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Introduction

Welcome to the 14th edition of the Workshop on Cognitive Modeling and Computational Linguistics
(CMCL 2025)!

CMCL continues to be one of the leading workshops at the intersection of Cognitive Modeling, Compu-
tational (Psycho-)Linguistics, and Natural Language Processing. Building on the success of the CMCL
2024 edition, we are delighted to gather once again this year to explore the latest advancements in this
vibrant interdisciplinary field.

This year, we received 47 submissions in total, including 35 regular archival submissions and 12 non-
archival submissions. We accepted 22 archival papers, resulting in an acceptance rate of 22/35=62.9%,
which remains consistent with the previous year (63.9%). We also accepted 9 non-archival papers, out
of 12 non-archival submissions. The program covers a wide array of topics, encompassing main to-
pics such as real-time sentence processing, alongside advanced themes like language disorders, neuro-
scientific comparison of humans and language models, and the integration of speech data/models. This
diversity reflects the growing engagement in our field and the increasing importance of understanding
human/language through computational methods.

We appreciate the Program Committee members for their timely and constructive reviews, which we-
re instrumental in shaping the program. We also extend our gratitude to our invited speakers, Dr. John
Hale and Dr. Tessa Verhoef, for enriching this year’s program with their expertise and inspiring talks.
Given that the number of proposals for ACL workshops has increased in recent years, it is also important
to express our gratitude to the ACL workshop chairs for selecting CMCL as one of workshops in NLP
top-conferences.

Lastly, we are immensely grateful to our sponsor, National Institute for Japanese Language and Lin-
guistics (NINJAL). Their generous support enables us to host the participation of our invited speakers in
this year’s CMCL.

Thank you for joining CMCL 2025. We look forward to an engaging and stimulating exchange of ideas!

The CMCL 2025 Organizing Committee
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Linguistic Blind Spots of Large Language Models

Jiali Cheng Hadi Amiri
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Abstract

Large language models (LLMs) are the
foundation of many AI applications today.
However, despite their remarkable proficiency
in generating coherent text, questions linger
regarding their ability to perform fine-grained
linguistic annotation tasks, such as detecting
nouns or verbs, or identifying more complex
syntactic structures like clauses in input
texts. These tasks require precise syntactic
and semantic understanding of input text,
and when LLMs underperform on specific
linguistic structures, it raises concerns about
their reliability for detailed linguistic analysis
and whether their (even correct) outputs truly
reflect an understanding of the inputs. In this
paper, we empirically study the performance of
recent LLMs on fine-grained linguistic annota-
tion tasks. Through a series of experiments, we
find that recent LLMs show limited efficacy in
addressing linguistic queries and often struggle
with linguistically complex inputs. We show
that the most capable LLM (Llama3-70b)
makes notable errors in detecting linguistic
structures, such as misidentifying embedded
clauses, failing to recognize verb phrases, and
confusing complex nominals with clauses. Our
results provide insights to inform future ad-
vancements in LLM design and development.

1 Introduction

Large Language Models (LLMs) have revolution-
ized NLP by achieving remarkable performance
on a wide range of tasks and applications, includ-
ing zero-shot inference (Weller et al., 2020; Brown
et al., 2020); solving math problems (Wei et al.,
2022); representing human emotions (Li et al.,
2024); and serving as planners (Huang et al., 2022),
conversational agents (Ouyang et al., 2022), or text-
to-code convertors (Sun et al., 2023). Neverthe-
less, despite recent studies (Shen et al., 2021; Yu
et al., 2023; Chen et al., 2024) aiming to understand
Transformers (Vaswani et al., 2017) as the building
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Figure 1: Distribution of linguistic complexity in two
widely-used NLP datasets. The plots show (a): a strong
skew toward linguistically simple examples in the Penn
Treebank and (b): a concentration around moderate
complexity in CoNLL 2000, which highlights an over-
representation of easier or medium-difficulty samples
in the datasets.

block of LLMs, there is a lack of systematic eval-
uation of their ability in performing fine-grained
linguistic annotation tasks.

Recent work studied LLMs from different lin-
guistic perspectives, including grammar learning
with small models (Huebner et al., 2021), effect
of pre-training on learning linguistic properties
like the depth of parse tree or verb tense (Ala-
jrami and Aletras, 2022), the role of individual
neurons in POS tagging and chunking tasks (Dur-
rani et al., 2020), and the effect of prompt design
for detecting linguistic properties (Blevins et al.,
2023). However, existing evaluations are based
on NLP datasets where linguistically “easy” ex-
amples (see Section 2) are overrepresented. For
instance, Figure 1 shows histograms of the lin-
guistic complexity of samples in two widely-used
NLP datasets: Penn Treebank (Marcus et al., 1993)
and CoNLL 2000 (Tjong Kim Sang and Buchholz,
2000). The skewed distribution toward linguis-
tically easy or medium examples can artificially
inflate performance on NLP tasks1 and prevent true

1This phenomenon has challenged the NLP community
across natural language inference (NLI), POS tagging, and
parsing tasks, where models show human-level performance,
while lacking cognitive ability to address these tasks. For
example, recent work by Sinha et al. (2021) shows that BERT
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evaluation of models in NLP. We mitigate this bias
by reducing the effect of overrepresented examples,
i.e., categorizing samples based on their linguis-
tic complexity and uniformly sampling data from
distinct groups for a more reliable assessment.

We investigate the following research questions:
(1): how accurately can recent LLMs detect com-
plex linguistic structures in input text? (2): which
linguistic structures represent the blind spots of
recent LLMs–meaning the most challenging for
them? (3): how does the performance of LLMs
vary across different levels of linguistic complexity
of inputs? We answer these questions by designing
an empirical study for LLMs. The contributions
of this paper are in examining recent LLMs’s abil-
ity to detect specific linguistic structures across
varying levels of linguistic complexity, providing
meaningful insights into their limitations and bi-
ases, and highlighting potential avenues for future
improvements.

Experimental results show that recent LLMs
have limited efficacy in addressing linguistic
queries, particularly struggling with complex lin-
guistic structures such as complex nominals and
T-units. In particular, Llama3-70b and GPT-3.5 are
the most capable models among evaluated LLMs,
while still making mistakes on simple linguistic
queries. In addition, the performance of all evalu-
ated LLMs often substantially fluctuates as sample
complexity varies.

2 Background

Linguistic Complexity: quantifies the variabil-
ity and sophistication in productive vocabulary,
grammatical structures, and fluency in text data.
It has been extensively investigated in psycholin-
guistics literature (Wolfe-Quintero et al., 1998;
Zareva et al., 2005; Lu, 2010; Housen et al., 2019;
Biber et al., 2020); and examined in quantifying
language proficiency (Yannakoudakis et al., 2011;
Lu, 2012), readability assessment and text simpli-
fication (Feng et al., 2009; Xu et al., 2015; Xia
et al., 2016; Lee et al., 2021), and improving NLP
tasks (Wei et al., 2021).

Lexical Complexity: is concerned with lexical
density, sophistication, and variation. Lexical den-
sity is often quantified by the extent of information-
carrying words in inputs. Lexical sophistication

is invariant to random word order permutation in case of NLI,
which can be attributed to the high prevalence of linguistically
easy samples in NLI datasets (Elgaar and Amiri, 2023b).

measures the proportion of sophisticated or infre-
quent words in texts. Lexical Variation refers to the
diversity of vocabulary in text. Examples include
type-token ratio (Templin, 1957) and its variations
including D-measure (Malvern et al., 2004), which
determines lexical variation of text by finding the
curve that best fits the actual relationship between
types and tokens in input text.

Syntactic Complexity: determines variability
and sophistication in grammatical structures. A
sentence like “the mouse ate the cheese” can be
converted to its well-formed yet complex counter-
part “the mouse the cat the dog bit chased ate the
cheese,” which forces readers to suspend their par-
tial understanding of the sentence by encountering
subordinate clauses that substantially increase the
cognitive load of the sentence. Syntactic complex-
ity measures the length of production units at the
clausal, sentential, or T-unit levels; the amount of
subordination, e.g. number of clauses per T-unit;
the amount of coordination, e.g. number of coor-
dinate phrases per clause or T-unit; and the range
of surface and particular syntactic and morphologi-
cal structures, e.g. frequency and variety of tensed
forms (Wolfe-Quintero et al., 1998; Ortega, 2003).

Linguistic Knowledge of LLMs Blevins et al.
(2023) designed structured prompting to assess the
linguistic capabilities of LLMs. They provided
each LLM with fully labeled demonstrations, and
a query sentence and its partially tagged version.
Each predicted label was appended to the partially
tagged query along with the next word to itera-
tively tag the full query. They found that GPT-3.5
is robust to arbitrary label selections and ignores
labels conflicting with its prior knowledge, indi-
cating that the models can learn general linguistic
knowledge during pre-training, rather than simply
memorizing the data. Alajrami and Aletras (2022)
empirically compared linguistically-motivated (e.g.
masked language modeling (Devlin et al., 2019))
and non-linguistically motivated (e.g. masked first
character prediction (Yamaguchi et al., 2021)) pre-
training objectives for BERT on linguistic probing
tasks (Linzen et al., 2016; Warstadt et al., 2020).
They found the two objectives achieve similar per-
formance. Clark et al. (2019) showed that attention
heads in transformers attend to boundary tokens,
positional offsets, and whole sentence; while Voita
et al. (2019) showed that attention heads mainly
handle positions, syntax, and rare words. Dur-
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Please output any [Linguistic Structure]
in the following sentence: 
"I have my coffee with milk and sugar."

LLM AnnotationsTrue Annotations

Zero-shot Prompting

CoNLL
LLMs

Meta
LLaMA

OpenAI
GPT

Google
Gemini

Mixtral

Evaluation 

Random: overrepresentation of  
medium examples

Uniform: equal representation across
linguistic complexity levels  

Data Sampling Strategy

Figure 2: Workflow for finding linguistic blind spots of LLMs. As illustrated in Appendix A, GPT and other LLMs
have good knowledge of our target tasks and the relevant terminology used in the prompts. [Linguistic Structure] in
the prompts indicate any of the lexical or syntactic structures listed in Appendix C.

rani et al. (2020) compared linguistic knowledge
learned by LMs at neuron level. They narrowed
down neurons to a specific subset, located in lower
hidden layers for lexical knowledge and in higher
layers for semantic knowledge. Finally, Sharma
et al. (2023) found that learning non-linguistic
knowledge (e.g. numerical skills) sacrifices the
linguistic knowledge of LLMs, and Ettinger (2020)
found that BERT underperforms on commonsense,
pragmatic inference, and negation tasks.

3 Finding Linguistic Blind Spots

We evaluate LLMs on recognizing specific linguis-
tic structures (see below). For this purpose, we
use gold linguistic annotations, lexical complexity
analyzer from (Lu, 2012), and syntactic complex-
ity analyzer from (Lu, 2012) to quantify linguistic
complexity of samples. We note that the estima-
tions provided by these tools have perfect agree-
ment (based on Cohen’s Kappa) with estimations
provided by more recent linguistic complexity anal-
ysis tools (Lee et al., 2021; Lee and Lee, 2023).

Linguistic Structures: we consider different lev-
els of granularity: word-level structures like
nouns, verbs, adjectives, adverbs, prepositions, con-
junctions, numerals, determiners, punctuation, par-
ticles, and words that cannot be assigned a part-
of-speech (POS) tag; phrase-level structures like
noun phrases (NP), verb phrases (VP), adjective
phrases (ADJP), adverb phrases (ADVP), conjunc-
tion phrases (CONJP), complex nominals (CN);
and sentence-level structures like clauses (C), de-
pendent clauses (DT), T-units (T), and complex
T-units (CT). Appendix C lists these structures.

Data Sampling Strategy The overrepresentation
of easy and medium examples shown in Figure 1

suggests that the linguistic capability of LLMs
may have been overestimated in existing litera-
ture (Blevins et al., 2023; Yang and Tu, 2022; Shen
et al., 2018). For fair evaluation across the linguis-
tic complexity spectrum, we divide samples into
eight groups of increasing linguistic complexity, de-
termined using (Lu, 2010, 2012), and uniformly at
random sample from each group, leading to a total
number of 8×125 = 1k samples, denoted as U . For
comparison, we also randomly select 1k samples
from the dataset, which shows similar distribution
to the original distribution, denoted asR.

Prompting Strategies: we use zero-shot prompt-
ing to assess LLMs’ ability to identify individual
linguistic structures in input text in a question-
answering format, see Figure 2. We also investi-
gate other prompting techniques, such as manually
optimizing instructions, chain-of-thought (CoT)
prompting (Wei et al., 2022) and structured prompt-
ing (Blevins et al., 2023). However, in a small scale
experiment, the alternative approaches did not re-
sult in consistent performance improvement over
the zero-shot approach. This could be because
LLM’s current pretraining does not fully capture
the complex syntactic and semantic information of
inputs required for fine-grained linguistic annota-
tion. Instead, they might rely heavily on surface-
level patterns, which limits the impact of more
advanced prompting strategies.

4 Experimental Setup

Dataset & Evaluation: We use the CoNLL
2000 (Tjong Kim Sang and Buchholz, 2000) subset
of the Penn Treebank corpus (Marcus et al., 1993)
(Wall Street Journal (WSJ) sections 15, 16, 17, 18,
20), which provides ground truth POS tags and syn-
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LLM Sampling P R F1

Llama3-70b R 31.3 30.8 29.2
Llama3-70b U 28.2 27.5 26.1

Llama3-8b R 24.0 26.8 23.2
Llama3-8b U 21.8 24.0 20.8

GPT-3.5 R 21.6 26.1 21.2
GPT-3.5 U 20.4 23.5 19.5

Llama2-70b R 13.4 21.4 14.7
Llama2-70b U 11.8 18.4 12.8

Mixtral-8x7b R 11.0 25.4 13.0
Mixtral-8x7b U 10.2 22.5 11.8

Mistral-7b R 7.4 15.2 8.0
Mistral-7b U 6.9 13.5 7.5

Llama2-7b R 7.0 9.8 7.4
Llama2-7b U 7.0 9.7 7.3

Gemini R 1.2 1.2 1.0
Gemini U 1.2 1.2 1.1

Table 1: Average performance in identifying linguistic
structures. We compute precision, recall, and F1 for
each sample, and average them across all samples to as-
sess LLM performance in detecting linguistic structures.

tactic annotations. We use standard pre-processing
to convert POS tags to Universal POS tags (Blevins
et al., 2023). Following previous work (Blevins
et al., 2023), we compute precision, recall, and F1
score for each sample, and average them across all
samples to evaluate LLM performance in recogniz-
ing linguistic structures.

Large Language Models: We use several robust
LLMs including GPT-3.5 (Ouyang et al., 2022)
(gpt-3.5-0613), Gemini-Pro 1.0 (Team et al.,
2023), Llama3 (7B, 13B, 70B) (Touvron et al.,
2023), Llama2 (7B, 13B, 70B), and Mistral (7B,
8x7B) (Jiang et al., 2023, 2024).

5 Main Results

5.1 Deficient Linguistic Performance of LLMs

Tables 1 show significant performance differences
between LLMs when tasked with identifying lin-
guistic structures across different sampling strate-
gies. Despite outperforming other LLMs by a
large margin, Llama3-70b, Llama3-8b, and GPT-
3.5 have considerably low performance in identi-
fying linguistic structures. Among the evaluated
LLMs, Llama3-70b performs the best, with aver-
age precision, recall, and F1 score of 31.3, 30.8,
and 29.2 on randomly selected samples (R), and
28.2, 27.5, and 26.1 on uniformly selected samples
(U ). However, these results are substantially lower

than that of traditional models with significantly
smaller sizes (Manning et al., 2014).

In addition, Gemini, Llama-2 and Mistral show
poor performance across all settings, indicating that
many linguistic structures are indeed a blind spot
for these LLMs. Larger scales of Llama2 and Mis-
tral show slightly better performance, but still lim-
ited compared to GPT-3.5 and Llama3. These mod-
els often recognize the entire sentence as a phrase,
can’t distinguish between noun phrases (NPs) and
verb phrases (VPs), and show poor performance in
detecting clauses. Surprisingly, Gemini lacks the
ability to identify linguistic structures, with an aver-
age F1 score close to 0. Through manual analysis,
we find that Gemini often misinterprets linguistic
queries with harmful content, see Section 6.2.

5.2 Task Complexity

We find all evaluated LLMs show stronger ca-
pability in detecting simpler linguistic structures
(e.g. word-level) than more complex structures (e.g.
sentence-level). Specifically, GPT-3.5 achieves
an average F1 scores of 37.5 (U) and 34.4 (R)
on word-level structures, but close to zero F1 on
phrase-level and sentence-level structures, see Ta-
ble 2. For some complex structures including
verb phrase (VP), complex nominal (CN), depen-
dent clause (DC), T-unit (T), and complex T-unit
(CT), all LLMs have close to zero F1 score. This
might be because these complex structures require
a model to detect simpler structures (e.g. POS tags)
and build on them in a compositional manner to cor-
rectly identify the more complex ones. Our results
show that LLMs can accomplish simpler linguis-
tic tasks but fail to perform complex ones, which
mainly require knowledge about compositionality.

GPT-3.5 Performance: As shown in Table 2,
word-level structures such as nouns, verbs, and
punctuation are generally better annotated by GPT-
3.5, while phrase-level and sentence-level struc-
tures, particularly verb phrases (VP), clauses (C),
and complex T-units (CT), have significantly lower
performance. These high-level structures are in-
deed blind spots for existing LLMs, due to their
complexity and linguistic understanding required
to accurately identify them. Overall, GPT-3.5 tends
to perform better on R than on U across most
word-level and phrase-level structures. Specifically,
on randomly selected samples, GPT-3.5 achieves
average F1 scores of 37.5, 4.0, and 0.0 on word-
level, phrase-level, and sentence-level structures
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respectively. On U , GPT-3.5 achieves lower aver-
age F1 scores of 34.4 for word-level structures, 4.2
for phrase-level structures, and remains at 0.0 for
sentence-level structures. These results indicates

Structure Sampling P R F1

Word-level Structure

PUNC R 82.5 77.4 77.4
PUNC U 86.1 79.5 80.9
NOUN R 71.6 65.6 66.1
NOUN U 67.6 64.3 62.9
VERB R 61.4 61.4 55.9
VERB U 53.9 51.0 47.7
DET R 56.4 56.2 50.7
DET U 50.3 47.9 43.4
ADP R 48.7 60.1 50.2
ADP U 42.0 47.7 41.6
ADJ R 26.5 43.7 29.1
ADJ U 22.7 32.9 23.1
ADV R 25.1 37.0 26.6
ADV U 25.8 33.4 25.8
PRON R 18.0 35.1 20.1
PRON U 17.0 32.7 18.8
PRT R 8.5 34.7 12.7
PRT U 8.1 30.8 11.6
CONJ R 30.3 30.9 29.1
CONJ U 28.8 28.8 27.0
NUM R 31.5 29.8 29.7
NUM U 30.3 28.6 28.6
Average R 38.6 44.8 37.5
Average U 36.2 40.2 34.4

Phrase-level Structure

ADVP R 6.0 22.8 8.1
ADVP U 6.5 20.4 7.9
NP R 11.5 14.0 11.8
NP U 12.3 14.1 12.2
ADJP R 1.2 5.9 1.8
ADJP U 1.7 5.8 2.1
VP R 2.2 3.3 2.3
VP U 2.7 3.6 2.7
CONJP R 0.0 0.0 0.0
CONJP U 0.0 0.0 0.0
CN R 0.0 0.1 0.0
CN U 0.0 0.0 0.0
Average R 3.5 7.7 4.0
Average U 3.9 7.4 4.2

Sentence-level Structure

C R 0.1 0.3 0.1
C U 0.0 0.1 0.1
DC R 0.0 0.0 0.0
DC U 0.0 0.1 0.0
T R 0.0 0.0 0.0
T U 0.0 0.0 0.0
CT R 0.0 0.0 0.0
CT U 0.0 0.0 0.0
Average R 0.0 0.0 0.0
Average U 0.0 0.0 0.0

Table 2: Linguistic annotation performance of GPT-3.5
across different linguistic structure groups. We compute
precision, recall, and F1 for each sample, and average
them across all samples to assess LLM performance in
detecting linguistic structures.

the model’s relative strength in handling word-level
structures but its significant limitation on more
complex structures.

5.3 Linguistic Complexity

Performance Drop on Complexity-Balanced
Samples: We observe significant differences in
LLMs’ performances on R and U , as determined
by a t-test at 95% confidence interval. All evalu-
ated LLMs (GPT-3.5, Gemini, Llama3, Llama2,
Mistral) show significant decrease in performance
on uniformly selected samples (U) compared to
randomly selected ones (R). The only exceptions
are Gemini and Llama2-7B, which is likely due to
their already low performance on both R and U .
For GPT-3.5, the performance drops from an F1
score of 21.2 to 19.5, with significant p-value of
1e-7. We note that although the performance con-
sistently and significantly decreases across models
from R to U, the absolute drop is small to modest.
This may be due to the already low overall per-
formance ceiling on these tasks, where even small
differences are meaningful; the models’ relative
robustness to certain types of linguistic complex-
ity, despite persistent weaknesses on edge cases
and harder structures; or the prevalence of easier
(word-level) structures compared to more complex
(phrase- or sentence-level) ones in the set of lin-
guistic structures we investigate.

Linguistic Complexity Fluctuation: We find
that LLMs’ performance fluctuate with increas-
ing linguistic complexity of inputs, as shown in
Figure 3 for GPT-3.5; see performance of other
LLMs in Appendix B Figures 9–15. Specifically,
the performance of GPT-3.5 improves initially but
then declines on structures like verbs, nouns, pro-
nouns, adjectives, and adverbs as linguistic com-
plexity increases, with F1 scores ranging from 0 to
50. This suggest that expert-defined linguistic com-
plexity (Lu, 2010, 2012) may not align with how
LLMs view complexity, which is an underexplored
topic. Interestingly, for other structures like punc-
tuation (PUNC), we observe the opposite perfor-
mance trend. This is likely due to the unique nature
of these linguistic structures as punctuation marks
typically follow more predictable and less com-
plex rules compared to other linguistic structures
like verbs or nouns. In addition, performance trend
vary substantially across different LLMs and scales.
For instance, Llama3-70b consistently shows an in-
verted U-shaped (

⋂
) performance pattern, while
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Figure 3: Performance of GPT-3.5 on texts of increasing linguistic complexity. GPT-3.5 achieves close to zero
performance on CONJP, T, and CT. Figures 9-15 in Appendix B show results of other LLMs.
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Figure 4: Confusion matrix of POS tagging on GPT-3.5.
Darker indicates larger value. Diagonal/off-diagonal ele-
ments represent correct/wrong predictions respectively.

Llama2-70b have unique trends on noun and punc-
tuation, which indicate model-specific challenges
with different linguistic structures.

POS Tag Errors in GPT-3.5: Figure 4 shows a
confusion matrix that assess the POS tags gener-
ated by GPT-3.5 Most of the errors stem from the
model’s failure to detect specific tags, denoted as
“MISSING.” The higher occurrence of MISSING
cases is likely due to the increased complexity and
linguistic knowledge required for these tasks–the
need to identify and label all instances of linguistic
structures in inputs. In addition, GPT-3.5 often con-
fuses different POS tags with pronouns. This could
be because pronouns often appear in diverse con-
texts where their function can be easily confused
with other POS tags, such as determiners or nouns.
In addition, GPT-3.5 (and other LLMs) tend to rely
on surface-level patterns rather than deep linguis-
tic understanding. Pronouns frequently co-occur
within sentences, and the model may overgeneral-
ize their patterns to other words.

Entity NOUN VERB ADJ ADV ADP CONJ DET

# Dup. 334 370 93 156 526 400 635
# Succ. 0 1 0 0 5 1 2

Table 3: GPT-3.5 performance on samples that contain
multiple instances of the same linguistic structure. Dup.
indicates number of such texts (out of 1K) for each
structure and Succ. indicates cases where all instances
of the same POS tag are retrieved.

5.4 Multiple Structures and False Positives

When a samples contains multiple occurrences of
the same linguistic structure, such as nouns, LLMs
often struggle to retrieve all instances of of those
structures. Table 3 shows that GPT-3.5 consistently
fails to identify all nouns in any of the 334 samples
containing more than one noun. This limitations ex-
tends beyond open-class words to closed-class tags
such as prepositions (ADP), conjunctions (CONJ)
and even determiners (DET).

We also observe that when a particular linguistic
structure is absent in a given sample, LLMs still fre-
quently make inaccurate predictions of its presence.
Specifically for GPT-3.5, we find that in 6,892 out
of 21,000 queries (33.9%), GPT-3.5 generates false
positive predictions. Figure 5 shows the distribu-
tion of such errors across POS tag categories. The
results show that GPT-3.5 often predict the exis-
tence of numerals (NUM), conjunctions (CONJ)
and pronouns (PRON) when they are not present in
the inputs. We conjecture that this behavior is due
to biases in training data where certain words or
structures co-occur frequently and the model learns
to predict the presence of these words or structures
based on relevant patterns in the training data, even
when they don’t exist in the input. For instance, if a
sentence discusses quantities, the model might pre-
dict numerals. Therefore, false positive predictions
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Figure 5: Distribution of false positive predictions by
GPT-3.5 for absent linguistic structures in input. All
evaluated LLMs show very similar distribution

for linguistic structures is common. In addition,
all LLMs achieve higher recall than precision, es-
pecially all scales of LLaMA (see Table 1), again
indicating that LLMs tend to retrieve more false
positives than false negatives.

5.5 Model Capacity

We observe that models with higher capacity show
slightly better performance. We evaluate the effect
of model capacity, measured by the number of pa-
rameters, in performing fine-grained linguistic an-
notation tasks by comparing two scales of Llama3,
Llama2, and Mistral, see Table 1. All models show
improved or maintained linguistic performance as
their capacity increases. However, it’s noteworthy
that the performance advantage may not be sig-
nificant enough compared to the increase of scale.
Specifically, using a 10 times larger Llama3 and
Llama2 only boosts F1 score by 5.8 and 5.0, and 7.3
and 5.5 on randomly and uniformly sampled data
respectively. The performance gain is also smaller
on uniformly sampled inputs across all LLMs, due
to the diverse inputs with various linguistic com-
plexity, which outweighs model scale.

5.6 Dense model vs. Sparse model

Scaling up LLMs with Mixture-of-Experts
(MoE) (Shazeer et al., 2017) in a sparse manner
is a more efficient approach than dense scaling.
We find that MoE can effectively boost LLM
performance, see Mixtral 8x7b vs. Mistral-7b
in Table 1. The performance of the MoE-based
model–Mixtral 8x7b–is also comparable to that
of Llama2-70b, a dense model of similar scale.
This suggests that sparsity in LLMs is not a key
or limiting factor in their fine-grained linguistic
annotation ability.

6 Discussion

6.1 Limitations and Failure Cases
We identify significant limitations in the perfor-
mance of the evaluated LLMs when responding
to linguistic queries. Since GPT-3.5 is one of the
most capable models with instruction-following ca-
pabilities in the evaluated LLMs, we mainly focus
on its limitations. GPT-3.5 may fail on linguis-
tically easy examples. For instance, it does not
detect any of the 34 nouns that appear in the eas-
iest linguistic examples in our dataset. GPT-3.5
(and most evaluated LLMs) may occasionally skip
tokens in their responses. For example, they may
skip tagging nouns or punctuation in inputs, which
reduces their overall performance. They also gener-
ate ill-formatted outputs, including missing tags
or corrupted parse trees. This is unexpected given
that GPT-3.5 have a good knowledge about the def-
inition of the linguistic tasks and required format;
see Appendix A, Figures 6–8. GPT-3.5 (and most
evaluated LLMs) may generate biased outputs.
We find that the evaluated LLMs are biased to out-
put common tokens and concepts, such as nouns
and pronouns, while neglecting uncommon ones.
Table 4 provides several example outputs. The first
two show the tendency of GPT-3.5 to misclassify
familiar structures such as nouns as adjectives or
adverbs (first row) or verbs (second row). In addi-
tion, in may skip generating tags, see highlighted
words “The” and “from” in Table 4. Note that the
third example also shows GPT-3.5 mislabels many
tokens, frequently replacing the correct POS tags
with “PRON” or other incorrect tags.

6.2 Quality of Alignments
The LLMs we consider for this study have
instruction-following capabilities. However, their
performances in following linguistic-related in-
structions vary considerably. We find that GPT-3.5
tends to follow instructions better than other LLMs
evaluated in our experiments. On the other hand,
LLaMA-2 and LLaMA-3 generate irrelevant out-
puts including auxiliary text and special characters
such as “\” and “>”, even if we explicitly prompt
them not to generate such characters. We note that
the base model of GPT-3.5 has been fine-tuned on
code data, which helps the model understand struc-
tured and instructional input. In addition, reinforce-
ment learning from human feedback (RLHF) (Sti-
ennon et al., 2020) is a more effective method to
align LLMs for following instructions than fine-
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Type Expected output Output by GPT-3.5

Easy example He-PRON remains-VERB chief-ADJ executive-
NOUN officer-NOUN .-PUNC

He-PRON remains-VERB chief-ADJ
executive-ADJ officer-ADV .-PUNC

Confusion

The-DET consensus-NOUN calls-VERB for-ADP
a-DET 0.5-NUM %-NOUN increase-NOUN in-
ADP September-NOUN personal-ADJ income-
NOUN and-CONJ a-DET 0.3-NUM %-NOUN
gain-NOUN in-ADP consumption-NOUN .-PUNC

The-PRON consensus-NOUN calls-VERB for-
PRON a-PRON 0.5-ADJ %-PUNC increase-VERB
in-PRON September-NOUN personal-MISSING
income-MISSING and-PRON a-PRON 0.3-ADJ
%-PUNC gain-VERB in-PRON consumption-
NOUN .-PUNC

Skip token

The-DET department-NOUN has-VERB collected-
VERB over-ADV $-PUNC 6.5-NUM million-NUM
from-ADP brokers-NOUN so-ADV far-ADV and-
CONJ recommended-VERB more-ADJ than-ADP
30-NUM of-ADP them-PRON for-ADP criminal-
ADJ prosecution-NOUN .-PUNC

The department-NOUN has-PRON collected-
VERB over-PRON $-PRON 6.5-PRON million-
PRON from brokers-NOUN so-PRON far-PRON
and-PRON recommended-VERB more-PRON than-
PRON 30-NOUN of-PRON them-PRON for-PRON
criminal-PRON prosecution-PRON .-PUNC

Table 4: Summary of inaccurate, low quality and erroneous linguistic content generated by GPT-3.5.

tuning with conversation data (Zheng et al., 2023)
and instruction tuning (Chung et al., 2022). In
addition, GPT-3.5 has a much larger number of
parameters, much larger capacity, than our other
evaluated LLMs.

We find that Gemini rejects 24,630 prompts due
to safety concerns related to sexual content, hate
speech, harassment. Since we prompt Gemini to
perform linguistic tasks, we conclude Gemini mis-
interpret linguistic queries with harmful contents,
and it may have been superficially aligned (Zhou
et al., 2023) to restrict its ability when process-
ing sensitive words in the prompt. It is also
over-aligned in terms of security-related content,
leading to degenerated and undesired behavior.

Furthermore, we find that small scales of
LLaMA-2 and Mistral do not follow instructions.
They sometimes simply echo back the input sen-
tence without linguistic annotation, responding
they don’t understand what the task is, or ask for
the input to be processed. We hypothesize that
this is strongly correlated with the distribution of
instruction-tuning data, where linguistic instruc-
tions do not appear frequently.

6.3 Differences among Prompting Strategies

Prompting format and strategies differ in how they
elicit knowledge from LLMs. However, we find
that on identifying linguistic structures, adding in-
context examples (Brown et al., 2020), CoT (Huang
et al., 2022) or ReAct (Yao et al., 2023) provide
only trivial performance gain over the plain prompt
(0.05, 0.02 and 0.03 in F1 score respectively). We
hypothesize that identifying linguistic structures,
especially the complex ones, requires fundamental

understanding of syntax and semantics, while CoT
and ReAct focus on eliciting reasoning capabilities
of LLMs, which is not sufficient.

6.4 Potential Solutions
Addressing the above limitations and biases re-
quires developing effective data curation and train-
ing strategies using a linguist-in-the-loop process.
Linguistically equitable and diverse datasets with
balanced presence of linguistic structures (that
specifically avoid overrepresentation of linguisti-
cally easy samples) are essential for NLP and for
analyzing and understanding LLMs from a linguis-
tic perspective. In what follows, we provide several
avenues for investigating the above limitations.

Direct Training: Fine-tuning LLMs with tar-
geted challenging examples, like those carrying
complex sentence structures, or augmenting data
to increase exposure to challenging examples can
improve LLM’s performance on fine-grained lin-
guistic annotation tasks (Nguyen et al., 2024).
The resulting computational costs can be allevi-
ated through Parameter-Efficient Fine-Tuning tech-
niques (Hu et al., 2022; Su et al., 2023).

Better Instructions: Designing linguistic in-
structions with sufficient context information to
improve contextual understanding can potentially
guide the model in handling complex structures.
However, it would be challenging to generalize
instructions to all linguistic structures and LLMs.

Curriculum Learning: LLM’s performance on
challenging linguistic structures could be improved
by gradually training through a linguistic curricu-
lum (Elgaar and Amiri, 2023a). A curriculum is a
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planned sequence of learning materials (a training
paradigm) and an effective one can make learn-
ing efficient and effective for humans (Nishimura,
2018; Tabibian et al., 2019) and computers (Ben-
gio et al., 2009). Curriculum learning techniques
can present progressively increase the complexity
of the linguistic structure of training samples, e.g.
starting with easier structures before more complex
ones to potentially improve LLM’s performance on
fine-grained linguistic annotation tasks.

Retrieval Augmented Generation: Incorporat-
ing documents with relevant linguistic knowledge
retrieved from trustworthy sources can complement
LLMs’ knowledge (Lewis et al., 2020). For exam-
ple, definitions of complex syntactic structures such
as clauses and T-units can be retrieved to support
more accurate analysis and generation. However,
care must be taken to mitigate potential biases intro-
duced within retrieval models (Ziems et al., 2024;
Cheng and Amiri, 2025).

Tool Learning: LLMs can be trained to use
tools (Schick et al., 2023), either by updating their
parametric knowledge or interacting with tools di-
rectly. Training LLMs to use external linguistic
tools, such as those discussed in this work (Lu,
2010, 2012; Lee et al., 2021; Lee and Lee, 2023),
can potentially improve LLMs’ capabilities on fine-
grained linguistic tasks by complementing their
internal representations with structured linguistic
knowledge.

Human-in-the-Loop: Using a linguist-in-the-
loop approach can provide a valuable feedback for
refining model outputs. Expert input can help cor-
rect linguistic errors, mitigate biases, and guide
the model toward more accurate and interpretable
language understanding (Parrish et al., 2021).

7 Conclusion

We empirically study the ability of recent LLMs
in annotating linguistic structures at different lev-
els of linguistic complexity. Our study determines
how accurately recent LLMs can detect complex
linguistic structures in input text, which linguistic
structures represent the blind spots of recent LLMs
(the most challenging for LLMs), and how the per-
formance of LLMs varies across different levels of
linguistic complexity of inputs. Our findings show
a tendency to overestimate the linguistic capabili-
ties of LLMs in previous research, which mainly
stems from the prevalence of linguistically easy

examples in NLP datasets. To address this gap,
we uniformly sample data from different linguistic
complexity groups, to improve the reliability of
evaluating LLMs’ performance. Among all evalu-
ated LLMs, Llama3-70b, Llama3-8b, and GPT-3.5
show relatively better performance in responding
to linguistic queries–though overall performance
remains low. We outline several potential solutions
to address these limitations.

Limitations

Although we carefully developed and experimented
with different prompting strategies, prompting can-
not fully replace methods that directly analyze
model’s probability distributions over outputs (Hu
and Levy, 2023; Kuribayashi et al., 2024). In addi-
tion, we did not investigate the ability of LLMs
on a wider range of linguistic queries. For ex-
amples, linguistic structures related to discourse
complexity (Feng et al., 2010; Guinaudeau and
Strube, 2013; Bedi et al., 2015), which deter-
mines the complexity of higher-level structures
and flow of language beyond individual phrases
or sentences, need to investigated. Finally, un-
derstanding why a closed-source LLM produces
a specific output can be challenging. This is a
key challenge for deeper understanding of LLMs
through theoretically-motivated linguistic probing
techniques (Linzen et al., 2016; Warstadt et al.,
2020; Hu et al., 2020), and limits our ability in
providing insights into their potential weaknesses.
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A GPT’s Knowledge on Target tasks

As illustrated in Figures 6–8, we asked relevant
questions from GPT 3.5 about the target linguistic
tasks of this study. The responses clearly indicate
that GPT 3.5 have knowledge about the universal
dependencies dataset and the universal POS tag set,
the CoNLL 2000 shared task and its format, and
the Penn Treebank dataset and the format of its
syntactic structures.

B Detailed Results

B.1 Performance of all LLMs
We present the performances of all LLMs in Fig-
ure 9–15.

B.2 Performance across linguistic complexity
spectrum

We present the performance-sample complexity
plot for all models in Figure 9-Figure15. These
results suggest that LLM’s linguistic capability
largely depends on the linguistic complexity of
their inputs, and existing work may have over-
estimated the linguistic capability of LLMs. How-
ever, it’s crucial to note that linguistic complexity
as understood by humans and machines may differ
significantly. Indeed, there are particular linguistic
structures where model performance surprisingly
escalates with increasing complexity. Understand-
ing the reason for such model behaviors require
understanding their learning dynamics and is the
subject of our future work.

C Linguistic indices

Table 5 presents the 45 linguistic indices in our
study.

Do you have knowledge of the Universal Dependencies dataset and its associated Universal 

POS tag set?

Yes, I have knowledge of the Universal Dependencies dataset and its associated Universal 

POS (Part-of-Speech) tag set. Universal Dependencies (UD) is a cross-linguistically 

consistent treebank annotation project that aims to provide a universal representation for 

the grammatical structure of sentences across different languages.

The Universal POS tag set is a set of part-of-speech tags that are used to annotate words in 

sentences. It is designed to be language-independent, meaning that the same set of POS 

tags is used for all languages in the Universal Dependencies project. This makes it easier to 

compare and analyze linguistic data across different languages.

The Universal POS tag set includes tags for various grammatical categories, including:

NOUN - Nouns

VERB - Verbs

ADJ - Adjectives

ADV - Adverbs

PRON - Pronouns

DET - Determiners

ADP - Adpositions (prepositions and postpositions)

CONJ - Conjunctions

NUM - Numerals

PART - Particles (words that have a grammatical function but don't fit into other categories)

PUNCT - Punctuation marks

X - Other (for words that cannot be categorized into the above tags)

Each word in a sentence is assigned one of these POS tags to indicate its grammatical role in 

the sentence. This standardized tag set is used in the annotation of the Universal 

Dependencies treebanks for various languages, making it easier for researchers to work with 

multilingual linguistic data and develop language-independent natural language processing 

tools.

�.

�.

�.

�.

�.

�.

�.

�.

�.

��.

��.

��.

Please POS tag the following sentence using Universal POS tag set:

I have my coffee with milk and sugar.

Here's the sentence "I have my coffee with milk and sugar" with Universal POS tags:

I: PRON

have: VERB

my: DET

coffee: NOUN

with: ADP

milk: NOUN

and: CONJ

sugar: NOUN

Each word in the sentence is tagged with its corresponding Universal POS tag based on its 

grammatical role in the sentence.

•

•

•

•

•

•

•

•

Regenerate

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version
?

Figure 6: GPT’s responses to our questions about uni-
versal dependencies dataset and its associated universal
POS tag set.

