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Abstract

Despite being ubiquitous in natural language,
collocations (e.g., kick+habit) incur a unique
processing cost, compared to compositional
phrases (kick+door) and idioms (kick+bucket).
We confirm this cost with behavioural data as
well as MINERVA2, a memory model, sug-
gesting that collocations constitute a distinct
linguistic category. While the model fails to
fully capture the observed human processing
patterns, we find that below a specific item fre-
quency threshold, the model’s retrieval failures
align with human reaction times across con-
ditions. This suggests an alternative process-
ing mechanism that activates when memory
retrieval fails.

1 The Curious Case of Collocations

From killing time and playing dead to running
baths and making beds, word combinations with
semi-compositional meanings are ubiquitous in hu-
man language (Cowie, 1998). Often referred to as
collocations, these idiosyncratic lexical elements
comprise one word used in its literal sense and
another in its figurative sense, constrained by an ar-
bitrary restriction on substitution (Mel’¢uk, 2003;
Howarth, 1998). Thus, one can raise questions
or lift bans, but neither *lift questions nor *raise
bans. Collocations are syntactically well formed,
but deviate from or violate the expected semantic
representation (Culicover et al., 2017). To illustrate,
the verb kill prototypically requires an animate ob-
ject, so one can kill bugs and kill trees, but not *kill
books. Yet one can kill time, hope, and dreams.
Collocations are the largest subset of formulaic lan-
guage (Barfield and Gyllstad, 2009) with many be-
ing cross-linguistically attested (Yamashita, 2018).
It is hardly surprising, then, that proper knowl-
edge and use of such units provides fluency and id-
iomaticity to the language user (Pawley and Syder,
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1983; Durrant and Schmitt, 2009). Yet, they pose
an enormous hurdle to second-language learners
and machines.

According to Howarth (1998), human lan-
guage lies on a theoretical continuum of semantic
compositionality—the degree to which the mean-
ing of a phrase can be derived from the mean-
ing of its constituent parts and their syntactic re-
lations (Frege, 1892). Fully compositional com-
binations (e.g., chase rabbits, chase thieves, etc.)
and fully non-compositional figurative idioms (e.g.,
chase one’s tail)! lie on extreme ends of the spec-
trum. Semi-compositional collocations (e.g., chase
dreams, chase money, etc.) lie in between. The
psychological validity of this continuum has been
tested with the expectation that a decrease in com-
positionality is directly proportional to a decrease
in processing time (Gyllstad and Wolter, 2016).
However, empirical evidence from both first (L1)
and second (L.2) language speakers shows that col-
locations are processed slower and less accurately
than fully compositional combinations (Gyllstad
and Wolter, 2016; de Souza et al., 2024), and fully
opaque and non-compositional figurative idioms
(e.g., break the ice) are processed faster and more
accurately than compositional combinations (e.g,
break the cup) (Carrol and Conklin, 2020; Tabossi
et al., 2008).

These disparities are also seen in evidence from
L2 acquisition’. Research shows that colloca-

Tt is important to note that (Howarth, 1998) also spec-
ifies a fourth category called "pure idioms" (e.g., blow the
gaff, take a leak, shoot the breeze). These do not possess
well-specified literal meanings (see Mueller and Gibbs, 1987,
for further reading) and comprise a very small subset of for-
mulaic language occurring quite infrequently (Grant, 2005).
Furthermore, most of the studies in this area focus on figura-
tive idioms that have an additional literal reading (e.g., kick
the bucket). Therefore, in order to constrain the scope of this
paper, we limit our discussion to figurative idioms.

“Note that collocations as a distinct linguistic class have
largely been ignored in L1 acquisition research and little is
known about the mechanisms behind a child’s acquisition of
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tions are a major hurdle for second language
(L2) learners—be they early sequential bilinguals
(Nishikawa, 2019; Riches et al., 2022) or adults
(Yamagata et al., 2023; Sonbul et al., 2024), even at
high proficiency levels (Wolter and Gyllstad, 2013;
Tsai, 2020). In contrast, idioms are learned better
and used more accurately than collocations (Fiora-
vanti et al., 2021). Cast under the broader term of
conceptual metaphor (Lakoff and Johnson, 1980),
collocations are also found to be challenging for
NLP systems (Liu et al., 2022; Zayed et al., 2018;
Czinczoll et al., 2022) despite the fact that the last
decade has seen immense progress (see Tong et al.,
2021; Wang et al., 2025).

The coalescing picture suggests that idioms are
processed the fastest, followed by compositional
units, and collocations the slowest. However, this
processing hierarchy has not yet been directly
tested in a within-participants design—a gap the
present study addresses. Next, we discuss how this
empirical gap is compounded by a theoretical gap.

2 Accounting for Collocation Processing

It is generally agreed upon in the language pro-
cessing literature that idioms are stored and re-
trieved from memory holistically (Carrol and Con-
klin, 2014; Noveck et al., 2023). Although there
are several theories concerning the processing of
compositional language, there is less consensus on
the matter. Being not too compositional and not too
idiomatic, collocations have occupied a theoretical
grey zone in mainstream psycholinguistics wherein
they have been conveniently ignored in favour of
a binary distinction between rules and exceptions.
As a result, researchers in second language acqui-
sition and applied psycholinguistics have drawn
on the (in)famous Past Tense Debate (Seidenberg
and Plaut, 2014) in morphological processing and
resorted to single- versus dual-route models to ex-
plain processing at the multi-word level (Wray,
2002). We explore these models and consider their
ability to account for collocational processing.
Assuming a domain-general hypothesis space,
single-route models posit that all linguistic forms
are stored in and retrieved from a single massive
associative memory system’ based on frequency of
input and use (Bybee, 2012; Ambridge and Lieven,
2011). The more often a unit is encountered and/or

collocations over development (see Handl and Graf, 2010).
30r that all forms are processed equally as in a connection-
ist network (see McClelland and Rumelhart, 1985).

