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Abstract

Traditional methods for evaluating the robust-
ness of large language models (LLMs) often
rely on standardized benchmarks, which can es-
calate costs and limit evaluations across varied
domains. This paper introduces a novel frame-
work designed to autonomously evaluate the
robustness of LLMs by incorporating refined
adversarial prompts and domain-constrained
knowledge guidelines in the form of knowledge
graphs. Our method systematically generates
descriptive sentences from domain-constrained
knowledge graph triplets to formulate adver-
sarial prompts, enhancing the relevance and
challenge of the evaluation. These prompts,
generated by the LLM itself and tailored to
evaluate its own robustness, undergo a rigor-
ous filtering and refinement process, ensuring
that only those with high textual fluency and
semantic fidelity are used. This self-evaluation
mechanism allows the LLM to evaluate its ro-
bustness without the need for external bench-
marks. We assess the effectiveness of our
framework through extensive testing on both
proprietary models like ChatGPT (OpenAI,
2024) and open-source models such as Llama-
3.1 (Touvron et al., 2024), Phi-3 (Research,
2024), and Mistral (Mistral and contributors,
2024). Results confirm that our approach not
only reduces dependency on conventional data
but also provides a targeted and efficient means
of evaluating LLM robustness in constrained
domains.

1 Introduction

Large language models (LLMs) have garnered sig-
nificant attention due to their exceptional perfor-
mance across various natural language process-
ing (NLP) tasks. However, as these models are
widely applied in critical domains, they also face
the risk of adversarial attacks triggered by prompts.
Adversarial attacks aim to mislead models into
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making incorrect judgments through carefully de-
signed prompts, potentially causing severe damage
to users. Therefore, it is necessary to assess the
robustness of models against adversarial attacks
using robustness evaluations.

Existing adversarial robustness evaluation frame-
works for large language models (LLMs), like Ad-
vGLUE (Wang et al., 2021) and PromptAttack (Xu
et al., 2023), use specialized benchmark datasets
that require extensive manual annotation. This not
only limits their applicability but also increases op-
erational costs. Moreover, when LLMs are used in
constrained domains such as medicine or biology,
the mismatch between generic benchmark datasets
and the constrained context can lead to inaccurate
robustness evaluations. These limitations decrease
practicality of the frameworks and complicate the
robustness evaluation of LLMs.

This paper proposes an adversarial attack frame-
work (SelfPrompt) that requires the evaluated
LLMs themselves to utilize domain-constrained
knowledge guidelines to generate and poison
prompts from knowledge graph triplets, thereby
assessing their robustness. The generation of adver-
sarial prompts is meticulously refined to optimize
quality and evaluation effectiveness, while ensuring
that the quality of adversarial prompts generated by
different large language models is relatively consis-
tent. We apply this framework to generate prompts
from both general and constrained domain knowl-
edge graphs, evaluating the resilience of multiple
LLMs under adversarial attack conditions. Specifi-
cally, our contributions include:

• This paper introduces a framework that al-
lows large language models (LLMs) to au-
tonomously evaluate their robustness in con-
strained domains by generating adversarial
prompts from domain-specific knowledge
graph triplets. This method enhances the prac-
tical relevance of robustness evaluations by
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tailoring the prompts to the specific opera-
tional domains of the LLMs.

• To ensure stable quality of adversarial prompts
across various large models and maintain com-
parability in their robustness evaluations, we
employ a filter. This filter assesses the text
fluency and semantic fidelity of the prompts,
allowing us to refine and exclude those that
do not meet our quality criteria.

• We confirm that the robustness of large lan-
guage models is influenced by the domain of
knowledge corresponding to the prompts. The
robustness of the same large language model
measured on general or constrained domain
knowledge graphs is not similar. While mod-
els with larger parameters in the same series
tend to exhibit stronger robustness in general
domains, this is not necessarily the case in
constrained domains. Therefore, it is crucial
to consider the differences in knowledge do-
mains when evaluating robustness of LLMs.

2 Related Works

2.1 Robustness Evaluation of LLMs
Large language models (LLMs), such as the Chat-
GPT family and the Llama family, have attracted
much attention for their excellent performance in a
variety of natural language processing tasks (Tou-
vron et al., 2023; Brown et al., 2020). However, as
these models are widely used in critical domains
applications, evaluating their robustness has also
become a hot research topic. There are four main
streams of work (Li et al., 2023; Ailem et al., 2024;
Zhuo et al., 2023) on robustness research: robust-
ness under distribution shift (Yang et al., 2023), ro-
bustness to adversarial attacks (Wang et al., 2023b;
Zhu et al., 2023), robustness to prompt formats and
instruction templates (Mizrahi et al., 2023; Voronov
et al., 2024; Weber et al., 2023) and robustness to
dataset bias (Gururangan et al., 2018; Niven and
Kao, 2019; Le Bras et al., 2020). Our work focus
on evaluating robustness to adversarial attacks of
LLMs.

Adversarial attacks aim to mislead the model
to make wrong judgments through well-designed
inputs, while adversarial robustness evaluation at-
tempts to determine and enhance robustness of the
model to these attacks. Current robustness eval-
uation frameworks for LLMs are mainly based
on specially constructed benchmark datasets (e.g.,

the GLUE dataset (Wang et al., 2018) and ANLI
dataset (Nie et al., 2020)) for evaluating natural lan-
guage comprehension capabilities of LLMs (Goel
et al., 2021).