Granularity Name Notation

Word Nouns Num_NN
Word Verbs Num_VB
Word Adjectives Num_JJ
Word Adverbs Num_RB
Word Prepositions/Subordinates Num_IN
Word Coordinating Conjunction Num_CC
Word Determiner Num_DT

Phrase Noun Phrases Num_NP
Phrase Verb Phrases Num_VP
Phrase Adjective Phrases Num_ADJP
Phrase Adverb Phrases Num_ADVP
Phrase Preposition Phrases Num_PP
Phrase Conjunction Phrases Num_CONJP
Phrase Quantitative Phrases Num_QP
Phrase Complex Nominal Num_CN

Sentence T-Units Num_T
Sentence Complex T-Units Num_CT
Sentence Clause Num_C
Sentence Dependent Clause Num_DC
Sentence Fragment Clause Num_FC

Table 5: Linguistic indices we use in the study.
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Do you have knowledge of the CoNLL 2000 shared task and its format?

Yes, I have knowledge of the CoNLL 2000 shared task and its format. The CoNLL 2000 

shared task is a popular competition in the field of natural language processing (NLP) and 

computational linguistics. It focuses on the task of chunking, which is a subtask of shallow 

parsing. The goal of chunking is to identify non-overlapping phrases in a sentence, such as 

noun phrases (NP), verb phrases (VP), and prepositional phrases (PP).

Here's some information about the CoNLL 2000 shared task and its format:

Data Format: The dataset used in CoNLL 2000 consists of English text. Each sentence in 

the dataset is tokenized and tagged with its part-of-speech (POS) information. Additionally, 

each word in the sentence is labeled with a chunk tag indicating the phrase to which it 

belongs.

Chunk Tags: The chunk tags used in CoNLL 2000 are typically in the IOB format (Inside, 

Outside, Beginning). For example:

B-NP: Beginning of a noun phrase

I-NP: Inside a noun phrase

B-VP: Beginning of a verb phrase

I-VP: Inside a verb phrase

O: Outside any chunk

Evaluation: The performance of chunking systems in the CoNLL 2000 shared task is 

typically evaluated using the F1 score, which takes into account precision and recall. The F1 

score is a measure of the system's ability to correctly identify chunks in the text.

Training and Testing Sets: The CoNLL 2000 dataset is divided into training and testing sets. 

Participants in the shared task use the training data to train their chunking models and then 

evaluate the models on the provided test data.

Shared Task: The CoNLL 2000 shared task was organized as a competition to encourage 

the development of accurate chunking systems. Participants would submit their systems, 

and the organizers would evaluate and rank the systems based on their performance on the 

test data.

The CoNLL 2000 shared task played a significant role in advancing research in shallow 

parsing and NLP, and it provided a benchmark dataset for evaluating chunking systems. 

Researchers have since used similar formats and evaluation metrics in subsequent NLP 

shared tasks and competitions.

�.

�.
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•

•

•

•

�.

�.

�.

Please chunk the following sentence in CoNLL 2000 shared task format:

I have my coffee with milk and suga

Sure, I can chunk the sentence "I have my coffee with milk and suga" in CoNLL 2000 shared 

task format:

I   O

have O

my  B-NP

coffee I-NP

with O

milk B-NP

and I-NP

suga O

In this example:

"I have" and "with milk and suga" are not part of any chunk, so they are labeled as "O" 

(Outside).

"my coffee" is a noun phrase (NP), so "my" is labeled as "B-NP" (Beginning of NP) and 

"coffee" is labeled as "I-NP" (Inside NP).

"milk and suga" is also a noun phrase (NP), so "milk" is labeled as "B-NP" and "and suga" is 

labeled as "I-NP".

mathematica Copy code

•

•

•

Regenerate

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version

Default (GPT-3.5)

?

Figure 7: GPT’s responses to our questions
about the CoNLL 2000 shared task and its
format.

Do you have knowledge of the Penn Treebank dataset and the format of its syntactic 

structures?

Yes, I have knowledge of the Penn Treebank dataset and the format of its syntactic 

structures. The Penn Treebank is a widely used corpus in natural language processing and 

computational linguistics, especially for tasks related to parsing and syntactic analysis. It 

consists of a large collection of English texts with manually annotated syntactic tree 

structures.

The syntactic structures in the Penn Treebank dataset are represented using a notation 

known as "Penn Treebank format" or "Penn Treebank bracketing." In this format, a sentence 

is parsed into a tree structure, with each word or phrase in the sentence represented as a 

node in the tree. The nodes are enclosed in brackets, and the tree is typically read from left 

to right.

Here's a basic example of a Penn Treebank syntactic structure for a simple sentence:

(S

  (NP (DT The) (NN cat))

  (VP (VBD chased)

    (NP (DT the) (NN mouse))))

In this example, "(S" represents the start of the sentence, "(NP" represents a noun phrase, "

(VP" represents a verb phrase, "DT" stands for determiner, "NN" stands for noun, and "VBD" 

stands for past tense verb. The structure of the tree reflects the hierarchical relationships 

between words and phrases in the sentence.

The Penn Treebank dataset includes a wide range of annotated texts, from news articles to 

literature, and it has been used for various natural language processing tasks, including 

syntactic parsing, part-of-speech tagging, and more. Researchers often use this dataset to 

train and evaluate syntactic parsers and other language processing models.

scss Copy code

Generate textual representation of the constituency parse tree of the following sentence 

using Penn Treebank tag set:

I have my coffee with milk and sugar.

Certainly! Here's the constituency parse tree for the sentence "I have my coffee with milk and 

sugar" using the Penn Treebank tag set:

(S

  (NP (PRP I))

  (VP

    (VBP have)

    (NP

      (PRP$ my)

      (NN coffee)

      (PP

        (IN with)

        (NP

          (NN milk)

          (CC and)

          (NN sugar)))))))

In this parse tree:

"(S" represents the start of the sentence.

"(NP" represents a noun phrase, and "(PRP I)" represents the pronoun "I."

"(VP" represents a verb phrase, and "(VBP have)" represents the verb "have."

"(PRP$" represents a possessive pronoun, and "(NN coffee)" represents the noun "coffee."

"(PP" represents a prepositional phrase, and "(IN with)" represents the preposition "with."

Inside the prepositional phrase, we have another noun phrase with the nouns "milk" and 

"sugar," connected by the coordinating conjunction "(CC and)."

This tree structure reflects the grammatical and syntactic relationships within the sentence 

"I have my coffee with milk and sugar" using Penn Treebank notation.

scss Copy code

•

•

•

•

•

•

Regenerate

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version
?

Figure 8: GPT’s responses to our questions
about the Penn Treebank dataset and the for-
mat of its syntactic structures.
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Figure 9: Performance of Gemini with respect to linguistic complexity.
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Figure 10: Performance of LLaMA3-70b with respect to linguistic complexity.
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Figure 11: Performance of LLaMA2-70B with respect to linguistic complexity.
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Figure 12: Performance of Mixtral-8x7B with respect to linguistic complexity.
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Figure 13: Performance of LLaMA3-8B with respect to linguistic complexity.
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Figure 14: Performance of LLaMA2-7B with respect to linguistic complexity.
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Figure 15: Performance of Mistral-7B with respect to linguistic complexity.
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Abstract

We introduce ParaBLoCC, the Parallel Ba-
sic Locative Construction Corpus, the first
multilingual compendium of this important
grammatico-functional construction, and par-
ticularly the first such corpus containing se-
mantically equivalent BLCs in source/target
language pairs. The data —taken from bitext
corpora in English paired with twenty-six ty-
pologically diverse languages —are likely to
prove useful for studying questions of cogni-
tive underpinnings and cross-linguistic usage
patterns of spatial expressions, as well as for
improving multilingual spatial relation extrac-
tion and related tasks. The data are being
made available at https://github.com/
pviechnicki/parablocc.

1 Introduction: Definition and
Importance of Basic Locative
Constructions

Basic Locative Constructions (BLCs) are a sen-
tence type identified through the specific pairing
of syntactic form and usage purpose (Sadock and
Zwicky, 1985). BLCs —identified notably by
Levinson and Wilkins (2006) —are statements used
to answer questions of the form, Where is the figure
object in relation to the ground object?1 Cross-
linguistically, BLCs are taken to be ubiquitous –
no languages have been reported which are unable
to answer such a question. Languages do vary in
choice of syntactic forms used to express BLCs
(Fortis, 2010). In English, canonical syntax for
BLCs is [NP Copula PP]: ‘The figure object
is over/on/under/behind the ground object.’ In other
languages, BLC syntactic form may be very differ-
ent, for example in KwaKwala, BLCs are expressed
through locative suffixes (Rosenblum, 2015).

1We follow (Talmy, 1983) in referring to figure and ground;
other terms for the same concepts are theme and relatum, or
trajector and landmark.

2 Importance of BLCs for Cognitive
Science and Linguistics

BLCs have been considered important tools for
several decades by cognitive scientists who have
used them to elicit cross-linguistic properties of
spatial expressions. The prominence of BLCs in
studies of spatial cognition was enabled by Bower-
man and Pederson’s (1992) Topological Relations
Picture Series, a set of 71 spatial scene cartoons,
each depicting a spatial relation between a figure
and ground. A number of studies have used con-
trolled elicitation with BLCs to shed light on psy-
cholinguistic topics: for example BLCs have been
used to explore core versus peripheral spatial refer-
ences (Landau et al., 2016); evidence from spatial
relations for the Sapir-Whorf hypothesis (Tseng
et al., 2016); language acquisition patterns in in-
fancy (Lakusta et al., 2021); and supposed ‘natu-
ral concepts’ in the spatial domain (Levinson and
Meira, 2003).

Relatively few studies have looked at usage pat-
terns of BLCs in uncontrolled settings; to our
knowledge only (Viechnicki et al., 2024) have done
so. The ParaBLoCC corpus aims to allow such
work to proceed, by making available a large cor-
pus of English BLCs paired with parallel text from
a typologically diverse set of twenty-six languages.
The data are publicly available at https://
github.com/pviechnicki/parablocc.

3 Related Research

BLCs differ from two closely related expression
types: geospatial expressions and spatial relation
triples, both of which have more extensive corpora
available. Geospatial expressions in text, which
have been studied in the context of georeferenc-
ing techniques, are commonly defined as spatial
relations whose ground object is located out of
doors and is not mobile, and whose spatial rela-
tion is expressed within a geospatial coordinate
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reference system (Stock et al., 2021). BLCs, by
contrast, may reference ground objects of any size,
interior/exterior status, and mobility. Spatial re-
lation triples – often discussed in the context of
techniques for extracting such relations from text,
e.g. (McNamee et al., 2020); (Hassani and Lee,
2017) – are a superset of BLCs. Spatial relation
triples include both locative and path expressions,
whereas BLCs are restricted to static constructions.
Spatial relations also include a wide variety of syn-
tactic forms in whichever language is being studied,
whereas BLCs are typically restricted to a single
canonical syntactic form, such as [NP Copula
PP] in English.

Our work in extracting a parallel corpus of BLCs
is similar in spirit to other recent efforts to use web-
scale usage data to inform theoretical linguistic or
psychological research. For example, Hale and
Stanojevic (2024) use data from five languages to
investigate syntactic universals; and Beekhuizen et
al. (2017) use parallel usage patterns from thirty
languages to study cognitive properties of indefinite
pronouns. This work is therefore part of the larger
trend that has been called the ‘quantitative turn’ in
linguistic research (Kortmann, 2021).

4 ParaBLoCC Corpus Characteristics
and Data Preparation

4.1 Corpus Characteristics

Data in the ParaBLoCC corpus comprise parallel
English and target-language sentence pairs (‘bi-
text’) from twenty-six languages. The twenty-six
languages were chosen to maximize genetic and
areal diversity as well as availability of bitext ma-
terial. Bitext sentences are harvested from the
Opus Machine Translation Portal (Tiedemann et al.,
2023), and similar sources, from a wide variety of
domains. Numbers of parallel sentence pairs for
each language plus domains are shown in Table 1.
ParaBLoCC thus contains paired BLCs in English
and one of the target languages, for example:

EN: ‘He is still in Serbia.’::HU: ‘Szer-
biában maradt.’

4.2 Parallel BLC Data Preparation

BLCs are selected from the available bitext for each
language using a three-stage filtration procedure:
1. lexical filtering, followed by 2. syntactic filtering,
followed by 3. spatial sense filtering.

Table 1: Languages, domains, bitext pairs, and BLCs
occurring (plus rate per 1000 bitext sentence pairs) in
ParaBLoCC corpus. Domains: a: Bible-UEDIN; d:
QED; e: TEDTalks2020; f: Bible-Literal; g: Glob-
alVoices; h: OpenSubtitles; j: Europarl; k: UN V1
16; m: IWSLT2016; n: Flores200; o: NLLBv1; p:
GoURMET; q: CCaligned; s: SETTIME2; t: Tico19; u:
Tanzil; v: ntrex128.

Language Domains Bitext
Pairs (m)

BLCs (k)
(per 1000)

Bantu
Swahili d,e,g,n,o,q,t,v 21.2 135 (6.4)

Finno-Ugric
Finnish a,d,e,h,j 25.9 132 (5.1)

Hungarian a,d,e,g,h,j 38.4 169 (4.4)
Indo-European

Catalan d,e,f,g,h,i 7.6 81 (10.7)
Czech a,d,e,h,j 35.5 178 (5.0)

Dutch a,d,e,g,h,
j,n,o,q,v 157.5 1924 (12.2)

French a,d,e,g,h,m 36.6 197 (5.4)
German a,d,e,g,h,j 20.0 101 (5.1)

Greek a,d,e,g,h,
j,n,o,q,s,v 99.8 740 (7.4)

Italian a,d,e,g,h,j 32.0 159 (5.0)

Polish a,d,e,g,h,
j,n,o,v 129.3 1211 (9.4)

Russian a,d,e,g,h,k 35.3 165 (4.7)

Spanish a,d,e,g,h,j,
k 55.5 266 (4.8)

Swedish a,d,g,h,j 15.6 80 (5.2)
Niger-Congo

Igbo d,e,f,n,o,q,v 5.6 32 (5.7)
Other, Isolate
Japanese d,e,h,n,o,q,v 66.5 511 (7.7)
Korean a,d,e,g,h,n,o,q 28.9 204 (7.1)

Quechumaran
Aymara d,g,o,q 1.0 9 (8.9)
Quechua d,o 2.2 23 (10.7)

Semitic
Amharic a,d,g,n,o,p,t 15.7 147 (9.4)
Arabic a,d,e,g,h,k 39.7 149 (3.8)
Hebrew a,d,e,g,h,n,q 34.6 150 (4.3)
Tigrinya d,n,o,q,t 1.1 6 (5.9)

Sino-Tibetan

Chinese a,d,e,g,h,
k,n,o,q,t,v 64.6 926 (14.3)

Turkic

Turkish a,d,e,g,h,
o,p,q,s 99.0 825 (8.4)

Uzbek d,e,n,o,u,v 28.9 245 (8.5)
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The lexical filter selects sentence pairs whose
English sentence contains a locative spatial expres-
sion drawn from a reference list of fifty expres-
sions: twenty-nine common English locative spa-
tial prepositions (‘above’, ‘between’, ‘on’, etc) and
twenty-one spatial nominals (‘in back of’, e.g.).
Our reference list contains all non-archaic forms
from The Preposition Project (Litkowski and Har-
graves, 2007), plus spatial nominals. See Appendix
A for the complete list. Data files in the Para-
BLoCC archive record which lexical item matched
each English sentence.

The syntactic filter selects parallel sentences
whose English dependency parse structurally
matches one of the syntactic parse templates found
in English Basic Locative Constructions. We parse
the bitext and the BLC templates with the Stanford
Core NLP parser (Manning et al., 2014), then per-
form subgraph matching through depth-first search.
In practice, all syntactic patterns for BLCs with
the fifty spatial expressions can be expressed using
eight unique dependency parse subgraphs. Para-
BLoCC data files annotate each bitext sentence
with the number of the matching spatial expression
subgraph template.

The third and final filtration stage selects only
sentences whose lexical match from the first fil-
tration state has a spatial sense in context, vice
a temporal or other sense. Many of the lexical
items from our reference list are highly polysemous
– in fact at least twenty common English prepo-
sitions have six or more spatial and non-spatial
senses (Litkowski and Hargraves, 2021). We train
a ‘glossbert’-style neural word sense disambigua-
tion model (Huang et al., 2019) as a binary clas-
sifier and infer spatial/non-spatial sense for each
ParaBLoCC English sentence. Model architecture
is shown in Figure 1. The spatial sense classifier
is trained with 8,111 sentences exemplifying the
senses extracted from The Preposition Project dic-
tionaries (Litkowski and Hargraves, 2021). The
model uses the ADAM optimizer, batch size of 16,
and is trained for 10 epochs.

4.3 Spatial Sense Filter Performance
We assess the performance of the spatial sense fil-
ter using held-out validation data from the afore-
cited Preposition Project and 200 hand-labeled in-
domain sentence pairs (Table 2).

While performance of the spatial filter is not as
high as state-of-the-art word sense disambiguation
(WSD) models tested on less challenging test sets

Figure 1: Model architecture for spatial sense disam-
biguation classifier, based on (Huang et al., 2019).

Table 2: Spatial Sense Classifier Performance: recall,
precision, and macro-averaged F1.

Precision Recall F1

Validation Set .69 .70 .66
In-Domain Set .56 .80 .66

(Yigzaw and Assefa, 2024), we consider spatial
sense disambiguation problem to be particularly
challenging and the current model to be adequate
for the large-scale filtration task at hand, while
recognizing the challenges described in §5.

4.4 BLC Occurrrence Rates

The mean observed rate of BLC occurrence per
thousand original sentences, taken across Para-
BLoCC languages, is 7.2 (see Table 1). While
domain differences may explain some extreme val-
ues, we continue to investigate outliers to rule out
processing errors resulting in artificially low or
high values. Extrapolating from our small set of
hand-labeled validation sentences, we believe the
ParaBLoCC estimate of 7.2/1000 is three times
less than the true BLC occurrence rate, measured
at twenty per thousand. See §5 for discussion of
the reasons for the underestimate.

5 Sources of Error in ParaBLoCC

The ParaBLoCC data contain noise from two main
sources. First due to errors in harvesting target-
language sentences from the web, some Para-
BLoCC entries will contain target sentences which
are not exact semantic equivalents of the source
BLC, or which contain other types of bitext align-
ment errors. In spite of improvements in identifi-
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Table 3: BLC Detection Error Analysis and Error Modes

Metric Value

BLC Detection Rate .095
False Positive Rate .016

False Positives .016
Syntax Errors -

Spatial Sense Errors .016
False Negatives .018
Syntax Errors .012

Spatial Sense Errors .006

cation of parallel text for harvest (cf. Paracrawl,
(Bañón et al., 2020)), source-target sentence pair
mismatches are common in the corpora from which
ParaBLoCC draws: recent estimates of error rates
in bitext corpora vary from as low as 24% to as high
as 76% of sentence pairs (Kreutzer et al., 2022).

A second source of errors in the ParaBLoCC
entries comes from BLC detection errors, either
Type 1 (false positives) or Type II (false negatives).
Those errors in turn can be grouped into errors from
the syntactic matching filter and errors from the
spatial sense disambiguation filter. (It is assumed
that lexical matching errors are negligible, since
matching is deterministic.)

To assess the accuracy and sensitivity of the
BLC labels in the ParaBLoCC corpus, we used
a hand-labeled reference set of 1,000 ParaBLoCC
sentences which passed the lexical filter, from six-
teen of the included languages.2 The authors inde-
pendently coded the sentences and discarded any
where we did not agree. Inter-annotator agreement
was κ = .55 —in the ‘moderate’ range. BLC detec-
tion error rate and Type I and II errors are reported
in Table 3. The observed BLC detection rate in
ParaBLoCC is estimated at .095, quite low with a
balance of false positives and false negatives. The
false positive rate is .016. Post-hoc analysis of er-
ror modes shows that the spatial sense filter did
not perform well on longer sentences, particularly
those with multiple clauses, which are common in
the ParaBLoCC corpus. We leave improvements to
the spatial sense filter for future work.

6 Likely uses of ParaBLoCC

We created the ParaBLoCC data to appeal to a
wide variety of scholars interested in spatial lan-
guage, and by making them available we hope to

2am, ar, ay, cs, de, es, fi, hu, ig, ko, nl, qu, sw, ti, uz, zh

encourage additional study in this area. The pri-
mary utility of the data are to allow study of usage
patterns for parallel spatial expressions in twenty-
six genetically and typologically diverse languages.
Through automated alignment and span detection,
silver labels for BLCs in the target languages can
be extracted and studied themselves or used for
downstream tasks.

Likely secondary uses for the ParaBLoCC data
will be to enable work on multilingual aspects of
spatial relation extraction (Rawsthorne et al., 2023).
Until very recently, text corpora annotated for spa-
tial relation triples were limited to the most high-
resource numbers of languages, though this situa-
tion is starting to improve (Wang et al., 2023) so
the multilinguality of ParaBLoCC should be wel-
come. The data can be used to improve current
models of geospatial expression resolution (Wang
et al., 2024). Finally we expect multilingual image
caption models (Ramos et al., 2023) will benefit
from the parallel data collected by ParaBLoCC.

7 Limitations

We acknowledge several limitations of the Para-
BLoCC corpus. The selection of languages is lim-
ited to those with adequate bitext availability. In
practice, this limits us from collecting BLCs in
languages whose spatial expression systems are
most formally distinct from English and European
languages. For example, languages with only abso-
lute reference frames, lacking intrinsic or relative
frames (Fortis, 2010), are conspicuously absent
from ParaBLoCC.

Granularity of annotation is another limitation of
ParaBLoCC. Because of the method of collecting
and labeling the sentence pairs in the corpus, text
spans representing BLCs are not overtly annotated
in either source language (English) or target lan-
guage. Explicit span annotations for BLCs would
provide additional training and test data veracity.
Furthermore, ParaBLoCC would ideally provide se-
mantic role annotations for sub-spans of source and
target-language BLCs as <figure>, <ground>,
and <spatial relation>. While stochastic
methods of labeling subspans of BLCs have been
demonstrated (Viechnicki et al., 2024), they are
noisy. Explicit annotation of this nature would al-
low more in-depth analysis of the kinds of syntactic
variation found in BLCs ‘in the wild.’ We leave
annotation improvements to future community ef-
forts.
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A Appendix: Prepositions and Spatial
Nominals used in Lexical Filtration
Step

English Spatial Expressions used in lexical filtra-
tion stage.

A.1 Prepositions
above, across, against, along,
alongside, amid, amidst, among,
around, at, atop, before, behind,
below, beneath, between, by,
down, in, inside, near, off, on,
over, toward, towards, under,
underneath, with

A.2 Spatial Nominals and Spatial Phrases
out of, in back of, in the front
of, on the top of, on top of, in
front of, to the right of, to the
left of, right of, left of, north
of, south of, east of, west of,
in the middle of, on the bottom
of, next to, outside of, in the
back of, on the left of, on the
right of
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Abstract

A parser for Minimalist grammars (Stabler,
2013) has been shown to successfully model sen-
tence processing preferences across an array of
languages and phenomena when combined with
complexity metrics that relate parsing behavior
to memory usage (Gerth, 2015; Graf et al., 2017;
De Santo, 2020b, a.o.). This model provides a
quantifiable theory of the effects of fine-grained
grammatical structure on cognitive cost, and can
help strengthen the link between generative syn-
tactic theory and sentence processing. However,
work on it has focused on offline asymmetries.
Here, we extend this approach by showing how
memory-based measures of effort that explicitly
consider minimalist-like structure-building
operations improve our ability to account for
word-by-word (online) behavioral data.

1 Introduction

Formally specifying hypotheses about how gram-
matical structure drives processing cost makes it pos-
sible to connect long-standing ideas about cognitive
load in human language processing with represen-
tational assumptions in theoretical syntax — thus
adding to the interpretability of theories of sentence
comprehension, and to the plausibility of particular
syntactic analyses/theories of syntactic representa-
tions (Bresnan, 1978; Berwick and Weinberg, 1982;
Kaplan and Bresnan, 1982; Hale, 2001, 2011).

In this sense, recent studies have argued that
the behavior of a parser for Minimalist grammars
(Stabler, 1996) can link structural complexity to
memory usage. In particular, this takes the form
of a specific implementation of Stabler (2013)’s
top-down parser, coupled with complexity metrics
measuring how a tree traversal algorithm recruits
memory resources (Kobele et al., 2013). This
model makes fully specified commitments to (a)
the nature of the structures built during the parsing
process, (b) the time-course of the structure building
operations connecting linear input to hierarchical

representations, and (c) a psychologically plausible
theory of how cognitive resources are linked to
parsing operations to derive measures of sentence
difficulty. Thanks do these commitments, this
approach offers an insightful, empirically grounded
reframing of past theories trying to bridge the study
of competence and the study of performance (e.g.,
the Derivational Theory of Complexity; Miller and
Chomsky, 1963; Fodor and Garrett, 1967; Berwick
and Weinberg, 1983; De Santo, 2020b).

From an empirical perspective, computational
modeling work in this framework has proved
successful in accounting for a number of processing
preferences across a variety of phenomena cross-
linguistically (Gerth, 2015; Graf et al., 2017, a.o.).
Most of this work has focused on deriving estimates
of offline (over a whole sentence) effort, which then
has been used to qualitatively evaluate categorical
contrasts between minimally different sentence
pairs. However, if we aim to probe the cognitive
plausibility of a Minimalist Grammar model, it
is important to understand its ability to capture
fine-grained sentence comprehension processes,
beyond broad, sentence-level complexity profiles
(Demberg and Keller, 2008; Li and Hale, 2019).

In this paper, we extend this approach by
extracting a metric of word-by-word effort from
memory-usage measures defined in previous work
on offline effects. We then evaluate this complexity
metric based on its ability to capture difficulty
profiles in self-paced reading from a large scale
dataset. As this model implements theories of
effort grounded in memory load, we also compare
its predictions to those of a metric (surprisal)
estimating word predictability (Hale, 2001).

2 MG Parsing and Cognitive Effort

We adopt a model combining a parser for Minimalist
Grammars with metrics measuring memory usage.
In the rest of this section we outline the core intu-
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itions behind this approach to sentence difficulty.
While it is possible to implement alternative cog-
nitive models incorporating Minimalist Grammar
parsers, we refer to the specific set of choices made
here as the MG model for ease of discussion.

2.1 A Brief introduction to MGs
Minimalist Grammars (MGs; Stabler, 1996)
are a mildly-context sensitive, transformational
formalism incorporating ideas from the Minimalist
Program (Chomsky, 1995). An MG grammar
consists of a sets of lexical items associated with a
non-empty string of syntactic features and two core
transformational operations — Merge and Move.
Merge is a binary operation encoding subcategoriza-
tion, while Move is a unary operation allowing for
a movement approach to long-distance, filler-gap
dependencies. Importantly for us, the central data
structure of MGs is a derivation tree, explicitly
encoding the sequence of Merge and Move opera-
tions required by a given sentence (Michaelis, 1998;
Harkema, 2001; Kobele et al., 2007). Derivation
trees differ from more commonly known phrase
structure trees in that moving phrases remain in
their base position, and thus the final, linear word
order of a sentence is not directly reflected in the
order of the leaf nodes in the tree (see Figure 1a).

Since MGs are able to exemplify the structurally
rich analyses of modern generative syntax, they can
contribute to the development of models of sentence
processing that provide insights into the connection
between fine-grained syntactic structure and offline
processing behavior. This is the intuition behind a
line of computational modeling work which, start-
ing with Kobele et al. (2013), has shown that a top-
down parser for MGs (Stabler, 2013) is successful
in predicting offline processing difficulty contrasts.

2.2 MG Parsing
Stabler (2013)’s parser is adapted from a standard
recursive-descent parser for CFG, accounting for
the mismatch between the order of lexical items in a
derivation tree and the linear surface order. Broadly,
the parser scans the nodes from top to bottom and
from left to right. Given the way Move is imple-
mented however, simple left-to-right scanning of the
leaf nodes yields an incorrect word order. In order
to keep track of the derivational operations affecting
linear order, the MG variant follows the standard
approach of predicting nodes downward (toward
words) and left-to-right only until a Move node is
predicted. At that point, the pure top-down strategy

is discarded, and the parser instead follows the short-
est path towards predicting the moved item’s base
position (a string-driven strategy). After a position
for the mover has been found, the parser continues
from the point where the the top-down strategy had
been paused (Figure 1b).

The memory stack associated to the parser
plays a fundamental role in this: if a parse item is
hypothesized at step i, but cannot be worked on
until step j, it must be stored for j − i steps in a
priority queue. For instance, consider the derivation
tree in Figure 1a for the sentence Who do the Gems
love __?. Here, the node for do is predicted at step
3 but it is only flushed out of the parser’s stack at
step 10. This is because a movement dependency
for who has been postulated at Spec,CP. Upon
encountering who in the input string and predicting
a movement operation, the parser cannot integrate
the mover into the structure until a base position for
it has been predicted and confirmed (at step 8 and 9).
While doing so, the parser will predict intermediate
structure (e.g., a position for an auxiliary in C,
which could be occupied by do), but it will not
match that prediction against the linear input until
the search for who has been resolved.1

Stabler’s algorithm seems to capture some core
properties of human language processing strategies:
it works incrementally, and it is predictive — it
makes hypotheses about how to build the upcoming
syntactic structure that need to be confirmed based
on the input (Marslen-Wilson and Tyler, 1980;
Tanenhaus et al., 1995; Phillips, 2003; Demberg and
Keller, 2009, a.o.). As in other aspects of cognition,
prediction also plays a crucial role in language
processing. In the MG model, this is reflected by the
fact that the predictive abilities of the string-driven
top-down approach guide how the parser recruits
memory resources. However, the psycholinguistic
literature traditionally refers to prediction in the
context of ambiguity resolution — the task of
choosing between multiple, alternative structural
hypotheses available to the parser during processing
(Traxler and Pickering, 1996; Wagers and Phillips,
2009; Chambers et al., 2004; Hale, 2006). This
predictive aspect has been shown to have a signif-
icant role in determining processing cost (Traxler
and Pickering, 1996; Wagers and Phillips, 2009;
Chambers et al., 2004), and to be modulated by past
experience (Ellis, 2002; Hale, 2006; Levy, 2013).

1The reader in referred to (De Santo, 2020b, Chp. 2) for
a deeper discussion of the differences in stack-usage between
a string-driven traversal and a classic top-down traversal.
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In this respect, Stabler’s parser can be equipped
with a search beam discarding the most unlikely
predictions. Here though, we follow Kobele et al.
(2013) in ignoring the beam and assuming that
the parser is equipped with a perfect oracle, which
always makes the right choices when constructing
a tree. Essentially, the MG model adopts determin-
istic parsing strategy. This idealization is clearly
implausible from a psycholinguistic point of view,
but has a precise purpose: to ignore the cost of
choosing among several possible predictions and fo-
cus on the specific contribution of structure-building
strategies to processing difficulty. However, the
MG model has enough flexibility to allow for
the implementation and evaluation of theories of
ambiguity resolution and reanalysis (Chen and
Hale, 2021; De Santo and Lee, 2022; Ozaki et al.,
2024). We come back to this possibility in Section 5.

2.3 Parsing Effort and Tenure
Kobele et al. (2013) introduces a tree annotation
schema to make Stabler (2013)’s tree traversal strat-
egy easy to follow (Figure 1a). Each node in a tree
is annotated with the step at which it was first con-
jectured by the parser and placed in memory (su-
perscript, Index), and the step at which it is con-
sidered completed and flushed from memory (sub-
script, Outdex). Index and Outdex thus fully encode
the relation between a node and stack-states. We can
then use them to link the parser’s traversal strategy,
syntactic structure, and memory usage. In turn, this
allows us to derive predictions about sentence diffi-
culty, based on how the structure of a derivation tree
affects memory (Rambow and Joshi, 1994; Gibson,
2000; Kobele et al., 2013; Gerth, 2015).

The MG model distinguishes several cognitive
notions of memory usage (Graf et al., 2017). Of
interest to us is a measure of how long a node is kept
in memory through a derivation (TENURE). Tenure
for each node is computed considering the moment
a node was first postulated into the structure (i.e.,
placed in the memory stack of the parser) and the
moment such prediction was confirmed (i.e., the
node could be taken out of memory). In practice,
a node’s Tenure can be computed as the difference
between its index and its outdex. Considering again
the annotated MG tree in Figure 1a, Tenure for do
is Outdex (do)−Index (do)=10−3=7.

As mentioned, past work has then formalized this
notion in metrics of offline processing difficulty —-
for instance measuring maximum Tenure (MAXT),
which ties processing difficulty to differences in

grammatical structure over a whole derivation.
Specifically, MAXT has been used to derive categor-
ical processing contrasts, by comparing maximum
Tenure values for derivation trees corresponding
to pairs of sentences with stark asymmetries in re-
ported offline processing preferences. For instance,
Graf and Marcinek (2014) show that MAXT makes
the right difficulty predictions for phenomena such
as right embedding vs. center embedding, nested
dependencies vs. crossing dependencies, as well as
a set of cross-linguistic contrasts involving relative
clauses. Following work has then strengthen the
empirical support for Tenure based metrics, further
demonstrating their ability to qualitatively capture
offline contrasts across languages and constructions
(Gerth, 2015; Graf et al., 2017; Liu, 2018; De Santo,
2019, 2020a). Evaluating this model on online
patterns of effort seems then the natural next step
in the enterprise. In what follows, we leverage
word-by-word Tenure values as already computed
by the MG model to derive online predictions.

3 Evaluating Tenure Online

Building on previous successes of the MG model
in capturing offline contrasts, we ask whether
structure-building effort as captured by Tenure
improves estimates of word-by-word reading time
patterns. We show that Tenure as computed by the
model can be directly leveraged to derive predictors
of processing difficulty. We then evaluate Tenure
against surprisal measures extracted from two
different neural architectures, as an implementation
of expectation-based complexity metrics.

3.1 Reading Time Data
The relative comprehension difficulty of object-
extracted (ORC; 2) over subject extracted (SRC;
1) relative clauses is well-attested both in English
and cross-linguistically (Lau and Tanaka, 2021).

1. The Pearl who welcomed the Diamond.

2. The Pearl who the Diamond welcomed.

Additionally, while this difficulty has been par-
tially linked to the lower frequency/predictability
of ORCs (Chen and Hale, 2021; Vani et al., 2021),
expectation-based approaches have been argued to
fall short in accounting for the overall pattern of rel-
ative complexity. Instead (or additionally), a subject
preference in RCs can be associated to the impact
of memory-related processes/demands (Gibson and
Wu, 2013; Levy, 2013; McCurdy and Hahn, 2024).
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Figure 2.4: Annotated MG derivation tree for Who do the Gems love?. Boxed nodes are those with
tenure value greater than 2, following (Graf and Marcinek, 2014).

actual input received. Because of this, while do is postulated at step 3, it can only be scanned at

step 10. Similarly, T can only be scanned after who, do, and the whole DP the Gems have been

scanned. A summary of the parser’s actions for this example can be found in Table 2.1.

Essential to this procedure is the role of memory: if a node in the tree is hypothesized at step i,

but cannot be worked on (scanned) until step j, it must be stored for j� i steps in a priority queue.

Moreover, an important advantage of a top-down parser is that the input string is read as a stream,

and thus we do not require a separate memory buffer to keep hold of it while the structure is being

built.

To make the traversal strategy easy to follow, I adopt Kobele et al. (2013)’s notation, in which

each node in the tree is annotated with an index (superscript) and an outdex (subscript). Intuitively,

the annotation indicates for each node in the tree when it is first conjectured by the parser (index)

and placed in the memory queue, and at what point it is considered completed and flushed from
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Who do the Gems love
Tenure 1 7 1 2 8

(a)

Step Parse Action
1 CP is conjectured
2 CP expands to C’
3 C’ expands to do and TP
4 TP expands to T’
5 T’ expands to T and vP
6 vP expands to DP and v’
7 v’ expands to v and VP
8 VP expands to love and who
9 who is found

10 do is found
11 DP expands to the and Gems
12 the is found
13 Gems is found
14 T is found
15 v is found
16 love is found

(b)

Figure 1: In (a): Example of an MG derivation tree for Who do the Gems love? with annotated parse steps as
index/outdex at each node. Below it, Tenure values for pronounced lexical items computed for a node i as Outdex(i)
− Index(i). Boxed nodes are those with Tenure >2. Unary branches indicate movement landing sites. In (b): Actions
of a string-driven recursive descent parser for Who do the Gems love? as exemplified by the derivation tree in (a).

In this sense, offline SRC/ORC asymmetries have
been extensively probed with the MG Model, with
MAXT deriving the empirically reported subject
advantage across languages and syntactic analyses
(Graf et al., 2017; De Santo, 2021a,b; Del Valle and
De Santo, 2023; Fiorini et al., 2023). Subject/Object
asymmetries in RCs are then a natural venue to
investigate whether structure-based complexity
metrics like Tenure offer quantitative insights into
online patterns of effort during sentence processing.

Thus, we use as target behavioral data the reading
times (RT) for the SRC/ORC items in the Syntactic
Ambiguity Processing Benchmark (SAP; Huang
et al., 2024).2 The SAP benchmark is a recent
dataset of self-paced RTs from 2000 participants,
covering a wide-range of complex syntactic phe-
nomena in English. This large scale dataset has been
explicitly designed in order to provide a quantitative
benchmark for the evaluation of theories of sentence
processing over a variety of well-studied phenom-
ena. We focus here on the RC items in the dataset.
The benchmark offers word-by-word RTs for 24
RC sets, comprising of lexically matched SRCs and
ORCs taken from a classic study in the literature
(Staub, 2010). Relevantly, the SAP data have already

2https://osf.io/b6rqh/

been used to probe the limited ability of expectation-
based metrics (e.g., surprisal) to account for the
relative difficulty of ORCs over SRCs in English.

3.2 Word-by-Word Tenure

We compute word-by-word Tenure values from
derivations built for each one of the RC sentences
in the benchmark. For each item, gold-standard
MG derivations are built following standard
generative assumptions for the main clause of
each sentence, and a wh-movement analysis for
the structure of RCs (Chomsky, 1977, see Figure
2). Then, derivations are annotated via Graf et al.
(2017)’s implementation of Stabler (2013)’s MG
parser.3 As discussed above, Tenure is computed as
Outdex (i)− Index (i) for each pronounced node
i in a tree (Figure 1a).

4 Model Fitting and Results

As a reminder, we want to probe whether word-by-
word Tenure improves model fit to the self-paced
RT data made available for English SRCs/ORCs in
the SAP (Huang et al., 2024) benchmark, beyond es-
tablished expectation-based predictors. Following
Huang et al. (2024), in this paper we present analy-

3https://github.com/CompLab-StonyBrook/mgproc
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Figure 2: Annotated derivation trees for one of the subject (a) and an object (b) RCs in the dataset, modeled according
to a wh-movement analysis of RCs.

ses using raw RTs, avoiding the logarithmic trans-
formation common in the self-paced reading litera-
ture.4 As Huang et al. (2024) argue, while this trans-
formation reduces the right skew of RTs collected
through self-paced reading, it does so by violating
some theoretical assumptions about the relationship
between RTs and prediction-based complexity met-
rics (e.g., surprisal, but also possibly Tenure).5

First, we fit a baseline frequentist linear mixed-
effects model to the RTs, with several (scaled)
lexical control predictors as computed by Huang
et al. (2024):

RT ∼WordPosition(i)

+logfreq(i)∗length(i)
+logfreq(i−1)∗length(i−1)
+logfreq(i−1)∗length(i−2)
+(1|participant)+(1|item)

4R scripts and data available at https://osf.io/8amqp/
5Analyses using log-transformed RTs are nonetheless

available in our analyses scripts.