used, the better it is entrenched in memory (Div-
jak, 2019; Langacker, 1987). Eventually, this leads
to automatization—pure retrieval from memory*
(Bybee, 2006) which makes processing fast and
effortless. Positing such a homogenous mechanism
makes for a parsimonious theoretical account of our
language abilities, in particular, and our cognition
in general. However, human memory is not only
limited in capacity (Christiansen and Chater, 2008)
but is also unstable (Kornell and Bjork, 2009). We
do not store everything we encounter, nor do we re-
member everything we do store. More importantly,
recall that behavioural evidence points to colloca-
tions incurring a processing cost versus compo-
sitional units even when frequency-matched (see
de Souza et al., 2024). While memory undoubtedly
plays an important role in language processing,
it does not provide a satisfactory account for the
processing cost of collocations which occur quite
frequently (Barfield and Gyllstad, 2009).

The dual-route model assumes a domain-
specific hypothesis space, differentiating between
words and rules (Pinker, 1991). Regular word
forms are thought to be computed analytically (e.g.,
walk — walk + ed, scratch — scratch + ed) by
way of rules, while irregular word forms (e.g., run
— ran, think — thought) are processed via holistic
storage and retrieval from memory (Pinker, 2013).

This theoretical distinction between computation
and storage is a practical trade-off between two
independent cognitive processes—procedural com-
putation and declarative memory (Pinker and UlI-
man, 2002). More rule-based computation means
less storage. More storage means less computation.
Positing such a heterogenous mechanism makes
for a persuasive theoretical account of how human
language can be infinitely compositional despite
our limited cognitive capacities (O’Donnell et al.,
2009; Galke et al., 2024). The dual-route expla-
nation is used to account for formulaic language
processing as a whole, i.e., it does not distinguish
between the various subsets of multi-word units
such as idioms, phrasal verbs, binomials, etc. (see
Wray, 2002, 2008; Sidtis, 2020). All formulaic lan-
guage is thought to be stored, while compositional
language is computed on the fly. Memory retrieval
is faster than analytic processing (Logan, 1997;
Dasgupta and Gershman, 2021), therefore formu-
laic language is thought to be processed faster

*See Logan and Etherton (1994) for a domain-general
cognitive account of automatization.

292



than non-formulaic language (Carrol and Conklin,
2014; Vilkaite and Schmitt, 2019). This is empir-
ically consistent across a variety of tasks only in
the case of fully non-compositional units like id-
ioms (Noveck et al., 2023). However, dual-route
hypotheses make a binary distinction between com-
positional and formulaic language and ignores the
effect of frequency on computation and retrieval. If
collocations are frequent and retrieved from mem-
ory, the processing cost they incur remains unac-
counted for.

3 The Present Study

We begin by addressing the empirical gap laid out
in Section 1 and test whether collocations incur a
processing cost relative to idioms and fully com-
positional phrases, as suggested by prior literature.
To this end, we ask: Do collocations take longer to
process than idioms and compositional items? We
extend de Souza et al. (2024) by testing L1 English
speakers on an acceptability judgement task (AJT)
using stimuli from all three conditions and analyse
reaction times (RTs) and accuracy. We consider
three competing predictions:

Under a single-route account, frequency ef-
fects should dominate: idioms should be retrieved
fastest, followed by collocations and then com-
positional items. Under a dual-route account,
idioms and collocations—both stored, familiar
units—should be processed similarly and faster
than compositional phrases, which require compu-
tation. However, given prior findings, we predict
that human participants will process idioms fastest,
followed by compositional phrases, with colloca-
tions being the slowest—-even though collocations
are often more frequent than compositional items
in our dataset (see Appendix A).

Furthermore, based on the review in Section 2,
it would be uncontroversial to say that memory is
critical to all forms of language processing (see
also Divjak, 2019; Divjak et al., 2022; Corballis,
2019). It encapsulates single-route processes and is
an integral component of dual-route models. Build-
ing on this foundational role of memory, we sim-
ulate memory retrieval using a well-established
frequency-based mechanistic model of memory—
MINERVA?2 (Hintzman, 1984), modified to incor-
porate two key factors known to influence collo-
cational processing: frequency (Wolter and Gyll-
stad, 2013) and semantics (Gyllstad and Wolter,
2016; Fioravanti et al., 2021). We adopt a distribu-

tional semantic framework (Landauer and Dumais,
1997; Mikolov et al., 2013) and use contextualized
embeddings from Sentence-BERT (Reimers and
Gurevych, 2019). We modify MINERVA to sim-
ulate RTs and load its memory according to the
frequency of the stimuli in the corpus. We explore
successful and failed retrievals to assess their influ-
ence on the processing signatures of different item
conditions under a pure memory-based model. Our
central research question is:

To what extent can pure memory retrieval ac-
count for processing differences observed in LI
English speakers across idioms, collocations, and
compositional phrases?

Here, we expect MINERVA?2 to show differences
across conditions primarily as a function of fre-
quency, with no added processing cost for colloca-
tions. In any case, if retrieval alone were sufficient
to account for human processing trends, the model
should mirror the human patterns consistent with a
single-route account. If not, the model will allow
us to probe what aspects of human performance
can be explained by memory alone, and where
memory-based retrieval may fall short.