AdvGLUE (Wang et al., 2021) and AdvGLUE++
(Wang et al., 2023a) are two frameworks specifi-
cally designed to evaluate the adversarial robust-
ness of language models. These frameworks chal-
lenge the ability to make judgments under com-
plex and subtle semantic changes by providing
a series of adversarial samples of models. Ad-
vGLUE++ is a further extension of AdvGLUE that
introduces more adversarial samples, especially
for new emerging LLMs such as the Alpaca and
Vicuna families (Taori et al., 2023; Chiang et al.,
2023).PromptAttack enhance the attack power by
ensembling adversarial examples at different per-
turbation levels (Xu et al., 2023). These evaluation
frameworks exhibit a common feature: testing and
improving the robustness of the model by construct-
ing inputs that may cause the model to misjudge.
These inputs include both subtle textual modifica-
tions and complex semantic transformations, aim-
ing to comprehensively evaluate robustness of the
model to various challenges that may be encoun-
tered in real-world applications.

2.2 Adversarial Prompt Generation from
Knowledge Graphs

In evaluating robustness of LLMs, we need to
know whether they have such knowledge and
whether they can accurately express their knowl-
edge. Knowledge graphs can help us generate ad-
versarial attack prompt with different diversities
and complexities. Knowledge graph (KG) is a
graph structure for representing knowledge, where
nodes represent entities or concepts and edges rep-
resent relationships between these entities or con-
cepts.

Some works use different methods to utilize
triplet from knowledge graphs generating questions
(Seyler et al., 2017; Kumar et al., 2019; Chen et al.,
2023). Some works utilize the ability of LLMs
to generate questions from KGs (Guo et al., 2022;
Axelsson and Skantze, 2023). Recent works (Luo
et al., 2023, 2024) also discussed on evaluating
factual knowledge of LLMs with the diverse and
well-coverage questions generated from KGs and
how KGs can be used to induce bias in LLMs.
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2.3 Few-Shot Strategy

As the popularity of machine learning models, es-
pecially large language models (LLMs), continues
to grow, the few-shot learning strategy has also gar-
nered significant attention (Logan IV et al., 2021;
Meng et al., 2024). Few-shot learning involves
training models with a limited number of samples
to perform well on various tasks, minimizing the
need for large annotated datasets. This approach is
particularly valuable in situations where obtaining
extensive labeled data is challenging or costly. By
leveraging pre-trained models, few-shot learning al-
lows LLMs to generalize effectively from just a few
examples, making it a powerful tool for tasks like
text classification, translation, and summarization.

The few-shot learning strategy is designed to
enhance model performance in data-scarce envi-
ronments, which is crucial for applying LLMs to
specialized domains where data is often limited.
The core of this strategy lies in its ability to utilize
prior knowledge embedded in pre-trained models,
enabling them to adapt to new tasks quickly and ef-
ficiently with minimal data. This adaptability helps
uncover the potential of LLMs in diverse applica-
tions while maintaining robustness and relevance
in domain-specific contexts.

3 Methodology

In this section, we first illustrate a robustness self-
evaluation framework for large language models
based on domain-constrained knowledge guide-
lines, utilizing adversarial prompt attacks, which
we call SelfPrompt. Then, we employ a filter mod-
ule to ensure the text fluency and semantic fidelity
of the adversarial prompts generated by SelfPrompt.
Finally, we introduce the metrics for evaluating the
robustness of LLMs. All the prompt templates men-
tioned in this section can be found in the Appendix
C.

3.1 Framework of SelfPrompt

Initially, we process the triplets of the knowledge
graph to assign them distinct labels. Subsequently,
we transform these triplets into original prompts.
Finally, these original prompts are converted into
adversarial prompts. Next, we provide a detailed
description of each step in this process.

Labeling Knowledge Graph Triples. We let
D = {(si, pi, oi)}Ni=1 be the domain-constrained
knowledge graph dataset. For each triplet t =
(s, p, o) ∈ D, s refers to the subject of this triplet,

while p and o refer to the predicate and object
of the triplet, respectively. For example, for the
triple (Alan Turing, field of work, logic), it has the
subject (Alan Turing), the predicate (field of work),
and the object (logic). This triple means that Alan
Turing works in the field of logic.