These include the position of a word in a sentence,
its length and unigram frequency, and the inter-
action between the two. Predictors for the two
preceding words are also included to account for
spill-over effects common in self-paced reading
(Mitchell, 2018; Vasishth, 2006).

We use surprisal as our expectation-based metric
(Hale, 2006; Levy, 2008; Wilcox et al., 2023). We fit
two models adding to the baseline model specified
above surprisal values computed with an LSTM (Gu-
lordava, 2018) and with GPT-2 small (Radford et al.,
2019). Again, surprisal predictors are included both
at the current word and at the two preceding words.
We also include a random slope for surprisal by par-
ticipant. Finally, we fit two models adding word-by-
word Tenure (for the current word and the two pre-
ceding words) to the two surprisal models, including
additional random slopes for Tenure by participant.

We select the best fitting models using AIC
and BIC criteria (Akaike, 1973; Schwarz, 1978;
Chakrabarti and Ghosh, 2011). Consistently with
previous results, surprisal models improve fit over
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Figure 3: Estimates of coefficients for the best fitting
model (GTP Surprisal + Tenure).

the baseline model (Table 1), with the GPT-2
surprisal model performs better than the LSTM
model. Adding Tenure to the surprisal-only models
further improves fit for both the LSTM and GPT
models, showing the modeling advantage of taking
memory into account explicilty. The overall best
performing model was the GPT-surprisal + Tenure
model (Table 1), consistently with GPT-2 surprisal
providing a better fit than LSTM surprisal and with
the structural advantage provided by Tenure. In
particular, we found that Tenure of both the current
word and the preceding two words is associated
with significantly slower RTs independently of
surprisal (Table 2 and Figure 3).

df AIC BIC
Baseline 14 977122.5 977250.8
LSTM Surprisal 19 976309.1 976483.1
GPT Surprisal 19 976301.9 976475.9
LSTM Surprisal + Tenure 23 974174.8 974385.5
GPT Surprisal + Tenure 24 974106.3 974326.2

Table 1: Model Comparison.

5 Discussion

By combining a Minimalist grammar parser with a
cognitively grounded complexity metric, the model
adopted in this paper implements algorithmically
theories of sentence comprehension that explicitly
link comprehension difficulty to how building com-
plex hierarchical structure affects memory usage.
As discussed earlier in the paper, this approach has

been successful in capturing qualitative contrasts in
offline comprehension for an encouraging array of
sentence processing phenomena cross-linguistically.
Here, by leveraging the existing definition of Tenure,
we were able to extend the evaluation of this mod-
eling approach to quantitative word-by-word
measures, providing an explicit link to the processes
involved in online sentence comprehension.
Importantly, Tenure does not simply measure the
“raw” number of parse actions to estimate difficulty
(cf. Brennan et al., 2016; Stanojević et al., 2023). It
related effort to a notion of memory usage directly
related to how the mismatch between the structure
of the tree and the surface form of the string is
navigated by the parser. By taking derivational
steps seriously, Tenure ties effort to parse objects
that have to be maintained “active” during the parse
(e.g., partially hypothesized phrases/projections).

Our results show that predictors linking structure-
building operations to memory usage improve our
ability to model word-by-word RTs, beyond the
contribution of expectation-based surprisal mea-
sures — adding support to the cognitive relevance
of transparent structure-building measures. In par-
ticular, we found a significant positive correlation
between Tenure at the current word and RTs, as
well as strong effects of Tenure at the previous two
words. Lingering effects of Tenure at the preceding
words are compatible with known delays in RTs
measured via self-paced reading. Future work could
probe the plausibility of this hypothesis, and a more
subtle understanding of the link between Tenure
and online effort, by evaluating Tenure for similar
constructions over different kinds of behavioral
data (Schotter and Dillon, 2025; Boyce et al., 2020).

The recent development of broad coverage MG
parsers (Torr et al., 2019) might also allow for a
more fine-grained approach to the evaluation of
this model’s ability to capture the magnitude of
the effects under study. In particular, the two-steps
Bayesian approach to magnitude estimation
suggested by Van Schijndel and Linzen (2021)
and Huang et al. (2024) could help us leverage the
modeling advantages provided by a broad coverage
parser, while also retaining MGs’ granular view
into specific syntactic choices/details.

Similarly, building on previous offline MG
results, here we only focused on the SRC/ORC
asymmetry. A better understanding of the relevance
of this model to theories of sentence comprehension
will naturally come from evaluations over different
constructions and different languages. In fact, cross-
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RT
Predictors Estimate Std. Error df t value Pr(>|t|)
(Intercept) 404.178 5.359 45.273 75.423 <2e-16 ***
Tenure 2.920 1.327 3758.499 2.200 0.027899 *
Tenure i−1 10.907 1.507 3223.985 7.236 5.75e-13 ***
Tenure i−2 4.553 1.018 62441.736 4.475 7.65e-06 ***
Surprisal 13.675 1.924 9708.665 7.108 1.26e-12 ***
Surprisal i−1 12.603 1.762 10126.632 7.154 9.03e-13 ***
Surprisal i−2 2.656 1.861 59141.060 1.427 0.153489
Word Position -4.682 1.058 60334.657 -4.426 9.60e-06 ***
logfreq -1.782 2.102 37139.995 -0.848 0.396547
length 17.195 2.266 22649.688 7.588 3.38e-14 ***
logfreq i−1 -4.337 2.149 24284.605 -2.018 0.043568 *
length i−1 9.626 2.487 14971.417 3.871 0.000109 ***
logfreq i−2 -0.909 2.136 46859.397 -0.425 0.670483
length i−2 6.207 2.073 32905.438 2.994 0.002757 **
logfreq:length -2.488 1.470 52063.647 -1.693 0.090503 .
logfreq i−1:length i−1 -10.378 1.871 41785.471 -5.545 2.95e-08 ***
logfreq i−2:length i−2 -3.642 1.620 46877.483 -2.249 0.024533 *
∗∗∗p<0.001; ∗∗p<0.01; ∗p<0.05

Table 2: Lmer summary for the best fitting model (GTP Surprisal + Tenure).

linguistic comparison is central to the evaluation
of both structure-based and expectation-based
complexity metrics in cognitive modeling (Wilcox
et al., 2023; Kajikawa et al., 2024). As mentioned,
previous MG parsing work has proved successful
in capturing the subject advantage in RCs for
languages varying across several interesting
structural dimensions (e.g., head-directionality,
pre-nominal vs. post-nominal RCs, etc; Graf et al.,
2017; De Santo, 2020b; Fiorini et al., 2023, a.o.). An
investigation of this preference on cross-linguistic
RT dataset would thus be a promising next step for
the application of the MG model to online data.

For English specifically, the SAP benchmark of-
fers self-paced reading data for a variety of phe-
nomena beyond SRC/ORC contrasts (e.g., RC at-
tachment ambiguities). Most of these phenomena
involve ambiguity resolution strategies which have
been used to argue in favor of single-stage, predic-
tion based approaches — of which surprisal is one in-
stantiation (Hale, 2001; Levy, 2013; Hale, 2016). As
for the SRC advantage discussed in this paper how-
ever, surprisal has been shown unable to fully cap-
ture the magnitude of these effects within and across
constructions (Van Schijndel and Linzen, 2021;
Huang et al., 2024). Interesting, while this paper’s
model assumes a deterministic oracle and thus does
not factor in ambiguity resolution explicitly, it has

been shown to predict RC attachment preferences
purely based on structural complexity (Lee, 2018;
Lee and De Santo, 2022). More crucially, without
discarding the importance of expectation/prediction
in sentence comprehension, the explicit structure-
building mechanisms of the MG model give us a
way to implement alternative theories of ambiguity
resolution — for instance two-stage approaches that
consider the effort involved in structural reanalysis
(Frazier and Fodor, 1978; Gorrell et al., 1995; Sturt,
1997; Pritchett, 1988; Ozaki et al., 2024).

Relatedly, the linking theory implemented by
Tenure is distinct from proposals that argue for
expectation-based metrics modulated/informed
by syntactic structure (Demberg and Keller, 2008;
Roark et al., 2009; Oh et al., 2022; Arehalli et al.,
2022). As discussed, the framework described in
this paper does not just argue for the relevance
of syntactic structure, but for a notion of effort
grounded in the direct interaction of structure
building operations and memory. With this in mind,
the grammar formalism adopted here is compatible
with multiple ways to condition probability
distributions over structural representations (Hunter
and Dyer, 2013; Torr et al., 2019). Because of this,
the MG approach is also flexible enough to allow for
the exploration of potentially complex interactions
of memory, structure, and expectation beyond the

30



simple computation of structure-informed metrics
like surprisal (Futrell et al., 2020; Brennan et al.,
2020; Chen and Hale, 2021).

More generally, deeper insights into the contri-
bution of structure-building metrics to models of
sentence comprehension will come from a broader
comparison between Tenure and other memory-
based metrics (Kaplan, 1975; Pulman, 1986;
Kaplan, 2020; Gibson, 1998; Lewis et al., 2006;
Boston, 2012). For instance, an informative next
step in this enterprise would be to conduct an empir-
ical evaluation of the different predictions made by
Tenure and a complexity metric like Node Count,
which counts the number of syntactic operations in a
tree (Brennan et al., 2016; Nelson et al., 2017; Bren-
nan et al., 2020; Li and Hale, 2019; Stanojević et al.,
2023, 2021; Kajikawa et al., 2024). It would also be
fruitful to compare our results to measures of mem-
ory load relying less on rich structural information
(e.g., Dependency Locality Theory; Gibson, 1998).

Similarly, through the use of MGs this work has
committed explicitly to syntactic representations as
hypothesized by modern generative syntax. While
we made the case that the computation of particular
Tenure values is deeply tied to commitments
about the shape of a syntactic derivation and
the timing of how such a derivation is built, its
definition is conceptually independent of specific
representational/algorithmic choices. Therefore,
Tenure could be ideal for a comparison of the
behavioral predictions made by different (often
expressively equivalent) syntactic formalisms such
as, for instance, TAG and CCG (Demberg et al.,
2013; Stanojević et al., 2023, a.o.).

Relatedly, among this approach’s degrees of free-
dom is the tree-traversal strategy adopted by the
parser. This paper has followed the majority of of-
fline MG work in extracting Tenure by evaluating
the stack-usage of a top-down parser. Whether sim-
ilar, or better, modeling results could be derived via
different parsing strategies is thus an open question
(cf. Brennan et al., 2016; Stanojević et al., 2023).
In this sense, left-corner parsing algorithms have
been recently proposed for MGs, and have been
shown to correctly capture some interesting offline
processing contrasts (Hunter, 2019; Hunter et al.,
2019; Liu, 2024). Left-corner parsing’s combina-
tion of top-down prediction and bottom-up “greedy”
integration has also independently been argued to
be more plausible as a description of human com-
prehension processes (Resnik, 1992). Crucially, the
complex status of a parse item in Liu (2024)’s imple-

mentation of Hunter et al. (2019)’s left-corner MG
parser makes adapting a word-by-word definition of
Tenure non-trivial. Working out what the exact com-
putation of online Tenure over the stack items stored
by Hunter et al. (2019)’s parser would thus be the es-
sential next step to perform this type of comparisons.

Finally, the model’s sensitivity to fine-grained
grammatical assumptions implies that analytical
choices have a significant impact on the derived
Tenure values. Conscious of this feature of the
model, in this paper we have committed to one
syntactic analysis for the main construction of inter-
est. However, previous offline work has shown that
alternative analyses of RCs might result in different
behavioral predictions, especially when evaluated
cross-linguistically (Graf et al., 2017; De Santo
and Shafiei, 2019; Lee and De Santo, 2022). In this
sense, the granularity of online data and the clear
linking hypothesis implemented by the MG model
could contribute to psycholinguistic data (and theo-
ries) bringing insights into the evaluation of analyses
in theoretical syntax (Rambow and Joshi, 1994;
Kobele et al., 2013; De Santo and Lee, 2022; Prasad
and Linzen, 2024). Future work could then exploit
online behavioral data to distinguish competing
syntactic proposals based on their psycholinguistic
predictions, thus clarifying how/which aspects of
sentence structure modulate processing difficulty.

6 Conclusion

Extending previous work on offline contrasts,
this paper provides a first evaluation of a parser
for Minimalist grammars and a memory-based
complexity metric over word-by-word behavioral
data. While previous work in this domain evaluated
offline behavior qualitatively, we provide quan-
titative evidence for the success of the approach
by showing that the MG-based metric Tenure
is a strong predictor of SRC/ORC RTs from a
large scale behavioral dataset, independently of
expectation-based surprisal. While many questions
remain open, these results strengthen previous of-
fline work arguing for relevance of the combination
of MGs and Tenure in investigating the interaction
of generative syntax and psycholinguistic results.
Furthermore, they provide additional support to
a growing body of computational modeling work
arguing for the role of structure-building operations
in developing plausible cognitive models of human
sentence comprehension.
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Abstract

Comedy serves as a profound reflection of the
times we live in and is a staple element of hu-
man interactions. In light of the widespread
adoption of Large Language Models (LLMs),
the intersection of humor and AI has become
no laughing matter. Advancements in the nat-
uralness of human-computer interaction corre-
lates with improvements in AI systems’ abil-
ities to understand humor. In this study, we
assess the ability of models in accurately identi-
fying humorous quotes from a stand-up comedy
transcript. Stand-up comedy’s unique comedic
narratives make it an ideal dataset to improve
the overall naturalness of comedic understand-
ing. We propose a novel humor detection met-
ric designed to evaluate LLMs amongst vari-
ous prompts on their capability to extract hu-
morous punchlines. The metric has a mod-
ular structure that offers three different scor-
ing methods – fuzzy string matching, sentence
embedding, and subspace similarity – to pro-
vide an overarching assessment of a model’s
performance. The model’s results are com-
pared against those of human evaluators on the
same task. Our metric reveals that regardless
of prompt engineering, leading models, Chat-
GPT, Claude, and DeepSeek, achieve scores
of at most 51% in humor detection. Notably,
this performance surpasses that of humans who
achieve a score of 41%. The analysis of hu-
man evaluators and LLMs reveals variability
in agreement, highlighting the subjectivity in-
herent in humor and the complexities involved
in extracting humorous quotes from live per-
formance transcripts. Code available at https:
//github.com/swaggirl9000/humor.

1 Introduction

Humor plays a significant role in our daily lives and
is a fundamental part of human interaction. Despite
the rapid advancements in artificial intelligence and
human-computer interactions, the field of compu-
tational humor lags behind. Improvement in the
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Figure 1: We propose a humor detection metric with
three alternative scoring modules – fuzzy string match-
ing, vector embedding, subspace similarity – and in-
tegrate them to assess a model’s predictions with the
ground truth, the stand-up comedy quotes that made the
audience laugh.

ability of machines to understand and generate hu-
mor has the potential to enhance the naturalness of
exchanges with Large Language Models (LLMs).
Prior research has demonstrated that humans inter-
act with the personalities of computers similarly to
the ways they respond to other humans. As AI sys-
tems continue to integrate into e-commerce, virtual
reality, and take on personal assistant roles, the ne-
cessity for these systems to exhibit a certain level of
social intelligence, which goes hand-in-hand with
humor, becomes essential (Binsted et al., 2006).

The tasks of humor detection, evaluation, and
generation are consistently a challenge for AI due
to humor’s reliance on irony, sarcasm, and cultural
nuances. Research shows that models trained on
diverse datasets, ranging from humorous tweets to
funny news headlines to puns, can achieve strong
performance on tasks. However, they often struggle
with out-of-domain scenarios (Baranov et al., 2023)
and tend to over rely on stylistic features such as
punctuation and question words, rather than a deep
semantic understanding (Lima Inácio et al., 2023).

Traditionally, research on humor detection was
approached through binary classification tasks, us-
ing standalone jokes (Mihalcea and Strapparava,
2005) or occasional jokes within longer presenta-
tions (Hasan et al., 2019). In this paper, we propose
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a shift towards using datasets that capture humor
within a narrative structure, specifically focusing
on stand-up comedy transcripts for humor detec-
tion (Mittal et al., 2021; Turano and Strapparava,
2022). Stand-up comedy is a performance where
comedians deliver jokes and funny monologues
directly to a live audience. Regardless of the di-
versity in comedic styles, the overarching goal of
any comedian remains consistent – to maximize
audience laughter – creating a valuable resource for
the perception of everyday humor (Daboin, 2022).
In essence, stand-up comedy serves as both a data
source and a pedagogical example for teaching AI
the mechanics of humor, especially when the goal
is to improve a model’s ability to communicate in
a way that feels intuitive and relatable to humans.

LLMs demonstrate notable proficiency across a
broad spectrum of tasks, but their performance can
fluctuate based on the task’s nature. By develop-
ing a task-specific metric that focuses on humor
detection, we offer a means of evaluation for a nu-
anced domain like comedy. The simplest method
for measuring the capability of a model would be
by counting the number of perfect matches. Taking
subjectivity into consideration, it is unreasonable to
expect perfection, even for humans. Thus, we offer
a metric that provides a fair quantitative assessment
that encompasses the subjectivity of humor with
the probabilistic nature of LLMs.

Following Figure 1, our metric assesses a
model’s performance in humor detection in zero-
shot prompting scenarios by comparing the sim-
ilarity of predicted humorous quotes against the
ground truth – the punchlines that elicited laughter
from the audience. The model operates in a zero-
shot setting, meaning it is not provided with exam-
ples or prior instructions before prompting. The
metric offers a modularized approach with three
different ways to output a score.

First, the most straightforward approach uses
fuzzy string matching to compare the similarity of
two lists of strings (Snasel et al., 2009), where each
list consists of humorous quotes from a stand-up
comedian’s transcript. However, this quick, effi-
cient method does not account for semantics and
context, making it too punitive if a model makes a
slight mistake when providing the quote.

Second, the vector embedding module captures
semantic similarity between the vector represen-
tations of sentences, facilitating a more flexible
assessment that emphasizes the underlying mean-
ings of quotes rather than a strict word-for-word

correspondence. (Reimers and Gurevych, 2019).
Third, while fuzzy string matching and vector

similarities offer focused insights on a task, the last
module provides a score that reflects the overall ca-
pability of a model in humor detection tasks using
subspace representations. A subspace is generated
for the model after it is prompted with several varia-
tions of an instruction and another subspace is gen-
erated for the ground truth. The alignment between
these two subspaces reflects the structural similar-
ity between the model’s outputs and the ground
truth for the transcript in a more general way.

By proposing three distinct scoring modules for
assessment, our metric acknowledges the subjectiv-
ity of the task, granting the evaluator the flexibility
to decide how punitive they want to be towards a
model’s responses. Fuzzy string matching offers a
direct evaluation focusing on precision. Whereas,
sentence embeddings are particularly useful when
the model generates both a quote and accompany-
ing explanation, allowing for an evaluation of con-
textual understanding and semantics. Subspaces
introduce a novel approach that captures a model’s
overall ability, considering multiple possible re-
sponses for the task in a single score. Balancing
these methods gives a well-rounded view of per-
formance, ensuring that both accuracy and deeper
semantic understanding are taken into account.

We employ this metric to evaluate the efficacy
of several different prompts and various language
models. Additionally, we conduct a human evalua-
tion on the same dataset to provide a reliable com-
parison for model performance. The human-based
assessment accounts for the inherent subjectivity
of humor, offering a reliable context to gauge the
relative performance of the problem at hand.

The main contributions of this paper are:

1. Introduce a flexible metric that is designed
to consider the subjectivity of humor detec-
tion tasks, providing a fair measure for the
performance of LLMs;

2. Assess the metric across various models and
multiple prompt variations, applied to stand-
up comedy transcripts;

3. Provide a quantitative assessment of human
performance on the same humor detection
task, alongside a calculation of agreement ra-
tios between human and LLM-based humor
detection, offering a basis for comparison.

37



LLM

Prompt
+ Transcript

Input

TranscriptAudio

Forced 

Alignment

Time
stamps

Sentences

Finding Ground Truth

Ground 
Truth

Ground 
Truth

Ground 
Truth

0 if 
unmatched

Max Score

Max Score
Take

average
for

final score

Fuzzy String Matching 
OR

Embedding Vector
Subspace 
Similarity 

Model’s Output M

Predicted 
Quote

Predicted 
Quote

Predicted 
Quote

Ground Truth G

Ground 
Truth

Ground 
Truth

Ground 
Truth

Scoring
Laughter 

Time
stamps

Laughter

Detection Model

Figure 2: The humor detection metric evaluates a model’s ability to identify funny quotes by comparing its outputs
against the ground truth found through forced alignment and laughter detection. The metric offers three alternative
scoring modules: 1) fuzzy string matching that assigns a score based on text similarity, 2) vector embeddings that
compare semantic similarities, and 3) subspace similarity that analyzes the underlying patterns of a model on the
task. Fuzzy string matching and the vector embedding modules operate under a similar scoring procedure, where
the predicted quote is matched with ground truth quotes and assigned a similarity score, with unmatched quotes
receiving a score of 0, and the average representing the final score. We integrate the metrics to assess a model’s
predictions with the the stand-up comedy quotes that made the audience laugh. Only one of these three modules is
selected and used to generate the final metric score for evaluation.

2 Related Work

2.1 Computational Humor and Humor
Theory

Humor is a widely recognized but conceptually
complex phenomenon, with psychologists disagree-
ing on its precise definition. It encompasses three
distinct constructs: sense of humor (an individual’s
tendency to laugh or amuse others), comedy (a
stimulus that elicits laughter and amusement), and
humor appreciation (the psychological response
to humor). Collectively, these constructs form
what we refer to as humor. Additionally, some
researched describe humor as a subjective psycho-
logical reaction to comedic stimuli (Warren et al.,
2021). Through a linguistic lens, three widely rec-
ognized theories explain the phenomena of humor:
the Superiority Theory, humor arises from feeling
superior to others; the Relief Theory, humor re-
leases psychological tension; and the Incongruity
Theory, humor stems from the sudden violation of
expectations (Morreall, 2020). A common task in
computational humor is humor detection, identify-
ing whether a given text or media is intended to be
funny. Bertero and Fung (2016) explore various

classification algorithms to detect punchlines in the
TV sitcom The Big Bang Theory and Purandare
and Litman (2006) examine humor recognition in
the TV show Friends, employing acoustic-prosodic
and linguistic features for analysis. However, both
studies rely on artificial laughter rather than authen-
tic audience reactions. Platow et al. (2005) argues
that canned laughter functions as a prompt to en-
gage viewers and bolster weaker jokes, while real
audience laughter serves as a more reliable indica-
tor of natural humor, providing an accurate reflec-
tion of comedic effectiveness. The UR-FUNNY
dataset avoids artificial laughter by using TED talks
in order to provide an authentic representation of
humor (Hasan et al., 2019). Stand-up comedy, with
its immediate audience feedback, offers a unique
advantage for humor research, as it mirrors the
Incongruity Theory where comedians create an ex-
pectation through a set-up and subvert it with the
punchline (Amin and Burghardt, 2020). Mittal
et al. (2021)’s Open Mic dataset of stand-up per-
formances was used to train models to assign a
"funniness" score to script segments validated by
human annotators.
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2.2 LLM’s in Humor Detection

In computational humor, there is a growing inter-
est in evaluating the humor detection capabilities
of LLMs. Research in this area has explored the
ability of a model to assess the funniness of jokes,
with findings indicating that ChatGPT can recog-
nize humor when prompted, though its evaluation
was limited to a set of top jokes (Jentzsch and Ker-
sting, 2023). Subsequent tests with a larger set of
comedic content showed that zero-shot prompting
resulted in ChatGPT’s humor ratings closely align-
ing with those of human evaluators (Góes et al.,
2023). Baranov et al. (2023) examined humor de-
tection across various comedic datasets using both
fine-tuned models and two LLMs, ChatGPT and
Flan-UL2, as zero-shot classifiers. While these
models achieved high results, they did not outper-
form fine-tuned models. Crowd Score was intro-
duced to classify jokes using LLMs as AI judges,
by providing a personality profile with zero-shot
prompting (Goes et al., 2022). To the best of our
knowledge, there has been no research focusing
on statistical metrics for evaluating the accuracy of
zero-shot settings in LLMs for detecting humor.

2.3 Subspaces in NLP

Using word subspaces for text representation and
the mutual subspace method framework for text
classification extends on using word embeddings
like word2vec (Shimomoto et al., 2018). While
embeddings represent word semantics as vectors,
word subspaces capture the intrinsic variability of
features in a set of word vectors in order to preserve
semantic relationships. Subspace representations
leverage the geometric structure of embeddings to
address the challenge of effective text classification
with limited training data (Shimomoto et al., 2024).

3 Methodology

In this section, we will explain our proposed met-
ric and its mathematical details. It is crucial to
consider a metric that can evaluate the model’s un-
derstanding of what makes a text humorous, despite
the broad and subjective nature of humor.

3.1 Humor Detection Metric

Our metric utilizes three alternative approaches for
scoring that capture the similarity of the model’s
answers to the ground truth. As shown in Figure 2,
the model’s score is computed in the following:

1. The model is prompted to extract humorous
quotes from a stand-up comedian’s transcript.
These quotes are stored as a list of strings,
with M = {m1, . . . ,mn} being the set of
quotes predicted to be funny by the model for
a specific transcript.

2. The ground truth is determined from
the transcript using a laughter detection
model (Gillick, 2017) that extracts laughter
time stamps from the accompanying audio
recording (Mittal et al., 2021). Forced align-
ment allows for a mapping between sentences
in the transcript and laughter time frames.
Thus, let G = {g1, . . . , gk} be the set of
ground truths for the same transcript.

3. We calculate how close M is to G by offering
a scoring module that allows for the use of
either fuzzy string matching, sentence embed-
dings, or subspace similarity.

The following contain explanations of each scor-
ing module.

3.2 Fuzzy String Matching Module

Fuzzy string matching provides a straightforward
approach for comparing text using Levenshtein dis-
tance (Levenshtein, 1966). For a given transcript, a
similarity score, sfuzzy, between every model out-
put and ground truth is stored in a similarity matrix
Sfuzzy ∈ [0, 1]n×k:

Sfuzzy
ij = sfuzzy(mi, gj). (1)

Ideally, it is clear that the perfect score resembles
an identity matrix, but in practice a ground truth
can be matched with more than one prediction or
to none. Therefore, the highest similarity score is
selected for each ground truth to form a matrix that
holds the best matches. In order to find the closest
match, the maximum value is taken:

tj = max
mi∈M

Sfuzzy
ij . (2)

Notice that if a ground truth was not matched
to any model output, tj is automatically assigned
a score of 0. In the case of overgenerating quotes,
which can be used as a tactic to exploit the metric,
a penalty p is applied if the number of predictions
n exceeds the number of ground truths k:

p = max(n− k, 0). (3)
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The final score is adjusted with the penalty and a
scaling factor, α = 0.1, and the average score is
computed for the transcript:

scorefuzzy = max

(
1

k

k∑

j=1

tj − αp, 0

)
. (4)

3.3 Vector Embedding Module

In the second module, we switch to using sentence
embeddings that better reflect context and meaning.
In some cases, LLMs may generate non-compliant
responses in which the output would be an explana-
tion of the humor rather than a direct quote. Since
fuzzy string matching purely focuses on character-
level changes, like insertions or deletions, it fails to
capture the semantic nuances, and therefore would
heavily penalize the model’s predictions. Yuan et al.
(2021) introduced BARTSCORE, a metric to eval-
uate the accuracy and effectiveness of generated
text using BART, an encoder-decoder based model.
We take a similar approach by using an embedding
model from Sentence Transformers (Reimers and
Gurevych, 2019), to apply a more flexible measure
of similarity emphasizing the essence of a text.

The similarity score, sembed, is now calculated
using vectors of the quotes from M and G:

Sembed
ij = sembed(mi,gj), (5)

where mi and gj are the vector representations of
the model’s predicted quote and ground truth quote
that are currently being evaluated. The penalty and
average are handled the same way as in the fuzzy
string matching module to produce scoreembed.

3.4 Subspace Similarity Module

Fuzzy string matching and sentence embeddings
allow us to evaluate each LLM from its output
strings, but we can also conduct a deeper analy-
sis by evaluating the LLMs feature vector space
directly. With that in mind, we leverage the struc-
tural similarity between two subspaces (Fukui
and Maki, 2015) that can take into account the
structure of the LLM feature vectors using mul-
tiple variations of instructions as input and the
accompanying output for a transcript. Let M =[
m1 m2 . . . mn

]
represent the collection of

model outputs and G =
[
g1 g2 . . . gk

]
rep-

resent the ground truths for each variation of in-
struction for a transcript. By applying PCA to the
set of vectors, M and G, respectively, we obtain

the bases, SM and SG ∈ Rd×q of subspaces, SM
and SG, where d is the dimension of the feature
vectors and q is the dimension of the subspaces.
We calculate the SVD, SM

⊤SG = UΣV⊤, where
diag(Σ) = (κ1, . . . , κq), κ1 ≥ . . . ≥ κq, rep-
resents the set of singular values, which are the
cosines of the canonical angles θi. The similarity
can then be defined

scoresubspace =
1

r

r∑

i=1

κ2i , (6)

where r is the number of canonical angles used for
score calculation.

By using subspaces, our metric allows us to sim-
ulate variations of the prompt while reducing pe-
nalization for minor variations, offering a compre-
hensive reflection of the model’s performance.

4 Experiments

In this section, we evaluate several LLMs using the
proposed metric, apply prompt engineering tech-
niques to optimize model performance, and con-
duct a human-machine agreement task.

4.1 Experimental Settings

We use the Open Mic dataset (Mittal et al., 2021),
which provides both audio and transcripts for sev-
eral stand-up performances. To create a fair com-
parison, we randomly selected 51 transcripts with
an average word length of 270 words and length
of 106 seconds. We prompt each model with a
transcript and the following instruction:

Prompt 1 (Standard Humor Detection Prompt)
Extract the key humorous lines and punchlines
for this stand-up comedy transcript. Focus on the
quotes highlighting the main comedic moments.
List of quotes:

The model outputs a list of quotes that it found
humorous. All experiments ran in less than a day.

4.2 Model Comparison

We evaluate various models using Prompt 1 to gain
deeper insight into our metric’s assessments and
explore the ability of LLMs in detecting humor. We
use the instruct versions of Google’s Gemma with
2-billion parameters, Google’s Gemma 2 with 9-
billion parameters, Meta’s Llama 3.1 with 8-billion
parameters, and Microsoft’s Phi 3-Mini with 3.8-
billion parameters. We continue experimentation
with OpenAI’s ChatGPT-4o, Anthropic’s Claude
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Figure 3: Distribution of scores with fuzzy string match-
ing across several LLMs among 51 transcripts.

Model Fuzzy Embed Sub
Gemma 2b-it 30.1 30.0 55.7

Gemma 2 9b-it 35.2 35.9 35.9
Phi 3-Mini 3.8b-it 26.4 25.8 33.6

Llama 3 8b-it 31.9 33.8 38.4
ChatGPT-4o 48.9 25.4 –

Claude 3.5 Sonnet 43.4 46.9 –
DeepSeek-V3 46 51.6 –

Table 1: Scores (%) across models against all three
metric modules using 51 transcripts.

3.5 Sonnet 1, and DeepSeek-V3 2 known for their
advanced ability to engage in human-like interac-
tions. These models have been employed in var-
ious studies, particularly in joke detection, gen-
eration, and evaluation using many-shot prompt-
ing (Jentzsch and Kersting, 2023; DeepSeek-AI
et al., 2024). Figure 3 shows the average scores for
each model found with fuzzy string matching and
Table 1 shows results with all modules. Interest-
ingly, ChatGPT performs well using fuzzy string
matching but exhibits a significant decline in per-
formance with semantic similarity metrics. This
discrepancy suggests that while ChatGPT excels
in identifying quotes with high lexical similarity, it
struggles to capture deeper semantic relationships.

Given Gemma 2’s high performance, we fur-
ther evaluate the model across varying model sizes
among all scoring modules. The results in Figure 4
suggest a potential relationship between the nature
of the task and the architecture of the model. In
general, models with higher parameter configura-
tions tend to succeed in logical tasks, as opposed

1Experiments were conducted in December 2024
2Experiment was conducted in January 2025

Figure 4: Evaluation of the Gemma 2-it family among
model sizes using all three modules.

to subjective tasks (Chen and Varoquaux, 2024).
Additionally, the 27-b parameter model exhibited
more instances of misaligned outputs to the prompt,
where it not only listed a quote but provided an ex-
planation of why the quote was funny. Thus, this
difficulty of capturing humor’s nuances may ac-
count for the model’s low scores.

4.3 Prompt Engineering

A model’s performance on a task can be heavily
dependent on the input they receive. Prompt engi-
neering focuses on crafting inputs to elicit a desired
response. For humor detection, we focus on max-
imizing the model’s ability to retrieve humorous
quotes and measure the performance throughout
various prompt designs. All evaluations were done
using the fuzzy string matching module.

In order to generate a list of prompts, we pro-
vided ChatGPT with a transcript and ground truth
and asked, “If I wanted a model to extract this list
of quotes from the following stand-up comedy tran-
script, what would the best instruction be?”. The
results are shown at Prompts 2, 3 and 4.

Prompt 2 When performed in front of a live audi-
ence, which jokes do you think made the audience
laugh?

Prompt 3 What are the funniest punchlines from
the transcript?

Prompt 4 Analyze the transcript and extract the
quotes that are most likely to have made the audi-
ence laugh.

An assessment of Gemma 2b-instruct can be
seen in Table 2. Prompt 2 received the highest
score and the remaining prompts had no positive
change in performance.
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A popular technique for prompt engineering is
The Persona Pattern, where the model is given a
role that guides it into focusing on specific details
when generating an output (White et al., 2023). We
sought to examine how the scores of Gemma 2b-
instruct would be affected across personas. First,
the model was assigned three distinct roles: a come-
dian, a comedy fan, and a comedy critic. The same
instructional prompt (5) was employed across all
roles. Table 2 indicates that personas do not make
relevant changes to the scores.

Prompt 5 (Persona Pattern Prompt) Pretend
that you are a [insert role] reading the following
stand-up comedy transcript.

Although previous persona adoption showed no
improvement, Goes et al. (2022)’s success in evalu-
ating jokes with roles that specialize in categories
of humor inspired a similar approach in this study.
We instructed Gemma 2 9b-instruct to embody an
individual who enjoys a specific type of humor
following the template at Prompt 6. However, as
seen in Table 3, the prompt with no specialization
received the highest score, suggesting that humor-
specialized prompts do not enhance performance.

Prompt 6 (Humor Preference Prompt) You are
a person who enjoys [insert humor type] humor.

We prompt the model with the comedian whose
transcript it was analyzing. This was implemented
using Gemma 2b-instruct and ChatGPT-4o, which
has previously showed the capability for celebrity
impersonation (Yokoyama et al., 2024). Despite
earlier success in mimicking famous individuals,
Table 4 shows no improvements in humor detection,
despite the comedians being quite well known.

Prompt 7 (Audience Demographic Prompt)
Pretend you are a [insert gender/race/age].

Prompt engineering has been used to target spe-
cific audience demographics (Choi et al., 2024). In
this study, we assign Gemma 2 with varying race,
ages, and gender to investigate if scores change
based on demographics. We assign a race of either
Caucasian/White, Black/African American, His-
panic/Latino, or Asian. We chose the age ranges of
teenager (13-18 years), young adult (18-34 years),
adult (35-64 years), and elderly (65+). Lastly, we
use a female or male persona. In Table 5, no spe-
cific demographic yields improvement compared to
the baseline, but the young adult persona resulted
in the closest performance, suggesting a marginal
alignment with the model’s inherent capabilities.

Prompt Engineering
Original Prompt 1 Prompt 2 Prompt 3
30.1% 27.4% 31.2% 28%

Persona Prompts
Original Comedian Fan Critic
30.1% 28.7% 27.9% 30.5%

Table 2: Average scores found using fuzzy string mod-
ule for prompt engineering for Gemma 2b-instruct.

Humor Type Prompt
Original Aggressive Dark Deprecating
35.2% 32.7% 31.2% 32.0%

Table 3: Average scores found using fuzzy string mod-
ule for different humor types as personas for Gemma 2
9b-instruct.

Stand-up Comedian Persona
ChatGPT-4o Gemma 2b-instruct

Original 50.3% 27.1%
Persona 45.2% 26.0%

Table 4: Prompt engineering average scores using fuzzy
string module for ChatGPT-4o and Gemma 2b-instruct
when taking the role of the comedian whose transcript
it was analyzing.

4.4 Human-Machine Agreement

Human evaluation remains one of the most valuable
methods for assessing LLM performance, espe-
cially when examining a subjective output like hu-
mor. Thus, we asked 11 participants to perform the
same task as the models on 6 transcripts from well-
known comedians. The evaluators were naive raters
across various cultural backgrounds, all within an
age range of 20 to 30 years.

Following the approach of Hada et al. (2024), we
compute the agreement between evaluators using
Percentage Agreement (PA). Each person received
the 6 transcripts, split into sentences, and was asked
to mark each as funny or not. The scores in Ta-
ble 7 indicate that humans achieved a relatively
high PA across all transcripts, with an average of
86.7%. Even though participants were generally
able to identify the same quotes, the absence of a
perfect consensus emphasizes the subjectivity of
the task. It is important to note that the PA could be
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Race
None White Black Hispanic Asian
35.2% 31.1% 28.7% 30% 26.9%

Age
None Teen YA Adult Elderly
35.2% 32.8% 34.2% 31.7% 28.7%

Gender
None Woman Man
35.2% 31.9% 33.3%

Table 5: Average scores found using fuzzy string mod-
ule for audience demographic prompt for Gemma 2b-
instruct.

Model %
Gemma 2b-instruct 68.8

Gemma 2 9b-instruct 68.8
Llama 3 8b-instruct 61.1

Phi3-Mini 3.8b-instruct 66.9
ChatGPT-4o 28.7

Claude 3.5 Sonnet 65.0
DeepSeek-V3 58.9

Average 59.9

Table 6: Agreement scores between human evaluators
and LLMs.

influenced by similar age ranges, leading to shared
cultural references and senses of humor, potentially
narrowing the diversity of interpretations.

We use the fuzzy string matching module to eval-
uate human answers against the ground truth. This
revealed that humans receive a score of 40.7%. In-
terestingly, leading models ChatGPT, Claude, and
DeepSeek, when measured with the same mod-
ule, outperform humans. This disparity may arise
because LLMs are inherently optimized for text-
based tasks, focusing on linguistic and semantic

Transcript %
Ali Wong 83.7

Anthony Jeselnik 90.1
Hasan Minhaj 85.4
Jimmy Yang 87.0

Joe List 88.5
John Mulaney 85.7

Average 86.7

Table 7: Agreement scores between the human evalua-
tors on a specific comedian’s transcript.

cues without needing situational context. Mo-
hamed and Bnini (2020) argues that humor in stand-
up comedy often stems from incongruity, relying
less on a performer’s stage persona and more on
linguistic mechanisms. In the absence of theatrical
embellishments, models excel at language-centric
tasks and are particularly adept at identifying puns
and wordplay. In contrast, humans often rely on
elements such as delivery, tone, and audience reac-
tions, which are absent in written transcripts, po-
tentially limiting their ability on the task. We hy-
pothesize that the scores for humans may differ if
the evaluators were tasked with focusing on textual
properties rather than general context.

The human-machine agreement rate between
each model and humans was found with PA. For
humans, a quote was funny if majority of raters
voted on it. The scores can be found in Table 6.

Gemma 1 and 2 have the highest agreement rates,
meaning that humans and these models agreed most
on the funniness of a quote. The average agreement
rate reaches 59.9%, suggesting that while there is
a notable level of alignment in humor detection,
pinpointing the same quotes proves to be difficult.
It is interesting to note that Gemma 2 and humans
received similar scores with the metric’s evaluation,
suggesting a high level of similarity in how the
model and humans assessed humor in a text-based
format. Despite receiving a high score with the
metric, ChatGPT has the lowest agreement rate,
demonstrating that the agreement rate and metric
scores do not have to match. ChatGPT’s ability
surpassing humans on the task is unrelated to the
agreement rate.