4 Collocations Incur a Processing Cost

4.1 Methodology

Stimuli de Souza et al. (2024) introduced a stim-
ulus set consisting of 100 Verb-Noun collocations
(e.g., spill secrets) and 100 compositional Verb-
Noun combinations containing the same verb as
the collocation (e.g., spill water). We attempted
to augment this stimulus set with a matching fig-
urative idiom (e.g., spill the beans) for each verb
with the help of the ‘word sketch’ function in The
Sketch Engine’s enTenTen21 corpus (Kilgarriff
et al., 2024). However, we were only able to iden-
tify idioms for 82 verbs in the dataset resulting in
a final dataset of 246 target items (1 collocation,
one composition, and one idiom for each of the
82 verbs). 82 baseline items, nonsense Verb-Noun
combinations (fry knob), were created to use as dis-
tractors in the experiment. The dataset was divided
into 3 folds of 82 items wherein no two items had
the same verb. As expected, there are statistically
significant differences between the mean frequen-
cies of all three constructions with idioms being
the most frequent, followed by collocations and
compositional items being the least frequent group
(see Appendix A for more details). We account
for this discrepancy by including frequency as a
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covariate in our statistical models.

Participants & Task A total of 186 L1 English
speakers (F' = 112; M = 71; NB = 3) were
recruited using Prolific. They were remunerated
£1.50 for their participation. The mean age of the
sample was 38.6 years (SD = 10.81). They were
asked to judge whether or not the word combina-
tion presented to them sounded acceptable (i.e.,
would they as L1 English speakers use this word
combination in their everyday speech). They were
asked to respond as quickly and accurately as pos-
sible, by pressing the ‘y’ key for yes or the ‘n’ key
for no. During testing, each participant saw 164
items: 82 target items and 82 distractors. Items
were presented in an individualized random order.
A fixation cross with an inter-stimulus interval of
350 ms was presented between trials. Trials timed
out at 8,000 ms if no decision was taken.

Data Pre-processing Data pre-processing was
carried out using R version 4.4.1 "Race for Your
Life" (R Core Team, 2024). Due to an error in data
collection, data of four participants were replaced.
We also remove all incorrect trials for reaction time
analyses (2, 752; see Appendix B). We then elimi-
nated responses below 450 ms and responses over
3.5 standard deviation from the grand mean includ-
ing time-outs. These outliers accounted for 1.484%
of the total data (n = 30, 504 including distractors).
In terms of accuracy, all participants scored above
50%. However, we found 4 items with a mean accu-
racy of less than 50%. We eliminated those items
along with other items that comprised the same
verbs from our analyses. We do not analyse distrac-
tors (15, 252). All reaction time (RT) analyses are
conducted on this final dataset (n = 13, 369).

4.2 Statistical Modelling

We first specified a maximal model as “justified
by the design” (Barr et al., 2013). The main de-
pendent variable was the reaction times (RTs) from
the acceptability judgement task while the main
predictor variable was Condition (Compositional,
Collocation, Idiom; treatment coded, with idiom
as the reference level). Phrasal Frequency (scaled)
was included as a covariate. The maximal con-
verging random effect structure included intercepts
for Participant and Verb. The analysis model in
R syntax specified using the 'lme4’ (Bates et al.,
2015) package is: RT ~ Condition + Phrasal
Frequency + (1 | ID) + (1 | Verb).
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Figure 1: Left: mean reaction times (ms) by condition.
Error bars indicate bootstrapped confidence intervals.
Right: decile plot of reaction times by condition. Note
the differences in the y-axes.

4.3 Results

Figure 1 shows the mean reaction times (RTs) by
condition, as well as a breakdown by decile. Col-
locations have the slowest responses with a mean
of 1007.87 ms (SD = 370.84 ms) compared to
compositional items (995.32 ms, SD = 375.76
ms) and idioms (984.20 ms, SD = 365.39 ms).

Our statistical results showed a small, signif-
icant difference in RTs between compositional
items and idioms (8 = 4.69; SE = 2.240;p =
0.037), suggesting that compositional units were
processed slower than idioms. A larger differ-
ence was found between collocations and idioms
(B = 13.80; SE = 1.760;p < 0.001), replicat-
ing the processing costs predicted by the litera-
ture. Unsurprisingly, Phrasal Frequency also has
a significant effect on RTs (8 = —18.50; SE =
1.640;p < 0.001), corresponding to a 18.5 ms
decrease in RT for every 1 standard deviation in-
crease in phrasal frequency. In terms of accuracy,
we found no significant difference between idioms
and compositional items, but we do see a marginal
difference (p = 0.04) between idioms and collo-
cations. This is expected as all stimuli are highly
frequent and should be familiar to adult L1 speak-
ers. See Appendix B for detailed results.

5 Failures in Memory Retrieval Capture
Behavioural Trends

As a first step toward elucidating the cognitive
mechanisms underlying the processing trend that
humans display across the compositionality con-
tinuum, we investigate the extent to which we can
account for the trend with memory retrieval alone.

MINERVA is an instance-based model of
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episodic memory that has been successfully ap-
plied to many cognitive phenomena from frequency
judgements (Hintzman, 1988) to false memory
(Arndt and Hirshman, 1998). It has also been used
to model artificial grammar learning (Jamieson and
Mewhort, 2009) and, recently, to metaphor recog-
nition (Nick Reid and Jamieson, 2023).

MINERVA’s core assumptions are: (i) every item
encountered leaves a memory trace, represented as
a distributed set of features, and (ii) similar items
have similar traces. Similarities between present
and past encounters drive item-specific and parallel
memory retrieval. As a global memory model, it
encapsulates both episodic and semantic memory
which communicate with each other. On encounter-
ing a stimulus, the episodic memory sends a probe
to the semantic memory to retrieve traces from past
encounters. The familiarity of the probe is then
calculated as the sum of the values of a similarity
measure between the probe and each stored trace.