Considering the structural characteristics of the
triples, each triple is labeled with one of the fol-
lowing three labels: true, entity_error, and predi-
cate_error. By default, all triples extracted from
the knowledge graph are initially labeled as true.
For each triplet t = (s, p, o) ∈ D, its label l is ran-
domly assigned to one of the three labels with equal
probability, generating incorrect subject, predicate,
and object, denoted as s′, p′, and o′, respectively.
The modified triple t′ is:

t′ =


(s, p, o), l = true
(s, p′, o), l = predicate_error
(s′, p, o) or (s, p, o′), l = entity_error

(1)

For example, for the original triple labeled as
true, (Alan Turing, field of work, logic); if it is to
be labeled as predicate_error, it can be modified
to (Alan Turing, position played on team, logic),
which means Alan Turing plays in the logic
position; the modified predicate is used to
describe the position or specialism of a
player on a team. If it is to be labeled as
entity_error, the original triple can be modi-
fied to (Richard Wagner, field of work, logic) or
(Alan Turing, field of work,Opera). The labeled
knowledge graph dataset is D′ = {(t′i, li)}

N
i=1

Generating Original Prompts. LLMs are more
suitable for handling continuous prompt text rather
than structured triplets. For converting triplets into
prompts, we offer two strategies: Template-based
and LLM-based. The template-based strategy uses
templates built into the predicates of the triplets to
generate original prompts by replacing these place-
holders with specific names. For example, for the
triplet (Alan Turing, field of work, logic), the tem-
plate built into the predicate field of work is "[X]
works in the field of [Y]." By replacing [X] with
Alan Turing and [Y] with logic, the sentence "Alan
Turing works in the field of logic" is generated. The
LLM-based strategy involves feeding triplets to the
LLM whose robustness is being evaluated, which
then generates descriptive sentences based on these
elements. Figure 1 shows the structure of this strat-
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egy.

Figure 1: LLM-Based Strategy Example

The sentences generated by the two strategies
are filled into the corresponding positions of the
prompt templates to create original prompts, requir-
ing the LLM to classify these sentences according
to the three labels described in this subsection.

Constructing Adversarial Prompts. Adversar-
ial prompts maintain the same main structure as the
original prompts and require the LLM, whose ro-
bustness is being evaluated, to modify the sentences
generated from the triplets to create adversarial sen-
tences. These adversarial sentences should retain
the same semantics as the original sentences but
lead the LLM to misclassify them. Adversarial
prompts are generated by replacing the correspond-
ing parts in the original prompts with adversarial
sentences. In the prompt template (Adversarial
Sentences Generation Prompt) for this step, we pro-
vide both the triplets and the sentences generated
from them according to the procedure described in
this subsection.

Figure 2: Adversarial Sentence Generation

To generate adversarial sentences, we offer
an optional few-shot approach that enhances the
LLM’s ability to produce adversarial sentences by
providing example samples that demonstrate the
transformation of original sentences into adversar-
ial sentences.

3.2 Filter Module
In the SelfPrompt framework described in section
3.1, we use the LLM being evaluated for robustness

to generate both original prompts and adversarial
prompts. The quality of adversarial prompts gener-
ated by different LLMs varies, posing challenges
for the cross-comparison of robustness evaluation
results across different LLMs. To address this issue,
we designed a filter module to eliminate adversar-
ial sentences that do not meet the criteria for text
fluency or semantic fidelity. This ensures that the
adversarial prompts generated by different LLMs
are of comparable quality, thereby enhancing the
reliability and comparability of the robustness eval-
uation results.For an original sentence sori and its
corresponding adversarial sentence sadv, the text
fluency of sadv is tf(sadv), the semantic fidelty of
sadv relative to sori is sf(sadv, sori). Assume that
the filtering thresholds for text fluency and seman-
tic fidelity are τt and τs respectively, the formula
for the filter module is as follows:

f(sadv, sori) = (tf(sadv) > τt) ∧ (sf(sadv, sori) > τs)
(2)

The function tf(s) calculates the text fluency of
a sentence s by computing the perplexity of a lan-
guage model’s output for s. The perplexity is de-
fined as:

P (s) = eLoss(s) (3)

where Loss(s) is the negative log-likelihood loss of
predicting the tokens in s (Goodfellow et al., 2016).
To manage the typically large values of perplexity,
a logarithmic transformation is applied:

LogP (s) = log(P (s) + e− 1) (4)

The text fluency score is computed as:

tf(s) =
e−k/LogP (s) − 1

e−k − 1
(5)

where k > 0; in this experiment, k is set to 5.
The function sf(sadv, sori) computes the seman-

tic fidelity between sadv and sori by first calculating
the cosine similarity between their embedding vec-
tors vadv and vori, where:

vadv = get_embedding(sadv) (6)
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vori = get_embedding(sori) (7)

The cosine similarity (Manning et al., 2008) is
given by:

cos_sim(vadv, vori) =
vadv · vori

∥vadv∥∥vori∥
(8)

It then scales the cosine similarity to the range
[0, 1] using the formula:

sf(sadv, sori) =
et·cos_sim(vadv,vori) − e−t

et − e−t
(9)

where t > 0. In this experiment, t is set to 5.

3.3 Metrics for Robustness Evaluation
From a knowledge graph triplet dataset D =
{(si, pi, oi)}Ni=1, we generate an original prompt
set O and a corresponding adversarial prompt set
A of size M (where 0 < M ≤ N , and all elements
in set A must pass the filter module test described
in section 3.2). Let the accuracy of the LLM on the
classification task for set O be ACCO and for set
A be ACCA(both ACCO and ACCA range from
0 to 1). The robustness metric R(ACCA,ACCO)
evaluates a model’s ability to handle adversarial
prompts. It is defined as:

R(ACCA,ACCO) = sin

(
π

2
· ACCA ·

(
1− ACCj

O
j

))
(10)

where ACCA is positively correlated with robust-
ness since a higher ACCA reflects better resistance
to adversarial attacks. Conversely, ACCO is nega-
tively correlated with robustness because, in most
cases, ACCA < ACCO. When ACCA is the same,
a lower ACCO indicates that the LLM is less influ-
enced by adversarial attacks, leading to a higher
robustness score. In this experiment, the value of j
is set to 1.7, where j ≥ 1.

