and Frank (2021)
demonstrated that Transformers’ superior psycho-
metric predictive power over RNNs was particu-
larly pronounced on longer sentences, suggesting
that retrieval operations may be especially impor-
tant when accessing information from linearly dis-
tant words. While both CAGs and RNNGs can
maintain information from linearly distant words
through their composition functions, the direct ac-
cess afforded by attention mechanisms neverthe-
less provides additional advantages as sentences
get longer.

Interestingly, Wilcox et al. (2018) and Oh et al.
(2021) found that syntactic LMs (i.e., RNNGs) un-
derperformed LSTMs or Transformers in model-
ing human reading times and brain activities, con-
tradicting the advantages observed by Hale et al.
(2018), Wolfman et al. (2024), and our sequential
vs. syntactic results. One potential explanation
for these discrepancies lies in experimental control:
while Wilcox et al. (2018) and Oh et al. (2021)
compared LMs with varying model sizes, Hale
et al. (2018), Wolfman et al. (2024) and our experi-
ment all employed LMs with maximally compara-
ble model sizes. Our approach further extends this
methodology by aligning LMs’ processing units
with human data collection procedures at the sen-
tence level. These results highlight the critical role
of controlled experimental design, especially when
comparing minimally different architectures.

7 Conclusion

In this paper, we investigated the psychometric
predictive power of Composition Attention Gram-
mars (CAGs) through strictly controlled experi-
ments. Our results demonstrated that CAGs out-
performed both vanilla Transformers and RNNGs,
suggesting that syntactic attention may serve as a
mechanistic implementation of cue-based retrieval
from syntactic memory. Further analyses revealed
that this result is primarily driven by improved
performance on longer sentences, indicating that
cue-based retrieval-like operations over syntactic
memory representations became increasingly im-
portant as sentences got longer.

Limitations

There are several limitations to this study. First,
although we utilized CAGs as a model of syntac-
tic attention, TGs could also serve as an alterna-
tive. While our choice of CAGs was motivated

by (i) their word-synchronous beam search capa-
bility, (ii) better alignment to human offline gram-
maticality judgments, and (iii) their use of bidirec-
tional LSTMs for the composition function (see
Section 3), whether our positive results for syntac-
tic attention generalize to TGs remains an open
question.

Second, our experiments were based solely on
reading time data from ZuCo. As noted earlier,
we chose reading time as the most accessible and
interpretable human data source, given that the spe-
cific event-related potential (ERP) components of
EEG that would best reflect cue-based retrieval-like
operations over syntactic memory representations
remain to be determined. Future research should
explore which ERP components might be most sen-
sitive to these operations and extend the evaluation
to additional measures of human sentence process-
ing.

Third, while our sentence-level analysis pro-
vided technical advantages for controlled compar-
isons, extending these syntactic LMs to document-
level processing would be valuable for future re-
search, as this would enable controlled experiments
on additional datasets (e.g., the Natural Stories cor-
pus; Futrell et al., 2018).
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