MINERVA is instantiated in a linear algebra sys-
tem. The MINERVA memory M is an n X d matrix,
each row of which contains a d-dimensional mem-
ory trace vector. When cued for retrieval with a
probe p € RY, MINERVA retrieves the represen-
tation of the probe iff the probe’s familiarity f is
greater than a threshold K € [0, 1). Familiarity is
calculated by taking the cosine similarity s of the
probe to all instances stored in memory, scaling s
to reflect activation (weighting) of memory items
a over elapsed time 7, and linearly combining in-
stances in memory to compute a memory echo e.
The familiarity score at timestep 7 is the cosine
similarity of the echo to the probe, following this
system of equations:

s = sim(p, M) (D
a, = s’sign(s) ()

er = aM 3)
fr = sim(es, p) 4)

Modelling AJT Responses with Taus (7) The
free parameter 7 is used to accentuate differences
in similarity values (Hintzman, 1988; Nick Reid
and Jamieson, 2023). By raising the value of T,
higher-similarity memory traces will elicit expo-
nentially more activation, allowing those traces to
play a larger role in the overall activation profile
versus pooling a potentially large number of low-
similarity items.

Following Nick Reid and Jamieson (2023), we
depart from prior work wherein 7 is kept constant

Memory traces
a

M 1
+«—— I [ R

a a_2

1] IIIIJ .l EmEy |
e —HIRET T
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Figure 2: Illustration of how embeddings are noised
and loaded into MINERVA’s memory matrix M. Colors
depict values within a vector. Note that the noise vectors
e are independently sampled for each memory trace.

Item embeddings

for a particular experiment and model reaction
times by dynamically increasing 7 for a particu-
lar probe p until a desired threshold of familiarity
K € [0,1) is reached. At this point, we take the
final value of 7 as a proxy for the time required
to recognize p from memory, i.e, a proxy for reac-
tion time (RT). We set a time-out at 7 = 300 after
which the next probe is presented.

In human acceptability judgements, reaction
times serve as a proxy for processing difficulty.
We implicitly model acceptability judgements in
MINERVA as a function of whether the familiarity
threshold K is reached within the allowable time
window. If the familiarity score surpasses K before
the time-out, i.e., successful recognition, we treat
this as a "yes". Conversely, if familiarity remains
below the threshold when 7 = 300, we treat the
failure to retrieve as a "no" response.

5.1 Motivations & Assumptions

Collocational processing is known to be driven by
two factors: semantic transparency and frequency
(see Gyllstad and Wolter, 2016; Fioravanti et al.,
2021). Our model captures semantic transparency
by means of distributional semantics, i.e, vector
embeddings, while frequency is captured by means
of phrasal frequency in a dynamic web corpus. We
demonstrate the effect of both factors in our abla-
tions (see Section 5.4).

Semantics of Memory Traces Using distributed
vector representations as memory traces for MIN-
ERVA is well-established in the literature (Chubala
and Jamieson, 2013; Jamieson et al., 2018;
Nick Reid and Jamieson, 2023). Given that the
figurative idioms (e.g., spill the beans) also have a
compositional reading, we need a contextualized,
fine-grained vector representation to capture the

295



semantics of each word combination. Therefore,
we rely on Sentence-BERT (sBERT) which pro-
vides semantically meaningful vector embeddings
for sentences (Reimers and Gurevych, 2019). To
derive the vector embedding for each of the 246
target stimuli, we follow Vuli¢ et al. (2020). First,
we collect a set of 100 sentences of the word com-
bination’ from the enTenTen21 corpus, in which
the noun occurs as the direct object of the verb.
We feed each sentence to sSBERT obtaining a set
of contextualized word embeddings representing
each word in the sentence (we perform mean pool-
ing over sub-words). Given that the higher layers
of BERT architectures are the most sensitive to
lexical semantics (Reif et al., 2019), we take our
embeddings from the last hidden layer of the model.
From each of the 100 sentences, we extract the em-
beddings corresponding to the verb and the noun
and average across them separately, resulting in
the mean contextualized representation of the verb
when paired with the noun, and of the noun when
paired with the verb. Finally, we concatenate the
mean embedding for the verb with the mean embed-
ding for the noun to form the vector representation
of our stimulus®,

Memory Frequencies & Forgetting In accor-
dance with the instance theory, MINERVA’s re-
trieval time is inversely proportional to the number
of memory traces that strongly respond to a partic-
ular probe (Nick Reid and Jamieson, 2023). There-
fore, we populate MINERVA’s memory matrix us-
ing 10, 000 items sampled proportionally to their
phrasal frequency. Following prior work, we sim-
ulate forgetting by adding zero-centered Gaussian
noise to each memory trace vector such that each
dimension of each trace has an independent proba-
bility F' € [0, 1) of being corrupted with noise. The
more frequent a particular item, the more traces it
will have in memory, averaging out the noise and
making high-frequency items easier to retrieve.

5.2 Simulations

To explore the extent to which simple memory re-
trieval is sufficient to reproduce processing trends
for each condition, we load the memory matrix

SDistractor items were not included in the simulations as
they are nonsense combinations, have no context sentences
and would have very low frequency in MINERVA’s memory.