5 Conclusion

In this work, we introduce a novel humor detection
metric designed to score a model’s output in rela-
tion to the ground truth of a text. The metric uses a
scoring module in which the model can be evalu-
ated using fuzzy string matching, sentence embed-
dings, or subspace similarity. We use a stand-up
comedy dataset that offers unique narratives crafted
with punchlines to maximize audience laughter.
The ground truth is derived from laughter during
the performance in which the entire atmosphere is
conducive to comedy, emphasizing the limitations
of text-based analysis. The task of identifying hu-
mor in a transcript appears to be a challenge, with
even leading models, such as ChatGPT, Claude,
and DeepSeek, barely receiving scores over 50%.

43



However, this difficulty is also evident among hu-
mans, who only received a score of 40.7% when
assessed with the metric, revealing that leading
models can outperform humans on the task.

In the future, we aim to apply the metric to eval-
uate a model’s predicted quotes in a format distinct
from text. Stand-up comedy is heavily influenced
by elements not captured in written transcripts. We
hypothesize that if a model were to extract quotes
from a performance with muted laughter, the nature
of the output would differ substantially. Moreover,
this approach raises questions about the perception
of humor among humans when they view stand-up
without background laughter. By exploring live
comedy performances, we hope to deploy our met-
ric for humor detection on stand-up comedy videos.

6 Limitations

This study presents some limitations regarding the
calculation of ground truth and the nature of humor
analysis. First, the ground truth is derived from
audio recordings where laughter is marked using
timestamps. Since we assume that the sentence
preceding the laughter is the humorous one, there
is a possibility that the most humorous part of the
joke was not accurately captured. Although we
accounted for potential delays in laughter, some re-
actions may have been misattributed. Second, the
ground truth does not differentiate between vary-
ing magnitudes of laughter. We used a laughter
detection model with a minimum laughter length
of 0.2 seconds and a minimum probability thresh-
old of 0.5 (default values) (Gillick, 2017), which
may have resulted in some laughter being missed.
Thus, jokes that elicited subtler audience reactions
might not have been accounted for. Lastly, our
study relies on a text-based analysis of humor,
which is a clear limitation when evaluating per-
formances originally designed for live delivery. Fu-
ture research could explore how incorporating non-
textual elements—such as tone, timing, and body
language—affects humor perception for both hu-
man evaluators and language models.

7 Ethical Statement

In this work, we use stand-up comedy audio record-
ings and transcripts, which may contain humor that
some may find offensive or politically incorrect.
The content was analyzed solely for research pur-
poses, without endorsement of any particular view-
point.
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Abstract

We investigate the performance of state-of-
the-art (SotA) neural grammar induction (GI)
models on a morphemically tokenised English
dataset based on the CHILDES treebank (Pearl
and Sprouse, 2013). Using implementations
from Yang et al. (2021b), we train models and
evaluate them with the standard F1 score. We
introduce novel evaluation metrics—depth-of-
morpheme and sibling-of-morpheme—which
measure phenomena around bound morpheme
attachment. Our results reveal that models with
the highest F1 scores do not necessarily induce
linguistically plausible structures for bound
morpheme attachment, highlighting a key chal-
lenge for cognitively plausible GI.

1 Introduction

Functional morphemes are a key focus of cur-
rent generative research in First Language Acquisi-
tion (FLA) due to their role in shaping the overall
structure of language (Guasti, 2017; Dye et al.,
2018; Biberauer, 2019). The computational task of
grammar induction (GI) takes as input a corpus of
unlabelled sentences and outputs the predicted hier-
archical structure for these sentences based purely
on the latent statistics of the corpus; see §2.2 for
an overview of GI and Figure 3 for an example
of induced structures. GI thus provides a lower
bound on the types of grammatical structures that
can be inferred from linguistic signal alone, partic-
ularly when appropriate acquisitional metrics are
employed, and recent advances in GI (Kim et al.,
2019) necessitate a reevaluation of its performance
in the context of FLA. This paper is concerned with
bridging the gap between the state-of-the-art (SotA)
in GI and in FLA by evaluating the performance
of neural GI models on morphemically tokenised
English child-directed speech (CDS).

To provide a more cognitively realistic setup (see
§3) we propose a modification to the input of
SotA neural GI systems: we only use CDS, which

we morphemically tokenise (see §3.2 and §3.3)
in order to reflect the salience of functional mor-
phemes in FLA (Shi, 2013). We select SotA neu-
ral grammar induction models: Compound Prob-
abilistic Context-Free Grammar (C-PCFG; Kim
et al., 2019), Neural PCFG (N-PCFG; Kim et al.,
2019), and Tensor Decomposition PCFG (TN-
PCFG; Yang et al., 2021b).

We evaluate the models using the standard mea-
sure – F1 score. Furthermore, we propose two
original evaluation metrics—depth-of-morpheme
and sibling-of-morpheme—specific to evaluating
the attachment of functional morphemes (see §4.1).
Our original evaluation metrics reveal that the mod-
els with highest F1 do not necessarily induce the
most linguistically plausible structures.

2 Background

2.1 Functional morphemes

The distinction between lexical and functional
items is fundamental in the study of human lan-
guage structure (Dye et al., 2018). Functional
items encode grammatically salient information
and serve as the locus for the grammatical organisa-
tion of language, as per the Borer-Chomsky Conjec-
ture (Borer, 1984; Baker, 2008). During the initial
focus on lexical items exhibited in FLA (Brown,
1973; Shi and Werker, 2003), functional items serve
as high-frequency “edge elements”, which aid in
segmentation of language input and in identifying
the category of the lexical item they occupy pre-
dictable positions in relation to (Mintz, 2013; Biber-
auer, 2019). Thus, for example, the consistently sig-
nals the left-edge of a (definite) noun phrase while
-ed consistently signals the right edge of a (past-
tense) lexical verb. The edge significance approach
is considered SotA in FLA (see i.a. Christophe et al.
(2008) and Dye et al. (2018) for further discussion).
By tokenising bound functional morphemes (see
§3.3), we reflect their salience in FLA.
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Inflectional morphology, the productive combi-
nation of lexical and functional items, starts to
emerge in child-produced speech in stages related
to the overall vocabulary size and mean length of
utternace (MLU) (Brown, 1973; Devescovi et al.;
Ravid et al., 2020). English is a quite strongly iso-
lating language, so most functional items appear
as free morphemes (separate words), and there are
few bound functional morphemes, which appear as
affixes (see §3.3). In GI systems the bound func-
tional morphemes are ignored because tokens are
treated as atomic units. Our approach—morphemic
tokenisation—addresses the loss of “edge” infor-
mation that follows from this practice by splitting,
for example, runs into the lemma run and the bound
functional morpheme -s before training. This al-
lows the system to learn the grammatical rules gov-
erning bound morphemes, which play a crucial role
in syntax.

2.2 Neural grammar induction
Grammar induction (GI) is the task of finding the
latent structure of a natural language, a grammar,
based on a set of raw sentences from the language,
a corpus. Most statistical attempts at GI rely on a
sequence of POS tags as input (Carroll and Char-
niak, 1992; Klein, 2005; Perfors et al., 2011), and
attempts to use raw text underperform (Klein and
Manning, 2004). Using POS tags (or other deriva-
tives of raw text) is unrealistic from an FLA point
of view because it postulates the existence of a
standalone POS induction system. Neural systems
do not require such modification of the input and
achieve SotA results (Kim et al., 2019).

The general principle in neural grammar in-
duction systems is to parametrise probabilities
of (phrase-structure) rules with neural networks.
Dyer et al. (2016) lay the foundations for neural
GI with the Recurrent Neural Network Grammar
(RNNG), and more recent works include Neural
PCFG (N-PCFG; Kim et al., 2019), Compound
PCFG (C-PCFG; Kim et al., 2019), Neural Lexi-
calised PCFG (NL-PCFG; Zhu et al., 2020), Neu-
ral Bi-Lexicalised PCFG (NBL-PCFG; Yang et al.,
2021a), Tensor Decomposition PCFG (TN-PCFG;
Yang et al., 2021b), SimplePCFG (Liu et al., 2023).
Character-based PCFG (Jin et al., 2021) has a sim-
ilar motivation to ours: to utilise the information
inside a word. However, we specifically target the
smallest standalone linguistic unit, morphemes, in-
stead of naively placing equal importance on all
alphanumeric characters. Tsarfaty et al. (2020) pro-

vide preliminary support for the marriage of mor-
phological information with neural unsupervised
approaches.

3 Experimental setup

3.1 Systems
We perform experiments using C-PCFG, N-PCFG,
and TN-PCFG. To optimise the computational re-
source requirements, we use the implementations
of Yang et al. (2021a), and the C-PCFG and N-
PCFG experiments rely on SimplePCFG (Liu et al.,
2023). All of the systems work with a preset num-
ber of non-terminals (nt) and terminals (t). The
number of nt and t in our experiments follows the
previous experimental setup of Yang et al. (2021a).

3.2 Data
We use the CHILDES Treebank (CHITB; Pearl and
Sprouse, 2013), which consists of child-directed
speech (CDS) sentences with phrase structure an-
notations. We use all of the Brown-Adam data
for testing because its annotations are most widely
verified. The remaining sentences are randomly
split between training and validation. Table 1 dis-
plays the number of sentences in each split. CDS
differs from adult speech, and especially the Penn
Treebank (PTB; Marcus et al., 1993), as shown
in previous works (Gelderloos et al., 2020; Jones
et al., 2023). In this specific instance, it is worth
noting that: sentences of length one are common
in CDS, but constitute trivial examples for the GI
task, so we eliminate them; CHITB consists of a
smaller vocabulary and shorter sentences than PTB;
CHITB is not canonical (e.g. includes unfinished
sentences).

PTB CHITB

№ S T S T MT

Train 2-21 39 912 140 643 676
Valid 22 1.7 40 24 129 136
Test 23 2.4 56 16 82 86

Table 1: Count in thousands of sentences (S), standard
tokens (T) and morphemic tokens (MT) in PTB WSJ
sections (№) and in CHITB.

3.3 Morphemic tokenisation
The data in CHITB comes standardly tokenised,
and we additionally render it lowercase and remove
punctuation. The procedure for morphemic tokeni-
sation is as follows: 1) identify words with bound
functional morpheme endings; 2) ensure the word
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is not an exception; 3) split the original word into
a word lemma and a functional morpheme, using
en_core_web_lg (Montani et al., 2020) and regu-
lar expressions; 4) save the lemma and functional
morpheme.

The bound functional morphemes in English
of interest in this work are listed below, followed
by the percentage that they represent of the training
tokens:

• present progressive -ing, 2.7%
• regular plural -s, 1.64%
• regular past tense -ed, 0.82%
• regular third person present tense -s, 0.49%
After morphemic tokenisation, the structure of

the parse trees also needs to be appropriately modi-
fied to reflect the presence of the new tokens. We at-
tach the bound functional morpheme as illustrated
in Figure 1. A complete list of cases illustrated
with syntactic trees is provided in Appendix A.

S

NP

PRP

she

VP

VBZ

walks

S

NP

PRP

she

VP

VBZ

VB

walk

PRS

s

Figure 1: Regular third person present -s. (L) Original
tree. (R) Rewritten tree post morphemic tokenisation.

The exceptions where morphemic tokenisa-
tion should not be applied depend on the lan-
guage, and for English include: plural-only nouns
(e.g. trousers), as these forms are monomorphemic;
irregular forms of third person singular verbs (is,
has, goes, does); and words which coincidentally
end in -ed or -ing (e.g. bed or sting).

4 Results and analysis

The standard method of assessing GI is to use a
sentence-level F1 score, which is calculated based
on the gold annotations of the test set. We present
the F1 scores for the different models in Table 2.

From Table 2 it is apparent that the morphemi-
cally tokenised data performs on par or better than
the standardly tokenised data when using a large
number of non-terminals and terminals. The high-
est F1 is achieved by N-PCFG (nt8192 t16384),
where the standard tokenisation slightly outper-
forms the morphemic tokenisation. Overall sys-
tems with a higher number of non-terminals and
terminals, which can capture more subtle variation

Model Morphemic Standard
Left-branching 14.17 14.83
Right-branching 71.94 73.77
Random trees 36.45 36.61
TN-PCFG (nt9000 t4500) 73.81 45.75
C-PCFG (nt2048 t4096) 68.79 59.86
C-PCFG (nt512 t1024) 41.99 72.95
N-PCFG (nt4096 t8192) 69.19 60.83
N-PCFG (nt8192 t16384) 78.56 79.01

Table 2: Sentence-level F1 for constituency parses for
morphemic and standard tokenisation.

in the data, perform better. The right-branching
baseline achieves an F1 score comparable and even
higher than for some neural models. This trend
is apparent for both standard and morphemic to-
kenisation because English has a right-branching
pattern (Greenberg, 1963). The high performance
of right-branching baselines for English is reported
for C-PCFG (Kim et al., 2019, Table 1) and for
TN-PCFG (Yang et al., 2021b, Table 1).

4.1 Functional morpheme evaluation

F1 is reliant on annotations, which for natural lan-
guages are prone to ambiguity because the target
grammar may not necessarily be known. We devise
annotation-independent evaluation metrics focused
on the structure of attachment of functional mor-
phemes.

4.1.1 Depth-of-morpheme
We assume that the nodes for bound functional
morphemes are sibling nodes for the lexeme they
combine with (see §3.3 and Figure 1). To establish
whether a bound functional morpheme is correctly
attached in the predicted tree, we check whether it
is found at the same depth as the lexeme it forms
a word with. If the depth differs, then the pre-
dicted subtree is incorrect in describing the func-
tional morpheme attachment. We perform depth-of-
morpheme evaluation on the models with highest
F1: TN-PCFG (nt9000 t4500), N-PCFG (nt8192
t16384), and the right-branching baseline; the re-
sults are displayed in Table 3.

TN-PCFG N-PCFG Right-br.
-ed 100 55.11 30.49
-ing 100 41.11 21.37
-s 95.11 95.95 40.88

Table 3: Percentage of bound functional morphemes
attached at the correct depth. -s has two uses (§3.3).

N-PCFG has the highest F1, but appears not to
be expressive enough to encode the examined lin-
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guistic phenomena: this is likely because it cap-
tures a higher frequency of simple cases. TN-
PCFG makes no errors on -ed and on -ing. The
right-branching baseline, although comparable in
F1 score with the neural models, underperforms
on the task of correctly attaching the bound func-
tional morpheme. These insights highlight the im-
portance of acquisitionally-focused evaluation, be-
cause standard NLP measures, such as F1, may
obscure task-specific errors.

train track
s

Figure 2: N-PCFG prediction for the structure of the
morphemically tokenised phrase “train tracks”. The
induced structure implies the functional morpheme -s
combines with the whole noun compound.

Note however that the binary nature of depth-of-
morpheme also obscures patterns which may be of
linguistic interest. For example, N-PCFG predicts
that the plural noun morpheme -s attaches to the
whole noun compound as displayed in Figure 2,
and the depth-of-morpheme of -s is therefore in-
correct (the expected pattern is for -s to attach to
the single noun preceding it, as displayed in Fig-
ure 5). However, the induced structure might be of
linguistic interest because the compounding of the
nouns is not implausible. To gain deeper insight,
depth-of-morpheme should be used in combination
with sibling-of-morpheme, the metric introduced
in the following section.

4.1.2 Sibling-of-morpheme evaluation

We next analyse the sibling of the bound functional
morpheme in the predicted tree. The sibling is the
span of the smallest tree immediately dominating
the tree where the functional morpheme node ap-
pears; in linguistics, this notion is also referred to as
a sister. For example, the sibling of -ed in Figure 3
is knock (as predicted by TN-PCFG) and the sub-
tree spanning one down (as predicted by N-PCFG).
The sibling predicted by TN-PCFG is linguistically
plausible, whereas the one predicted by N-PCFG is
not – not only does it group two words in a gram-
matically unlikely constituent, but it implies the
functional morpheme does not combine with the
verb.

To systematically look for patterns in the siblings
of morphemes, we look at the siblings’ semantic

you

knock ed
one

down driver you
knock

ed
one down

driver

Figure 3: Predicted trees for the sentence “You knocked
one down, driver.”; TN-PCGF (L) and N-PCFG (R).

role labels (SRL)1, obtained via SRL BERT2 (Shi
and Lin, 2019), and whether there is any relation to
the depth-of-morpheme measure. For an overview
of SRLs please consult Jurafsky and Martin (Chap-
ter 21; 2025). Beyond standard SRLs we introduce
two more labels: the “straddles boundary” category
signifies that the sibling of the morpheme spans
more than one semantic role and this kind of at-
tachment is always incorrect, because it poses a
grammatically incoherent constituency. The “all O”
category, where all of the leaves in the sibling are
labelled as (O)utside of a semantic role, applies to
cases which may include a constituent boundary,
or more rarely where a constituent was missed by
the SRL model.

SRL TN-PCFG N-PCFG

Count % Correct Count %Correct

Overall 1796 95.43 1796 78.12
ARG1 780 95.38 790 *91.65
ARG2 211 *91.94 210 *89.52
V 398 *99.75 118 *98.31
ARGM 63 95.24 72 77.78
all O 32 96.88 40 75.0
ARG0 27 92.59 26 *100
ARG3 3 100 3 100
ARG4 2 100 14 *14.29
strad. b. 6 *0 249 *0

Table 4: Comparison of SRL Tag Performance: TN-
PCFG vs. N-PCFG. Statistically significant (p < 0.05)
difference from the Overall marked with *.

Verbal instances are ones where the bound mor-
pheme is attached to a verb identified by the SRL
model (Figure 3 illustrates a verbal instance). In the
verbal instance, the only correct label for the sib-
ling of the morpheme is V. The TN-PCFG system
correctly attaches all instances of -ed and -ing to a
single lexeme with SRL V (also see Table 3), but N-
PCFG makes errors where the bound morpheme is
attached to lexemes tagged as direct object (ARG1),
indirect object (ARG2), adjuncts (ARGM), and oth-
ers.

1Other annotations (e.g. dependencies) may be used.
2https://paperswithcode.com/lib/allennlp/

srl-bert
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In the non-verbal instance, the morpheme at-
taches to a lexeme which is not identified as a verb
by the SRL tagger, but we nonetheless look to find
the functional role of the sibling in the sentence.
Here there is no one correct SRL (see Appendix A
for the full range of cases). Table 4 displays the per-
centage of morphemes which are found at the cor-
rect depth, grouped by the SRL of their sibling. We
perform Fisher’s Exact Test (Fisher, 1922) to iden-
tify SRLs for which the percentage of correct depth-
of-morpheme differs significantly from the overall
rate of correct depth-of-morpheme for that system.
For TN-PCFG, indirect object (ARG2) siblings of
functional morphemes co-occur with a significantly
lower depth-of-morpheme correct percentage, es-
pecially in comparison with direct object (ARG1)
and adjunct (ARGM) siblings, which follow the
same as the overall rate and appear to pose less of
a challenge for the model. The N-PCFG system
has a very high number of siblings of morphemes
which include a boundary, which lower the Over-
all depth-of-morpheme correctness for the system.
This result again highlights that the system with the
highest F1 does not necessitate the correct attach-
ment of functional morphemes: N-PCFG ( highest
F1) often predicts that the functional morphemes
attach to an implausible constituent.

5 Conclusion

We explore how morphemic tokenisation, an in-
sight inspired by FLA, influences neural GI sys-
tems. We evaluate the GI systems with F1 score,
and conduct further error analysis on the attach-
ment of bound morphemes. Our findings reveal
that high F1 scores do not always correspond to
linguistically meaningful structures for functional
morpheme attachment. In the future, we will apply
this methodology to CDS from morphologically
rich languages, such as the ones in SPMRL (Gold-
berg et al., 2014).

6 Limitations

Morphemic tokenisation follows a generativist per-
spective rather than a theory-neutral approach, so
it may not align with non-generativist frameworks.
The limitations of the novel evaluation metrics
—depth-of-morpheme and sibling-of-morpheme—
mainly stem from the fact that their utility depends
on morphemically tokenised text. Additionally,
there are cases where the binary result of depth-
of-morpheme may not be informative enough (e.g.

Figure 2), which is why the depth-of-morpheme
metric should be used in combination with the
sibling-of-morpheme metric.

English is currently the only language with an
annotated CDS treebank of suitable magnitude, but
our focus on English unfortunately further rein-
forces the dominance of English in NLP research.
Since English is a largely isolating/weakly inflect-
ing language with minimal inflectional morphology,
a morphologically complex language would pro-
vide a more rigorous test for morphemic tokenisa-
tion, with greater potential benefits, but potentially
also increased challenges. Future work will ex-
pand both the linguistic scope and the experimental
design.
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A All cases of tree rewriting

All cases of tree rewriting are shown below in Fig-
ure 4, Figure 5, Figure 6, Figure 7, Figure 8, Fig-
ure 9. The original trees are on the left, and the
rewritten trees are on the right. The trees are con-
structed as explained in §3.3.
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Figure 4: Regular 3rd person present -s.
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Abstract
Reading, while structured, is a non-linear pro-
cess. Readers may skip some words, linger
on others, or revisit earlier text. Emerging
work has started exploring the incorporation
of reading behaviour through eye-tracking into
the training of specific language tasks. In this
work, we investigate the broader question of
how gaze data can shape word embeddings by
using text as read by human participants and
predicting gaze measures from them. To that
end, we conducted an eye-tracking experiment
with 76 participants reading 20 short stories in
Spanish and fine-tuned Word2Vec and LSTM
models on the collected data. Evaluations with
representational similarity analysis and word
pair similarities showed a limited, but largely
consistent, gain from gaze incorporation, sug-
gesting future work should expand linguistic
diversity and use cognitively aligned evalua-
tions to better understand its role in bridging
computational and human language representa-
tions.

1 Introduction

The field of natural language processing (NLP) is
currently driven by artificial neural networks pri-
marily trained on the task of predicting the next
word in a given sentence (Radford et al., 2018,
2019). However, next-word prediction of written
text is a pale reflection of how language is pro-
cessed in the brain, as written text is the product of
deliberate conscious processes, often edited, proof-
read, and restructured. This stands in stark contrast
with the spontaneous generation of language in our
everyday life.

Eye-tracking during reading has long been rec-
ognized as a central tool for unraveling language
processing in the brain (Kliegl et al., 2006), with
its earliest studies dating over a century ago (Huey,
1908). Recent advances have demonstrated how
eye movement data from reading can be integrated
into NLP applications, enhancing performance in

various downstream language tasks through its in-
corporation into language models (Zhang and Hol-
lenstein, 2024; Yang and Hollenstein, 2023; Hollen-
stein and Zhang, 2019; Klerke et al., 2016; Barrett
et al., 2018). However, whether gaze information
can influence the latent representations of language
processing models to align more closely with hu-
man cognitive processing remains an unresolved
question. Moreover, despite its long history in read-
ing research, eye-tracking during reading datasets
are not widely available, and most of this emerg-
ing research has focused exclusively on English,
while similar studies utilizing eye-tracking data in
Spanish have yet to be conducted.

Thus, we collected eye-tracking data during read-
ing in Spanish and utilized the resulting gaze infor-
mation to train simple language processing models.
Our findings suggest that incorporating gaze infor-
mation into word embeddings may offer modest but
promising steps toward greater cognitive alignment.
We argue that combining larger, linguistically di-
verse datasets with cognitively focused evaluation
tasks will be critical for uncovering the potential of
eye-tracking to bridge computational and human
language representations.

2 Materials & Methods

2.1 Eye-tracking experiment

To collect eye movement patterns during natural
reading, we selected twenty self-contained short
stories (800 (± 135) words long, average reading
time of three minutes) written in Latin American
Spanish. We cleaned and processed data from 76
participants (mean age 23.5 (IQR 4.8); 44 females,
32 males; mostly college students), resulting in
1,015 trials (Fig. A1). All details of the experiment
can be found in Appendix A. Gaze measures were
extracted from those words that were not the first or
last words in a sentence or line and did not contain
punctuation marks, dashes or numbers, resulting in
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Figure 1: Gaze embedding pipeline. The stories read during the eye-tracking experiment were reconstructed
following the reading order of the participants (Scanpaths). Gaze measures were extracted from all trials, discretized
in ten bins for each individual, and a global average for each word was computed. These values were then predicted
from the word embeddings as the output of a fully connected layer.

3,016 unique words (of 3,493) with gaze measures.
The code used for the experiment and extracting
gaze measures can be found at https://github.
com/NeuroLIAA/reading-et.

2.2 Natural Language Processing

To test our hypothesis, we selected two different ar-
chitectures: a word embedding model (Word2Vec
in its skip-gram variation with negative sampling
(Mikolov et al., 2013)), and a language model
(AWD-LSTM (Merity et al., 2017), one of the lat-
est variations of LSTMs), from which we extracted
its embedding layer. These selections were based
primarily on simplicity and ability to perform well
without requiring extensive amounts of data. While
Large Language Models could be applied with
larger gaze datasets, these simpler models serve
as an efficient proof of concept for our methodol-
ogy. The hardware employed for training consisted
of a personal computer: Intel i7-11700, 32GB
RAM DDR4, and a GPU ASUS RTX 3060 12GB.
The pre-training and fine-tuning consumed, respec-
tively, 5 h and 0.5 h for the Word2Vec model and
50 h and 2 h for the LSTM model. The source code
is available at https://github.com/NeuroLIAA/
gaze-word-embeddings.

2.2.1 Baselines
As baseline training data, we employed a 2019
dump of Spanish Wikis hosted in Huggingface1.
To reduce vocabulary size and noise, words that

1https://huggingface.co/datasets/large_spanish_corpus

contained numbers, special characters, non-latin
characters, were shorter than two tokens, or longer
than twenty tokens, were filtered out. Resulting
sentences shorter than four words and longer than
forty were also removed. This yielded a total of
approximately 22 million sentences. Vocabulary
was composed of individual words that appeared at
least twenty times. Pre-training for both Word2Vec
and AWD-LSTM followed default hyperparame-
ters (with an embedding size of 300 and batch size
of 32 sentences) for five epochs.

2.2.2 Gaze embedding

To embed gaze, we used scanpath-generated text as
input (extracted from the eye-tracking experiment
described in §2.1) and fine-tuned the baseline with
them, while also predicting gaze measures from
word embeddings (Fig. 1). Scanpath-generated text
was constructed by following the fixations from
each trial in the experiment, yielding 1,015 differ-
ent texts (named Scanpaths). Although it mostly
overlapped with the text read, its word order was
markedly distinct from written text, as human read-
ing is a non-sequential process. If a word with a
punctuation mark was fixed several times consec-
utively, or a regression was done inside the same
sentence, all those words were stripped from the
punctuation marks and put together as a single sen-
tence. This totalled 44,748 sentences (612,299
words) after preprocessing. For a correct compari-
son, we also defined a corpus containing the origi-
nal texts (from §2.1) repeated the same number of
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CKA
Correlations

SimLex Abstract Concrete
Baseline 0.1434 0.4147 0.4814 0.3312
Scanpaths 0.1402* 0.2946* 0.3357* 0.3036*

W2V Scanpaths + GM 0.1434 0.3867* 0.3163* 0.3308
Texts 0.1382* 0.3119* 0.2796* 0.2671*
Texts + GM 0.1422* 0.4018* 0.2784* 0.3006*
Baseline 0.1114 0.2301 0.2507 0.1238
Scanpaths 0.1088* 0.2377* 0.2147* 0.2199*

AWD-LSTM Scanpaths + GM 0.1102* 0.3537* 0.2261* 0.2122*
Texts 0.1124* 0.3113* 0.2715* 0.1741*
Texts + GM 0.1127* 0.3298* 0.2689* 0.1773*

Table 1: Mean CKA to word embeddings derived from SWOW-RP of 1,650 content words with gaze measures, and
mean Spearman rank correlation of cosine distances between word pairs with human similarity judgments. The
latter analysis was conducted across three datasets (SimLex, Abstract, and Concrete) with 216, 276, and 378 word
pairs respectively. Random samplings of 1000 words and 100 word pairs were performed a hundred times with
replacement. Baseline refers to models trained on the baseline corpus, Scanpaths are models fine-tuned on text as
read by participants, and Texts are models fine-tuned on stimuli as is. GM refers to the addition of gaze measures to
the training process. The asterisk indicates the distribution was significantly different from the baseline.

times, totalling 42,213 sentences (666,374 words,
named Texts).

Gaze measures are usually classed as early (First
Fixation Duration, FFD; First Pass Reading Time,
FPRT) or late (Total Fixation Duration, TFD), de-
pending on the stage of reading processing they re-
flect (Inhoff, 1984). Early measures are thought to
be a reflection of primarily automatic word recog-
nition and lexical access processes, whereas late
measures tend to reflect more conscious, controlled,
strategic processes. By forcing the word model to
predict them (early measures for Word2Vec, late
for AWD-LSTM), we intended to embed (cogni-
tive) attention into it (Klerke et al., 2016; Barrett
et al., 2018). Specifically, this was done by adding
a fully connected layer that received the embedding
of the input word and predicted its corresponding
gaze measures. The resulting L1 loss was then
added to the standard loss of the model (Fig. 1).

These measures were computed individually for
each item and participant in the experiment. As the
values of these measures vary between participants
and items, we discretized them in ten quantiles
for each participant. A word average was then ob-
tained by computing the mean across participants
and items. If the input word contained no gaze
measure, its value was set to zero. It is important
to note that these measures are not independent,
as First Fixation Duration (FFD) is a part of First
Pass Reading Time (FPRT), which is a part of Total
Fixation Duration (TFD). We left out regression

measures because they showed to be lowly corre-
lated between subjects (Fig. A2). Fine-tuning was
carried out for 50 epochs with the same hyperpa-
rameters as the baseline.

2.3 Evaluation framework

2.3.1 Association-based word embeddings
Our main reference point was based on a mas-
sive word association task in Rioplatense Span-
ish (Small World of Words Rioplatense Spanish
(SWOW-RP)) (Cabana et al., 2024), primarily due
to its size, as well as the well-studied link between
word associations and semantic representations
stored in memory (De Deyne et al., 2016). From
these word associations, Cabana et al. (2024) de-
rived graph embeddings that have been shown to be
more closely related to human similarity judgments
of word pairs than standard word embeddings.

We hypothesize that gaze-derived word embed-
dings are a closer match to word embeddings de-
rived from SWOW-RP with respect to the base-
line. To evaluate this, we employed centered kernel
alignment (CKA) (Kornblith et al., 2019) on the
resulting 1,650 content words with gaze measures.
CKA is a similarity measure that quantifies the
similarity between two sets of representations by
comparing their Gram matrices in a reproducing
kernel Hilbert space. Unlike traditional similarity
metrics, CKA is invariant to orthogonal transforma-
tions and can effectively capture global structural
similarities between high-dimensional representa-

57



Figure 2: Distribution of the CKA values to the word embeddings derived from SWOW-RP presented in Table 1.

tions, making it particularly useful for comparing
embedding spaces across different domains or mod-
els. Recent works in machine learning and cogni-
tive science have leveraged CKA to analyze rep-
resentational similarities in neural networks, com-
paring learned representations across different lay-
ers, architectures, and even modalities (Vulić et al.,
2020b; Hao et al., 2023; Maniparambil et al., 2024).
In the context of our study, CKA provided a robust
method to assess the semantic alignment between
gaze-derived and association-based word embed-
dings, allowing us to evaluate how closely these
distinct representational spaces match. CKA simi-
larity ranges between 0 and 1, from most dissimilar
to most similar spaces. To mitigate potential outlier
effects, we performed random samplings of 1,000
words with replacement a hundred times and report
the mean and standard error to it.

2.3.2 Word pairs similarity judgments
A more classical way of evaluating word embed-
dings is to compute the Spearman rank correlation
between the cosine distance of two words and their
corresponding semantic similarity as defined by hu-
man participants (Mikolov et al., 2013). However,
a limitation to this approach is the requirement for
both words to have been fine-tuned. We made use
of two different resources: Multi-SimLex ES (Sim-
Lex; 1,888 semantically aligned concept pairs, of
which 216 possess gaze measures) (Vulić et al.,
2020a) and a relatedness task for Rioplatense Span-
ish speakers collected by De Deyne et al. (2020)
(3,321 conceptually abstract (Abstract) and 3,321
conceptually concrete (Concrete) word pairs, of

which 276 and 378 possess gaze measures, respec-
tively). In this case, we sampled 100 word pairs
randomly with replacement a hundred times.

3 Results

We evaluated the impact of fine-tuning NLP models
using text as read by participants in an eye-tracking
experiment, compared to text in its original order,
as well as the effect of predicting gaze measures
from word embeddings during training. Both archi-
tectures successfully incorporated gaze measures
into their embeddings: Word2Vec achieved a close-
to-perfect correlation between predicted and true
gaze values, while AWD-LSTM achieved a median
correlation of 0.89 per batch. All reported p-values
were computed using Wilcoxon signed-rank tests
on bootstrapped distributions.

When comparing the alignment of these em-
beddings with those derived from SWOW-RP, dif-
ferences emerged (Fig. 2). For Word2Vec, fine-
tuning without gaze measures resulted in a slight
decrease in alignment compared to the baseline
(Table 1). However, the incorporation of gaze mea-
sures slightly improved their alignment and their
distributions resulted significantly different from
their counterparts without gaze measures (both
p < 0.0001, ws. 0.0), although the addition of
gaze measures to Scanpaths resulted in CKA val-
ues not significantly different to the baseline. In
contrast, AWD-LSTM showed no decrease when
fine-tuned with Texts relative to the baseline and
a slight decrease when fine-tuned with Scanpaths.
The addition of gaze measures barely increased
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the mean, but provided significantly different dis-
tributions (p < 0.0001, ws. 1189.0 for Texts and
p < 0.01, ws. 1698.0 for Scanpaths).

The differing behavior between architectures
when fine-tuning with Scanpaths or Text likely
stems from their design: Word2Vec, employing
a bag-of-words approach with moving windows, is
less affected by syntax and may leverage the non-
sequential patterns of human reading when cap-
turing first-order relationships. Meanwhile, AWD-
LSTM, pre-trained on syntactically structured sen-
tences, is more sensitive to deviations from natural
text order, such as those found in Scanpaths.

When analyzing the correlation between the co-
sine distance of word embeddings and human simi-
larity judgments of word pairs with gaze measures,
distinct trends emerged for the two models tested
(Fig. B1). For Word2Vec, fine-tuning generally re-
duced correlation scores compared to the baseline
across datasets, with the most pronounced drop ob-
served in Abstract (Table 1). All correlations were
significantly different to the baseline (p < 0.0005),
with the exception of Scanpaths plus gaze mea-
sures in Concrete (p > 0.5, ws. 2448.0), as was the
case in the CKA analysis. The inclusion of gaze
measures to Scanpaths and Texts increased corre-
lations in all datasets except for Abstract, as well
as producing significantly different distributions
(p < 0.0001). The fine-tuned variations of AWD-
LSTM, on the other hand, improved correlations
with respect to the baseline, except for Abstract as
well. Correlations were once again significantly
different to the baseline (p < 0.001) and the addi-
tion of gaze measures had a significant impact in
SimLex, but not in Abstract nor Concrete.

In the case of word pairs not present in the stim-
uli, the mean remained relatively unchanged across
datasets for both models (Fig. B2).

4 Discussion

In this work, we investigated the integration of gaze
information into word embeddings of language pro-
cessing models by means of feeding them text as
read by human participants and incorporating gaze
measures into the latent space. Our findings sug-
gest that architectures like Word2Vec may better
leverage the non-sequential patterns of human read-
ing, while pre-trained language models like AWD-
LSTM appear to be more negatively impacted by
them. Moreover, the incorporation of early and
late gaze measures, respectively, yielded modest

improvements in most evaluation tasks, hinting at
the potential for gaze measures to nudge the latent
space toward greater cognitive alignment. How-
ever, further research should look deeper into the
morphological or linguistic variables involved to
fully understand and optimize this effect. One key
limitation of our study lies in some aspects of the
dataset: while the number of participants in our
eye-tracking experiment was high (76), the number
of unique words read was low (3,493). This con-
straints the size of the fine-tuning corpus (44,709
sentences) and the contextual variety it offers. As
seen in analogous studies translating other cogni-
tive modalities to deep learning models (Tang et al.,
2023), future efforts should prioritize increasing
the number of reading sessions per subject rather
than expanding the participant pool. Additionally,
tasks more closely tied to cognitive processes, such
as cloze tasks (Bianchi et al., 2020), may provide a
more suitable evaluation framework.

Finally, our study is the first to integrate Span-
ish eye-tracking data into language models, raising
questions about the language-specificity of prior
findings. Future work can build on this foundation
to enhance the use of gaze data in aligning compu-
tational and human language representations.

5 Limitations

As discussed throughout the article, the present
study is limited by the contextual diversity and
number of unique words present in the eye-tracking
experiment. Vocabulary size is small, which, in
turn, constrains the size of the evaluation space.
Future work will expand this experiment by includ-
ing novel texts. The lack of linguistic resources
in Spanish also makes it impossible to combine
datasets.

Gaze measures were aggregated to obtain global
averages, but there may be large individual vari-
ability across participants (see Fig. A2). In line
with recent suggestions in functional magnetic res-
onance images (fMRI) (Kupers et al., 2024), future
work will include several sessions per participant.
Eye-tracking offers the advantage of enabling in-
tensive sampling across a substantial number of
participants.
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A Eye-tracking experiment

All participants were native Spanish speakers and
had normal or corrected-to-normal vision. All of
them were recruited from the university mailing
lists and were compensated with the equivalent of
5 USD per one-hour session. Written informed
consent in agreement with the Helsinki declaration
was provided by each of them. The experiment
was approved by the Comité de Ética del Centro de
Educación Médica e Investigaciones Clínicas “Nor-
berto Quirno” (CEMIC) (Protocol 435). Records
were anonymized in compliance with ethical board
approvals and contain no personal information.

A.1 Corpus

Fifteen of the twenty short stories were extracted
from “100 covers de cuentos clásicos” (Casciari,
2021), while the other five were extracted from on-
line Argentinian blog posts. The original stories
of the former were written by several different au-
thors and were subsequently simplified, translated
(if needed) and re-written in Spanish by Hernán
Casciari. This way, there is diversity in literary
style, while maintaining both difficulty and slang
constant. The titles, authors and fixation statistics
can be found in Table A1.

The selection criteria for the short stories was
based on minimizing dialogue, very short and very

long sentences (less than six words and greater than
29 words, respectively), infrequent words (less than
100 appearances in the Latin American subtitles
database EsPal (Duchon et al., 2013)), infrequent
characters (¿; ?; ¡; !; “; ”; —; «; (; )), not containing
written dates, and being no shorter than 400 words
and no longer than 1500 words.

A.2 Environment & Setup
The experiment was written in MATLAB 2015a,
using Psychtoolbox-3 (Brainard, 1997). It was con-
ducted in a dark room, employing the EyeLink
1000 (SR Research, Ontario, Canada) binocular
eye-tracker at 1000Hz. The monitor had a reso-
lution of 1920x1080 and participants were seated
55cm away from it, using a chin and forehead rest
to stabilize their head. The stimuli were presented
in Courier New with font size 24 and black color
with a gray background, 55 pixels of line spacing,
280 pixels of left margin and 185 pixels of top mar-
gin, with a maximum of fourteen lines per screen.
Using these parameters, the text was divided in
screens (ranging from four to six, depending on
its length), and participants were allowed to go
backward and forward between screens.