4 Experiments

In this section, we demonstrate that our proposed
SelfPrompt framework can perform adversarial at-
tacks on large language models such as ChatGPT
(OpenAI, 2024) and Phi-3 (Research, 2024), and
enable self-evaluation of their robustness based on
the results. Additionally, we conduct extensive
evaluation experiments on each module within the
SelfPrompt framework.

4.1 Arrangements

In this subsection, we present the basic arrange-
ments of the experiments, including the datasets
used, the large language models employed, and
settings of the filter module.

Datasets. We utilize three knowledge graphs
(KGs) to generate factual questions: T-REx (Elsa-
har et al., 2018), which serves as a general-domain
KG, and WikiBio (Sung et al., 2021) and ULMS
(Bodenreider, 2004), which are focused on con-
strained domains in biology and medicine, respec-
tively. Each predicate in these KGs is paired with
a dedicated template, which facilitates template-
based original prompt generation within the Self-
Prompt framework. For more details about the
datasets and their predefined templates, please re-
fer to appendix.

Large Language Models. Our experiments
leverage a range of large language models across
several series: GPT-4o (OpenAI, 2024) (in-
cluding GPT-4o and GPT-4o-mini), Gemma2
(Gemma Team, 2024) (with 2B and 9B parame-
ter versions), Phi-3 (Research, 2024) (comprising
Phi-3-mini with 3.8B parameters and Phi-3-small
with 7B parameters), Llama-3.1 (Touvron et al.,
2024) (8B parameters), and Mistral (Mistral and
contributors, 2024) (7B parameters). Variants with
different parameter scales within the same model
series are employed to examine whether the Self-
Prompt framework’s evaluation results align with
the expectation that "larger models exhibit greater
robustness under comparable conditions, particu-
larly when evaluated on general domain datasets",
thereby validating the soundness of the evaluation
metrics. Meanwhile, models with similar parame-
ter sizes from different series are used to facilitate
cross-series comparisons of robustness.

Filter Module Setting. To determine the ap-
propriate values for the two thresholds, τt and τs,
in the filter module, we use a small sample (500
samples per round) generated by various LLMs
and different knowledge graph datasets to produce
the sentences required for adversarial prompts. We
then measure their text fluency and semantic fi-
delity. The corresponding box plots of the data are
presented below.

In Figure 3 and Figure 4, T2P indicates which
strategy was used for generating the original
prompts. Unless otherwise specified, the template-
based strategy is generally applied. As shown in
the figures, text fluency is significantly affected by
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Figure 3: Box Plot of Text Fluency

Figure 4: Box Plot of Semantic Fidelity

different constrained domains, while semantic fi-
delity is more influenced by different LLMs; these
two metrics are suitable as filtering criteria in the
fidelity module. To select high-quality adversarial
prompts, we set τt = 0.69 and τs = 0.60.

4.2 Robustness Evaluation

Table 1, Table 2, and Table 3 present the robustness
evaluation results for selected large models, the
accuracy of the LLM on the classification task for
set O (ACCO), and for set A (ACCA), respectively.
The test data for the remaining models (includ-
ing Mistral-7B, Llama-3.1-8B, ChatGPT-4o, and
ChatGPT-4o-mini) can be found in the Appendix
B.

As shown in Table 1, when tested on knowledge
graph datasets in the general domain, the perfor-
mance of large language models aligns with the
prediction that "within the same series, larger mod-
els exhibit greater robustness." This observation
validates the effectiveness of our metrics for eval-
uating model robustness. However, on datasets
in constrained domains, the results are not always

consistent with this trend. For Phi-3 models, the
prediction that larger models are more robust gen-
erally holds; even in cases where smaller models
show greater robustness, the difference is marginal.
In contrast, for the Gemma2 series, smaller models
achieve better robustness evaluation results. By
comparing Table 2 and Table 3, it can be seen that
the larger models in the Gemma2 series experience
a more significant drop in accuracy when facing
adversarial attacks (e.g., for the UMLS dataset, the
accuracy drops of the Gemma2-2B and Gemma2-
9B models are 0.026 and 0.049, respectively; for
the WikiBio dataset, the drops are 0.036 and 0.047,
respectively). Thus, the smaller models in the
Gemma2 series are less affected by adversarial
attacks and therefore demonstrate greater robust-
ness. This could be attributed to the smaller mod-
els’ limited understanding of specialized domain
texts, making them relatively less susceptible to
adversarial statements. These findings underscore
the necessity of evaluating the robustness of large
models in domain-constrained scenarios.

4.3 Experimental Analysis of SelfPrompt
The robustness evaluation of large language mod-
els (LLMs) reveals distinct effects based on the
strategies used for generating original prompts
(Template-based vs. LLM-based) and whether the
few-shot approach is applied in constructing adver-
sarial prompts. Tables 1, 2, and 3 highlight these
differences within the same model series.