We use concatenation instead of mean pooling as our stim-
uli are all Verb + Direct Object and concatenation preserves
word order and therefore, syntactic role information. However,
see Appendix E.

as described above (see Figure 2) and test MIN-
ERVA’s recognition capabilities using a noiseless
vector embedding of the target stimulus as the
probe. To simulate N different participants who
are exposed to different samplings of items from
the same environmental distributions, as well as
different patterns of forgetting, we run each simula-
tion N=300 times with different random seeds,
re-sampling and re-noising the memory matrix
each time. We perform a thorough hyperparam-
eter sweep of activation threshold K and forget-
ting probability F'. We discuss results for hyper-
parameter values K=0.99 and F'=0.8, although
our results are robust across many hyperparameter
combinations (see Figure 10).

We use the same statistical model described in
Section 4 to analyse the effect of semantics and
frequency on retrieval (i.e., Tau).

5.3 Results

The results of our computational experiment are
shown in Figure 3. As MINERVA was not pre-
sented with any baseline items and as all items were
in MINERVA’s memory, it should have succeeded
at recognizing all items (Figure 3, left panel). Thus,
we first considered only successful retrievals. De-
spite being provided with meaningful embeddings
and frequencies, the model failed to capture hu-
man processing trends. Collocations were retrieved
faster than idioms (6 = —0.41; SE = 0.004; p <
0.001) while compositional items were retrieved
slower than idioms (8 = 0.62; SE = 0.004;p <
0.001). See Appendix C for more details. Given
the surprising results, we analyzed the model’s fail-
ures to retrieve, i.e., timeouts, on every item (see
Figure 3, right panel). MINERVA timed out on
50% of the retrievals for collocations, followed
by compositional items (38.6%), with idioms tim-
ing out the least (33.8%). A mixed-effects logistic
regression confirmed all differences between con-
ditions to be statistically significant’ (see Table 6).

"To rule out the possibility that these results are a quirk
of the MINERVA architecture, we also ran memory retrieval
simulations using the same memory matrix on the Modern
Hopfield Network (Ramsauer et al., 2021, MHN). The MHN
is a generalization of the classical Hopfield network (Hopfield,
1982) adapted to work with continuous states, and is formally
connected to the QKV attention mechanism in Transformers.
We find that the MHN displays the same characteristic pattern
of failures in at least one configuration of hyperparameters
(see Appendix D). Although our MHN results are a proof-of-
concept, given the robustness of the MINERVA findings with
respect to hyperparameters (see Figure 10) they suggest that
elevated failure rates on collocations may be a property of
associative memory retrieval writ large.
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Figure 3: Left: mean Tau (7) by condition for success-
ful retrievals in MINERVA. The y-axis represents mean
Tau, the model’s output which acts as a proxy for reac-
tion times. Error bars indicate bootstrapped confidence
intervals. Right: percentage of failed retrievals, i.e.,
timeouts, per condition. Note that while the pattern of
Taus on successful retrievals is different from the pat-
tern of human RTs, the pattern of timeouts per condition
matches the pattern of human RTs.

Unlike the pattern of Taus on successful retrievals,
the pattern of retrieval failures in MINERVA ap-
pears to capture the trend in human RTs across the
three conditions.

Additionally, we found that MINERVA always
succeeds at retrieving items above a high frequency
threshold (Figure 4, black line). We find a simi-
lar frequency boundary in humans (Figure 4, green
line), which lies very close to the MINERVA thresh-
old. On items above this threshold®, participants
did not show a significant difference in RT by con-
dition, while still showing a significant effect of
frequency.

5.4 Ablations

Semantics-only In the semantics-only ablation,
the model was loaded with all instances being
equally frequent. Thus, the only distinguishing
factor between the memory traces were their se-
mantics. The results are shown in Figure 5. We
visually observe that the trends for collocations
match those of the main experiment—they time out
the most, but are retrieved the fastest on successful
retrievals. However, unlike in the main experiment,
we observe that compositional items are retrieved
slightly faster and time out less frequently than id-
ioms. Investigating the cause of this discrepancy is
an interesting avenue for future work.

816 compositional, 18 collocations, 17 idioms
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Figure 4: Percentage of failed retrievals (i.e., timeouts)
in MINERVA per stimulus item, as a function of the
frequency of the item. The x-axis is displayed in log
scale. The black line indicates the frequency threshold
(f = 27123) above which MINERVA times out less
than 1% of the time. The green line (f = 28000) in-
dicates the frequency threshold above which condition
stops being a significant predictor of human RTs.

Frequency-only In the frequency-only ablation,
the model was loaded with embeddings comprised
of Gaussian noise’. However, each noise-item was
sampled according to correct frequency informa-
tion. The results are shown in Figure 6. For suc-
cessful retrievals, we visually observed that idioms
and collocations were retrieved equally quickly,
whereas compositional items were retrieved slower.
This pattern also persists in the timeouts. Given that
frequency drives MINERVA'’s retrieval mechanism,
this pattern of Taus and timeouts is not surprising.
Idioms—the most frequent subset—are retrieved
most easily, followed by collocations, and finally
compositional units which are the least frequent.
The results of these ablations suggest that it is the
semantics of the item traces that drive the unique
processing cost for collocations in MINERVA. Ad-
ditionally, as shown with the trends for idioms vs
compositional items, frequency dynamics mitigate
the effects of semantic dynamics, producing the
overall behaviour observed in the main experiment.