At the beginning of the experiment, participants
were instructed to read the texts carefully, as com-
prehension questions would be asked at the end of
each of them. Each short story constitutes an item
and a separate trial, with eye-tracking calibration
preceding the presentation of the stimuli (Fig. A1).
Items were sorted by their number of infrequent
words and characters, and short and long sentences,
in ascending order. They were subsequently di-
vided in four blocks and each block was shuffled
randomly for each participant. Following this or-
der, the experiment was carried out in two sessions
of ten trials (two blocks, approximately one hour
of reading). After the comprehension questions, a
word association task was presented, where words
were displayed (one by one) and the participant
was required to write the first word that came to
mind. For this task, five words were chosen ran-
domly from the 150 most frequent words that are
not propositions, verbs, articles (according to the
corpus LexEsp (Sebastián Gallés et al., 1998)), and
were not present in stories. The same five words
were always presented for a given item. The goal
of this task is to remove any lingering bias that
may have remained from reading the story. The
following trial did not begin until the participant
agreed to it.
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Figure A1: Depiction of the experiment setup, in which each trial consisted of a short story. The story was divided
into screens and the participant was free to navigate forwards or backwards. At the end of each trial, the participant
was required to answer comprehension questions about it.

A.3 Data processing

When processing a given trial, only fixations from
the eye that had the least calibration error (as re-
ported by the eye-tracker) were kept. Horizontal
lines were drawn manually for each screen, indi-
cating to what line of text each row of fixations
belonged to. Very long and very short fixations
(over 1000ms and under 50ms, respectively), as
well as the first and last fixations in a screen, were
automatically discarded. For a given word in a text
line, its corresponding fixations are those whose
x-coordinates fall within the word’s surrounding
blank spaces. Gaze measures were extracted from
those words that were not the first or last words in
a sentence or line and did not contain punctuation
marks, dashes or numbers.

As the eye-tracker was used in binocular mode,
fixations and saccades from both eyes were
recorded. For data analysis, we only took into ac-
count the recordings from the eye that had the least
calibration error as reported by the eye-tracker.

Each time a participant moved forward or back-
ward to a different screen (pressed the right or left
arrow), a message, with a timestamp, was logged
by the eyetracker. These timestamps where uti-
lized to divide the fixations by their corresponding
screen. Some participants returned to a previous
screen more than once, usually to get a better com-
prehension of the story so they could answer the
questions accurately. In these cases, when the re-
turn was made by mistake (there are some fixations
scattered across the screen in no particular order),
the data is disposed of. However, when the return
included re-reading some portion of the text, the

data is kept, and the fixations are counted as regres-
sions.

Once the data were curated and horizontal lines
were drawn to decide to which text line each row
of fixations corresponded to, fixation assignment
to words followed. Given an item, this process is
performed separately for each trial. As fixations are
divided by screen, for each screen, text lines were
first split into words by using blank spaces as sepa-
rators. A subset of screen fixations is considered to
belong to a given text line if their y-coordinate falls
within the lower (included) and upper (excluded)
bound of the corresponding horizontal lines.

In every screen, the first and last fixations are au-
tomatically discarded. Additionally, for each line,
any regressive fixation between the first and the
left-most is considered to be the result of oculo-
motor errors (i.e., return sweep) and is discarded.
Fixations resulting from returning to the screen are
numbered starting from the last fixation number
on that screen. They are considered regressions if
they fixate on the same words as the previous times.
Fixations outside the scope of any word in the text
are considered out of bounds.

B Non fine-tuned word pairs

When analyzing word pairs that were not present
in the stimuli of the eye-tracking experiment (see
2.1), as expected, we found little to no change in
the mean of the distributions (Fig. B2). In the
case of Word2Vec, fine-tuning with Texts and its
variation with gaze measures provided no differ-
ence whatsoever with respect to the baseline in all
datasets. However, despite small changes to the
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Figure A2: Correlation matrix for each gaze measure, averaged across items, between the 45 participants that read
all items. Gaze measures were discretized in ten bins for each individual. FFD refers to First Fixation Duration;
FPRT to First Pass Reading Time; TFD to Total Fixation Duration; SFD to Single Fixation Duration; RPD to
Regression Path Duration; RRT to Re-Reading Time; SPRT to Second Pass Reading Time; FC to Fixation Count;
RC to Regression Count.

mean, fine-tuning with Scanpaths provided signif-
icantly different values in all datasets compared
to the baseline: in SimLex, the mean of the base-
line was 0.4716 (s.e.m. 0.0086) and 0.4611 (s.e.m.
0.0087, p < 0.0001, ws. 275.0) for Scanpaths; in
Abstract, 0.4389 (s.e.m. 0.0077) and 0.4190 (s.e.m.
0.0079, p < 0.0001, ws. 283.0); and, in Concrete,
0.4492 (s.e.m. 0.0083.0) and 0.4461 (s.e.m. 0.0083,
p < 0.0001, ws. 1211.0).

With respect to AWD-LSTM, on the contrary,
most variations provide significant differences in
the distributions of the correlations with respect
to the baseline in all datasets, with the exception
of Scanpaths (with and without gaze measures) in
Abstract (p > 0.1, ws. 2236.0 and 2423.5, re-
spectively). When fine-tuning with Texts, with and
without gaze measures, the mean of the distribu-
tion is slightly higher than the baseline: in SimLex,
the mean of the baseline is 0.2991 (s.e.m. 0.0099)
compared to 0.3076 and 0.3079 (s.e.m. 0.0098,
p < 0.0001, ws. 442.0 and 413.0), respectively;
in Abstract, 0.2594 (s.e.m. 0.0089) compared to
0.2728 (s.e.m. 0.0087, p < 0.0001, ws. 136.0 and
163.0); and, in Concrete, 0.2101 (s.e.m. 0.0098)
compared to 0.2187 and 0.2192 (s.e.m. 0.0098,
p < 0.0001, ws. 726.5 and 632.0). Scanpaths

with and without gaze measures, on the other hand,
slightly decreases the mean in SimLex (0.2877 and
0.2841, s.e.m. 0.01, p < 0.005, ws. 1067 and
1634, respectively) and in Concrete (0.1898 and
0.1952, s.e.m. 0.01, p < 0.0001, ws. 80.0 and
182.0, respectively).
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Figure B1: Distribution of the Spearman rank correlations of the cosine distances between word pairs that possess
gaze measures with respect to human similarity judgments presented in Table 1.

Figure B2: Spearman rank correlation of the cosine distance between word pairs that have not been fine-tuned
(i.e., were not present in the stimuli of the eye-tracking experiment) with respect to human similarity judgments in
three different datasets. 895, 1081, and 1431 word pairs were evaluated in total for SimLex, Abstract and Concrete,
respectively, using random sampling with replacement of a hundred word pairs a hundred times. An asterisk above
the strip plot indicates significance against the baseline. On the left are the results of the fine-tuning on Word2Vec
and, on the right, on AWD-LSTM. Baseline refers to the models trained on the baseline corpus, whereas Scanpaths
are the models fine-tuned on the text in the stimuli as read by the participants, and Texts are the models fine-tuned
on the stimuli as is. GM refers to the addition of gaze measures to the training process.
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Story Author Words Fixations
Excluded
fixations

Regressions Skips

La noche de los
feos

Mario
Benedetti

544 25774 10290 8046 11234

Cómo funcionan
los bolsillos

Valentín
Muro

972 45815 11677 16176 19705

La máscara de la
Muerte Roja

Edgar
Allan Poe

572 26641 6805 9092 11974

Las fotografías
Silvina

Ocampo
618 26686 8034 8580 12636

La salud de los
enfermos

Julio
Cortázar

667 34486 7596 12189 17953

Buenos Aires
Hernán
Casciari

607 28813 6855 10368 12932

Wakefield
Nathaniel

Hawthorne
693 31610 9034 10467 17397

Cómo funciona
caminar en la nieve

Valentín
Muro

1066 47302 10650 16245 20937

Ahora debería
reírme, si no

estuviera muerto

Angela
Carter

606 25629 7124 7022 15558

El espejo
Haruki

Murakami
628 29851 9597 9170 16788

Embarrar la magia
Facundo
Alvarez
Heduan

683 34749 12290 12143 14400

La lluvia de fuego
Leopoldo
Lugones

640 30960 9236 10121 15979

Educar para escalar
y bucear

Andrés
Rieznik

599 27797 7472 9500 12621

El golpe de gracia
Ambrose

Bierce
602 27629 7567 9540 14387

La gallina
degollada

Horacio
Quiroga

659 30188 8958 9825 15769

La canción que
cantábamos todos

los días

Luciano
Lamberti

620 28299 7247 8418 15386

El almohadón de
plumas

Horacio
Quiroga

579 28063 9453 8301 15087

Una rosa para
Emilia

William
Faulkner

643 33946 8968 12007 16178

La de la Obsesión
por la Patineta

Hernán
Casciari

579 29200 8516 10044 13171

Total - 13218 623654 175481 206586 305949

Table A1: List of stories employed in the eye-tracking experiment. Exclusion criteria for words (and their
corresponding fixations) include being first or last in a sentence or screen line, or containing punctuation marks,
dashes or numbers. Stories were divided in screens and participants were free to return to a previous screen.
Fixations to words in a returning screen are counted as regressions.
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Abstract

There are strong constraints on the structure
of a possible lexicon. For example, the nega-
tive correlation between word frequency and
length known as Zipf’s law of abbreviation, and
a negative correlation between word length and
phonotactic complexity appear to hold across
languages. While lexical trade-offs like these
have been examined individually, it is unclear
how they interact as a system. In this paper,
we propose causal discovery as a method for
identifying lexical biases and their interactions
in a set of variables. We represent the lexicon
as a causal model, and apply the Fast Causal
Discovery algorithm (Spirtes et al., 1995) to
identify both causal relationships between mea-
sured variables and the existence of possible
unmeasured confounding variables. We apply
this method to lexical data including measures
of word length, frequency, phonotactic com-
plexity, and morphological irregularity for 25
languages and find evidence of universal as-
sociations involving word length with a high
likelihood of involving an unmeasured con-
founder, suggesting that additional variables
need to be measured to determine how they
are related. We also find evidence of variation
across languages in relationships between the
remaining variables, and suggest that given a
larger dataset, causal discovery algorithms can
be a useful tool in assessing the universality of
lexical biases.1

1 Introduction

Although lexicons vary significantly across lan-
guages, they exhibit striking regularity. For ex-
ample, it is well documented that the most frequent
words in a language tend to be the shortest (Zipf’s
law of abbreviation;2 Zipf, 1935; Piantadosi, 2014),
and that frequent words tend to be phonotactically

1Code is available at https://osf.io/g8b35.
2Not the Zipf’s law from Zipf (1949), which states that

a word’s frequency is inversely proportional to its frequency
rank.

simple (Mahowald et al., 2018). Some of these
trade-offs appear to be linguistic universals while
others, such as the relationship between frequency
and morphological irregularity, are more debated
and appear to display more variation across lan-
guages (Fratini et al., 2014; Yang, 2016; Wu et al.,
2019; Doucette et al., 2024). Each of these trade-
offs imposes limitations on the set of possible nat-
ural language lexicons. Although it is possible to
construct a lexicon where, for example, the most
frequent words are the longest, no human language
follows this pattern.

Many of these trade-offs have been attributed
to universal cognitive pressures. For example, a
pressure for efficient communication may explain
why frequent words tend to be short and phonotac-
tically simple (Zipf, 1935; Mahowald et al., 2018;
Piantadosi et al., 2011; Graff, 2012; Gibson et al.,
2019; Levshina, 2022). Hay and Baayen (2003)
attribute a tendency for frequent words to be mor-
phologically irregular to a constraint on processing
– it is more efficient to access these frequent irreg-
ulars as whole words, rather than parse them into
component morphemes. However, a pressure for
efficient communication could also imply the op-
posite pattern: It is more memory-efficient to store
component morphemes in the lexicon, so irregulars
should be infrequent. Another trade-off, a negative
correlation between word length and phonotactic
complexity demonstrated by Pimentel et al. (2020),
has been attributed to a pressure towards uniform
information density: A consistent rate of informa-
tion requires shorter words to be more complex
(Pellegrino et al., 2011; Coupé et al., 2019; Meis-
ter et al., 2021). However, Doucette et al. (2024)
showed that this correlation becomes positive when
only morphologically complex words are exam-
ined. Such complex and potentially contradictory
results suggest a network of interacting pressures
influencing the shape of a lexicon. A cognitive
pressure that neatly explains one trade-off may be
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contradicted by another. Because we are examining
interactions among sets of variables, we will refer
to the limitations on possible lexicons imposed by
these trade-offs as lexical biases, independent of
the cognitive constraints that may cause them. In
order to study the cognitive constraints shaping the
lexicon, we cannot only consider data representing
a single trade-off in the lexicon. Instead, we need
an understanding of what lexical biases exist, how
they interact with each other, and whether and how
they vary across the world’s languages.

In this paper, we propose a method for identi-
fying lexical biases and their interactions: causal
discovery. Much of the previously described work
on lexical biases implicitly suggests a causal rela-
tionship – that there is some process where words
that become more frequent are shortened over time,
for example. It is also possible that this type of di-
rect causal process does not exist, and instead word
length and frequency share some common cause
– a confounder. The structural causal modeling
framework introduced by Pearl (1995) is useful in
assessing these types of causal structures. A causal
model includes a set of random variables and the
causal relationships between them, represented by
a graph. We can represent the situation where a
change in word length (WL) causes a change in
frequency (FR) as WL FR, and the situation
where both share an unknown common cause (U)
as WL U FR. These graphs represent
data generating processes. In the first graph, a
word length is sampled, then its frequency is de-
termined based on that value. In the second graph,
we sample a value of U , which determines the val-
ues of WL and FR. Causal discovery allows us
to identify causal graphs consistent with a sample
of observational data. Identifying a causal model
of the lexicon through causal discovery allows us
to examine the networks of lexical biases across
languages and ultimately identify the cognitive con-
straints that underlie them.

Although many questions about language in-
volve causality, causal analyses have only been
applied to linguistic data in a few cases. For ex-
ample, in identifying the causes of lenition (Priva,
2017; Priva and Gleason, 2020), examining causal-
ity in child language acquisition (Irvin et al., 2016;
Spokoyny et al., 2016), in language change (del
Prado Martín, 2014; Moscoso del Prado Martín
and Brendel, 2016; Dellert, 2019, 2024), and in
examining cross-linguistic trade-offs between case
marking and word order (Levshina, 2021). Causal

models have not yet been used to investigate lexical
biases, which we do using causal discovery.

We apply this method to data described in
Doucette et al. (2024): measures of word length,
frequency, phonotactic complexity, and morpholog-
ical irregularity in 25 languages. Through causal
discovery, we are able to identify the well-known
associations between word length and frequency,
and word length and phonotactic complexity, as
well as the association between word length and
morphological irregularity identified by Doucette
et al. (2024). However, we are also able to iden-
tify possible unmeasured confounding variables in
each of these relationships, suggesting that the di-
rect causal relationship implied by previous studies
may not exist. Furthermore, we find evidence of
variation in relationships between the remaining
pairs of variables: an association only exists in ap-
proximately half of the languages in the sample,
and where it does exist there is the possibility of
confounding. These results demonstrate that in
order to determine the causal structure of lexical bi-
ases, a larger set of variables need to be considered.
Causal discovery allows us to both identify relation-
ships between aspects of the lexicon and determine
where more data is needed to make conclusions
about causal structure.

2 Data

In this paper, we examine data from Doucette
et al. (2024), which was used to study compensa-
tion relationships between word length, frequency,
morphological irregularity, and phonotactic com-
plexity. It contains 25 languages selected from
UniMorph, a database of morphologically anno-
tated corpora (Batsuren et al., 2022), with between
334 and 96,196 word forms per language (median
8,061), converted to IPA transcriptions using Epi-
tran (Mortensen et al., 2018). We note that this
data does not represent a random sample from each
lexicon: UniMorph largely consists of words with
multiple morphemes, with few monomorphemic
words. We return to this point in the discussion.

In this data, word length is measured in num-
ber of phones, and frequency is calculated from
Wikipedia as log count per million. The phono-
tactic complexity measure, defined by Pimentel
et al. (2020), comes from a neural network model
trained to estimate the probability of a word w
given the rest of the language L. Phonotactic
complexity is a measure of bits per phoneme:
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Edge type Interpretation
X Y X causes Y, Y does not cause X
X Y either X causes Y, or an unobserved

confounder causes both X and Y,
but not both

X Y an unobserved confounder causes
both X and Y

X Y One of the following holds:
1. X causes Y; 2. Y causes X;
3. an unobserved confounder causes
X and Y; 4. both 1 and 3 hold;
5. both 2 and 3 hold

X Y no association between X and Y

Table 1: Partial Ancestral Graph (PAG) edge types and
their interpretations.

log p(w | L)/|w|. The morphological irregular-
ity measure, from Wu et al. (2019), is a neural
estimate of the predictability of the surface form
of an inflected word from its lemma. A neural net-
work is trained to predict an inflected form from a
lemma ℓ, a set of morphological features σ, and the
rest of the language with the target lemma removed
L−ℓ, and the morphological irregularity measure is
log (p(w | ℓ, σ,L−ℓ)/ [1− p(w | ℓ, σ,L−ℓ)]).

3 Causal Graphs and Causal Discovery

In Pearl’s (1995) structural causal modeling frame-
work, a causal model is represented by a directed
acyclic graph (DAG), G = (V,E), a tuple with a
finite set of vertices V representing random vari-
ables, and a finite set of edges E ⊆ V × V rep-
resenting causal relationships. An edge X → Y
implies that X directly causes Y . The value of
any variable in a causal graph is completely de-
termined by a function of its parents. In a DAG
X → Y ← Z, Y is caused by X and Z, and
Y = f(X,Z). There is a large literature on causal
modeling, which we only partially and briefly sum-
marize here. For more background, see Pearl et al.
(2016) or Hernán and Robins (2024).

Causal discovery algorithms aim to recover the
true graph G from a sample dataset. To do this, sev-
eral assumptions about the relationship between a
graph G and the joint probability distribution over
its random variables P (V) are needed. The graph
G must satisfy the Causal Markov Condition: every
variable is conditionally independent of its nonde-
scendents given its parents. The probability distri-
bution associated with G must decompose recur-

sively as P (V) =
∏

X∈V P (X | Pa(X)), where
Pa(X) is the parents of X in G. We also need
to assume faithfulness: that all independence rela-
tionships among the variables V are represented in
G. In other words, the conditional independence
relationships in the data are closely tied to the struc-
ture of the DAG G. Causal discovery algorithms
identify conditional independencies in data, then
construct a graph consistent with them.

There are many causal discovery algorithms,
each with different assumptions (see Zanga et al.
(2022) or Malinsky and Danks (2018) for a sum-
mary). Many assume causal sufficiency: that any
cause of a variable in V is also contained in V. If
there are any unmeasured common causes in the
data, an algorithm assuming causal sufficiency will
not output a correct causal graph. For example,
if we are trying to discover a true DAG X U

Y , but do not have measurements of U , an
algorithm assuming causal sufficiency will fail to
recover the correct DAG. The unmeasured variable
U is a confounder that can induce a spurious cor-
relation between X and Y even though there is no
causal relationship between X and Y .

It is likely that most lexical data is not causally
sufficient: there are likely to be additional causes
outside of the set of variables included in the data.
Therefore, we use an algorithm that does not as-
sume sufficiency: the Fast Causal Inference (FCI)
algorithm (Spirtes et al., 1993, 1995), which takes
a set of observations of random variables as in-
put and ouputs a Partial Ancestral Graph (PAG), a
causal graph with additional edge types in order to
represent unmeasured confounders and uncertainty.
In a PAG, directed edges and have the same
meaning as in a DAG: they represent a direct causal
relationship. A PAG represents the presence of
an unmeasured confounder with a bidirected edge,

. For example, an edge X Y means there is
some unmeasured variable that causes both X and
Y , and that there is no direct causal relationship
between X and Y . PAGs also add circle endmarks
to edges, representing uncertainty. For example, X

Y corresponds to one of several possibilities:
X causes Y , Y causes X , there is an unmeasured
common cause of both X and Y , or there is both
an unmeasured common cause and a direct causal
relationship (i.e. X Y and X Y ). The
interpretation of all possible edges in a PAG are
listed in Table 1.

The FCI algorithm starts with a complete undi-
rected graph, where all random variables are con-
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nected by undirected edges. Next, a series of condi-
tional independence tests are conducted. An undi-
rected edge A B is removed if A and B are
conditionally independent given some set of vari-
ables C. The resulting graph after no more edges
can be removed is called a skeleton. The unori-
eted edges in a graph skeleton do not have a causal
interpretation, but can be useful for examining sta-
tistical associations between the random variables.
In the next step of the FCI algorithm, all edges in
the skeleton begin as unoriented edges. Edges
are then oriented following a series of rules based
on graph structure.

We use an implementation of the FCI algorithm
and an implementation of the Fisher’s Z condi-
tional independence test from the R package pcalg
(Kalisch et al., 2012). This conditional indepen-
dence test assumes a Gaussian distribution, and
requires a significance level. This assumption may
not be reasonable, and we will return to it in the
discussion. For each language in the dataset, we
used a bootstrapping procedure to resample the
data 1000 times. The FCI algorithm was run on
each sample with a significance level of 0.01, and
the proportion of edge types discovered for each
pair of variables was recorded.

4 Results

For each language, the most frequently occurring
edge type for each pair of variables in the boot-
strap samples was selected to create a "most-likely
graph" for that language. These are shown in Fig-
ure 1, where we can see that there is significant vari-
ation in the most-likely graphs discovered for each
language – there are 18 unique graphs identified
across 25 languages. At most three languages share
the same graph. One of these groups, containing
Chewa and Zulu, can be explained by typological
relatedness, but the others have no clear explana-
tion. The variation in these most-likely graphs may
suggest that there is no universal set of lexical bi-
ases shared across languages. We return to this
point in the discussion.

We also see that the graphs for many languages
contain edges with circle marks ( , , ),
which suggests that there is not enough informa-
tion in the dataset to fully determine causal rela-
tionships. It is likely that there are unmeasured
confounding variables. If we instead examine the
graph skeletons discovered by FCI, we can examine
associations between variables. In these undirected

graphs, the presence of an edge implies an associ-
ation between variables – a correlation that is not
necessarily causal. In Figure 1, groups of languages
sharing the same skeleton are outlined. When con-
sidering the graph skeletons, we see larger groups
of languages emerge, suggesting less variation in
lexical biases across languages. It is unclear why
certain languages share the same skeleton structure.
Many of the groups in Figure 1 are not typologi-
cally related, such as Polish, Dutch, Czech, French,
and Ukrainian. A larger set of languages is needed
to determine if there is any typological explanation
behind these groupings.

To further examine these individual language
graphs, we created a cross-linguistic most-likely
graph by selecting the most frequently occurring
edge type for each pair of variables from the graphs
in Figure 1. This is shown in Figure 2. A most-
likely skeleton, shown in Figure 3 was created by
following the same procedure with the graph skele-
tons. To examine the distribution of edge types
in the bootstrap sampling procedure, we plotted
histograms for each pair of variables showing the
proportion of bootstrap samples where types of
edges were found across all languages. A right-
skewed histogram implies that an edge was dis-
covered in most languages, while a left-skewed
histogram implies that no edge was discovered in
most languages. Figure 4A shows the proportion
of samples where an edge of any type was discov-
ered ( , , , , , ), Figure 4B
shows the proportion where a directed edge was
discovered ( or ), and Figure 4C shows the
proportion of edges discovered with confounding
variables ( ) or with potential confounding vari-
ables ( , , or ).

4.1 Word Length and Frequency
Due to Zipf’s law of abbreviation (Zipf, 1935),
where word length and frequency are negatively
correlated, we expect to find an association be-
tween word length and frequency. This is what we
find: in Figure 3, we see that the most likely skele-
tons for all languages have an edge between these
variables. In Figure 4, we also see that an edge
was discovered in nearly all bootstrap samples for
nearly all languages. However, directed edges (
or ) were not found in nearly all samples, as
shown in Figure 4. Instead, as can be seen in Figure
4, nearly all bootstrap samples indicate the possible
presence of an unmeasured confounding variable.
In Figure 2, a edge is most likely between word
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Chewa, Zulu
FRWL
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Czech, French
FRWL

MI PC

Ukrainian

FRWL

MI PC

Dutch

FRWL

MI PC

Turkish

FRWL

MI PC

Mongolian
FRWL

MI PC

Kazakh

FRWL

MI PC

Swedish

FRWL

MI PC

Polish

FRWL

MI PC

Uzbek

FRWL

MI PC

Albanian, Catalan,
English

FRWL

MI PC

Portuguese, Hungarian
FRWL

MI PC

Spanish
FRWL

MI PC

Russian

FRWL

MI PC

German

FRWL

MI PC

Amharic

FRWL

MI PC

Italian, Romanian,
Serbo-Croatian

Figure 1: Most likely PAGs for individual languages. Languages with the same undirected graph outlined in black.
MI: morphological irregularity; PC: phonotactic complexity; WL: word length; FR: frequency.

length and frequency, implying an association with
unknown causal direction and possible confound-
ing. This suggests that we are not able to infer the
causality of this relationship from the variables in
this dataset.

This is consistent with previous work where
it has been argued that average surprisal, or pre-
dictability in context, correlates more strongly with
word length than frequency does (Piantadosi et al.,
2011), although other analyses have failed to re-
produce this finding (Meylan and Griffiths, 2021;
Pimentel et al., 2023). This dataset does not include
a measure of average surprisal, but it is possible
that surprisal is the unmeasured confounding vari-
able, and causal discovery could help determine
the relationship between frequency, word length,
and surprisal given a dataset with measurements of
average surprisal. Because word length correlates
with surprisal, surprisal may also be a confounder

in its relationships with morphological irregularity
and phonotactic complexity. In order to make con-
clusions about causal relationships involving word
length and frequency, more variables need to be
measured than those included here.

4.2 Word Length and Phonotactic Complexity

In Figure 3, we also see that an edge was discovered
between word length and phonotactic complexity
in all languages, as predicted by Pimentel et al.’s
(2020) finding that these variables are negatively
correlated. The most frequently occurring edge
type between word length and phonotactic com-
plexity is , implying that either word length
is constrained by phonotactic complexity (PC
WL), phonotactic complexity is constrained by
word length (PC WL) or there is an unmea-
sured confounding variable (PC WL). However,
despite being the most frequent edge type between
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Figure 2: Most likely PAG across all languages, with
proportion of languages where edge type occurred. MI:
morphological irregularity; PC: phonotactic complexity;
WL: word length; FR: frequency.

these variables, it occurs in less than half of lan-
guages, suggesting variation in the causal structure
of this relationship. This can be seen in Figure
1, where there is little consistency in the type of
edge between word length and phonotactic com-
plexity. Figure 4 shows that a directed edge was
found in very few samples, and that a possible con-
founder was identified in nearly all samples. Again,
this shows that while an association between word
length and phonotactic complexity may be univer-
sal, we do not have enough data to determine their
causal relationship.

4.3 Word Length and Morphological
Irregularity

Figure 3 and Figure 4 show that an edge was also
discovered between word length and morphologi-
cal irregularity in most languages, consistent with
Doucette et al.’s (2024) finding of a negative cor-
relation. Again, directed edges were discovered in
very few samples and a possible confounder was
discovered in most samples, as shown in Figure
4. In Figure 2, the most common edge type be-
tween word length and morphological irregularity
is , discovered in 12 of 25 languages. Like the
relationship between word length and phonotactic
complexity, an association between these variables
is near-universal, but it is likely confounded by a
variable outside of this dataset.

4.4 Frequency and Phonotactic Complexity

The remaining three pairs of variables display less
consistency in whether or not an edge is present.
For frequency and phonotactic complexity, the
most likely scenario is that an edge does exist,
shown in Figure 3. However, the most likely PAG
shows no edge between these variables. Although
the presence of an edge between these variables is

FRWL

MI PC

0.72

1.00

0.
88

1.0
0 0.52

0.52

Figure 3: Most likely undirected graph skeleton across
all languages, with proportion of languages where edge
type occurred. MI: morphological irregularity; PC:
phonotactic complexity; WL: word length; FR: fre-
quency.

slightly more likely than not, the type of edge varies
across languages, as shown in Figure 1. Mahowald
et al. (2018) found that a negative correlation be-
tween phonotactic complexity and frequency was
robust after controlling for the effect of word length
as a confounding factor. The FCI algorithm is able
to identify confounding relationships, but this rela-
tionship does not appear as robustly as previously
found, even in Doucette et al.’s (2024) analysis of
the same data. This suggests that it may not be cor-
rect to conclude that there is an association between
frequency and phonotactic complexity while only
considering word length as a confounder. Once
another factor like morphological irregularity is
included, the relationship becomes less clear.

4.5 Frequency and Morphological
Irregularity

While Wu et al. (2019) found a positive correlation
between morphological irregularity and frequency,
we found no association in about half of the 25 lan-
guages, as shown in both the most-likely skeleton
in Figure 3. and the most-likely PAG in Figure 2.
In Figure 4, we can see that for some languages,
this edge occurred in almost no bootstrap samples,
while for other languages, it occurred in nearly all
samples. Very few languages fall in the center of
the histogram, with the edge being discovered in
some samples, but not others. This U-shaped his-
togram suggests that the existence of an association
between morphological irregularity and frequency
may be a point of variation across languages – some
definitively have an association, while others do
not.

The histogram for possible confounders in Fig-
ure 4 is similarly U-shaped. This suggests if an
edge between frequency and morphological irreg-
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Figure 4: Histograms of proportion of bootstrap samples including edge types for each pair of variables. A:
, , , , or ; B: or ; C: , , , or . MI: morphological irregularity; PC:

phonotactic complexity; WL: word length; FR: frequency.

ularity exists for a language, it is likely to have a
possible confounding variable. Like previously dis-
cussed pairs of variables, directed edges are rarely
identified between frequency and morphological
irregularity.

4.6 Morphological Irregularity and
Phonotactic Complexity

We see a similar pattern in the histograms in Figure
4 for phonotactic complexity and morphological ir-
regularity: Directed edges almost never occur, and
the edge existence and possible confounder his-
tograms are U-shaped, suggesting that languages
vary in whether or not there is an associatino be-
tween these variables. This is consistent with previ-
ous findings that a relationship between morpholog-
ical irregularity and phonotactic complexity may
exist in some languages (Hay and Baayen, 2003;
Burzio, 2002; Hay, 2003), but not others (Doucette
et al., 2024).

5 Discussion

Although previous work on biases in the lexicon
have implied that certain lexical trade-offs are
cross-linguistic universals, our findings suggest that
evidence of these universals may not be as strong
as previously thought. For example, Zipf’s law of
abbreviation has been studied extensively, showing
that a relationship between word length and fre-
quency holds cross-linguistically. Previous work
has shown a strong negative correlation across lan-
guages (Piantadosi, 2014), which indeed does hold
in all 25 languages in our data. However, it is un-
clear if there is a direct causal relationship between
frequency and word length. The FCI algorithm al-
lows us to identify possible unmeasured confound-
ing variables in a causal model. In our analysis,
possible confounding in the relationship between
word length and frequency is identified in nearly
all languages. If only word length and frequency
are considered, the causal model underlying Zipf’s
law cannot be identified. It is possible that surprisal
is the confounding variable in this relationship, as
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suggested by Piantadosi et al. (2011), or it could
be something else. Structural causal modeling and
causal discovery provide a framework for testing
this, which we leave to future work.

We also identified possible confounding in the
relationships between word length and phonotac-
tic complexity and word length and morphological
irregularity. This potential confounding occurred
consistently across languages, as it did in the rela-
tionship between word length and frequency. This
suggests that there may be universal lexical biases
involving either word length or some other cause
of word length. Again, this could be surprisal. The
confounding variable could also differ across lan-
guages, but the existence of an association between
word length and these variables appears to be uni-
versal.

While relationships involving word length oc-
cur consistently across languages, we find strong
evidence of variation in the other relationships ex-
amined. In approximately half of the languages
in our sample, there is no association between fre-
quency and morphological irregularity, frequency
and phonotactic complexity, and morphological
irregularity and phonotactic complexity. In the lan-
guages where associations do exist, there is a proba-
ble unmeasured confounder. This suggests that lexi-
cons may vary in whether or not these relationships
are constrained, and that a set of universal lexical
biases may not exist. Previous work has claimed
that these relationships are universal, but consider-
ing a larger set of variables with causal discovery
shows that this may not be true. If the properties
of a lexicon are the result of some universal cog-
nitive pressure (towards efficient communication,
for example), only minor variation would be ex-
pected, rather than qualitative variation in whether
or not a trade-off exists. This suggests that strong
claims about universality and causal structure in
the lexicon may need to be reconsidered.

We also note that the notion of causality in the
lexicon implies diachronic language change, while
our data represents observations of lexicons at a
single point in time. Although in the ideal case we
would examine changes in lexicons across time to
determine causality, a causal model of a synchronic
lexicon still has a useful interpretation. Pearl (2019)
argues that a causal model can be interpreted as
constraints on a mathematical system. The lexi-
cal biases we examine are exactly that: although
they are likely caused by some underlying cogni-
tive constraint, they impose constraints on possible

lexicons.
However, our results are not without limitations.

We examine a larger number of variables than many
previous studies of lexical trade-offs, but the four
variables we investigate are still not causally suf-
ficient. Several possible unmeasured confounders
are identified, leading to a causal graph that is
not fully specified. Although we are able to iden-
tify patterns in causal structure across languages,
we are not able to make any strong claims about
direct causal relationships – there is simply not
enough data. Our analysis is also limited by the
dataset, which mainly includes morphologically
complex words. It is possible that morphologically
simple words may follow a different pattern. Ad-
ditional data is needed to assess this possibility,
which we plan on investigating in future work. We
also note that the independence test used by the
FCI algorithm in our analyses assumes that data is
normally distributed. While this may be a reason-
able assumption, further work is needed to assess
how non-normality impacts the output of FCI. The
data for word length, frequency, and phonotactic
complexity have roughly normal distributions, but
in many languages the morphological irregularity
measure has a bimodal distribution. Nonparametric
conditional independence testing is an active area
of research (Li and Fan, 2020; Kim et al., 2022;
Bianchi et al., 2023), and there may be tests with
assumptions that better fit lexical data. There are
also many different causal discovery algorithms,
each with different assumptions about the data, and
it should be explored how different algorithms can
affect results. We leave investigating these possi-
bilities to future work.

6 Conclusion

In this paper, we have shown that causal discovery
methods can help identify relationships between
statistical properties of the lexicon, providing more
information about these relationships than corre-
lations or regression models of pairs or small sets
of variables. Given a dataset with more variables
measured, and more languages, causal discovery
may make it possible to determine exactly how
the lexicon of a language is constrained, and how
these biases vary across languages. In future work,
we plan on applying causal discovery to a larger
dataset with more languages and more variables
with the goal of identifying a more specified causal
model.
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Abstract

Although functional specialization in the brain
- a phenomenon where different regions pro-
cess different types of information - is well
documented, we still lack precise mathemati-
cal methods with which to measure it. This
work proposes a technique to quantify how
brain regions respond to distinct categories of
information. Using a topic encoding model,
we identify brain regions that respond strongly
to specific semantic categories while respond-
ing minimally to all others. We then use a
language model to characterize the common
themes across each region’s preferred cate-
gories. Our technique successfully identifies
previously known functionally selective re-
gions and reveals consistent patterns across sub-
jects while also highlighting new areas of high
specialization worthy of further study.

1 Introduction

The theory of functional specialization states that
different brain regions have evolved to process dif-
ferent types of information. This is apparent at
a high level – for instance, the occipital lobe is
heavily involved in processing visual information,
whereas the temporal lobe is implicated in pro-
cessing auditory stimuli. There is also evidence to
support the theory at a lower level where smaller
regions of interest (ROIs) are active in processing
even more specific information. Examples of such
ROIs include fusiform face area (FFA), which is
selective for facial features, or places in parahip-
pocampal place area (PPA). These discoveries have
relied on ‘contrast’ studies that observe how brain
regions respond to specific categories. While suc-
cessful contrast studies have been influential, this
approach also depends heavily on educated guesses
about where in the brain to look and what to look
for.

*Equal contribution.

In this study, we propose an intuitive technique
to identify and quantify functional specialization
across the brain. We show that our method can cor-
rectly identify ROIs previously observed to have
high semantic functional specialization, and that
it can additionally identify several new ROIs with
high functional selectivity throughout cortex for
further study. We further demonstrate that this
method can be used to explicitly recover known
selectivity properties of well-documented regions
such as the location-selective retrosplenial cortex
(RSC) and the body-selective extrastriate body area
(EBA), as well as for its newly-proposed regions.
We additionally explore the degree to which our
method generalizes across individuals, demonstrat-
ing that our observations are largely consistent
across three subjects.

2 Related Work

Functional specialization has been studied in set-
tings like vision (Kamps et al., 2016; Julian et al.,
2016; Taylor et al., 2007; Calvo-Merino et al.,
2010; Leibo et al., 2015; Saleem et al., 2018;
Howard et al., 1996), language (Fedorenko et al.,
2011), auditory processing (Perani et al., 2010; Ter-
vaniemi et al., 1999), and motor function (Wilson
et al., 2014). Previous work identifying areas of
high functional specialization typically focuses on
locating lateral asymmetries (Wang et al., 2014;
Zilles and Amunts, 2015). However regions can
be functionally specialized without being asym-
metric, as is the case for regions like retrosple-
nial cortex (Mitchell et al., 2018; Burles et al.,
2017), parahippocampal place area (Epstein and
Kanwisher, 1998; Epstein, 2005), occipital place
area (Kamps et al., 2016; Dilks et al., 2013), and
extrastriate body area (Astafiev et al., 2004).

Researchers have also uncovered more direct
links between semantics and brain activity by devel-
oping encoding models to predict neural responses
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from continuous linguistic features. Mitchell et al.
(2008) showed that different semantic categories
(e.g., tools versus animals) elicit distinct spatial
activation patterns in the brain, and a model trained
on corpus-derived semantic features could forecast
fMRI responses to previously unseen words. Later
investigations built on this approach by applying
distributed semantic representations to more com-
plex, real-world language inputs (Huth et al., 2016;
Jain and Huth, 2018; Caucheteux et al., 2023; An-
tonello et al., 2023). Utilizing high-dimensional
word embeddings or semantic spaces derived from
modern LLMs, these encoding models can capture
brain responses to entire sentences and stories and
generalize to numerous concepts. In this work, we
build upon recent studies that use encoding models
to generate and test interpretable hypotheses about
semantic selectivity in the brain (Singh et al., 2023;
Antonello et al., 2024).

3 Methods

3.1 fMRI Data

We used publicly available functional magnetic
resonance imaging (fMRI) data collected from 3
human subjects as they listened to 20 hours of En-
glish language podcast stories over Sensimetrics
S14 headphones. The stories came from podcasts
such as The Moth Radio Hour, Modern Love, and
The Anthropocene Reviewed. Each 10-15 minute
story was played during a separate scan. Subjects
were not asked to make any responses, but simply
to listen attentively to the stories. For encoding
model training, each subject listened to roughly 95
different stories, giving 20 hours of data across 20
scanning sessions, or a total of ~33,000 datapoints
for each voxel in the brain.

MRI data were collected on a 3T Siemens Skyra
scanner at The University of Texas at Austin
Biomedical Imaging Center using a 64-channel
Siemens volume coil. Functional scans were col-
lected using a gradient echo EPI sequence with
repetition time (TR) = 2.00 s, echo time (TE) =
30.8 ms, flip angle = 71°, multi-band factor (si-
multaneous multi-slice) = 2, voxel size = 2.6mm x
2.6mm x 2.6mm (slice thickness = 2.6mm), matrix
size = 84x84, and field of view = 220 mm. Anatom-
ical data were collected using a T1-weighted multi-
echo MP-RAGE sequence with voxel size = 1mm
x 1mm x 1mm.