For generating original prompts, the impact of
template-based and LLM-based strategies differs
between models in the same series. In the Gemma2
series, the robustness scores for Gemma2-2B and
Gemma2-9B under the template-based strategy
without few-shot on the T-REx dataset are 0.662
and 0.679, respectively. This suggests that the
larger model, Gemma2-9B, benefits slightly from
more structured input. However, when using the
LLM-based strategy, which introduces more vari-
ability, the robustness score for Gemma2-9B on the
UMLS dataset drops to 0.530, closer to Gemma2-
2B’s 0.534. This convergence suggests that more
diverse prompts challenge the larger model’s ro-
bustness. Table 2 shows a similar trend in accuracy
ACCO, where Gemma2-2B and Gemma2-9B show
reduced differences when moving from template-
based to LLM-based prompts, highlighting the im-
pact of input variability. In the Phi-3 series, a
similar pattern is observed. Under the template-
based strategy on the WikiBio dataset, Phi-3-mini
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Dataset Generation Strategy FS Gemma2-2B Gemma2-9B Phi-3-mini Phi-3-small

T-REx template_based No 0.620 0.631 0.607 0.639
T-REx template_based Yes 0.610 0.641 0.639 0.642
T-REx llm_based No 0.595 0.605 0.590 0.647
T-REx llm_based Yes 0.602 0.633 0.584 0.644
UMLS template_based No 0.524 0.490 0.502 0.568
UMLS template_based Yes 0.500 0.529 0.533 0.542
UMLS llm_based No 0.510 0.459 0.512 0.507
UMLS llm_based Yes 0.541 0.490 0.510 0.496

WikiBio template_based No 0.506 0.555 0.502 0.537
WikiBio template_based Yes 0.513 0.485 0.548 0.505
WikiBio llm_based No 0.536 0.503 0.466 0.554
WikiBio llm_based Yes 0.508 0.501 0.525 0.499

Table 1: Robustness evaluation results for some models: Gemma2-2B, Gemma2-9B (Gemma Team, 2024), Phi-3-
mini, and Phi-3-small (Research, 2024). Bold indicates higher value. The FS column indicates whether the few-shot
strategy is used.

Dataset Generation Strategy FS Gemma2-2B Gemma2-9B Phi-3-mini Phi-3-small

T-REx template_based No 0.568 0.622 0.560 0.579
T-REx template_based Yes 0.558 0.609 0.527 0.590
T-REx llm_based No 0.561 0.646 0.553 0.612
T-REx llm_based Yes 0.551 0.654 0.514 0.636
UMLS template_based No 0.429 0.453 0.381 0.486
UMLS template_based Yes 0.454 0.450 0.407 0.503
UMLS llm_based No 0.413 0.416 0.424 0.398
UMLS llm_based Yes 0.423 0.404 0.401 0.424

WikiBio template_based No 0.462 0.430 0.516 0.459
WikiBio template_based Yes 0.439 0.427 0.514 0.434
WikiBio llm_based No 0.422 0.468 0.444 0.441
WikiBio llm_based Yes 0.436 0.472 0.466 0.406

Table 2: ACCO for some models: Gemma2-2B, Gemma2-9B (Gemma Team, 2024), Phi-3-mini, and Phi-3-small
(Research, 2024). Bold indicates higher value. The FS column indicates whether the few-shot strategy is used.

and Phi-3-small achieve robustness scores of 0.534
and 0.566, respectively, indicating a benefit for the
larger model. However, under the LLM-based strat-
egy, Phi-3-mini’s robustness score drops more sig-
nificantly than Phi-3-small’s (from 0.648 to 0.619
and from 0.695 to 0.694, respectively, on the T-
REx dataset), demonstrating that smaller-parameter
large language models are relatively weaker than
larger-parameter models in generating and under-
standing natural sentences.

Regarding constructing adversarial prompts, the
few-shot Approach significantly affects robustness
within model series, as seen in Tables 1 and 3. For
the Gemma2 series on the UMLS dataset, Gemma2-
9B’s robustness drops from 0.529 without few-shot

to 0.490 with few-shot, revealing increased vulner-
ability under adversarial conditions. In contrast,
Gemma2-2B shows a smaller drop (from 0.500
to 0.512), indicating less sensitivity to adversar-
ial prompts. In the Phi-3 series, on the WikiBio
dataset, Phi-3-mini’s accuracy ACCA drops sig-
nificantly from 0.612 to 0.521 when few-shot is
applied, compared to a smaller decrease for Phi-3-
small. This highlights the effectiveness of few-shot
in generating more challenging adversarial prompts
that test model robustness.