6 Discussion & Analysis

Our behavioural results confirm the processing cost
for collocations surmised from the literature. This
effect occurs despite collocations and composi-
tional items being very close in frequency (with
the balance in favour of collocations), and the par-

9We calibrate the noise to the mean and standard deviation
of the embeddings in the main condition.
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Figure 5: Left: mean Tau (7) by condition for success-
ful retrievals in Ablation 1, wherein frequency infor-
mation was eliminated. The y-axis represents mean
Tau, the model’s output which acts as a proxy for reac-
tion times. Error bars indicate bootstrapped confidence
intervals. Right: percentage of failed retrievals, i.e.,
timeouts, per condition in Ablation 1. Note that just as
in the main MINERVA experiment, collocations time
out much more frequently than the other conditions.

ticipants as adult L1 English speakers being highly
familiar with the items. The result is mirrored in
our computational findings. These stark differences
in processing patterns for collocations compared to
idioms and compositional items suggest that they
must be treated as a separate class of linguistic
items, and not be cast under the broad umbrella of
formulaic language.

To recap our simulation results, MINERVA’s suc-
cessful retrievals failed to reproduce the process-
ing trend observed in humans and also exhibited
many more incorrect responses, i.e., unsuccessful
memory retrievals, than humans. However, these
retrieval failures do appear to capture the key asym-
metries in human processing. Again, this is espe-
cially noticeable for collocations on which MIN-
ERVA timed out the most. We also found that
above a certain frequency threshold, MINERVA
matches human patterns. This suggests that simple
memory retrieval, as implemented in a frequency
based model of memory, is only sufficient to ex-
plain human processing trends for highly frequent
items. Below this threshold, retrieval starts to fail.
Given that MINERVA does not have any process-
ing mechanism beyond memory retrieval, it simply
times out on these items. We conjecture that at this
point humans invoke other processing mechanisms
to facilitate interpreting of the stimulus, incurring
a cost in reaction time.

The fact that collocations incur a higher process-
ing cost despite being more frequent than com-

Successful Retrievals Failed Retrievals (Timeouts)

3.22

32%

N

Mean Tau

0%

@ Compositional [l Collocation [ Idiom

Figure 6: Left: mean Tau (7) by condition for suc-
cessful retrievals in Ablation 2, wherein semantic infor-
mation was eliminated while leaving the correct item
frequency distribution. The y-axis represents mean Tau,
the model’s output which acts as a proxy for reaction
times. Error bars indicate bootstrapped confidence in-
tervals. Right: percentage of failed retrievals, i.e., time-
outs, per condition. Note that the trends in timeouts
follow the frequency distribution across the conditions.

positional items shows that single-route accounts
provide an incomplete picture. They further demon-
strate that dual-route accounts with a binary dis-
tinction between formulaic versus compositional
language are also insufficient to account for the
processing of this large and frequent subset of lan-
guage. This underscores the need for a model
which can account for a more fine-grained repre-
sentation of semantic compositionality. One such
plausible mechanism is analogical reasoning (Ed-
dington, 2000; Ambridge, 2020). Like single-route
models, this domain-general approach posits that
all linguistic units are processed by a single mech-
anism (Skousen, 1990). However, in addition to
memory retrieval, it posits on-the-fly analogy with-
out resorting to any rule-based mechanisms. On re-
ceiving an input, a memory search is undertaken to
find analogous exemplars previously experienced.
The input is then evaluated based on the degree of
similarity in order to find the most frequent cate-
gory within the found set of most similar exemplars
(Gentner and Namy, 20006).

Memory retrieval is the first step in analogical
processing (Gentner and Colhoun, 2010). Thus,
processing a sufficiently frequent item via anal-
ogy will simply resort to memory retrieval. Such a
mechanism would be invariant to the semantic com-
positionality of the item in question, as we have
seen in humans. Below this threshold, however,
proper analogical machinery comes into play.

In compositional items, both the verb and the
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noun play a prototypical role. Thus, even though
the language user may not recall this exact verb-
noun pairing from memory, it is relatively easy to
map the verb and noun to similar instances of the
same, due to the high semantic overlap between
compositional uses of the verb and the noun. In
collocations, however, the verb is not used in its
prototypical sense. Resolving the meaning of the
verb requires a much “farther” mapping, which may
involve increased search over possible abstractions
of the verb or extensive structure-mapping. Engag-
ing such machinery inevitably incurs a processing
cost with respect to compositional items (Gentner
and Namy, 2006), as reflected in RTs. Finally, id-
ioms, which cannot be processed analytically, must
be retrieved holistically irrespective of frequency.

Moreover, there is a body of evidence for the
role of analogy in metaphor comprehension (see
Morsanyi et al., 2022, for a review), child language
acquisition (see Raynal et al., 2024), and process-
ing of novel verb metaphors (King and Gentner,
2022), which are, in essence, unconventionalized
collocations. We posit that that an analogical ac-
count of language processing may provide a more
complete explanation of these findings, and that
further work should explore this proposal.

The retrieval failures for idioms may stem from
a limitation of our dataset—the fact that we only
consider figurative idioms which have a composi-
tional reading. We were unable to ascertain the
relative frequency of idiomatic versus literal read-
ings in the context sentences of every idiom in our
stimuli that we use to generate embeddings. It is
also unknown to what precise extent SBERT can ac-
curately represent idiomatic meanings, or whether
our human participants interpreted idiomatic stim-
uli in a figurative sense. Combined, these factors
suggest that the semantics of our set of idioms are
somewhat akin to our set of compositional items,
and some of the processing trends which pertain
to compositional items are inadvertently present
in the trend of responses to idioms. In line with
the holistic retrieval hypothesis, we surmise that
idioms for which the literal reading is much less fre-
quent than the idiomatic one (e.g., kick the bucket)
will tend to be processed faster and with fewer
timeouts than more ambiguous ones (e.g., hold the
key). Future work will attempt to investigate this
prediction and further augment our understanding
of idiomatic processing by including pure idioms,
i.e., those without a literal reading, in the dataset,
and employing other behavioural tasks which in-

volve presentation of items within context (e.g.,
self-paced reading).