In addition to motion correction and co-
registration (LeBel et al., 2022), low-frequency

voxel response drift was identified using a 2nd or-
der Savitzky-Golay filter with a 120 second win-
dow and then subtracted from the signal. The mean
response for each voxel was subtracted and the re-
maining response was scaled to have unit variance.

All subjects were healthy and had normal hear-
ing. The experimental protocol was approved by
the Institutional Review Board at The University
of Texas, Austin. Written informed consent was
obtained from all subjects.

3.2 Topic Encoding Model
A topic model was pre-trained on the entire story
data. Given a list of word sequences for every two-
second interval of the podcasts, we used sliding
windows of [2, 4, . . . , 20] seconds. We trained 10
separate topic models on a different sliding win-
dow length each and then merged the topics to yield
the final topic model, which had Tn = 463 topics.
The multi-scale topic model was used to ensure the
topic model generalized well across varied seman-
tic timescales. In total, this training took ∼50 CPU
node-hours.

Each model was based on the BERTopic tech-
nique (Grootendorst, 2022). Each string was
embedded using sentence embedding model "all-
MiniLM-L6-v2". Uniform Manifold Approxi-
mation and Projection (UMAP) was used to re-
duce the embedding dimension. The reduced em-
beddings were then clustered using Hierarchical
Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) (McInnes et al., 2017).

Each cluster is associated with the the initial
strings from each of the two-second intervals repre-
sented in the cluster. We manipulate these strings
to extract a common semantic theme to describe
the cluster. Initially, a bag-of-words is generated
for each topic. The bags-of-words are then all
concatenated into a single string and further re-
duced with class-based Term-Frequency Inverse-
Document-Frequency (c-TF-IDF). The final repre-
sentation reduction used KeyBERT(Grootendorst,
2020). The resultant meta-topics provide each clus-
ter with a semantic theme common to all of its
members.

The trained topic model encodes the story data,
annotating the dataset using the general encoding
methodology described in Antonello et al. (2021).
Each 16 word phrase from the story dataset was fed
through the topic model and was scored according
to how likely each phrase is a member of each topic.
The context length of 16 words was selected to bal-
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Figure 1: Functional Selectivity Detection Pipeline: Functional selectivity for a given meta-topic is generated
using an automated pipeline. (A) 10 topic models are trained on strings of varying lengths derived from the
stimulus dataset using a hierarchical clustering algorithm. (B) The topics generated are merged via cosine similarity,
resulting in a single final topic model of Tn topics. (C) Story segments are fed into the newly generated merged
topic model to build topic embeddings for the stimulus. (D) FIR delays are added to the topic embeddings,
yielding our final stimulus matrix X . The BOLD response is temporally aligned with the time-delayed stimulus
to produce our response matrix Y . (E) Bootstrapped ridge regression is used to generate weights β that map the
stimulus to the voxelwise response. (F) We calculate the Pearson skewness of each voxel to find voxels with
high functional selectivity. (G) An LLM is prompted to automatically determine which topics from the merged
topic model correspond to a chosen meta-topic. (H) A counterfactual analysis is performed, where we observe
which functionally selective voxels have their Pearson skewness reduced when the voxels from the corresponding
meta-topic are excluded. The final flatmap shows the resulting drop in skewness for the "Places" meta-topic,
demonstrating that the method correctly identifies RSC, OPA, and PPA as places-selective regions.

ance good performance of the model with a need
to keep the topic labels relatively contemporaneous
with the immediate content. These topic probabil-
ities were then used as features for the encoding
model. These features were then downsampled
using Lanczos downsampling and finite impulse
response (FIR) delays of 2, 4, 6 and 8 seconds were
applied to model the hemodynamic response func-
tion (HRF) of the BOLD signal. A linear projection
from these downsampled, time-delayed features to
the measured BOLD response was then trained us-
ing bootstrapped ridge regression. That is, let X be
the stimulus features derived from our topic model
and let Yv be the measured BOLD response for a
given voxel v. For each voxel, we found linear
weights βv by optimizing

min
βv

(Yv −Xβv) + λ||βv||2 (1)

where || · ||2 denotes the L2-norm and λ is a
regularization parameter.

3.3 Skewness as a Marker of Functional
Selectivity

With βv computed for every voxel, we used it to de-
termine which brain voxels are highly selective for
a small number of topics. To do this, we measured
the voxelwise Pearson skewness of βv. Intuitively,
Pearson skewness is high when most of the weight
in βv is allocated to a small number of its elements.
These highly-skew weights are more likely to be
driven by the existence or nonexistence of a narrow
number of topics in a given context. As functional
selectivity is just the property of being selective for
a narrow number of topics, high-skew voxels are
by definition highly functionally-selective.

With highly-selective voxels identified, we seg-
mented them into local clusters based on their cor-
tical proximity. Contiguous sets of voxels of high
skewness were grouped into proposed ROIs. For
a given region R, the weights βv corresponding
to the voxels in that region are then averaged and
we observe topics with the highest weights in the
averaged βR. If those topics shared a semantic cat-
egory (for instance, if they are all "number words"),

79



fROI Meta-topic Avg. voxel correlation Avg. voxel skew

VIP Numbers and quantities 0.21 0.81
EBA Limbs and body parts 0.12 0.35
RSC Places and locations 0.08 0.47

ITG Conversation and dialogue 0.24 0.45

pPCu Family members 0.21 0.51
dPCC Movement and actions 0.10 0.49
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Figure 2: Analyzing Functional Selectivity (A) A cortical flatmap of voxels with high functional-selectivity using
our skewness metric. The ventral visual stream has the highest overall functional-selectivity, whereas the frontal
lobe has comparatively lower selectivity. (B) Individual topic responsiveness, according to our linear mapping β is
visualized for the retrosplenial cortex. Most of the skewness in the distribution is derived from topics relating to
location or time. Responses to these topics are substantially higher for RSC than other semantic categories. (C)
Average voxel correlations and skewnesses for several fROIs are shown. Corresponding meta-topics are determined
via post-hoc analysis of the most prominent topics. (D) Regions selective for the assorted meta-topics are visualized
according to their relative selectivity. Voxels are colored according to how much omitting that set of meta-topics
reduces overall skewness in that voxel. Bottom: Visualizes more novel, more poorly understood selectivities derived
from our method. Meta-topics in (D) are colored according to the legend in (C).
Top: Visualizes well-understood semantic functional selectivities.

we concluded that the corresponding ROI is func-
tionally selective for that category.

To map the putative functional organization of
a semantic category or meta-topic, we prompted
an LLM (GPT-4) (OpenAI, 2023) to select the top
6% of topics from the list of generated topics that
semantically aligned most with the provided meta-
topic. These output topics were checked for cor-
rectness and the top 20 (~4%) topics were selected.
Voxel-wise, Z-scored Pearson skewness was then
recalculated with and without the chosen topics.
Since the average voxel had a z-scored skewness of
zero, voxels selective for the meta-topic have high
skew magnitudes when the meta-topic topics are
included, but regress to zero once the topics were re-
moved. The difference between the z-scored skews
is the number of standard deviations from the mean
skew that the meta-topic provides for the voxel.

We define the voxel-level Pearson skewness for
any set of topic indices Ω ⊆ {1, . . . , Tn} as

sv(Ω) =

∑
i∈Ω

(
βv,i − β̄v(Ω)

)3
(∑

i∈Ω
(
βv,i − β̄v(Ω)

)2)3/2
(2)

where β̄v(Ω) = 1
|Ω|

∑
i∈Ω βv,i.

After z-scoring these skewness values across
voxels (so that the mean voxel has zero z-scored
skewness), the contribution of a chosen meta-topic
M is then

∆skewv(M) = Z
(
sv(Ωall)

)
− Z

(
sv(Ωall\M)

)
,

(3)

where Ωall = {1, . . . , Tn} is the full set of topics.
This skewness differential is used to measure the

degree to which voxel v is selective for the selected
meta-topic. If a voxel has high-initial skewness,
and then that skewness is substantially reduced
when topics from a given meta-topic are excluded,
we conclude that that voxel is functionally selective
for the associated meta-topic. The full pipeline
for functional selectivity detection is depicted in
Figure 1.

3.4 Analyzing Meta-topic Specificity

Following the application of our functional selec-
tivity pipeline to our data, we observed a small
number of regions with apparently strong semantic
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Figure 3: Investigating Meta-topic Precision for Novel Regions For each of our three subjects (Top: UTS01,
Center: UTS02, Bottom: UTS03), we visualize the meta-topic selectivity of familial people vs. non-familial
people (Left) and body parts in motion vs. not in motion (Right), In each case, we find that the selectivity of the
corresponding region is precisely captured by the chosen meta-topic (i.e. familial people for pPCu; moving body
parts for dPCC) and not its antithesis.

functional selectivity, according to our metric, that
did not appear to have a strong basis in prior litera-
ture. To determine the meta-topic specificity these
novel ROIs, we provided GPT-4 with a theme one
level broader than the ROI’s proposed meta-topic
and analyzed the previously missed topics. For
example, if an ROI is found selective for family
members, we prompted GPT-4 to select the top 6%
of topics that are most aligned with people but do
not reference family. Analysis on the skewness
differential was then repeated for the top 20 top-
ics of this new, broader meta-topic. This process
ensures that the meta-topic selected possesses the
highest level of granularity for which that ROI is
functionally selective.

3.5 Measuring Anatomical Consistency

To validate the generality of the anatomical obser-
vations made from the topic selectivity encoding
models, we follow a methodology similar to that of
Huth et al. (2016) in observing the semantic tiling
of the cortex with respect to our topic space. In
particular, we perform PCA along the topic axis
of our linear mapping for one subject (UTS03) to
get a set of orthogonal principal components that
maximally explain the variance along that axis. We
then project these components to the voxel space
for every subject, by computing the dot product
of the topic components with the specific linear
encoding weights for that subject. The anatomi-
cal alignment of the resulting projection between
subjects determines the degree to which observa-
tions derived from our topic encoding models are
population trends.
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4 Results

Figure 2 shows the results of applying our func-
tional selectivity mapping protocol to a single sub-
ject from our fMRI dataset. Additional results for
the other two subjects in our study are presented in
Appendix A. Results are highly consistent across
the subjects in our dataset, suggesting that the func-
tional selectivities described here are population-
level trends.

Figure 2a shows the voxels described as func-
tionally selective according to our topic skewness
metric. We find that many regions previously iden-
tified as functionally selective are correctly labeled
as such by our skewness metric. The highest func-
tional selectivity is observed along a band of the
higher ventral visual stream, which includes re-
gions like occipital place area, extrastriate body
area, and borders interparietal sulcus. We observed
comparatively smaller amounts of functional selec-
tivity in regions outside the ventral visual stream,
such as the prefrontal cortex. This may suggest
that the presence of local visual representations is
a strong driver of selectivity, supporting grounding
theories of cognition (Barsalou, 2008) that sug-
gest that neural representations are "grounded" in
sensorimotor information. Additionally, the result
replicates prior work suggesting a visio-semantic
alignment that occurs at the border of visual cor-
tex (Popham et al., 2021).

Figure 2b demonstrates the process of isolating
the functional selectivity of one such ROI through
the example of a set of voxels located in RSC.
We replicate the established result that this ROI is
highly selective for "place semantics", as suggested
by prior literature (Mitchell et al., 2018). Most top-
ics with the highest weight on these voxels are se-
mantically associated with locations, travel, or tem-
poral concepts. The top three topics for this set of
voxels (New York, North/South Pole, Los Angeles)
are all prominent geographical locations. We addi-
tionally note a further time-semantics component
to some of the most selective topics (e.g. afternoon,
night, day), suggesting that RSC is further impli-
cated in the processing of temporal information,
not just spatial information. Additional analysis
of the temporal profiles of the topics suggests that
this is not due to place- and time-related topics co-
occurring naturally in the stimuli, but instead due
to separate and independent effects for both meta-
topics. (Appendix Figure 7 and Appendix Table
1).

Figure 2c further shows this process applied
to six selected fROIs, with the meta-topics asso-
ciated with their functional selectivities. Average
predictive performance and voxel skew for the vox-
els in these regions are also shown. All selected
regions have high skewness and most have high
prediction performance relative to the average cor-
tical voxel. Meta-topic descriptions are consistent
with prior literature, and we correctly identify the
functional selectivity of regions such as extrastriate
body area (EBA), ventral interparietal area (VIP)
and parahippocampal place area (PPA). It is note-
worthy that while selectivity in areas like EBA has
been established previously using visual contrasts,
our method replicates these findings purely from
linguistic input, further supporting those claims in
a modality distinct from prior work.

Figure 2d shows the cortex-wide meta-topic
selectivity for the concepts of three previously-
established functionally-selective regions: RSC,
EBA and VIP. We find several other less well-
described functional selectivity regions, such as
an area near inferior temporal gyrus (ITG) cortex
that is selective for "conversation" words, an area
in posterior precuneus (pPCu) that is selective for
"family"-related words, and an area that is selective
for words describing movement or physical actions
of body parts, which is located in dorsal posterior
cingulate cortex (dPCC). Voxels are colored ac-
cording to how much that voxel’s skewness would
change if the corresponding meta-topic’s weights
were removed.

Given that we found the existence of these newer
regions surprising owing to their unusual speci-
ficity, we examined the degree to which the de-
scriptors of newly described regions were precise.
For the posterior precuneus and dorsal cingulate
ROIs, Figure 3 looks at the effect of subtly altering
the meta-topic we have associated with each region.
Remarkably, we find that for pPCu, topic selectiv-
ity is no longer observed in the region when we
choose a meta-topic of "non-familial" people. Sim-
ilarly, the dorsal cingulate is not selective for body
part actions that do not involve active movement.
These effects are consistent across all 3 subjects in
our study, further supporting the claim that these
descriptors are indeed accurate summaries of the se-
mantic functional selectivity of these regions. We
believe these results strongly warrant further in-
vestigation given their surprising consistency and
specificity.
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Figure 4: Population-level Topic Selectivity For each of our three subjects, the top 3 principal components of
the topic model space for UTS03 are computed and then projected into the respective voxel space using the linear
encoding model weights. The final projection is plotted, where each color channel denotes a single principal
component from the topic space (Red: PC1, Green: PC2, Blue: PC3). We see largely consistent anatomical
alignment across subjects, suggesting that topic-level selectivity generalizes to population-level trends.

Finally, we analyzed whether the weights from
our topic encoding models were largely subject-
specific, or generalized across the population. Fig-
ure 4 shows the result of the principal component
analysis of our topic encoding models. We see
strong anatomical alignment across subjects, with
especially prominent laterality patterns. For exam-
ple, linear combination of PC1 and PC2 (yellow) is
more observable in left temporal cortex, whereas
a linear combination of PC1 and PC3 (pink) is
more observable in right temporal cortex. Most im-
portantly, this strong anatomical alignment across
three subjects provides good support for the claim
that the topic encoding models are largely consis-
tent across individuals and are therefore not heavily
influenced by subject-level differences.

5 Discussion and Limitations

Unlike today’s computers, which are no more than
collections of billions of identical and function-
ally equivalent transistors, the brain is no compu-
tational monolith. Despite this well-known fact,
remarkably little effort has gone into designing
methods to automatically detect and characterize
this functional selectivity, especially in the realm
of language semantics. To this day, functional se-
lectivity is primarily analyzed through painstaking
and tedious "contrast studies" in which subjects
are exposed to carefully curated experiments, in
order to narrow down the functional selectivity of

a region. Here, we show that by utilizing modern
machine learning techniques, we can detect and
analyze functional selectivity in a vacuum.

Replicating prior studies (Mitchell et al., 2018;
Burles et al., 2017; Astafiev et al., 2004), our re-
sults show many regions of the brain are highly
selective for specific semantic categories, such as
places, conversations, or body parts. We further
explore evidence for functional selectivity of less
well-understood regions like posterior precuneus
and dorsal posterior cingulate cortex, showing that
they are selective for the highly specific concepts
of family members and movement-based actions
respectively. We find this surprising, but are able
to show that this selectivity is consistent across
subjects and actually requires this level of speci-
ficity. We show that functional selectivity is most
heavily distributed along the ventral visual stream,
but is also present to a lesser degree in areas such
as prefrontal cortex. The functional selectivity we
detect tends to be more biased toward concrete
concepts over abstract ones, suggesting that more
abstract concepts are less likely to have uniquely
specialized regions. Nevertheless, this ongoing
work has several limitations. Firstly, the proximity-
based process of clustering voxels into fROIs is
still rudimentary and could be supplemented with
a more nuanced approach that directly takes into
account similarity in voxel weights. Next, the meta-
topic classification that is currently performed by
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an LLM could be subject to additional validation on
its agreement with human classification. Further
work should also be pursued into understanding
individual subject-level differences in functional
selectivity to determine the degree to which these
observations hold across the population. The rel-
ative data-efficiency of our method could provide
a more fruitful perspective into these differences
across subjects.

What can functional selectivity tell us about the
nature of human intelligence? We often find that,
outside of the ventral visual stream, most functional
selectivity is closely related to the non-semantic
role of adjacent regions. For example, the seman-
tic selectivities of dPCu (movement and actions)
and ITG (conversations) are closely associated with
their non-semantic roles (motor planning and au-
ditory processing). We find such "functional coin-
cidences" to be persuasive evidence in support of
cognitive grounding, the notion that cognitive rep-
resentations are "ultimately grounded in bodily, af-
fective, perceptual, and motor processes" (Pezzulo
et al., 2013), rather than "computation on amodal
symbols in a modular system" (Barsalou, 2008).
In a model of intelligence based on grounded cog-
nition, functionally-selective regions would likely
benefit from their proximity to areas specialized in
related low-level processes. Further research into
the mapping of functional selectivity could one day
help to reveal the underlying organizational drivers
of cortical structure.
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A Supplementary subject data

Here we reproduce Figure 2 for the other two subjects that we examined. We observe similar selectivity
patterns throughout the cortex.

Figure 5: Replication of Figure 2 for UTS01. The same meta-topics and color key are used for (C) as in Figure 2D.
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Figure 6: Replication of Figure 2 for UTS02. The same meta-topics and color key are used for (C) as in Figure 2D.
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B Meta-topic data

The 20 topics that comprise each meta-topic are listed in Figure 8. This includes the six meta-topics
that relate to an ROI (‘numbers and quantities’, ‘limbs and body parts’, ‘places and locations’, ‘family
members’, ‘movement and actions’ and ‘conversation and dialogue’) and the two broader-level meta-topics
that were used to determine ROI specificity in Section 3.4 (‘people excluding family’ and ‘body parts
without movement’).

To test whether topics within a meta-topic tended to be predicted at similar timepoints in each story,
we calculated pair-wise correlations between all 463 topics based on their probability scores per TR. To
minimize the effect of noise from low-probability scores, only the top 10% of scores within each TR were
used in this calculation while the bottom 90% were set to zero. Then, maximum-distance hierarchical
clustering on pairwise correlations was used to group the topics into 102 clusters. Figure 7 shows these
pair-wise correlations, with the topics reordered to visualize the clusters in their hierarchical order.

This data was used to determine whether the co-existence of more than one topic theme in an ROI’s
apparent topic selectivity is likely due to an actual functional selectivity, or an artifact of topic co-
expression in the same sentences in the story data. For example, the data suggests RSC to be indeed
functionally selective for both temporal topics (cluster 22) and geographical topics (clusters 71 and 92),
as the inter-cluster correlations for cluster 22 are significantly lower than the intra-cluster correlations
(Figure 7 and Table 1).

Figure 8 shows the correlation matrix subsetted to display values relevant to the listed meta-topic topics
only. The involvement of many different clusters within each meta-topic similarly suggests our results on
ROI functional selectivity (Figures 2 and 3) to not be heavily dependent on topic co-expression.
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92
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Figure 7: Biclustering results on the 463 topics of the final topic model. The x- and y-axis are symmetrical, with
each row and column organized in hierarchical order following maximum-distance clustering. Clusters highlight
topics that tend to occur near each other in time (i.e. occur within the same sentence) in the story data. Three
clusters that contain the top RSC topics shown in Figure 2B have been highlighted in red, and the topics contained
listed under Table 1.
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Cluster Topics

22

afternoon_saturday_evening
lights_light_bright
sleep_sleeping_slept
wake_terrifying_right
clock_morning_time

71

trip_traveled_travel
come home_came home_home
camp_park_meet
london_road_night
escort_father_family
staying_stayed_stay
ticket_tickets_flight
funeral_celebrating_family
train_walked_travel

92

new york_york city_york
los angeles_angeles_los
distance_miles_away
alabama_texas_state
north_war_south
beach_sand_florida
america_united states_states
streets_east_street
pole_north_south
grass_mile_state
alabama_state_going

Table 1: List of topics contained in the clusters labeled in Figure 7.
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nineteen ninety_ninety_nineteen
sixteen_age_eighteen

minutes later_weeks later_minutes
years ago_years later_ago

dollars_billion_dollar
distance_miles_away

patient_number_numbers
century_centuries_decade

costs_cost_cheap
pounds_weight_heavy

tall_height_length
average_millions_lot people

percent_half_roughly
increase_increased_rising

week_weeks_month
clock_morning_time

radiation_flying_thirty
numbers_number_sort

settled_contract_nineteen ninety
holes_hole_using

Numbers and quantities (VIP)
patients_doctor_dr
women_woman_female
donald_trump_donald trump
john_dies_funeral
groups_group_people
meeting_meet_met
king_kingdom_leader
david_frank_michael
sam_james_mr
charles_thomas_famous
group_groups_members
uncle_michael_mike
jesus_bible_church
tom_family_mom
average_millions_lot people
audience_crowd_talking
teacher_counselor_gonna
administration_michael_mike
young man_young_men
bob_mr_charles

People excluding family

staring_looked said_mirror
hair_head_heads

fingers_hands_touched
sit_sitting_seat
legs_leg_arms

brain_consciousness_mental
stood_standing_stand

pain_painful_hurt
eye_eyes_fake

bodies_body_bones
pounds_weight_heavy

kissed_leaned_guys
grab_grabbed_grabs

objects_object_bodies
belly_neck_lips

woman_beauty_female
brain_suffered_cancer
doctor_plastic_hands

shoes_pair_store
bodies_dirt_base

Limbs and body parts (EBA)
bus_truck_driving
went_just went_just going
flight_flying_fly
walking_walk_walked
fingers_hands_touched
sit_sitting_seat
speed_faster_fast
walks_stops_suddenly
stood_standing_stand
mountain_climbed_peak
run_running_ran
turn_turning_turns
falling_fall_falls
grab_grabbed_grabs
loose_ground_falling
pass_passing_passed
fast forward_forward_ahead
follow_followed_following
jump_jumped_height
push_pushing_pushed

Movement and actions (dPCC)

china_countries_america
new york_york city_york

living room_bedroom_apartment
hotel_bathroom_bar

los angeles_angeles_los
alabama_texas_state

mountain_climbed_peak
club_city_near

north_war_south
beach_sand_florida

america_united states_states
london_road_night
streets_east_street

downstairs_upstairs_floor
moon_planet_earth
park_shape_theme

camp_park_room
pole_north_south

train_walked_travel
alabama_state_going

Places and locations (RSC)
staring_looked said_mirror
hair_head_heads
legs_leg_arms
brain_consciousness_mental
pregnant_birth_having
pain_painful_hurt
eye_eyes_fake
test_tests_study
blood_bloody_wound
bodies_body_bones
pounds_weight_heavy
objects_object_bodies
belly_neck_lips
woman_beauty_female
blind_dog_guide
brain_suffered_cancer
shoes_pair_store
bodies_dirt_base
photo_image_pictures
energy_health_healthy

Body parts without movement

father_dad_parent
child_daughter_children
marriage_married_wife
families_family_parents

daughters_daughter_mrs
grandmother_cousin_woman

mom_mother_dad
best friend_friends_friend

pregnant_birth_having
sam_james_mr

gay_straight_sex
uncle_michael_mike

tradition_traditional_culture
tom_family_mom

boyfriend_respect_special
escort_father_family

wedding_license_official
unit_care_technical

brothers_brother_knock
funeral_celebrating_family

Family members (pPCu)
said yes_said yeah_uh said
silence_quiet_screaming
conversation_conversations_talking
know know_um know_yes know
encouraging_said yeah_said like
okay okay_okay_ok
questions_ask_asks
wanna tell_gonna tell_tell
didn understand_don understand_understand
word_words_term
really don_don really_don know
sorry_just say_don uh
responded_response_respond
didn mean_means_meant
like_know say_like said
sounds like_fellow_sounds
whispered_crying_telling
hi_hello_hey
started talking_lived_life
frank_said_thinking

Conversation and saying things (ITG)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8: The topics comprising each meta-topic and their pairwise correlation scores. X-axis and y-axis labels are
symmetrical. White borders and topic colors show the different cluster groups. Correlation scores were calculated
by comparing the prediction profiles of each topic over all TRs.
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Abstract

Alzheimer’s Disease (AD) dementia is a pro-
gressive neurodegenerative disease that nega-
tively impacts patients’ cognitive ability. Pre-
vious studies have demonstrated that changes
in naturalistic language samples can be useful
for early screening of AD dementia. However,
the nature of language deficits often requires
test administrators to use various speech elici-
tation techniques during spontaneous language
assessments to obtain enough propositional ut-
terances from dementia patients. This could
lead to the “observer’s effect” on the down-
stream analysis that has not been fully investi-
gated. Our study seeks to quantify the influence
of test administrators on linguistic features in
dementia assessment with two English corpora
the “Cookie Theft” picture description datasets
collected at different locations and test admin-
istrators show different levels of administrator
involvement. Our results show that the level
of test administrator involvement significantly
impacts observed linguistic features in patient
speech. These results suggest that many of sig-
nificant linguistic features in the downstream
classification task may be partially attributable
to differences in the test administration prac-
tices rather than solely to participants’ cogni-
tive status. The variations in test administrator
behavior can lead to systematic biases in lin-
guistic data, potentially confounding research
outcomes and clinical assessments. Our study
suggests that there is a need for a more standard-
ized test administration protocol in the devel-
opment of responsible clinical speech analytics
frameworks.1

1 Introduction

Alzheimer’s Disease (AD) dementia is a neurode-
generative disease that causes progressive decline
in cognitive function. Even though AD currently
has no cure, a timely diagnosis is imperative to

1Our code is available at https://github.com/
LinguisticAnomalies/turns

alleviate negative consequences of delayed or ab-
sent diagnosis including emergency events, family
strife, and exposure to scam artists praying on the
vulnerable (Stokes et al., 2015). Changes in natural-
istic language samples collected from individuals
at high-risk for dementia have been identified as
one of the early signs of AD (Almor et al., 1999;
Blanken et al., 1987; Bucks et al., 2000), showing
its potential as an early screening tool. However,
analyzing speech samples is labor-intensive and
time-consuming. Contemporary studies predomi-
nately focus on automated prediction and detection
of such changes with language models with con-
siderable success in distinguishing the speech of
dementia patients and healthy controls (for recent
reviews, see Shi et al. (2023); Ding et al. (2024)).
Despite these advances, this line of research often
faces the limited data availability. As noted in Shi
et al. (2023), the majority of prior work focuses
on analyzing naturalistic speech samples using the
transcripts of “Cookie Theft” picture description
cognitive task produced by English-speaking co-
horts in the Pitt corpus (Becker et al., 1994).

While several prior studies have focused on con-
nected speech from non-English speaking partici-
pants (e.g., French (Rousseaux et al., 2010b), Span-
ish (Custodio et al., 2020), and German (Weiner
et al., 2016)), a very limited discussion has been
held in prior literature on the influence of test ad-
ministrators. Similarly, methods for data collection,
such as optimal sample duration, distance to the
microphone, and presence of background noise,
have not been standardized (Seyed Ahmad Sajjadi
and Nestor, 2012). In addition, the impaired com-
munication ability of people with dementia (Ash
et al., 2006; Hier et al., 1985; Rousseaux et al.,
2010a) creates additional barriers for their care-
givers (Eggenberger et al., 2012; Banovic et al.,
2018). This could also extend to neuropsycholog-
ical assessment batteries such as picture descrip-
tion tasks, which are used extensively by speech-
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language pathologists in the management of clients
with language disorders, including aphasia and de-
mentia (Cummings, 2019; Berube et al., 2019).
Prior works have demonstrated that test adminis-
trators often perform a variety of speech elicitation
techniques to extract additional propositions from
aphasic patients (Menn and Obler, 1989; Caplan
and Hanna, 1998). As a number of studies have
argued in favor of a similarity of linguistic behav-
ior in patients with dementia and aphasia (Gewirth
et al., 1984; Nicholas et al., 1985; Blanken et al.,
1987; Gumus et al., 2024), similar elicitation strate-
gies may be employed when collecting speech sam-
ples from dementia patients. This could lead to
the “observer effect” (Labov, 1973) in feature val-
ues as many distinct linguistic features are sensi-
tive to the length of the text sample. A previous
study (Petti et al., 2023) demonstrated that sam-
ple length is important for extracting the various
language features of AD by analyzing the speech
samples (e.g., public interviews, talk shows and
public speeches) from cognitively healthy public
figures and those diagnosed with AD dementia.
However, this previous study did not address the
influence of interviewers and their speech elicita-
tion techniques on collected speech. The impact of
test administrators/interviewers and the resulting
reliability of linguistic features in clinical settings
also remains understudied. This less-discussed gap
is particularly concerning given the potential for
these factors to introduce systematic biases in the
assessment of cognitive decline.

To address this limitation, our study seeks to
quantify the influence of test administrators on
speech collected with the “Cookie Theft” picture
description task. Specifically, we analyze the quan-
tity and distribution of part-of-speech (POS) tags in
task transcripts collected from participants residing
in two distinct United States locations: Pennsyl-
vania and Wisconsin. We anticipate that test ad-
ministrators employ significantly more interactions
to elicit speech from dementia patients compared
to healthy controls, which may contribute to pa-
tients with dementia producing linguistic patterns
found to be associated with dementia, such as in-
creased use of repetitions (Hier et al., 1985), higher
pronoun usage (Almor et al., 1999), and elevated
lexical frequency (Bucks et al., 2000) when com-
pared to healthy controls. We analyze the Pitt cor-
pus and the Wisconsin Longitudinal Study (WLS)
(Herd et al., 2014) datasets from the Dementia
Bank. Both employ the “Cookie Theft” picture

Figure 1: The “Cookie Theft” picture description stim-
uli.

description task from the Boston Diagnositc Apha-
sia Examination (Goodglass and Kaplan, 1983).
We aim to quantify the extent to which the lin-
guistic features commonly attributed to dementia
patients may be artifacts of the data collection and
test administration process.

The contributions of this work can be summa-
rized as follows: a) we examine patterns in how test
administrator involvement may relate to linguistic
features observed in patient speech and their associ-
ation with dementia vs. control classification; and
b) our analyses raise questions about how variations
in test administrator behavior might interact with
linguistic patterns in clinical assessments. These
observations point to opportunities for future re-
search to investigate the role of test administration
in linguistic analyses and clinical assessments.

2 Related Work

Verbal production tasks are common neuropsycho-
logical assessments for measuring language and
executive retrieval functions, with the category flu-
ency task being one of the most widely utilized in
clinical settings. In this task, participants are asked
to generate exemplars of specific semantic cate-
gories – such as animals or food – in a given time.
While the category fluency task has demonstrated
the diagnostic utility for AD screening (Monsch
et al., 1992; Cerhan et al., 2002), these assessments
are typically conducted in controlled clinical set-
tings and often require longitudinal observation be-
fore a final diagnosis can be made. Such controlled
testing environments can be insensitive to natu-
ralistic language patterns (Sabat, 1994) and may
miss early signs of linguistic deficits that manifest
in daily communications (Crockford and Lesser,
1994). In contrast, spontaneous speech has proven
to be a valuable source of information for assessing
an individual’s cognitive state (Bucks et al., 2000).
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The “Cookie Theft” picture description task (Fig-
ure 1) is designed to elicit speech samples in patho-
logical cohorts. Participants are asked to describe
everything they observe in a picture where two
children collaborate to secretly take cookies from
a high cupboard shelf, while their mother is pre-
occupied washing dishes. Previous studies using
statistical analyses have demonstrated many lin-
guistic anomalies associated with AD progression,
such as increased use of repetitions (Hier et al.,
1985), higher pronoun usage (Almor et al., 1999),
and elevated lexical frequency (Bucks et al., 2000;
Cummings, 2019) compared to healthy controls.
Supervised machine/deep learning methods, includ-
ing transformer-based (Vaswani et al., 2017) neural
language models can learn to distinguish subtle lin-
guistic characteristics between dementia patients
and healthy controls with impressive classification
performance (for a review , see Ding et al. (2024)).
However, such models bring an additional chal-
lenge – often the best-performing models (i.e., neu-
ral language models) are least transparent, and the
less-accurate models (i.e., statistical models) are
easier to explain. Limited interpretability could ob-
scure the bias, which is particularly concerning in
clinical artificial intelligence development (Reddy,
2022).

Building upon the previous findings that longer
speech is important to extract distinguishable lin-
guistic features (Petti et al., 2023) and interaction
patterns between speakers are predictive of the
downstream classification task (Farzana and Parde,
2022), we build statistical models to investigate the
role of test administrator behavior in the manifesta-
tion of linguistic markers associated with demen-
tia. We show that the level of test administrator’s
engagement significantly impacts the linguistic fea-
tures observed in the patients’ speech.

3 Method

3.1 Data

We use two publicly available datasets resulting
from deploying the “Cookie Theft” picture descrip-
tion task during data collection: a) the Pitt cor-
pus2 and b) the WLS3 corpus. The Pitt corpus
includes recordings and corresponding transcripts
from 319 participants. 102 out of 319 participants

2https://dementia.talkbank.org/access/English/
Pitt.html

3https://dementia.talkbank.org/access/English/
WLS.html

were classified as control subjects and 204 partici-
pants as patients categorized with any AD-related
label. Specifically, we restricted the original Pitt
corpus to a subset of 169 patients with an assign-
ment of probable AD dementia and 99 healthy con-
trols, resulting in 214 and 182 transcripts for AD
patients and healthy controls, respectively.

The WLS is a large-scale, extended longitu-
dinal study of a random sample of 10,317 men
and women who graduated from Wisconsin high
schools in 1957. The WLS participants were in-
terviewed up to 6 times between 1957 and 2011.
Several nueropsychological tests, including letter
fluency task and category fluency task were admin-
istered in both 2004 and 2011. The “Cookie Theft”
picture description task was introduced in 2011.
While the WLS participants were interviewed with
Telephone Interview for Cognitive Status-modified
(TICS-m) for a clinical proxy diagnosis in 2020, we
decide to follow a prior study (Guo et al., 2021) to
build a “noisy” label with statistically determined
age- and education-adjusted thresholds of 16, 14,
and 12 for participants in < 60, 60-79, and > 79
age ranges for the category fluency score, respec-
tively. This addresses a critical temporal aspect
in AD assessment, particularly given the 9-year
gap between speech data collection and clinical
assessment in the WLS dataset, contrasting with
the Pitt corpus where participants were diagnosed
at the time of speech collection. In supporting
this approach, the category fluency task, adminis-
tered concurrently with the “Cookie Theft” picture
description task in the WLS corpus, has demon-
strated the diagnostic utility on discriminating AD
patients and healthy controls, with sensitivity of
0.88 and specificity of 0.96 (Canning et al., 2004).
Additionally, the number of WLS participants who
completed both the cognitive tests and follow-up
clinical interview remained particularly small (<
35 labeled dementia patients), potentially limiting
the statistical power of our study.

As a result, we restrict the original WLS dataset
to a total of 1,169 participants (1,017 healthy con-
trols and 152 dementia cased patients) who a)
agreed to participant in the “Cookie Theft” picture
description task and category fluency test in 2011;
b) had not been diagnosed with a mental illness
at the time of interview; and c) did not previously
have a stroke at the time of the interview. Given
the fact that the Pitt corpus contains dementia la-
bels obtained from clinical assessments conducted
concurrently with the picture description task, we
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Characteristics Pitt WLS

Control Dementia Control Dementia

Gender (%) Female 57 (59.4) 99 (68.3) 523 (51.4) 63 (41.4)

Male 39 (40.6) 46 (31.7) 494 (48.6) 89 (58.6)

# of transcripts 182 214 1017 152

Age (mean (SD)) 64.1 (7.9) 71.5 (8.63) 70.30 (4.14) 70.20 (5.75)

Education (mean (SD)) 13.9 (2.4) 12.3 (2.8) 13.77 (3.01) 12.64 (2.16)

Table 1: Basic characteristics of the Pitt corpus and the WLS corpus before propensity score matching.

consider this to be an example of dementia detec-
tion. In contrast, the WLS dataset represents the
case of dementia prediction. Data characteristics
are provided in Table 1.

3.2 Preprocessing

We perform transcript pre-processing using TRES-
TLE (Toolkit for Reproducible Execution of
Speech Text and Language Experiments) (Li et al.,
2023) for both participants and test administrators.
Specifically, we remove non-ASCII characters, un-
intelligible words, and non-speech artifacts event
descriptions or gestures. We also retain the utter-
ances from participants in a relatively “raw” state,
in which we preserve repetitions, invited interrup-
tions, and speech repairs (self-revisions).

3.3 Topics Analysis

We segment the utterances from test administrators
into individual sentences and remove the duplicates
to establish a clean dataset for analysis. These ut-
terances are then clustered based on frequency in
each diagnostic group to understand the predomi-
nant conversation topics.

3.4 Linguistic feature extraction

Following the established evidence (Bucks et al.,
2000; Almor et al., 1999; Hier et al., 1985; Cum-
mings, 2019; Blanken et al., 1987), we focus our
the analysis of part-of-speech (POS) tags, lexical
frequency (LF), and type-to-token ratio (TTR) on
utterances from participants in the Pitt and WLS
corpora. We extract the counts of each POS tag for
each transcript using spaCy4 with RoBERTa (Liu
et al., 2019) as the base model5. The log LF of
each transcript is calculated using the SUBTLEXus
corpus (Brysbaert and New, 2009). Tokens that do
not appear in the SUBTLEXus corpus are removed

4https://spacy.io/
5See Table 3 in Appendix for the full list of POS tags

analyzed in this study.

as out-of-vocabulary items. TTR quantifies lexi-
cal diversity in speech samples, calculated as the
proportion of unique words to total words in the
transcript. We also count the number of clauses in
each transcript. In this study, we define a clause as a
syntactic unit centered around a verb that expresses
a proposition. As a proxy of syntactic complex-
ity (Caplan and Hanna, 1998), clause count has
been shown to be a sensitive linguistic feature for
detecting dementia from spoken samples (Seyed
Ahmad Sajjadi and Nestor, 2012; Pakhomov et al.,
2011).

Additionally, we define turn as the number
of utterances from either participants (denoted
as par_turns) or test administrators (denoted as
inv_turns) in each transcript. We extract the num-
ber of turns from test administrators from tran-
scripts for follow-up propensity score matching
(PSM).

3.5 Propensity score matching

Propensity score matching (PSM) (Austin, 2011)
is a statistical matching method to estimate the
effect of a treatment by accounting for the covari-
ates that predict receiving the treatment. PSM as-
signs a propensity score, which is the probability of
treatment assignment conditional on the observed
covariates. This conditional probability, serving
as a balancing score, matches each individual in
the treatment group to an individual in the control
group in controlled experiments.

Luz et al. (2020) introduces the AD Recogni-
tion through Spontaneous Speech (ADReSS) Chal-
lenge, providing researchers with the first available
benchmark that is acoustically pre-processed and
balanced in terms of age and gender, both of which
are risk factors for AD (Ruitenberg et al., 2001;
van der Flier and Scheltens, 2005). However, it
does not take into account the following possible
confounding factors: a) education level, (lower ed-
ucation level is a risk factor of dementia later in
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life and contributes to the lower linguistic ability)
(Snowdon et al., 1996; Ngandu et al., 2007; Nguyen
et al., 2016; Caamaño-Isorna et al., 2006); and b)
the influence of test administrators, who may per-
form a variety of speech elicitation techniques to
extract enough propositions from patients (Menn
and Obler, 1989; Caplan and Hanna, 1998) in a con-
strained task, such as the “Cookie Theft” picture
description task.