In summary, the choice of strategy for gener-
ating original prompts and constructing adversar-
ial prompts significantly influences the robustness
evaluation of LLMs. Template-based strategies
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Dataset Generation Strategy FS Gemma2-2B Gemma2-9B Phi-3-mini Phi-3-small

T-REx template_based No 0.549 0.589 0.532 0.575
T-REx template_based Yes 0.534 0.593 0.550 0.584
T-REx llm_based No 0.520 0.574 0.512 0.602
T-REx llm_based Yes 0.523 0.611 0.490 0.612
UMLS template_based No 0.408 0.385 0.378 0.465
UMLS template_based Yes 0.394 0.418 0.410 0.446
UMLS llm_based No 0.392 0.350 0.396 0.386
UMLS llm_based Yes 0.421 0.373 0.389 0.383

WikiBio template_based No 0.401 0.436 0.414 0.428
WikiBio template_based Yes 0.401 0.374 0.456 0.393
WikiBio llm_based No 0.417 0.400 0.362 0.438
WikiBio llm_based Yes 0.396 0.400 0.419 0.381

Table 3: ACCA for some models: Gemma2-2B, Gemma2-9B (Gemma Team, 2024), Phi-3-mini, and Phi-3-small
(Research, 2024). Bold indicates higher value. The FS column indicates whether the few-shot strategy is used.

offer a controlled environment that favors larger
models, while LLM-based strategies and the few-
shot approach introduce more variability and diffi-
culty, providing a more comprehensive robustness
assessment within the same model series.

5 Conclusion

This paper introduces SelfPrompt, a framework
for autonomously evaluating the robustness of
large language models (LLMs) using domain-
constrained knowledge guidelines and refined ad-
versarial prompts. Our experiments confirm that
the proposed method provides a reliable and effec-
tive evaluation of LLM robustness across various
domains, demonstrating that larger models gen-
erally show greater robustness in general settings,
while results may vary in domain-specific scenarios.
Future work could explore expanding this frame-
work to cover more diverse knowledge graphs and
adaptive prompt generation techniques.

Limitations

The limitations of our work includes:

• Types of problems for evaluating LLM robust-
ness. In the SelfPrompt framework, we re-
quire the LLM to perform classification tasks
to evaluate the robustness of large language
models; in future research, we plan to enrich
the types of problems by including types such
as short answer questions and true/false ques-
tions, to conduct a more comprehensive eval-
uation of the LLM of robustness.

• The SelfPrompt framework relies on existing
knowledge graphs. When suitable knowledge
graphs are lacking in a specific domain, con-
structing such knowledge graphs for that do-
main increases the usage cost of this frame-
work. In future experiments, we plan to at-
tempt constructing a small number of triplets
directly without relying on knowledge graphs,
for robustness evaluation purposes.

• Lack of further comparative experiments. It
is due to the unique design of the robustness
evaluation metrics introduced in this paper,
which limits the ability to compare with ex-
isting robustness evaluation frameworks. In
future experiments, we plan to conduct further
comparative tests once similar frameworks be-
come available.
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A Experimentation Details

A.1 Dataset
In this experiment, we divide the knowledge graph
dataset into two categories based on the domain of
knowledge represented by the knowledge graphs,
including the general domain knowledge graphs
and the constrained domain knowledge graphs. The
general domain knowledge graph datasets is T-REx;
the constrained domain knowledge graph datasets
include UMLS and WikiBio.

• T-REx. (Elsahar et al., 2018) Originating
from Wikipedia, this is a general domain
knowledge graph that records a large number
of triplets belonging to various fields.

• UMLS. (Bodenreider, 2004) This is a
constrained-domain knowledge graph in the
medical field, constructed by experts in the
domain, and it contains information about var-
ious medical concepts and their relationships.

• WikiBio. (Sung et al., 2021) This dataset is
constructed by extracting biological instances
from Wikidata and is a constrained-domain
knowledge graph in the field of biology.

A.2 Loss Function and Cosine Similarity Used
in Filter Module

Loss Function. The loss function is a mathemati-
cal function that measures the difference between
the predicted outputs of a model and the actual
outputs (ground truth). The Cross-Entropy Loss is
commonly used in the context of language models.
It is defined as:

Loss(s) = −
N∑
i=1

logP (xi |x<i) (11)

where xi is the i-th token in a sequence, and
P (xi |x<i) is the conditional probability of the
token given all previous tokens (Goodfellow et al.,
2016).

Cosine Similarity. Cosine similarity is a met-
ric used to measure how similar two vectors are,
irrespective of their magnitude. It is often used
in natural language processing for comparing the
similarity between text embeddings. The cosine
similarity between vectors A and B is defined as:

Cosine Similarity(A,B) =
A ·B

∥A∥∥B∥
(12)

where A ·B is the dot product of vectors A and
B, and ∥A∥ and ∥B∥ are the magnitudes (norms)
of vectors A and B. This metric ranges from −1 to
1, where 1 indicates that the vectors are identical,
0 means they are orthogonal (dissimilar), and −1
means they are diametrically opposed. (Manning
et al., 2008).

A.3 Implementations

Large Language Model. We utilize several mod-
els from the ChatGPT family (OpenAI, 2024),
including GPT-4o and GPT-4o-mini. The large
language models were accessed via paid APIs to
complete relevant robustness evaluation tasks. We
also used several open-source models, including
Gemma2 (Gemma Team, 2024) (with 2B and 9B
parameter versions), Phi-3 (Research, 2024) (com-
prising Phi-3-mini with 3.8B parameters and Phi-
3-small with 7B parameters), Llama-3.1 (Touvron
et al., 2024) (8B parameters), and Mistral (Mistral
and contributors, 2024) (7B parameters). These
open-source models were run locally with FP16
precision on a single RTX-4090 GPU.
Prompt Generation and Response Processing.
We set the ratio of the three labels "true," "en-
tity_error," and "predicate_error" for the generated
prompts to 1:1:1. To extract the classification re-
sults from responses of the LLM for the classifi-
cation task, we employed string matching. If a
response matches one of the aforementioned three
labels and the label is the correct one, classifica-
tion of the LLM is deemed correct; otherwise, it
is considered incorrect. For each large model on
each knowledge graph dataset, we generated 1,000
adversarial prompts for experiments under each
specific condition of the original prompt genera-
tion strategy and the few-shot strategy.