One intriguing implication of our computational
experiment may be of interest to the NLP commu-
nity. Switching Equation 2 for a, = softmax(7s),
MINERVA’s retrieval mechanism becomes identi-
cal to query-key-value attention in Transformers
(Vaswani et al., 2017). Here, the probe plays the
role of the query and the memory items the role
of keys and value. Increasing Tau can be consid-
ered as a mechanism for dynamically weighting
the output toward the keys which bear most similar-
ity to the query, similar to increasing the softmax
scale parameter over time. Under this formulation,
MINERVA is also a variant of the Modern Hopfield
Network with no learnable parameters (Ramsauer
et al., 2021). This wealth of connections suggests
that our findings may apply more broadly to all
attention-based methods. Given the prevalence
of collocations in language, if neural embeddings
of semi-compositional language are particularly
prone to failures in attention-based retrieval, this
may significantly impair language understanding
and generation in Transformer-based models. Fu-
ture work will attempt to mechanistically diagnose
the underlying reasons for the increased failure
rates in collocations and ascertain whether these
issues impact the performance of general-purpose
Transformer-based language models.

On a more applied level, large language models
(LLMs) as writing assistants have gained popu-
larity (Boisson et al., 2024). This has drawn at-
tention to how these models handle figurative lan-
guage like metaphors, of which collocations are
a prominent subset. While LLMs can produce
metaphors, users often note shortcomings such as
clichéd phrasing or a lack of creativity in metaphor
generation (Chakrabarty et al., 2024), perhaps re-
flecting an underlying lack of capability in inter-
preting these linguistic units. These observations
further underscore the importance of understanding
collocational processing not only in human cogni-
tion, but also in NLP systems.

Overall, we show that semi-compositional units
are a bigger “pain in the neck” (Sag et al., 2002)
than other subsets of the semantic compositionality
continuum: too complex for rote retrieval, yet too
idiosyncratic for rule-based computation. As it
stands, memory retrieval does leave something on
the table, underscoring the need for theories that
capture the graded nature of meaning and structure
in language.
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7 Limitations

Our approach relies on contextual embeddings
to capture semantic information. However,
these embeddings do not always differentiate
clearly between compositional and idiomatic
readings. Given that our idiomatic stimuli also
have a productive reading, the same embed-
ding may be used for both literal and figurative
interpretations. Similarly, we cannot ensure
that our task is eliciting an idiomatic reading
in humans as human listeners disambiguate
based on context.

The current dataset was not built from scratch
with frequency-matching criteria for idioms.
Frequency is a well-established predictor of
language processing and an ideal dataset
would equate or carefully control the fre-
quency distributions of idioms relative to other
word types.

Our study exclusively examined verb—noun
(VN) collocations. While these are a critical
class of multiword expressions, little is known
about other collocational structures (e.g., ad-
jective—noun, phrasal verbs, etc.) which are
also prevalent in natural language and may
be processed differently. Extending our in-
vestigation to these additional types will be
important for assessing the generalizability of
our findings across the broader spectrum of
semi-compositional linguistic units.

MINERVA provides a parsimonious frame-
work for modelling memory retrieval, yet it
inherently simplifies many aspects of human
cognitive processing. The model does not in-
tegrate attentional mechanisms or dynamic
contextual cues beyond the static embeddings
provided, and it does not account for develop-
mental changes in memory and language pro-
cessing. These simplifications may limit the
model’s ability to capture the full complexity
of human language processing, particularly
in cases where retrieval failures (time-outs)
interact with other cognitive processes. Our
simulations relied on specific hyperparameter
settings (e.g., activation threshold K'=0.99
and forgetting probability F'=0.8) that were
chosen based on qualitative assessments. Al-
though results were robust across a range of
parameter values, the possibility remains that

different parametrizations could yield differ-
ent patterns.
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A Dataset Statistics

Table 1: Descriptive statistics of phrasal frequency by
condition

Condition Mean SD N
Compositional 19374.47 30671.53 78
Collocation 21528.21 3097142 78
Idiom 36784.68 87468.40 78
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Figure 7: Item frequencies across conditions, by decile

B Human Data

Table 2: Descriptive statistics of human reaction times
(ms) by condition

Condition Mean SD N
Idiom 984.20 365.39 4462
Compositional 99532 375.76 4423
Collocation 1007.87 370.84 4484

Table 3: Descriptive statistics of human accuracy by
condition

Condition Mean SD N
Idiom 0.93 0.25 4785
Compositional 0.92  0.27 4791
Collocation 094  0.24 4772

Table 4: Number of incorrect trials by condition

Condition n
Compositional 400
Collocation 464
Idiom 433
Baseline 1455
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C GLMM Results for Main Simulation

Table 5: Generalized mixed-effects regression results
for human AJT reaction times (left), and Tau, a proxy
for reaction times, simulated in MINERVA (right). MIN-
ERVA is run with K = 0.99, F = 0.8. Only correct
responses and succesfull retrievals are analysed.

Dependent variable:

RT Tau
Human MINERVA
Compositional 4.690** 0.624***
(2.240) (0.004)
Collocation 13.800*** —0.410%**
(1.760) (0.004)
Frequency —18.500*** —0.541%**
(1.640) (0.004)
Constant 1,047.0*** 5.900%**
(2.140) (0.004)
N 13,369 43,708
Note: *p<0.1; **p<0.05; ***p<0.01

D Modern Hopfield Network
Experiments
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Figure 8: Percentage of failed retrievals in the Modern
Hopfield Network. Collocations fail the most, followed
by compositional items, and idioms fail the least. This
matches the trends for the failures by condition in MIN-
ERVA, and the trend of reaction times in humans.