To address these concerns, we match the Pitt and
the WLS corpora on: a) years of education received,
and b) the number of turns from test administrators
using PSM. This resulted in a balanced Pitt corpus
with 167 transcripts for both dementia patients and
healthy controls, and a balanced WLS corpus con-
taining 152 transcripts for both dementia patients
and healthy controls.

3.6 Statistical models
We apply z-score normalization on the POS tags,
lexical frequency and TTR extracted from each
transcript and treat the number of turns from test
administrators as the random effects. We split the
original and the matched Pitt corpus into 70/30
training/test split. We fit a generalized linear mixed
models on the matched Pitt training split where we
treat the number of turns from test administrators
(inv_turns) as random effects. Our preliminary
results show that fitting such a model for matched
WLS data results in singularity (i.e., the random
effects of inv_turns variance-covariance matrix
is of less than full rank). Therefore we decide to
fit generalized linear model on the WLS corpus. In
addition, we compare the interaction model (mod-
els with interaction terms between inv_turns and
each linguistic feature) and naïve models (models
without interaction terms) and apply backward se-
lection using Akaike’s Information Criteria (AIC)
(Akaike, 1998). AIC is an information-theoretic
approach that estimates the distance between can-
didate models and the true model on a log-scale,
which selects a parsimonious approximating model
for the observed data. Our preliminary results show
that interaction models achieve better fit with lower
AIC. We then continue our analysis with the result-
ing interaction model for Pitt corpus (Mpitt) and
WLS corpus (Mwls).

We also perform cross validation on each dataset
to test for internal validity. Specifically, we assess
the classification performance of Mpitt on both
the matched Pitt test split and the matched WLS
corpus and Mwls on the matched Pitt test split,

respectively.

4 Results

The results of PSM for the Pitt and the WLS corpus
can be found in Table 4 and Table 5 in Appendix,
respectively. We observed that many linguistic
features preserved imbalance even after PSM, with
standardized mean difference (SMD) > 0.1 (Zhang
et al., 2019). It should be noted that SMD does not
indicate the differences in the direction of the scale
(Chandler et al., 2019) (i.e., cannot substitute the p-
value from significance testing). We also observed
that the WLS participants obtained a higher level
of education than the Pitt participants (one-sided
Wilcoxon rank sum test p-value < 0.001). These
observations suggest that additional, potentially
unaccounted-for variability may be influencing the
results. Thus we proceeded with further quantita-
tive and qualitative analyses.

4.1 Topics analysis

We found that test administrators’ utterances usu-
ally cover the following topics: a) initiation of the
task (e.g., “and there’s a picture” and “what’s going
on in this picture”); b) acknowledgment of progress
(e.g., “okay”); c) speech elicitation (e.g., “anything
else”, “if you see anything else” and “is there any-
thing else”); and d) ending the task (e.g., “alright”,
“thank you”, “that’s fine" and "good”). For the Pitt
corpus, test administrators said “anything else?”
more frequently to dementia patients (18 times)
than to healthy controls (10 times). In contrast,
the WLS test administrators used the same level
of speech elicitation for both groups (dementia pa-
tients: 2 times; healthy controls: 2 times).

4.2 Test administrator interaction styles

We observed a moderate negative correlation
(Spearman’s ρ = −0.481) between the number
of turns used by Pitt test administrators and partic-
ipants’ Mini-Mental State Examination (MMSE)
scores. Pitt test administrators interacted more with
dementia patients who had lower MMSE scores,
likely in an effort to elicit sufficient speech for
analysis. As shown in Table 2, Pitt test admin-
istrators used 3 more turns on dementia patients
compared to healthy controls whereas the WLS test
administrators uses similar number of turns on both
diagnostic groups.
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Figure 2: The estimated coefficients and the corresponding 90% confidence intervals ofMpitt andMwls. The blue
points and ranges indicate that the confidence interval does not cross zero, suggesting the estimate is statistically
significant, whereas the dark gray points and ranges indicate that the confidence interval crosses zero, suggesting
the estimate is not statistically significant.

Dataset/Condition Participants’
turns (mean
(SD))

Test admin-
istrators’
turns (mean
(SD))

Pitt
Before

Control 13.55 (6.04) 3.16 (1.77)

matching Dementia 13.54 (6.98) 6.10 (4.48)

After
Control 13.44 (5.97) 3.34 (1.73)

matching Dementia 12.38 (5.60) 4.38 (1.85)

WLS
Before

Control 14.39 (7.91) 0.75 (1.53)

matching Dementia 11.97 (7.04) 0.82 (1.79)

After
Control 13.80 (7.76) 0.82 (1.62)

match Dementia 11.97 (7.04) 0.82 (1.79)

Table 2: The number of turns from participants and test
administrators in the Pitt and the WLS corpus, before
and after matching.

4.3 Quantifying the administrator effect

The Pitt model As shown in Figure 2(a), we
found that the number of test administrators’ turns
remain positive and significant (β = 0.331, p-value
< 0.05) in theMpitt, suggesting that a more interac-
tive test administrator dynamic is associated with a
higher probability of developing dementia. We also
observed that pronoun usage (β = 2.93, p-value <
0.001) showed a strong positive association with a
higher probability of developing dementia. Interest-
ingly, we observed significant interactions between
test administrators’ turns and various linguistic fea-
tures, including TTR (β = −0.146, p-value <
0.001), the usage of pronoun usage (β = −0.330,
p-value < 0.05), auxiliary (β = −0.417, p-value
< 0.001), adposition (β = 0.382, p-value < 0.05),

and particle (β = 0.191, p-value < 0.001).

The WLS model As showed in Figure 2(b), we
observed fewer significant predictors inMwls. In-
terestingly, we observed that, while the usage of
pronoun (β = −0.76, p-value <0.1) showed signif-
icantly negative association with having a dementia
diagnosis, its interactions terms with the number of
test administrators’ turns demonstrated an opposite
directional effects (β = 0.620, p-value < 0.05).

The predicted effects of the interaction terms
As shown in Figure 3(a), we observed thatMpitt
predicts a dramatic increase in the probability of
having a dementia diagnosis from 0.1 to 0.8 as con-
versations went longer for participants who used
lower level of pronoun during the test. For par-
ticipants with average pronoun usage (at mean,
shown in green),Mpitt maintained consistent pre-
dicted probabilities of having a dementia diagnosis
throughout all conversation lengths. Conversely,
participants with high pronoun usage showed an
initial high probability of approximately 0.8 for
have a dementia diagnosis in shorter conversations,
which gradually decreased to 0.7 as conversation
went longer. As we observed in Figure 3(b), par-
ticipants with lower TTR (shown in red) had an
increasing probability of having a dementia diag-
nosis as the number of turns from test adminis-
trators increased, rising dramatically from around
0.5 to nearly 0.95 over 10 turns. Notably, partic-
ipants with higher TTR (shown in blue) showed
a contrasting pattern - their probability of having
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Figure 3: The predicted values and confidence intervals of the interaction terms between linguistic markers and
inv_turns. The level of usage are denoted in color, where red indicates the lower usage (1 SD below the mean),
green indicates the average usage, and blue indicates higher usage (1 SD above the mean). The x-axis indicates the
number of turns from test administrators.

a dementia diagnosis actually decreased slightly
as conversations went longer, dropping from 0.5
to 0.35. Furthermore, we found that the predic-
tive probabilities of pronoun usage and TTR varies
systematically with inv_turns. Collectively, Fig-
ure 3 suggests an interesting diagnostic transition:
at a lower level of test administrator involvement
(inv_turns ≤ 3, typical for healthy controls), pro-
noun usage provides greater diagnostic utility; at
moderate involvement (inv_turns ≈ 4, typical
for matched dementia patients), both features offer
complementary values; while at a higher involve-
ment levels ((inv_turns ≥ 6, typical for dementia
patients before PSM), TTR becomes the dominant
discriminative marker. This suggests that different
linguistic features gain or lose diagnostic utility
depending on the degree of administrator involve-
ment.

4.4 Cross validation: classification
performance

Mpitt achieved accuracy of 0.67, precision of 0.69,
recall of 0.56, and F1 score of 0.62 on the matched
Pitt test split, respectively. Interestingly,Mpitt did
not generalize well to the original WLS corpus,
reaching accuracy of 0.59, precision of 0.13, recall
of 0.38, and F1 score of 0.19, respectively. Mpitt
performed similarly on the matched WLS corpus,
reaching accuracy of 0.50, precision of 0.50, recall
of 0.38, and F1 score of 0.43, respectively. Mwls
also generalized poorly to the matched Pitt corpus,

with accuracy of 0.55, precision of 0.54, recall of
0.47, and F1 score of 0.50 on the matched Pitt test
split.

5 Discussion

Our key findings are as follows. First, we show
that many linguistic features previously studied in
AD dementia progression appear to vary with level
of test administrator involvement. Second, the ob-
served variability between two corpora underscores
the importance of considering administrator behav-
ior as a potential confounding variable in linguistic
analyses of clinical populations. These findings
collectively suggest that some of the linguistic fea-
tures commonly observed in dementia patients may
be affected by the data collection processes rather
than cognitive decline alone.

The observation of interactive test administra-
tor dynamics in the Pitt corpus is consistent with
prior work (Menn and Obler, 1989; Caplan and
Hanna, 1998), which report that the test administra-
tor needs to induce enough propositional utterances
from participants in the constrained task such as the
“Cookie Theft” picture description task. However, it
is often noted that dementia patients are incapable
of producing complex utterances due to the pro-
gression of the disease. As such, an interactive test
administrator dynamic may lead to overestimation
of a patients’ linguistic ability in some cases.

Our results further suggest that these interac-
tion patterns influence downstream dementia clas-
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sification, which is consistent with a prior work
(Farzana and Parde, 2022). Our study further quan-
tifies the influence of test administrator behavior,
demonstrating how the varying levels of investiga-
tor involvement between groups may confound our
interpretation of linguistic markers as diagnostic in-
dicators. Our results highlight the need to interpret
linguistic markers not as isolated indicators, but
as features embedded within an interactive context
that includes test administrators’ role in shaping
the discourse. Further research design might ben-
efit from explicitly accounting for and potentially
controlling test administrator involvement when
developing screening criteria based on linguistic
features.

Our findings suggest a nuanced relationship be-
tween linguistic markers, administrator interaction
patterns, and their predictability for cognitive de-
cline. The consistently high predicted probability
of a higher probability of developing dementia for
participants with elevated pronoun usage (shown
by the stable high probabilities in the blue line in
Figure 3(a)) supports existing literature on pronoun
over-usage (Almor et al., 1999; Jarrold et al., 2014;
Cummings, 2019) as a linguistic marker of cogni-
tive decline. However, our results also indicate that
this relationship may be masked or amplified by
test administrators’ interaction styles, as evidenced
by varying predicted probability trajectories across
different conversation lengths. Similarly, while
the observed TTR patterns also align with previ-
ous findings (Hier et al., 1985) that lower lexical
diversity indicates cognitive decline, the dramatic
increase in predicted probability for participants
with lower TTR during longer conversations sug-
gests that the established observations might be
influenced by the test administrators’ interaction
patterns, suggests that these established linguistic
markers may be partially attributable to differences
in the test administration practices rather than the
true construct measures of cognitive decline.

The disparities of classification performance of
two models – Mpitt for detecting AD dementia,
andMwls for predicting dementia – confirms the
often-observed challenges of developing robust and
generalizable models for dementia detection and
prediction. While Mpitt demonstrated moderate
performance on its test split, it generalized poorly
on the WLS corpus where precision and F1 score
dropped dramatically. Mpitt’s slight improvement
in performance on the matched vs. original WLS
corpus suggests that the PSM may somewhat miti-

gate the confounding effect, but not fully resolve
the cross-corpus and cross-task generalization is-
sues. Similarly,Mwls showed limited generaliza-
tion on the Pitt corpus. This consistent under-
performance across corpora suggests the signifi-
cant challenge of creating models that can reliably
detect or predict dementia. Our results also suggest
the need of considering corpus- and population-
specific characteristics in the model development.
Factors such as demographic differences, test ad-
ministrating styles, and the temporal aspect of de-
mentia progression (i.e., detection vs. prediction)
may contribute to the observed lack of cross-corpus
and cross-task generalizability.

The variability between two corpora suggests
that some linguistic markers previously attributed
to dementia may be specific to certain data col-
lection protocols rather than universal linguistic
anomalies associated with the disease’s progres-
sion.Mpitt demonstrates reasonable performance
on its own test split, suggesting that within a single
dataset, certain linguistic patterns may indeed be
indicative of cognitive decline after controlling for
the influence of test administrators. However, its
substantially degraded performance on the WLS
corpus points out a critical issue: linguistic mark-
ers that appear robust within one population may
not translate effectively to another. This lack of
cross-corpus generalizability persists when we val-
idate Mwls on the Pitt corpus - the performance
ofMwls actually worsens on the matched Pitt test
split. These findings collectively suggest that the
linguistic anomalies associated with AD progres-
sion may be highly context-dependent, influenced
by factors such as data collection protocols, test
administrator dynamics, and population-specific
characteristics. This indicates the need for cau-
tion when interpreting linguistic markers of cog-
nitive decline, developing specialized neural lan-
guage models, and validating findings across di-
verse datasets and populations.

While the speech samples produced by popula-
tion with high clinical risks are scarce, incorporat-
ing text corpora drawn from different sources (also
known as confounding by provenance) presents
both opportunities and challenges for detecting lin-
guistic anomalies in AD dementia. Previous studies
demonstrate that treating the provenance of a tran-
script (i.e., Pitt vs. WLS) as a secondary target for
prediction (Guo et al., 2021) and data augmentation
(Liu et al., 2021; Bertini et al., 2022; Duan et al.,
2023, inter alia) could lead to performance im-
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provements. However, our results suggest the need
for extra caution in such applications. These dis-
parities suggest these approaches, if not carefully
implemented, may introduce additional confound-
ing variables rather than identifying true indicators
of cognitive impairment. As such, the observed
lack of cross-corpus and cross-task generalizabil-
ity may explain why fine-tuned neural language
models generalize less-than-ideal to other speech
samples produced by populations at high clinical
risk (Li et al., 2022; Farzana and Parde, 2023).

While the automated analysis of spoken lan-
guage produced by population with high clini-
cal risk remains a valuable component of early-
screening cognitive assessment, the observed influ-
ence of test administrator dynamics on AD-related
linguistic anomalies calls for a re-evaluation of cur-
rent methods. Researchers and clinicians should
exercise caution when interpreting the linguistic
features of the “Cookie Theft” picture description
task, as they may be partially artifacts of the data
collection itself. Our results call for a standard-
ized test administration to minimize the variabil-
ity in administrator engagement, and the need for
population- and language-specific norms for assess-
ments.

6 Conclusion

Our study explored the relationship between test
administrator involvement and linguistic features
in dementia assessments using the “Cookie Theft”
picture description task. The patterns we observed
raise questions about how established linguistic fea-
tures might be shaped by the dynamics of test ad-
ministration alongside cognitive status. Our study
brings the potential benefits of considering admin-
istrator behavior in future development of clinical
speech analytics frameworks.

Limitations

The work presented here has several limitations.
While our analysis identifies significant correla-
tions between the test administrator interactions
and linguistic features, we should note that our
study design does not establish a direct causal link.
Future experimental studies with standardized ad-
ministrator protocols would be necessary to estab-
lish such a link. Second, the size of the datasets
used in this study is considerably small, which is
a common concern in this line of research (Petti
et al., 2020). Moreover, all datasets used in this
study are in American English, and many partic-
ipants are representative of White, non-Hispanic
American residents, which certainly limits the gen-
eralizability to other languages and ethnic groups.
In this study, we only focus on analyzing POS tags
for both datasets, which is a limited feature set
for detecting cognitive impairment. Future stud-
ies should explore comprehensive linguistic and
acoustic features (i.e., Fraser et al. (2015)) to estab-
lish a more definitive measurement of the effects
of test administrator engagement. We acknowl-
edge that there are linguistic differences between
the two corpora studied in this work (Johnstone
et al., 2015), which may affect the comparability
of results across datasets. We should also note that
while category fluency task has demonstrates the
clinical utility for dementia screening; it is, how-
ever, not a complete clinical diagnosis, which may
not capture the full spectrum of cognitive decline
and could potentially lead to misclassification of
some participants.
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Appendix

POS tags Name

ADJ Adjective

ADP Adposition

ADV Adverb

AUX Auxiliary

CCONJ Coordinating
conjunction

DET Determiner

INTJ Interjection

NOUN Noun

PART Particle

PRON Pronoun

PROPN Proper noun

SCONJ subordinating
conjection

VERB Verb

Table 3: The Universal POS tags
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Features Before matching After matching

Level Control Dementia SMD Level Control Dementia SMD

Number of transcripts (n) 182 214 167 167

Education (mean (SD)) 13.92 (2.42) 12.28 (2.81) 0.629 13.66 (2.24) 12.53 (2.93) 0.434

Age (mean (SD)) 64.08 (7.91) 71.51 (8.63) 0.897 64.27 (7.85) 71.46 (8.63) 0.871

Gender (%) Female 114 (62.6) 147 (68.7) 0.128 Female 104 (62.3) 116 (69.5) 0.152

Male 68 (37.4) 67 (31.3) Male 63 (37.7) 51 (30.5)

PRON (mean (SD)) 15.03 (9.85) 17.18 (12.36) 0.193 14.72 (9.48) 15.59 (10.80) 0.086

PROPN (mean (SD)) 0.12 (0.51) 0.25 (0.65) 0.227 0.13 (0.53) 0.14 (0.46) 0.024

NOUN (mean (SD)) 24.93 (13.94) 19.41 (11.06) 0.439 24.57 (13.96) 19.37 (10.88) 0.416

ADJ (mean (SD)) 4.06 (3.52) 3.21 (3.47) 0.243 3.88 (3.38) 3.16 (3.48) 0.211

ADV (mean (SD)) 3.91 (3.75) 5.43 (5.03) 0.342 3.81 (3.79) 4.65 (3.95) 0.217

CLAUSE (mean (SD)) 20.13 (9.22) 20.43 (11.00) 0.030 19.72 (8.92) 18.87 (9.21) 0.093

AUX (mean (SD)) 13.18 (6.36) 11.66 (7.09) 0.224 13.02 (6.32) 11.22 (6.55) 0.281

VERB (mean (SD)) 16.81 (8.17) 15.70 (8.79) 0.131 16.49 (7.94) 15.00 (8.06) 0.186

ADP (mean (SD)) 11.58 (7.22) 9.29 (6.32) 0.338 11.35 (7.05) 9.50 (6.40) 0.274

DET (mean (SD)) 16.65 (9.07) 13.73 (7.97) 0.342 16.40 (9.01) 13.79 (8.05) 0.306

PUNCT (mean (SD)) 24.41 (10.80) 23.96 (12.13) 0.040 24.23 (10.67) 22.23 (9.90) 0.195

CCONJ (mean (SD)) 5.68 (4.28) 5.84 (4.15) 0.038 5.59 (4.20) 5.85 (4.21) 0.063

PART (mean (SD)) 2.77 (2.25) 3.21 (2.74) 0.174 2.59 (2.11) 3.09 (2.50) 0.214

SCONJ (mean (SD)) 1.63 (2.46) 1.27 (1.78) 0.171 1.58 (2.46) 1.18 (1.72) 0.189

INTJ (mean (SD)) 5.16 (4.02) 6.21 (6.83) 0.187 5.07 (3.97) 5.66 (4.61) 0.138

LF (mean (SD)) 8.16 (0.36) 8.36 (0.47) 0.479 8.15 (0.37) 8.30 (0.45) 0.358

TTR (mean (SD)) 0.33 (0.05) 0.31 (0.06) 0.373 0.34 (0.05) 0.32 (0.06) 0.286

par_turns (mean (SD)) 13.55 (6.04) 13.54 (6.98) 0.003 13.44 (5.97) 12.38 (5.60) 0.183

inv_turns (mean (SD)) 3.16 (1.77) 6.10 (4.48) 0.863 3.33 (1.73) 4.38 (1.85) 0.589

mmse (mean (SD)) 29.13 (1.11) 18.54 (5.11) 2.864 29.08 (1.13) 19.50 (4.50) 2.920

Table 4: The differences of linguistic features before/after matching on the Pitt corpus

Features Before matching After matching

Level Control Dementia SMD Level Control Dementia SMD

Number of transcripts (n) 1017 152 152 152

Education (mean (SD)) 13.77 (3.01) 12.64 (2.16) 0.431 12.62 (2.18) 12.64 (2.16) 0.006

Age (mean (SD)) 70.30 (4.14) 70.20 (5.75) 0.021 70.81 (3.77) 70.20 (5.75) 0.126

PRON (mean (SD)) 15.20 (9.93) 11.16 (8.05) 0.447 14.37 (8.91) 11.16 (8.05) 0.377

AUX (mean (SD)) 10.76 (6.63) 7.81 (5.48) 0.485 9.75 (6.25) 7.81 (5.48) 0.330

VERB (mean (SD)) 16.82 (9.08) 12.71 (7.19) 0.502 15.25 (7.91) 12.71 (7.19) 0.336

ADP (mean (SD)) 11.53 (6.74) 8.57 (5.71) 0.474 10.07 (5.77) 8.57 (5.71) 0.262

DET (mean (SD)) 16.99 (9.87) 12.22 (7.23) 0.551 15.03 (8.00) 12.22 (7.23) 0.368

NOUN (mean (SD)) 29.00 (16.89) 22.38 (13.71) 0.430 26.86 (14.61) 22.38 (13.71) 0.316

PUNCT (mean (SD)) 26.61 (13.24) 21.68 (11.74) 0.393 25.47 (11.87) 21.68 (11.74) 0.321

CCONJ (mean (SD)) 5.47 (4.83) 3.43 (3.62) 0.478 5.02 (4.99) 3.43 (3.62) 0.365

ADJ (mean (SD)) 3.89 (3.75) 2.30 (2.37) 0.509 3.02 (2.93) 2.30 (2.37) 0.272

PART (mean (SD)) 2.83 (2.46) 2.40 (2.14) 0.186 2.63 (2.25) 2.40 (2.14) 0.105

SCONJ (mean (SD)) 1.55 (1.92) 0.90 (1.36) 0.390 1.38 (1.60) 0.90 (1.36) 0.324

ADV (mean (SD)) 4.06 (3.98) 2.93 (3.41) 0.305 3.77 (3.60) 2.93 (3.41) 0.240

INTJ (mean (SD)) 1.88 (2.91) 1.50 (2.58) 0.139 1.99 (2.80) 1.50 (2.58) 0.181

LF (mean (SD)) 8.06 (0.43) 8.05 (0.44) 0.033 8.02 (0.42) 8.05 (0.44) 0.057

TTR (mean (SD)) 0.35 (0.06) 0.37 (0.07) 0.303 0.36 (0.06) 0.37 (0.07) 0.189

CLAUSE (mean (SD)) 21.01 (10.44) 17.21 (9.26) 0.385 19.81 (9.14) 17.21 (9.26) 0.282

PROPN (mean (SD)) 0.07 (0.36) 0.02 (0.18) 0.170 0.14 (0.55) 0.02 (0.18) 0.288

par_turns (mean (SD)) 14.39 (7.91) 11.97 (7.04) 0.323 13.88 (6.68) 11.97 (7.04) 0.278

inv_turns (mean (SD)) 0.75 (1.53) 0.82 (1.79) 0.044 0.77 (1.25) 0.82 (1.79) 0.034

Table 5: The differences of linguistic features before/after matching on the WLS dataset

103



Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 104–134
May 3, 2025 ©2025 Association for Computational Linguistics

Cross-Framework Generalizable Discourse Relation Classification Through
Cognitive Dimensions

Yingxue Fu
School of Computer Science

University of St Andrews, Scotland, UK
fuyingxue321@gmail.com

Abstract

Existing discourse corpora annotated under dif-
ferent frameworks adopt distinct but somewhat
related taxonomies of relations. How to inte-
grate discourse frameworks has been an open
research question. Previous studies on this
topic are mainly theoretical, although such re-
search is typically performed with the hope of
benefiting computational applications. In this
paper, we show how the proposal by Sanders
et al. (2018) based on the Cognitive approach
to Coherence Relations (CCR) (Sanders et al.,
1992, 1993) can be used effectively to facili-
tate cross-framework discourse relation (DR)
classification. To address the challenges of us-
ing predicted UDims for DR classification, we
adopt the Bayesian learning framework based
on Monte Carlo dropout (Gal and Ghahramani,
2016) to obtain more robust predictions. Data
augmentation enabled by our proposed method
yields strong performance (55.75 for RST and
55.01 for PDTB implicit DR classification in
macro-averaged F1). We compare four model
designs and analyze the experimental results
from different perspectives. Our study shows
an effective and cross-framework generalizable
approach for DR classification, filling a gap in
existing studies.1

1 Introduction

Discourse coherence relates to the way that a mono-
logue or dialogue is organized so that it is a co-
herent entity, instead of a random collection of
clauses or sentences. As such, coherence repre-
sents an important aspect of text quality (Web-
ber and Joshi, 2012). Various studies have shown
the benefits of incorporating discourse-level infor-
mation or coherence-related training objectives in
NLP tasks, such as text generation (Bosselut et al.,
2018), language modelling (Iter et al., 2020; Lee
et al., 2020; Stevens-Guille et al., 2022), and sum-
marization (Xu et al., 2020).

1Code will be released here.

Discourse-level analysis is typically concerned
with discourse relations (Rutherford and Xue,
2015). These relations describe the links with
which two segments are associated with each
other and they form an integral part of discourse
theories including the Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) and D-
LTAG (Webber, 2004), which is the theoretical
foundation for the PDTB framework, named af-
ter the Penn Discourse Treebank (PDTB) (Prasad
et al., 2008; Webber et al., 2019). As discourse
annotation is a demanding task and different dis-
course theories provide distinctive but often not
incompatible perspectives of discourse modelling,
the integration of different discourse theories has
been a topic of interest for a long time (Hovy and
Maier, 1992; Bunt and Prasad, 2016; Benamara
and Taboada, 2015; Sanders et al., 2018; Chiarcos,
2014).

The UniDim proposal (Sanders et al., 2018),
which originates from the Cognitive approach to
Coherence Relations (CCR) (Sanders et al., 1992,
1993), is shown to be relatively successful in map-
ping PDTB and RST relations (Demberg et al.,
2019). With this approach, a set of unifying dimen-
sions (henceforth UDims) serve as interlingua, and
relations under different frameworks can be decom-
posed and compared through the intermediary of
it. For example, the RST relation Contrast can be
decomposed as negative (at the polarity dimension,
henceforth pol), additive (at the basic operation di-
mension, henceforth bop), not applicable (NA) (at
the implication order dimension, henceforth imp),
objective/subjective (at the source of coherence
dimension, henceforth soc), and under-specified
(at the temporality dimension, henceforth temp),
while Contrast in PDTB is represented by negative
(pol), additive (bop), NA (imp), objective (soc), and
under-specified (temp). It is clear that the two rela-
tions are quite similar but the RST Contrast relation
may include subjective cases (we refer those inter-
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ested to Appendix A for the meaning of UDims,
and Appendix B and Appendix C for a better un-
derstanding of how the relations in RST and PDTB
are analyzed in terms of the UDims).

Previous studies (Roze et al., 2019; Fu, 2023;
Varghese et al., 2023) demonstrate the possibility
of incorporating these dimensions in discourse rela-
tion (henceforth DR) classification tasks. Varghese
et al. (2023) use UDims as features for implicit
DR classification, with a focus on leveraging la-
bel similarities to improve the performance of a
classifier on this task. Roze et al. (2019) adopt a
pipeline approach, where separate classifiers are
trained for the UDims and the predicted UDims
are mapped to the sense hierarchy of PDTB 2.0.
As the performance on UDim classification is low,
when the predicted UDims are used together to
identify a sense label, the accuracy is much lower
than training a classifier for DRs directly, without
involving UDims. Meanwhile, the mappings are
not unambiguous even between gold UDims and
sense labels. The same combination of UDims can
be mapped to different sense labels and the same
sense labels can have different UDim representa-
tions.2 The third challenge is that the distributions
of UDims and DRs are generally imbalanced.

The study by Roze et al. (2019) shows an ex-
ample of leveraging UDims in analyzing chal-
lenges of DR classification, but with their approach,
UDims cannot be used effectively for DR classi-
fication tasks due to reasons discussed above. In
contrast, Fu (2023) demonstrates that high perfor-
mance can be achieved when gold UDims are em-
ployed for DR classification across different dis-
course frameworks, but the performance gains rely
on availability of gold UDims, which is not feasible
in realistic settings. In this study, we explore sev-
eral ways of applying UDims in DR classification,
and the results suggest that simply incorporating
objectives of UDim classification can improve the
performance on DR classification, which may be
considered as empirical evidence for the correla-

2For example, the pattern pos (positive in polarity), cau
(causal in basic operation), NS (under-specified in implication
order), obj (objective in source of coherence), NS (under-
specified in temporality), non-specificity (encoded by “-”),
non-alternative (“-”), non-conditional (“-”) and non-goal-
oriented (“-”) has two sense labels Cause and Explanation
in the training set of RST, and the RST Evaluation relation
has four patterns of UDim combinations: pos, NS, NS, sub
NS,+, -, -, - (580 instances); pos, add, NA, sub, NS, +, -, -, -
(272 instances); pos, cau, bas, sub, NS, +, -, -, - (8 instances);
and pos, cau, non-b, sub, NS, +, -, -, - (2 instances) (see Ap-
pendix D for a full list of unique mapping patterns between
UDims and DRs for RST and Appendix E for PDTB 3.0).

tion between UDims and DRs. However, we also
notice that model performance is not a simple re-
flection of the relationship between UDims and
DRs, for instance, a temporal relation does not nec-
essarily have the lowest recognition accuracy when
the temporal dimension is not considered in the
training process, which is consistent with the find-
ings shown in Fu (2023). In addition, we conduct
experiments on using RST and PDTB data together,
and the results reveal that PDTB explicit relation
data is useful for data augmentation for both RST
and PDTB implicit DR classification tasks.

Our contributions can be summarized as follows:

• We propose a method based on Monte Carlo
(MC) dropout (Gal and Ghahramani, 2016) to
enable UDims to be applied to DR classifica-
tion tasks under different frameworks, which
fills a gap in existing studies (Roze et al., 2019;
Fu, 2023).

• We show how UDims can be used to bridge
DR classification tasks under different dis-
course frameworks.

• We conduct analysis of different model de-
signs and model performance on specific rela-
tions.

2 Related Work

2.1 Cross-Framework DR Classification
Discourse connective prediction is considered a
potentially effective auxiliary task for both RST
DR classification (Yu et al., 2022; Yung et al., 2019)
and PDTB DR classification (Qin et al., 2017; Shi
and Demberg, 2019; Jiang et al., 2021; Liu and
Strube, 2023). Motivated by the high performance
on PDTB explicit DR classification, researchers
try to convert PDTB implicit DR classification into
explicit DR classification by predicting discourse
connectives first. As RST does not make a clear
distinction between implicit and explicit DRs in
annotation, this approach is less frequently utilized
for RST.

To address the challenge of limited training data
for RST parsing, Braud et al. (2016) utilize multi-
task learning to benefit from supervision of related
tasks such as PDTB DR classification. As RST
elementary discourse units (EDUs) and PDTB ar-
guments are determined based on different crite-
ria, they have to make adjustments to PDTB data
and use sentences rather than manually annotated
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arguments in their experiments and ignore intra-
sentential PDTB relations. Multi-task learning is
also adopted in Liu et al. (2016) for PDTB implicit
DR classification, where RST DR classification is
treated as an auxiliary task. It shows that RST DR
classification improves performance on the classifi-
cation of some of PDTB Level-1 implicit DRs.

2.2 The UniDim Proposal

Under the TextLink Action, which aims at unify-
ing existing linguistic resources on discourse struc-
ture, Sanders et al. (2018) propose a set of unifying
dimensions (UDims) as an interface for different
discourse frameworks to be related with each other.
The UDims originate from four cognitive primi-
tives—basic operation, source of coherence, order
of segments (called implication order in Sanders
et al. (2018)) and polarity, which are used to define
coherence relations in Sanders et al. (1992), where
a different approach towards representing discourse
relations is taken, namely, the Cognitive approach
to Coherence Relations (CCR). Compared with
RST and PDTB, the CCR approach treats discourse
relations as cognitive entities that can be analyzed
from different dimensions, and a relation is thus
described from four dimensions, such as causal,
objective, basic order, positive, rather than with a
single label, such as Cause in RST. Each of these
dimensions functions as an attribute that has a num-
ber of possible values, for example, the polarity
dimension allows for distinction between positive,
negative or under-specified.

To make the taxonomy more expressive, addi-
tional dimensions are added, including temporality,
and specificity, lists and alternatives for additive re-
lations, and conditionals and goal-orientedness for
causal relations. Recall that additive and causal are
values under the source of coherence dimension.
With these UDims, DRs from different discourse
frameworks can be decomposed and compared sys-
tematically.

Demberg et al. (2019) try to validate existing
proposals for mapping DRs of different discourse
frameworks, and the results of their data-driven
investigation exhibit higher consistency with the
results obtained with the UniDim proposal, com-
pared with the OLiA reference model (Chiarcos,
2014) and the ISO standard proposal (Bunt and
Prasad, 2016).

3 Our Method

We focus on RST DR classification and PDTB
implicit DR classification in this study. However,
the method is generalizable, not limited to the two
discourse frameworks.

3.1 UDim Extraction

Since existing discourse corpora, such as the RST
Discourse Treebank (RST-DT) (Carlson et al.,
2001) and PDTB, do not contain annotations of
UDims, we adopt the rule-based method in Fu
(2023) to obtain gold UDim values for each of
the relation instances first. For RST-DT, with anno-
tations of end labels (the original 78 relations) and
nuclearity information, the mapping rules shown
in Appendix B allow us to obtain UDim values.
For PDTB, as the actual linear order of arguments
in the original text is needed to determine values
of implication order while the assignment of argu-
ments does not simply follow the linear order, we
first write a script to determine the linear order of
arguments, and with the annotation of end labels,
the mapping rules shown in Appendix C can be
used to derive UDim values for each instance.

3.2 Cascaded Classifier

Given that UDims are originally intended to be
used as a platform-agnostic interlingua of DRs, a
natural approach is to combine all the data and
train classifiers for UDims and map the predicted
UDims to DRs of different discourse frameworks,
based on knowledge of how UDim combinations
are mapped to DRs (Appendix B and Appendix C),
which is analogous to training a “universal classi-
fier” of DRs. This approach is adopted by Roze
et al. (2019), but only on PDTB 2.0, and the results
are much lower than training a simple classifier
for DRs directly. Moreover, Fu (2023) shows that
combining PDTB and RST data does not improve
the performance over using PDTB data alone for
UDim classification. Therefore, instead of only
using the predicted UDims for identifying DRs
with a rule-based method, we deem it necessary to
add DR classification as a training objective, thus
forming a cascaded classifier. While this step may
compromise the “universality” of the intended use
of UDims, it is a necessary procedure to obtain
better performance on DR classification. Figure 1
illustrates the model design.
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Figure 1: Cascaded classifier for DR classification. The
losses in orange boxes are to be minimized. The green
bars represent embedding layers. As is shown here, the
input is not used for DR classification directly, which
distinguishes this approach from the methods discussed
in section 3.3.

3.3 Input+UDim for DR Classification
We investigate another set of methods, where the
input is used for both UDim classification and
DR classification. The intuition is that predicted
UDims are not robust enough to be used as the only
signal for DR classification, and they are better
treated as attributes. Section 3.3.2 shows different
model designs with this approach.

3.3.1 UDim Classification
For an input sequence Xi in a dataset with size N ,
i.e., {Xi}Ni=1, Xi is formed by a pair of arguments
of lengths m and n, respectively, i.e., Xi = A

(1)
1 ...

A
(1)
m , A(2)

1 ... A
(2)
n . We use a pre-trained language

model as the input encoder fenc. Special tokens are
to be inserted based on the requirements of the cho-
sen encoder, and Xi is typically padded to a fixed
length. In our experiments, the two arguments are
padded separately at the ends. The representation
h of the preprocessed input sequence, denoted as
X̃i, can be obtained from the encoder:

h = fenc(X̃i) (1)

A three-layer feed-forward network g, compris-
ing a fully connected layer, a LeakyReLU activa-

tion function, followed by a dropout layer, is ap-
plied to transform h to a lower dimensional space
before it is passed for UDim classification:

hUDim = g(h) (2)

UDims are not independent. For example, the
implication order dimension is only applicable to
causal relations, which are a category under the
basic operation dimension. Therefore, the basic
operation dimension functions as a parent of the
implication order dimension. This parenthood rela-
tionship between UDims can be understood from
the description of UDims in Appendix A.

Inspired by the method proposed by Gerych et al.
(2021), which leverages class dependencies and
conditions the prediction of child classes on the
prediction of their parents, we exploit knowledge
about the relationship between UDims to improve
the performance on UDim classification. For in-
stance, the embedding vector of the predicted basic
operation dimension E(ŷbop) will be passed as fea-
tures to the classification head of the implication
order dimension, fimpl:

ỹimpl = softmax (fimpl(hUDim ⊕ E(ŷbop))) (3)

Equation 3 shows how the prediction of the im-
plication order dimension can be obtained, where
⊕ denotes concatenation operation.

An argmax function is required to obtain a dis-
crete value from the predicted probability distri-
bution, so that E(ŷUDim) can be obtained from
embedding layers and passed as features for the
classification of another related UDim or DR. How-
ever, this operation is non-differentiable and the
training signal of one UDim cannot backpropagate
to the training of the related UDims or from DRs to
UDims. Therefore, we adopt the Gumbel-Softmax
function (Jang et al., 2016), which is a differen-
tiable approximation to the argmax function:

yi =
exp((log(pi) + gi)/τ)∑k
j=1 exp((log(pj) + gj)/τ)

(4)

where pi represents a class probability for a cate-
gorical variable with k possible outcomes. gi...gk
are i.i.d samples drawn from a Gumbel(0, 1) dis-
tribution, which can be sampled by drawing µ ∼
Uniform(0, 1) and g = −log(−log(µ)).

3.3.2 DR Classification
Similar to UDim classification, a three-layer feed-
forward network ϕ is applied to h before it is passed
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for DR classification:

hDR = ϕ(h) (5)

We experiment with four ways of leveraging
UDims in the DR classification task:

1. TrainonGoldTestonPred: During training,
gold UDims are used and their embeddings
are concatenated with hDR for DR classifica-
tion, so that the model learns the relationship
between the input and the UDims and the tar-
get DR labels. During inference time, the
embeddings of the predicted UDims are used.
This is where we differ from Fu (2023), where
gold UDims are still used during inference
time.

2. InputDimCat: During both training and test-
ing, the embeddings of predicted UDims are
used, which are concatenated with hDR.

3. InputDimAtt: During both training and test-
ing, the embeddings of predicted UDims are
combined with hDR via an attention mecha-
nism based on scaled dot product (Vaswani
et al., 2017).

4. InputForRelCls: The hypothesis is that due
to the close relationship between UDims and
DRs, if the model is trained on UDim classifi-
cation tasks, the performance on DR classifi-
cation may be improved, even without using
the predicted UDims as features, forming a
scenario of multi-task learning.

Figure 2 shows the model design for InputFor-
RelCls, which is also employed in the experiments
on data augmentation, thus illustrated here to facil-
itate understanding.