B Partial Experimental Results

This subsection presents partial experimental re-
sults. It includes the values of ACCO and ACCA,
as well as robustness evaluation results for adver-
sarial attacks on Llama-3.1, Mistral, ChatGPT-4o,
and ChatGPT-4o-mini. The detailed results are pre-
sented in Tables 4, 5, and 6. As shown in the tables,
Llama-3.1 exhibits poor robustness, significantly
lagging behind the Mistral model of the same pa-
rameter size. Additionally, GPT-4o-mini demon-
strates better robustness than GPT-4o, which could
be attributed to its later release and the subsequent
improvements in robustness.
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Dataset Generation Strategy FS Llama-3.1 Mistral ChatGPT-4o-mini ChatGPT-4o

T-REx template_based No 0.404 0.589 0.661 0.496
T-REx template_based Yes 0.418 0.585 0.660 0.568
T-REx llm_based No 0.417 0.496 0.633 0.508
T-REx llm_based Yes 0.474 0.507 0.646 0.516
UMLS template_based No 0.437 0.523 0.565 0.535
UMLS template_based Yes 0.465 0.564 0.530 0.492
UMLS llm_based No 0.510 0.466 0.542 0.509
UMLS llm_based Yes 0.541 0.490 0.566 0.496

WikiBio template_based No 0.475 0.532 0.587 0.494
WikiBio template_based Yes 0.483 0.548 0.573 0.512
WikiBio llm_based No 0.513 0.486 0.621 0.501
WikiBio llm_based Yes 0.495 0.487 0.637 0.509

Table 4: Robustness Evaluation Results for Some Models: Llama-3.1 (Touvron et al., 2024), Mistral (Mistral and
contributors, 2024), ChatGPT-4o-mini, and ChatGPT-4o (OpenAI, 2024). The FS column indicates whether the
Few-shot Strategy is used.

Dataset Generation Strategy FS Llama-3.1 Mistral ChatGPT-4o-mini ChatGPT-4o

T-REx template_based No 0.302 0.503 0.603 0.583
T-REx template_based Yes 0.306 0.521 0.621 0.631
T-REx llm_based No 0.316 0.528 0.591 0.606
T-REx llm_based Yes 0.338 0.562 0.596 0.648
UMLS template_based No 0.321 0.442 0.502 0.491
UMLS template_based Yes 0.325 0.470 0.514 0.489
UMLS llm_based No 0.333 0.453 0.474 0.462
UMLS llm_based Yes 0.344 0.466 0.483 0.501

WikiBio template_based No 0.315 0.433 0.475 0.444
WikiBio template_based Yes 0.307 0.441 0.493 0.462
WikiBio llm_based No 0.299 0.472 0.508 0.491
WikiBio llm_based Yes 0.289 0.483 0.495 0.478

Table 5: ACCO for Some Models: Llama-3.1 (Touvron et al., 2024), Mistral (Mistral and contributors, 2024),
ChatGPT-4o-mini, and ChatGPT-4o (OpenAI, 2024). The FS column indicates whether the Few-shot Strategy is
used.

C Prompt Templates

In this section, we introduce the prompt templates
used in the SelfPrompt framework. These prompt
templates include: the Triplets-to-Prompts Tem-
plate for generating original prompts when se-
lecting the LLM-based strategy; the Adversar-
ial Prompts Generation Template for construct-
ing adversarial prompts; the Examples-Generation
Template for generating prompt examples re-
quired when using the few-shot strategy; and the
(Non-)Adversarial Prompt Template for generating
prompts and requiring LLMs to classify the label
of the sentence in the prompts.

C.1 Triplets-to-Prompts Template

This template is responsible for transforming a
triplet formatted as t = (s, p, o) ∈ D, where s de-
notes the subject of the triplet, and p and o refer to
the predicate and object of the triplet, respectively.
The template converts this triplet into a naturally
described sentence, where the positions marked in
red in the template need to be replaced with the
content of the triplets.