We suggest that our computational results per-
tain to the algorithmic implications of memory re-
trieval and are not based on a spurious quirk of the
MINERVA architecture. To reinforce this claim,
we present a proof-of-concept simulation of the
same behaviour with the Modern Hopfield Network
(Ramsauer et al., 2021, MHN).

The classical Hopfield network (Hopfield, 1982)
is a model of associative memory based on binary
states, designed for pattern completion and associa-
tive memory retrieval. MHN generalizes the Hop-
field network and the recent iterations thereof (Kro-
tov and Hopfield, 2016; Demircigil et al., 2017)
with continuous states, and introduces a corre-
sponding update rule which is closely connected to
the query-key-value attention operation in Trans-
formers.

The MHN can be configured in a number of dif-
ferent ways in order to simulate different functions,
such as pattern matching, sequence pooling, and
attention. In this simulation, we focus on the con-
figuration denoted as HopfieldLayer in Ramsauer
et al. (2021). Specifically, the model learns a static
memory matrix of size M € R™*¢, where n is the
number of memory items and c is the dimension-
ality of the memory’s latent space. It also learns
projection matrices A € R¥¢ B € R®*? which
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Table 6: Logistic regression results for retrieval failures. Reference Level is Idiom. Left column: MINERVA is run
with K = 0.99, F' = 0.8. Right column: Modern Hopfield Network for parameters presented in Appendix D. Both
models converged but with singular fits. This was due to the (1|ID) random intercept (where ID is the random seed
for the model run) accounting for nearly O variance.

Dependent variable:

Retrieval Failures

MINERVA MHN
Compositional 0.68*** 0.817***
(0.63, 0.73) (0.71, 0.942)
Collocation 4.074*** 1.192**
(3.78, 4.39) (1.022, 1.39)
Frequency 1.61e—08"** 1.75e—25"**
(8.68e—09, 2.98¢—08)  (1.22e—26, 2.53e—24)
Constant 1,047.0%** 5.900***
(1.02e—03, 3.58¢—03)  (1.03e—10, 8.25e—10)
N 70200 23400
Note: *p<0.1; **p<0.05; ***p<0.01

project inputs into and out of the latent space, re-
spectively. Matching between inputs and memory
items is done via query-key attention in the latent
space, so a lower value for ¢ forces the MHN to
compress more strongly.

The experimental setup is similar to that for
MINERVA, with the difference being the learn-
able nature of the model’s memory. As in Section
5.1, for each stimulus item = € R? we construct a
number of noisy versions {z], ...z} of its vector
embedding, where ¢ is proportional to the item’s
corpus frequency. Analogously to the MINERVA
memory matrix, our total training set for the MHN
comprises 10, 000 embeddings, with more frequent
items being more represented. Given one such
noisy embedding z’, the MHN was trained to out-
put the un-noisy source embedding x. Specifically,
it must maximize s = cosine_similarity(z, x),
where £ model output. We conjecture that to suc-
ceed on the task, the model must optimize its lim-
ited memory to map multiple noisy versions of the
same item to the item’s canonical representation.

As in the MINERVA experiments, we judge
whether the model’s retrieval was successful based
on the cosine similarity s. If s is above threshold
K, we say the retrieval is a success. Otherwise, it

is a failure. Unlike in MINERVA, there is currently
no analogue to RTs in MHN.

We ran a Bayesian hyperparameter sweep with
Hyperband early stopping (Falkner et al., 2018) to
find configurations in which the pattern of failures
across the three conditions which match human
trends. The results of one such configuration run
over 100 seeds is presented in Figure 8. As in the
MINERVA experiments, collocations fail the most,
followed by compositional items, with idioms fail-
ing the least. All differences between conditions
are statistically significant (see Table 6) when ana-
lyzed with the same model as the MINERVA fail-
ures. This matches the trends for the failures by
condition in MINERVA, and the trend of reaction
times in humans.

Please note that our parameter sweep was not
exhaustive and we cannot make any claims with
respect to hyperparameter robustness of the MHN
simulations. However, the fact that the MHN can
be shown to display the same behaviour as MIN-
ERVA in at least one case suggests that the ele-
vated retrieval failure rate of collocations may be a
property of associative memory retrieval writ large,
rather than a quirk of the MINERVA architecture.

The model hyperparameters are as follows: F' =
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0.2, K = 0.971,¢c = 625,n = 2205. Scaling
parameter 3 was set to ic = (0.0016. The model

was trained for 300 epochs with batch size 16 on
one A100 GPU.

E Averaging vs Concatenating SBERT
Embeddings

In this ablation, we investigate the impact which
concatenating verb and noun embeddings has on
our modelling results. Instead of concatenating
verb and noun embeddings, we perform mean-
pooling across them, the same as we do for sub-
word tokens. As shown in Figure 9, the trends
exhibited by the model in the K’ = 0.99, F' = 0.8
hyperparameter configuration are largely the same
as those reported in the main text.

0.8
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Figure 9: Reduced hyperparameter sweep showing the
effects of mean-pooling the verb and noun embeddings
before loading them into MINERVA, instead of concate-
nating them. Note that the hyperparemeter combination
reported in the main textis K = 0.99, F' = 0.8.
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See next page.
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Figure 10: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability

F for our main experiment. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on
the y-axis.
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bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 12: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability

F for Simulation 2: Semantics-only wherein the matrix was loaded with noised embeddings but with the correct
frequency. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 13: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for the Null Model wherein all the items in the matrix were loaded with noised embeddings and equal frequency.
Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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