Triplets-to-Prompts Template

Here is a triple (subject, predicate, object)
extracted from a knowledge graph:
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Dataset Generation Strategy FS Llama-3.1 Mistral ChatGPT-4o-mini ChatGPT-4o

T-REx template_based No 0.287 0.491 0.612 0.432
T-REx template_based Yes 0.298 0.490 0.621 0.526
T-REx llm_based No 0.299 0.412 0.575 0.453
T-REx llm_based Yes 0.347 0.434 0.592 0.480
UMLS template_based No 0.315 0.411 0.467 0.436
UMLS template_based Yes 0.346 0.416 0.476 0.431
UMLS llm_based No 0.324 0.424 0.482 0.441
UMLS llm_based Yes 0.321 0.438 0.495 0.459

WikiBio template_based No 0.299 0.414 0.523 0.482
WikiBio template_based Yes 0.310 0.428 0.506 0.499
WikiBio llm_based No 0.312 0.439 0.536 0.501
WikiBio llm_based Yes 0.321 0.417 0.518 0.486

Table 6: ACCA for Some Models: Llama-3.1 (Touvron et al., 2024), Mistral (Mistral and contributors, 2024),
ChatGPT-4o-mini, and ChatGPT-4o (OpenAI, 2024). The FS column indicates whether the Few-shot Strategy is
used.

• Subject(s): {subject}

• Subject Alias(es): {subject alias}

• Predicate: {predicate}

• Template of the Predicate: {predicate
template}

• Description of the Predicate: {predi-
cate description}

• Object(s): {object}

• Object Alias(es): {object alias}

Please create a statement describing this
triple.
Note:

• The truthfulness of the triple is not im-
portant.

• Do not alter the meaning of the predi-
cate.

Statement:

C.2 Adversarial Prompts Generation
Template

This template is designed to transform original
prompts into adversarial prompts. It requires the
provision of a sentence from the original prompt
that describes the corresponding triplet, along with
its constituent components. When employing a

few-shot strategy, this template also necessitates
the inclusion of corresponding examples.

Adversarial Prompts Generation Template

You are given a knowledge graph triplet and
a sentence generated from this triplet. Your
task is to paraphrase the sentence while
keeping the semantic meaning of the new
sentence unchanged. The paraphrased sen-
tence should be classified into a different
label from the current one. Use the given
information about subjects, objects, their
aliases, and the predicate to guide your para-
phrasing.
Here are the detailed steps for the task:
1. Paraphrase the Sentence:

• Rewrite the given sentence in a differ-
ent way.

• Ensure that the rewritten sentence
maintains the same semantic meaning
as the original sentence.

2. Change the Classification:

• The new paraphrased sentence should
be classified into a different label from
the current label.

• The possible labels are ["true", "en-
tity_error", "predicate_error"].

• true: The triplet and the sentence accu-
rately reflect the true content.
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• entity_error: The triplet contains an
error related to the Subject or Object,
as well as the sentence.

• predicate_error: The triplet contains
an error related to the Predicate, as
well as in the sentence.

(Here is five examples that fit the guidance:
Original Sentence: {original sentence 1} ->
Paraphrased Sentence: {paraphrased sen-
tence 1}
...
Original Sentence: {original sentence 5} ->
Paraphrased Sentence: {paraphrased sen-
tence 5})
Here is the input triplet and sentence for you
to paraphrase:
Triplet: { { "subs": {subject},
"sub_aliases": {subject alias}, "pred-
icate": { "predicate": {predicate},
"template": {predicate template}, "descrip-
tion": {predicate description} }, "objs":
{object}, "obj_aliases": {object alias},
"label": {label} } }
Where:

• "subs" is a list of subjects.

• "sub_aliases" is a list of subject aliases.

• "predicate" is an object containing the
name, template, and description of the
relationship.

• "objs" is a list of objects.

• "obj_aliases" is a list of object aliases.

• "label" is the current label of the triplet,
which is one of ["true", "entity_error",
"predicate_error"].

Sentence: {sentence}
Important: The classification of this sen-
tence is: ’{sentence label}’, and label of
the sentence after paraphrase should be
’{wrong label 1}’ or ’{wrong label 2}’.
Only output the paraphrased sentence with-
out anything else.
Paraphrased Sentence:

C.3 Examples-Generation Template
This template is responsible for generating example
prompt words required when employing the few-
shot strategy. In practice, the same template as
described in Sections C.1 and C.2 is utilized, thus
it is not reiterated here.

C.4 (Non-)Adversarial Prompt Template
This template is designed to generate prompts that
require a Large Language Model (LLM) to make
judgments about the labels of sentences within it.
Within the template, a simple example is used to
aid the LLM in understanding the meanings of the
three labels.

(Non-)Adversarial Prompt Template

You are given a sentence that describes the
content of a triplet in the form (Subject,
Predicate, Object). Each triplet and its cor-
responding sentence are classified into one
of the three categories based on the accuracy
of the content and the type of error:

1. true: The triplet and the sentence ac-
curately reflect the true content.

2. entity_error: The triplet contains an
error related to the Subject or Object,
which is reflected in the sentence.

3. predicate_error: The triplet contains
an error related to the Predicate, which
is reflected in the sentence.

Here are some examples to help you under-
stand:

1. Sentence: "Albert Einstein discovered
the Theory of Relativity."
Category: true

2. Sentence: "Albert Einstein discovered
Radium."
Category: entity_error

3. Sentence: "Albert Einstein disproved
the Theory of Relativity."
Category: predicate_error

Your task is to analyze the given sentence
and determine which of the three categories
it belongs to: "true," "entity_error," or
"predicate_error."
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Now, please classify the following sentence
based on its content. Only output the cate-
gory without anything else:
Sentence: "sentence"
Category (choose one from true, en-
tity_error, predicate_error):
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