Preliminary experiments show that directly using
predicted UDims as features yields mixed results.
This could be attributed to the utilization of pre-
dicted UDims, where the classification errors of
these UDims might introduce noise, and combined
use of these predicted UDims exacerbates uncer-
tainty in the DR classification task. To address this
challenge, the MC dropout method is employed.

3.3.3 MC Dropout
Due to the property of learning a distribution over
model parameters, Bayesian networks represent a
natural choice for uncertainty estimation. How-
ever, traditional Bayesian methods typically come

Figure 2: Model design for InputForRelCls. The losses
in orange boxes are to be minimized.

with large computational costs, and for transformer-
based models, the computational costs can be pro-
hibitive. Gal and Ghahramani (2016) introduce the
MC dropout method to tackle the challenge of un-
certainty estimation in deep neural networks. Dif-
ferent from the standard dropout method, dropout
is activated during inference time. The MC dropout
method represents a lightweight Bayesian approxi-
mation.

For an input representation from the previous
layer hi−1, the output representation hi of the ith
layer is determined with:

hi = σ(hi−1,Wi,Mi) (6)

where Wi denotes weights of the ith layer, and Mi

is a masking matrix, with its entries being sampled
from a Bernoulli distribution, and the probability of
being zero is the dropout probability p. σ denotes
the activation function of this layer.

For a model with l layers, the model weights
ω can be expressed as a set of weight matrices
for each layer: ω = {Wi}li=1. With MC dropout,
during inference, one can sample T sets of ω for T
stochastic forward passes and the mean predicted
distribution is obtained by averaging over the T
passes:

p(y′|x,X,Y) =
1

N

T∑

t=1

p(y′|x, [Wt
i,M

t
i],

..., [Wt
l ,M

t
l ])

(7)

The variance can be used as an indicator of
model uncertainty. As indicated by Shelmanov
et al. (2021), applying MC dropout to all the
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dropout layers of a transformer model yields bet-
ter performance for uncertainty estimation. Even
though our focus is not uncertainty estimation, the
MC dropout method can be used conveniently to
approximate the results of an ensemble model and
we can use mean predictive distribution over multi-
ple runs for UDim and DR classification.

3.4 Data Augmentation

Although RST and PDTB adopt different criteria
for determining discourse units/arguments of DRs,
data from both frameworks can be used together
for UDim classification. For example, for RST
DR classification, PDTB data (explicit, implicit, or
both) can be used for training the model on UDim
classification. Increased data amount and more di-
versified training data might increase model robust-
ness in UDim classification, which may improve
model performance on DR classification. Fig 3
shows a diagram of the data augmentation method.

3.5 Training

Cross-entropy loss is used for model training.
Model losses for UDim classification and DR clas-
sification are added:

Ltotal = LUDims + 2.0 ∗ LDR (8)

Note that there are multiple UDims involved in
the experiments, even though the loss term shows
them collectively as LUDims. In order to guide
the model training towards DR classification, we
increase the weight for DR classification loss.

4 Experiments

4.1 Data Preprocessing

The experiments on RST are carried out on RST-
DT and the experiments on PDTB are performed on
PDTB 3.0. As we follow the mainstream practice
of preprocessing on the two corpora, the details are
shown in Appendix F.

Since PDTB 3.0 contains a much larger number
of articles, data amount differences between RST
and PDTB may have a confounding effect in our
experiments on data augmentation, because if the
master task has a smaller data amount, the model
may be trained to be biased towards the data of
auxiliary tasks and the performance may decrease
when evaluation is performed on the test set of
the master task. Therefore, we try to increase the
data amount for RST by back-translating data of

the training set (English→French→English, trans-
lated by Google Translate), thus doubling the train-
ing data amount for RST and narrowing the data
amount differences between RST, PDTB explicit
relations and PDTB implicit relations. In addition,
we exclude the UDim list, following Fu (2023),
and merge sub-categories under specificity, making
specificity a binary attribute, similar to alternative,
conditional and goal-orientedness, which is also
the approach adopted in Roze et al. (2019).

UDims (abb.) Values Parent
polarity(pol) NS, positive, negative -
basic opera-
tion(bop)

NS, additive, causal -

source of coher-
ence(soc)

NS, objective, subjective -

implication or-
der(imp)

NS, NA, basic, non-basic bop

temporality(temp) NS, anti-chronological,
chronological, synchronous -

specificity(spec) specificity, non-specificity bop
alternative(alt) alternative, non-alternative bop
conditional(con) conditional, non-conditional bop
goal-
orientedness(goal)

goal-oriented, non-goal-
oriented

bop

Table 1: UDims used in the experiments. Their abbre-
viations used in the paper are shown in the brackets in
italics. “-” in the last column suggests that no parent
passing is performed for the classification of this UDim.

Table 1 shows all the UDims used in the ex-
periments, their abbreviations, and possible val-
ues. The parents of UDims, which are used in the
method described by equation 3, are included in
the last column. Appendix G shows statistics of
UDims in the training sets of RST and PDTB im-
plicit and explicit relation data, and Appendix H
shows label frequency of the training sets for refer-
ence.

4.2 Implementation Details

We use the pre-trained RoBERTaBASE model (Liu
et al., 2019) from the Transformers library (Wolf
et al., 2020) as the input encoder. The embeddings
of the UDims are derived from embedding layers,
which are configured with learnable parameters,
and the embedding vectors are initialized from uni-
form distributions. Hyper-parameter settings are
attached in Appendix I.

Baseline The baseline is thus DR classification
based on the input, involving no utilization of
UDims. To ensure fair comparison, we also ap-
ply MC dropout to the baseline models, i.e., the
pre-trained RoBERTaBASE model, and run the same
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Figure 3: Data augmentation with PDTB data and the final task is RST DR classification. As we explore different
ways of leveraging predicted UDims, the embeddings of the UDims are not necessarily fed as features to the
DR classification task, hence represented with dashed arrow lines. The losses shown in orange boxes are to be
minimized through model training for all the four methods.

number of passes to obtain the mean predictive dis-
tribution.

5 Results

We select models based on their performance mea-
sured by F1 in DR classification, and thus, they do
not necessarily perform the best in terms of accu-
racy or in UDim classification. The Stuart-Maxwell
test (Stuart, 1955; Maxwell, 1970) is used, and all
the results are statistically significant (Appendix J).

5.1 DR Classification
Table 2 shows the results for RST DR classifica-
tion. The best performance is achieved with Train-
onGoldTestonPred, followed by InputForRelCls.
In both cases, the predicted UDims are not used
as features for DR classification during training.
Compared with the baseline method, the models
are trained for UDim classification. The results
support our hypothesis that because of the associa-
tion between UDims and DRs, training the model
on UDim classification tasks can improve perfor-
mance on DR classification.

Table 3 shows the results for PDTB implicit DR
classification. A performance drop compared with
the baseline is visible with the approach Trainon-
GoldTestonPred. As shown in Sanders et al. (2018,

Model F1 Acc
Baseline 53.72 65.56
TrainonGoldTestonPred 55.21 66.27
InputDimCat 54.49 66.16
InputDimAtt 54.65 66.27
InputForRelCls 54.89 66.32

Table 2: Results for RST DR classification (The best-
performing system, HITS, in DISRPT 2023 (Braud
et al., 2023) achieves 50.96 in macro-averaged F1 on
this corpus. As data augmentation is performed in our
experiments and the preprocessing steps are different,
the results are not directly comparable but shown here
for reference.)

Model F1 Acc
Baseline 52.36 60.47
TrainonGoldTestonPred 51.80 59.09
InputDimCat 52.82 61.43
InputDimAtt 52.93 60.67
InputForRelCls 53.44 60.26

Table 3: Results for PDTB implicit DR classification.
Previous results on this task include 54.92 in macro-
averaged F1 reported in Liu and Strube (2023), 57.62
in Long and Webber (2022) and 52.16 in Wu et al.
(2023).
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Model F1 Acc
InputForRelCls 54.89 66.32
InputForRelCls+PDTBExpl 55.28 65.72
InputForRelCls+PDTBTotal 55.75 65.61
InputForRelCls+PDTBImpl 54.57 65.02

Table 4: Results for RST DR classification with data
augmentation. Baseline refers to the approach without
using UDims in training and testing in Table 2. PDTB-
Expl, PDTBImpl and PDTBTotal denote PDTB explicit
relation data, implicit relation data and the combination
of both parts, respectively.

p.52, section 5.3), implicit relations pose a chal-
lenge for the UniDim proposal, and it is likely that
model performance on UDim classification is not
high, when the model is trained on PDTB implicit
relation data, causing a large discrepancy between
training and inference time, which may result in
a performance drop with TrainonGoldTestonPred
here.

5.2 Data Augmentation
Based on the results for DR classification, we fo-
cus on the InputForRelCls method in this set of
experiments.

Table 4 shows the results for RST DR classi-
fication under augmentation with different types
of PDTB data. As is shown, data augmentation
improves F1 score, but an increase in F1 does not
necessarily lead to higher accuracy, which is not
rare for classification on imbalanced data, suggest-
ing that the model is trained to distinguish smaller
classes. Data augmentation with total PDTB data
yields the highest performance, which is expected.
However, it is noticeable that adding PDTB im-
plicit relation data causes a performance drop. This
might be attributed to the high ambiguity in rep-
resenting implicit relations with UDims discussed
in Sanders et al. (2018).

Table 5 shows the results for PDTB implicit
DR classification under augmentation with differ-
ent types of data. Our method does not outper-
form the hierarchical sense classification method
used in Long and Webber (2022) but the perfor-
mance is slightly higher than that shown in Liu and
Strube (2023), the best-performing method with
the connective-insertion approach for converting
PDTB implicit DR classification into explicit DR
classification, and Wu et al. (2023), which is the
SOTA performance with prompt learning.

As is shown in Table 5, adding PDTB explicit
DR data is the most helpful form of data augmenta-
tion for both InputForRelCls and InputDimAtt, but
adding RST data causes performance drops, possi-

Model F1 Acc
InputForRelCls 53.44 60.26
InputForRelCls+RST 52.12 61.02
InputForRelCls+PDTBExpl 55.01 61.22
InputForRelCls+PDTBExpl&RST 53.05 61.70

Table 5: Results for PDTB implicit DR classification
with data augmentation from RST data (+RST), from
PDTB explicit relation data (+PDTBExpl) and from
both (+PDTBExpl&RST).

Figure 4: Correlation between DR classification loss
and UDim classification losses for RST and PDTB. The
abbreviations of the UDims have been explained in Ta-
ble 1, and the scales represent the Pearson correlation
coefficient scores. Note that the areas of different mod-
els cannot be compared between RST and PDTB, since
the scales on the two plots are arranged in different ways
to suit the range of the real data.

bly due to the high dissimilarity between RST data
and PDTB implicit relation data.

5.3 Results on Cascaded Classifier
This approach does not perform well on DR clas-
sification, but it represents a possible direction for
exploration with UDims. Therefore, preliminary
results are attached in Appendix K for comparison.

6 Analysis
6.1 Analysis of Different Model Designs
We examine the four approaches discussed in sec-
tion 3.3.2. Losses at each training step are collected,
and Pearson correlation coefficients are computed
between the DR classification loss and the UDim
classification losses for each model. The results are
shown in Figure 4. The full results on UDim clas-
sification are shown in Appendix L for reference.

As is clear from Figure 4, for RST DR clas-
sification, the models show high correlation be-
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tween DR classification and the classification of
five major UDims, including pol, bop, imp, soc
and temp, while correlation with the other UDims
is not prominent. The pattern with InputDimAtt
is different, where correlation with the UDims is
basically evenly distributed, except for the smaller
value at spec, which might be attributed to impor-
tance weighting with the attention mechanism.

For PDTB implicit DR classification, differ-
ent models show divergence in their correlation
strengths with different UDims. In the case of the
best performing model InputForRelCls, the corre-
lation with pol is low but the correlation with spec
is high. We find that the performance of the model
on the classification of pol is relatively low, and
this could be a reason why the model learns to rely
less on this UDim. Similar to the patterns for RST,
apart from the five major UDims, the other UDims
do not show high correlation with the target DR
classification task, but in TrainonGoldTestonPred
and InputDimAtt, relatively high correlation with
con and alt in particular, is observable. The perfor-
mance with TrainonGoldTestonPred is lower than
the baseline and we can see that the total area of
correlation for this model is the smallest. With In-
putDimAtt, the association area is also small, which
may suggest that the attention mechanism gives
more weight to hDR than the predicted UDims.

6.2 Ablation Studies

Ablation studies are performed on InputForRel-
Cls. Table 6 shows the UDims that, when removed,
cause the lowest F1 for each DR. The full results
are shown in Appendix M (RST) and Appendix N
(PDTB).

RST DR UDim
Background temp
Cause bop
Comparison spec
Condition spec
Contrast pol
Elaboration goal
Enablement alt
Evaluation bop
Explanation temp
Joint spec
Manner-Means imp
Summary alt
Temporal alt
Textual-Organization alt
Topic-Change goal
Topic-Comment goal

PDTB DR UDim
Asynchronous con
Cause alt
Cause+Belief alt
Concession goal
Condition goal
Conjunction soc
Contrast goal
Equivalence bop
Instantiation pol
Level-of-Detail goal
Manner temp
Purpose pol
Substitution alt
Synchronous temp

Table 6: UDims that cause the lowest F1 for each
relation. Cause+Belief forms a special case, where
removing the UDim yields the highest performance,
while removing the remaining UDims results in 0.00 for
this relation.

It can be seen that the performance on some re-
lations is consistent with the assumption about the
relationship between DRs and UDims. For exam-
ple, for RST, the correlation betwen Background
and the temp dimension is expected. Similarly,
Cause is indeed closely related to the bop dimen-
sion, which primarily distinguishes between addi-
tive and causal relations. For PDTB, the correlation
between UDims and DRs is reflected in the results
on Substitution and Synchronous. However, there
are multiple cases when a discourse relation is not
affected the most by the UDim that is supposed to
be significant for it, such as RST Condition, which
is not strongly related to con, but to spec, and Elab-
oration, which is not affected by spec the most, but
by goal. Similar to what is shown in Fu (2023),
model performance is not a simple reflection of
the association between DRs and UDims, and it is
influenced by data distributions, especially when
distributions of DR and UDims are heavily imbal-
anced.

7 Conclusion
We propose a cross-framework generalizable ap-
proach for DR classification based on the Uni-
Dim proposal, which allows cross-framework data
augmentation. With data augmentation, we ob-
tain strong performance in macro-averaged F1 for
DR classification (55.75 for RST and 55.01 for
PDTB implicit DR classification). Our experiments
suggest that training the model with objectives of
UDim classification helps the model in DR clas-
sification, and adding PDTB explicit DR data is
helpful for both RST and PDTB implicit DR classi-
fication. Our analysis shows that most of the model
designs rely on five UDims, including pol, bop,
imp, soc and temp, although differences between
models are also observable. Furthermore, model
performance is not a simple reflection of the ex-
pected correlation between UDims and DRs, and it
is likely to be influenced by varied amounts of data
for different classes. Although the present study
does not involve other frameworks, such as SDRT,
the proposed approach is not specific to any frame-
work, as long as the original sense labels and rules
of converting them to UDims are known.

8 Limitations
With our approach, multiple runs have to be per-
formed during inference time, even though the num-
ber of model parameters is not increased. On the
other hand, this fact justifies the choice of using
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results obtained from a seemingly single run of
the models, which actually involves multiple runs
based on the the principle of MC dropout.

Another limitation is that in the experiments on
using UDims for DR classification (without data
augmentation), the improvement over the baseline
is not large. However, we believe this is understand-
able, as more tasks are involved in the experiments
(classification of nine UDims), but the data amount
remains the same as the baseline, which only in-
volves DR classification.

Compared with the upper limit of using gold
UDims in DR classification, there is still a large gap.
Although the UDims may be easier to understand
for human annotators than the relation taxonomies
employed in RST and PDTB, the performance with
automatic means to predict UDims still has a large
room for improvement. It remains to be tested if
the difficulty in predicting these UDims forms the
underlying cause for the challenges of DR classifi-
cation.

We have to stress that it is beyond our scope to
elaborate on the meaning of UDims and how DRs
are decomposed into the combination of UDims,
which falls under the CCR framework for discourse
analysis. Moreover, comparison with other propos-
als for integrating discourse relations of different
frameworks, such as the OLiA reference model and
the ISO standard proposal, will be a beneficial com-
plement to the current research. However, it is con-
ceivable that different proposals would require dif-
ferent algorithmic designs to achieve good results.
The current research is built on existing studies,
and comparing with other proposals in computa-
tional experiments requires much more effort than
the current submission can cover, and therefore, we
leave it to future work.

Lastly, we are aware that discourse parsing is
more than DR classification, but discourse structure
is not considered in the proposed approach, similar
to the focus of the work by Braud et al. (2024).

9 Ethics Statement

We do not foresee any ethical concerns with this
study.
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A UDims

Table 7 provides an overview of UDims used in the paper.

UDims (abb.) Possible Values
(abb.)

Explanations Examples

polarity
(pol)

positive(pos) A relation is characterized by a posi-
tive polarity if the propositions P and
Q, expressed by S1 and S2, respec-
tively, have the same logical polarity
and support each other.

[We like the garden]S1 because [it is
pretty.]S2

negative(neg) A relation is of a negative polarity if
the relation involves juxtaposition of
¬P and P or ¬Q and Q in two seg-
ments.

[The university library was closed]S1

although [students wanted more space
for study.]S2

NS - -
basic

operation
(bop)

additive(add) If two segments are just loosely con-
nected and only a conjunction relation
P ∧Q can be inferred, the relation is
additive.

[She is a painter]S1 and [her studio is
a few blocks away.]S2

causal(cau) A causal relation means that two seg-
ments are strongly connected and typi-
cally, an implication relationship P →
Q can be inferred.

[He immigrated to the US,]S1 because
[his natural parents were believed to
live there.]S2

NS - -
source of
coherence

(soc)

objective(obj) A relation is objective if two segments
are connected because of their propo-
sitional content, and the relation holds
because the connection is coherent
based on world knowledge.

[It was dark outside,]S1 so [he lit up a
candle.]S2

subjective(sub) A relation is subjective if the speaker’s
reasoning or the pragmatic effect of the
relation is prominent.

[Smoking is unhealthy]S1 and [we
should limit it.]S2

NS - -

implication
order
(imp)

NA This dimension distinguishes be-
tween non-basic and basic implication
orders for causal relations, and it does
not apply to additive relations, which
are generally symmetric.

-

basic(bas) For a causal relation characterized by
P → Q, if S1 expresses P and S2

expresses Q (S1 and S2 are in linear
order), then this relation is in basic im-
plication order.

Because [he received a warning
message,]S1 [he did not attend the
conference.]S2

non-basic(non-b) In contrast to the case of basic implica-
tion order, if S2 actually expresses P
while S1 expresses Q, this relation is
in non-basic implication order.

[He did not attend the conference,]S1

because [he received a message telling
him not to go.]S2

NS - -

temporality
(temp)

anti-
chronological

(anti)
If the events in two segments are not
in their temporal order of occurrence,
then the relation is anti-chronological.

[He went home in a low mood.]S1 [He
had a fight with a customer and was
fired.]S2

chronological
(chron) If the events described in two segments

happen in temporal order, then the re-
lation is chronological.

[She had been stuck in a traffic jam,]S1

so [she was late for the opening
ceremony.]S2

synchronous
(sync) Synchronous relations are those tempo-

ral relations that feature simultaneous
occurrence of events.

[The children were playing in the
park]S1 while [their parents were chat-
ting away.]S2

NS non-temporal relations or ambiguous
cases

-
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specificity
(spec)

specificity(+) RST and PDTB contain some rela-
tions that describe the specificity prop-
erty, such as Example, Definition and
Elaboration in RST, and Equivalence,
Instantiation and Level-of-Detail in
PDTB.

[In this light, the comparative advan-
tages of legislative law-making be-
come clear:]S1 [(1) Before it acts, the
legislature typically will hear the views
of representatives of all those affected
by its decision, not just the immedi-
ate parties before the court; and (2) the
legislature can frame “bright line” stan-
dards that create less uncertainty than
the fact-bound decisions of courts.]S2

(wsj_2059)
non-specificity(-) This dimension is only applicable to

additive relations. Therefore, causal
relations and additive relations that
do not have the property of denoting
specificity are assigned the label non-
specificity.

-

alternative
(alt)

alternative(+) This dimension distinguishes relations
that feature two semantically alterna-
tive arguments, such as Disjunction in
RST, and Disjunction and Substitution
in PDTB.

[make their fans cheer again]S1 or [re-
capture the camaraderie of seasons
past]S2 (wsj_0214)

non-alternative(-) This dimension is only applicable to
additive relations. Therefore, causal
relations and additive relations that do
not have the property of denoting al-
ternative propositions are assigned the
label non-alternative.

-

conditional
(con)

conditional(+) Based on Sanders et al. (2018), this
dimension is added to account for con-
ditional relations, such as Condition in
RST and PDTB, which is not possible
based only on CCR dimensions (pol,
bop, soc and imp).

[he will relinquish the govern-
ment’s so-called golden share in
the company]S1 as long as [Jaguar
shareholders agree.]S2 (wsj_0224)

non-conditional(-) This dimension is only applicable to
causal relations. Therefore, additive re-
lations and causal relations that do not
have the property of being conditional
are assigned the label non-conditional.

-

goal-
orientedness

(goal)

goal-oriented(+) Based on Sanders et al. (2018), this
dimension is added to account for rela-
tions that feature intentional and goal-
oriented actions, such as Enablement
and Manner-Means in RST and Pur-
pose and Manner in PDTB.

[to clear the way]S1 so [the
playing field is level between all
contestants.]S2 (wsj_0224)

non-goal-
oriented(-)

This dimension is only applicable to
causal relations. Therefore, additive
relations and causal relations that do
not have the goal-oriented property are
assigned the label non-goal-oriented.

-

Table 7: UDims used in the experiments. Their abbreviations in this study are shown in parentheses in italics. The
explanation and examples are mostly taken from Fu (2023), except for spec, alt, con and goal, which are additional
dimensions deemed necessary in Sanders et al. (2018) to account for some relations in RST, PDTB and SDRT.
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B Mapping Between RST Relations and UDims

Table 8 shows the mapping between RST relations and UDims, which is originally given in Sanders et al.
(2018).

Class End label Nuc. N-S pol bop imp soc temp other
Background Background Mono N-S pos/neg add N.A. obj anti/N.A.

Background Mono S-N pos/neg add N.A. obj chron/N.A.
Circumstance Mono pos/neg add N.A. obj syn/N.A.

Cause Cause Mono N-S pos cau bas obj chron
Cause Mono S-N pos cau non-b obj anti
Cause-result Multi pos cau bas/non-b obj chron/anti
Result Mono N-S pos cau non-b obj anti
Result Mono S-N pos cau bas obj chron
Consequence-n Mono N-S pos cau non-b obj anti
Consequence-n Mono S-N pos cau bas obj chron
Consequence-s Mono N-S pos cau bas obj chron
Consequence-s Mono S-N pos cau non-b obj anti
Consequence Multi pos cau bas/non-b obj chron/anti

Comparison Comparison Both pos add N.A. obj/sub N.A.
Preference Mono neg add N.A. obj/sub N.A.
Analogy Both pos add N.A. sub N.A.
Proportion Multi pos add/cau any obj/sub any

Conditional Condition Mono N-S pos/neg cau non-b obj/sub anti/N.A. conditional
Condition Mono S-N pos/neg cau bas obj/sub chron/N.A. conditional
Hypothetical Mono N-S pos cau non-b sub N.A. conditional
Hypothetical Mono S-N pos cau bas sub N.A. conditional
Contingency Mono N-S pos/neg cau non-b obj anti conditional
Contingency Mono S-N pos/neg cau bas obj chron conditional
Otherwise Mono N-S neg cau bas obj/sub chron/N.A. conditional
Otherwise Multi neg cau bas obj/sub chron/N.A. conditional

Contrast Contrast Multi neg add N.A. obj/sub any
Concession Mono N-S neg cau non-b obj/sub anti/N.A.
Concession Mono S-N neg cau bas obj/sub chron/N.A.
Antithesis Mono neg add/cau any obj/sub any

Elaboration El.-additional Mono pos add N.A. obj/sub N.A.
El.-gen.-spec. Mono pos add N.A. obj/sub N.A. specificity
El.-part-whole Mono pos add N.A. obj N.A. specificity
El.-process-step Mono pos add N.A. obj N.A. specificity
El.-object-attr. Mono pos add N.A. obj N.A. specificity
El.-set-member Mono pos add N.A. obj N.A. spec.-ex.
Example Mono pos add N.A. obj N.A. spec.-ex.
Definition Mono pos add N.A. obj N.A. specificity

Enablement Purpose Mono N-S pos cau bas obj/sub chron/N.A. goal
Purpose Mono S-N pos cau non-b obj/sub anti/N.A. goal
Enablement Mono N-S pos cau non-b obj/sub anti/N.A. goal
Enablement Mono S-N pos cau bas obj/sub chron/N.A. goal

Evaluation Evaluation Both pos add/cau any sub N.A. specificity
Interpretation Both pos add/cau any sub N.A. specificity
Conclusion Mono N-S pos cau bas sub N.A. specificity
Conclusion Mono S-N pos cau non-b sub N.A. specificity
Conclusion Multi pos cau bas/non-b sub N.A. specificity
Comment Mono pos add N.A. sub N.A. specificity

Explanation Evidence Mono N-S pos cau non-b sub anti
Evidence Mono S-N pos cau bas sub chron
Exp.-argument. Mono N-S pos cau non-b obj anti
Exp.-argument. Mono S-N pos cau bas obj chron
Reason Mono N-S pos cau non-b obj anti
Reason Mono S-N pos cau bas obj chron
Reason Multi pos cau bas/non-b obj chron/anti

Joint List Multi pos add N.A. obj/sub syn/chron/N.A. list
Disjunction Multi pos/neg add N.A. obj/sub syn/N.A. alternative

Summary Summary Mono pos add N.A. obj N.A. specificity
Restatement Mono pos add N.A. obj N.A. spec.-equiv.

Temporal Temp.-before Mono N-S pos add N.A. obj chron
Temp.-before Mono S-N pos add N.A. obj anti
Temp.-after Mono N-S pos add N.A. obj anti
Temp.-after Mono S-N pos add N.A. obj chron
Temp.-same-time Both pos add N.A. obj syn
Sequence Multi pos add N.A. obj chron
Inverted-seq. Multi pos add N.A. obj anti

Manner-Means Means Mono N-S pos cau non-b obj anti
Means Mono S-N pos cau bas obj chron goal

Topic-Comment Problem-sol.-n Mono N-S pos cau non-b obj/sub anti/N.A. goal
Problem-sol.-n Mono S-N pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono N-S pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono S-N pos cau non-b obj/sub anti/N.A. goal
Problem-sol. Multi pos cau bas/non-b obj/sub achron/anti/N.A. goal

Table 8: Mapping between RST relations and UDims.
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C Mapping Between PDTB Relations and UDims

Table 9 shows the mapping between relations in PDTB 3.0 and UDims. As the mapping given in Sanders
et al. (2018) is between relations in PDTB 2.0 and UDims, we adopt the mapping table in Fu (2023).

Class_type End label A1-A2 pol bop imp soc temp other
Temporal
Synchronous pos add N.A. obj sync
Asynchronous Precedence A1-A2 pos add N.A. obj chron

Precedence A2-A1 pos add N.A. obj anti
Succession A1-A2 pos add N.A. obj anti
Succession A2-A1 pos add N.A. obj chron

Contingency
Cause Reason A1-A2 pos cau non-b obj anti

Reason A2-A1 pos cau bas obj chron
Result A1-A2 pos cau bas obj chron goal
Result A1-A2 pos cau bas obj chron goal
NegResult neg cau bas obj chron

Cause+Belief Reason+Belief A1-A2 pos cau non-b sub NS
Reason+Belief A2-A1 pos cau bas sub NS
Result+Belief A1-A2 pos cau bas sub NS
Result+Belief A2-A1 pos cau non-b sub NS

Cause
+SpeechAct Reason+SpeechAct A1-A2 pos cau non-b sub NS

Reason+SpeechAct A2-A1 pos cau bas sub NS
Result+SpeechAct A1-A2 pos cau bas sub NS
Result+SpeechAct A2-A1 pos cau non-b sub NS

Purpose arg1-as-goal A1-A2 pos cau non-b obj/sub NS goal
arg1-as-goal A2-A1 pos cau bas obj/sub NS goal
arg2-as-goal A1-A2 pos cau bas sub NS goal

Condition arg1-as-cond A1-A2 pos cau bas obj/sub NS conditional
arg1-as-cond A2-A1 pos cau non-b obj/sub NS conditional
arg2-as-cond A1-A2 pos cau non-b obj/sub NS conditional
arg2-as-cond A2-A1 pos cau bas obj/sub NS conditional

Condition
+SpeechAct pos cau bas sub NS conditional

Negative
-Condition arg1-as-negcond A1-A2 neg cau bas sub NS conditional

arg1-as-negcond A2-A1 neg cau non-b sub NS conditional
arg2-as-negcond A1-A2 neg cau non-b sub NS conditional
arg2-as-negcond A2-A1 neg cau bas sub NS conditional

Negative-
Condition+
SpeechAct

neg cau bas sub NS conditional

Comparison
Concession arg1-as-denier A1-A2 neg cau non-b obj/sub NS

arg1-as-denier A2-A1 neg cau bas obj/sub NS
arg2-as-denier A1-A2 neg cau bas obj/sub NS
arg2-as-denier A2-A1 neg cau non-b obj/sub NS

Concession
+SpeechAct neg cau bas sub NS

Contrast neg add NA obj NS
Similarity pos add NA obj NS
Expansion
Conjunction pos add NA obj/sub NS
Disjunction neg add NA obj/sub NS alternative
Equivalence pos add NA obj/sub NS
Exception arg1-as-excpt neg add NA obj/sub NS

arg2-as-excpt neg add NA obj/sub NS
Instantiation arg1-as-instance pos add NA obj/sub NS specificity

arg2-as-instance pos add NA obj/sub NS specificity
Level-of-detail arg1-as-detail pos add NA obj/sub NS specificity

arg2-as-detail pos add NA obj/sub NS specificity
Manner arg1-as-manner A1-A2 pos add NA obj/sub NS specificity

arg2-as-manner pos add NA obj/sub NS specificity
Substitution arg1-as-subst A1-A2 neg cau bas obj/sub NS

arg1-as-subst A2-A1 neg cau non-b obj/sub NS
arg2-as-subst A1-A2 neg cau non-b obj/sub NS
arg2-as-subst A2-A1 neg cau bas obj/sub NS

Table 9: Mapping of sense labels of PDTB 3.0 to UniDim dimensions.
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D Unique Mapping Between UDims and DRs in RST-DT

Table 10 shows unique patterns in the mapping between UDims and DRs in the training set of RST-DT.
The last column shows the count of a pattern.

NS NS NS NS NS - - - - Manner-Means 130
NS NS NS NS NS - - - - Textual-organization 234
NS NS NS NS NS - - - - Topic-Change 322
NS NS NS NS NS - - - - Topic-Comment 112
NS add NA NS NS - + - - Joint 34
NS add NA obj NS - - - - Background 1328
NS cau bas NS NS - - + - Condition 186
NS cau bas obj chron - - + - Condition 14
NS cau non-b NS NS - - + - Condition 150
NS cau non-b obj anti - - + - Condition 26
neg NS NS NS NS - - - - Contrast 556
neg add NA NS NS - - - - Comparison 16
neg add NA NS NS - - - - Contrast 588
neg cau bas NS NS - - + - Condition 26
neg cau bas NS NS - - - - Contrast 294
neg cau non-b NS NS - - - - Contrast 106
pos NS NS sub NS + - - - Evaluation 580
pos add NA NS NS + - - - Elaboration 620
pos add NA NS NS - - - - Comparison 368
pos add NA NS NS - - - - Elaboration 5816
pos add NA NS NS - - - - Joint 2898
pos add NA obj NS + - - - Elaboration 4686
pos add NA obj NS + - - - Summary 300
pos add NA obj anti - - - - Temporal 124
pos add NA obj chron - - - - Temporal 410
pos add NA obj syn - - - - Temporal 220
pos add NA sub NS + - - - Evaluation 272
pos add NA sub NS + - - - Topic-Comment 4
pos add NA sub NS - - - - Comparison 24
pos cau NS NS NS - - - - Topic-Comment 82
pos cau NS obj NS - - - - Cause 136
pos cau NS obj NS - - - - Explanation 10
pos cau bas NS NS - - - + Enablement 814
pos cau bas NS NS - - - + Topic-Comment 14
pos cau bas obj chron - - - + Manner-Means 18
pos cau bas obj chron - - - - Cause 594
pos cau bas obj chron - - - - Explanation 76
pos cau bas sub NS + - - - Evaluation 8
pos cau bas sub NS - - + - Condition 18
pos cau bas sub chron - - - - Explanation 2
pos cau non-b NS NS - - - + Enablement 76
pos cau non-b obj anti - - - - Cause 264
pos cau non-b obj anti - - - - Explanation 1018
pos cau non-b obj anti - - - - Manner-Means 154
pos cau non-b sub NS + - - - Evaluation 2
pos cau non-b sub NS - - + - Condition 54
pos cau non-b sub anti - - - - Explanation 278

Table 10: Unique patterns of the mapping between UDims and DRs in the training set of RST-DT.
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Table 11 shows unique patterns in the mapping between UDims and DRs in the test set of RST-DT.

NS NS NS NS NS - - - - Manner-Means 9
NS NS NS NS NS - - - - Textual-organization 9
NS NS NS NS NS - - - - Topic-Change 13
NS NS NS NS NS - - - - Topic-Comment 15
NS add NA NS NS - + - - Joint 6
NS add NA obj NS - - - - Background 111
NS cau bas NS NS - - + - Condition 24
NS cau bas obj chron - - + - Condition 1
NS cau non-b NS NS - - + - Condition 15
NS cau non-b obj anti - - + - Condition 2
neg NS NS NS NS - - - - Contrast 46
neg add NA NS NS - - - - Comparison 2
neg add NA NS NS - - - - Contrast 64
neg cau bas NS NS - - - - Contrast 28
neg cau non-b NS NS - - - - Contrast 8
pos NS NS NS NS - - - - Comparison 2
pos NS NS sub NS + - - - Evaluation 46
pos add NA NS NS + - - - Elaboration 77
pos add NA NS NS - - - - Comparison 24
pos add NA NS NS - - - - Elaboration 381
pos add NA NS NS - - - - Joint 206
pos add NA obj NS + - - - Elaboration 338
pos add NA obj NS + - - - Summary 32
pos add NA obj anti - - - - Temporal 11
pos add NA obj chron - - - - Temporal 37
pos add NA obj syn - - - - Temporal 25
pos add NA sub NS + - - - Evaluation 34
pos add NA sub NS - - - - Comparison 1
pos cau NS NS NS - - - - Topic-Comment 5
pos cau NS obj NS - - - - Cause 13
pos cau NS obj NS - - - - Explanation 1
pos cau bas NS NS - - - + Enablement 43
pos cau bas NS NS - - - + Topic-Comment 4
pos cau bas obj chron - - - + Manner-Means 2
pos cau bas obj chron - - - - Cause 44
pos cau bas obj chron - - - - Explanation 2
pos cau non-b NS NS - - - + Enablement 3
pos cau non-b obj anti - - - - Cause 25
pos cau non-b obj anti - - - - Explanation 95
pos cau non-b obj anti - - - - Manner-Means 16
pos cau non-b sub NS - - + - Condition 6
pos cau non-b sub anti - - - - Explanation 12

Table 11: Unique patterns of UDims and DRs in the test set of RST-DT.
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E Unique Mapping Between UDims and Implicit DRs in PDTB 3.0

Table 12 shows unique patterns in the mapping between UDims and implicit DRs in the training set of
PDTB 3.0.

pol. bop. imp. soc. temp. spec. alt. con. goal DR frequency
NS NS NS NS NS - - - - Asynchronous 12
NS NS NS NS NS - - - - Cause 220
NS NS NS NS NS - - - - Cause+Belief 21
NS NS NS NS NS - - - - Concession 7
NS NS NS NS NS - - - - Condition 14
NS NS NS NS NS - - - - Level-of-detail 5
NS NS NS NS NS - - - - Manner 3
NS NS NS NS NS - - - - Purpose 453
NS NS NS NS NS - - - - Substitution 3
neg add NA obj NS - - - - Contrast 607
neg cau bas obj/sub NS - - - - Concession 1123
neg cau non-b obj/sub NS - - - - Concession 34
neg cau non-b obj/sub NS - - - - Substitution 275
pos add NA obj anti - - - - Asynchronous 122
pos add NA obj chron - - - - Asynchronous 851
pos add NA obj sync - - - - Synchronous 325
pos add NA obj/sub NS + - - - Instantiation 1117
pos add NA obj/sub NS + - - - Level-of-detail 2488
pos add NA obj/sub NS + - - - Manner 188
pos add NA obj/sub NS - - - - Conjunction 3562
pos add NA obj/sub NS - - - - Equivalence 252
pos cau bas obj chron - - - + Cause 2074
pos cau bas obj chron - - - - Cause 92
pos cau bas obj/sub NS - - + - Condition 29
pos cau bas obj/sub NS - - - + Purpose 1
pos cau bas sub NS - - - + Purpose 647
pos cau bas sub NS - - - - Cause+Belief 54
pos cau non-b obj anti - - - - Cause 2083
pos cau non-b obj/sub NS - - + - Condition 109
pos cau non-b obj/sub NS - - - + Purpose 1
pos cau non-b sub NS - - - - Cause+Belief 82

Table 12: Unique patterns of UDims and implicit DRs in the training set of PDTB 3.0.

Table 13 shows unique patterns in the mapping between UDims and implicit DRs in the test set of
PDTB 3.0.

Table 14 shows unique patterns in the mapping between UDims and DRs in the training set of explicit
data.
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pol. bop. imp. soc. temp. spec. alt. con. goal DR frequency
NS NS NS NS NS - - - - Asynchronous 3
NS NS NS NS NS - - - - Cause 20
NS NS NS NS NS - - - - Cause+Belief 1
NS NS NS NS NS - - - - Concession 1
NS NS NS NS NS - - - - Condition 1
NS NS NS NS NS - - - - Instantiation 1
NS NS NS NS NS - - - - Manner 1
NS NS NS NS NS - - - - Purpose 33
NS NS NS NS NS - - - - Substitution 1
neg add NA obj NS - - - - Contrast 53
neg cau bas obj/sub NS - - - - Concession 88
neg cau non-b obj/sub NS - - - - Concession 9
neg cau non-b obj/sub NS - - - - Substitution 25
pos add NA obj anti - - - - Asynchronous 9
pos add NA obj chron - - - - Asynchronous 93
pos add NA obj sync - - - - Synchronous 35
pos add NA obj/sub NS + - - - Instantiation 123
pos add NA obj/sub NS + - - - Level-of-detail 208
pos add NA obj/sub NS + - - - Manner 16
pos add NA obj/sub NS - - - - Conjunction 236
pos add NA obj/sub NS - - - - Equivalence 30
pos cau bas obj chron - - - + Cause 200
pos cau bas obj chron - - - - Cause 11
pos cau bas obj/sub NS - - + - Condition 4
pos cau bas sub NS - - - + Purpose 56
pos cau bas sub NS - - - - Cause+Belief 8
pos cau non-b obj anti - - - - Cause 175
pos cau non-b obj/sub NS - - + - Condition 10
pos cau non-b sub NS - - - - Cause+Belief 6

Table 13: Unique patterns of UDims and implicit DRs in the test set of PDTB 3.0.

pol. bop. imp. soc. temp. spec. alt. con. goal DR frequency
NS NS NS NS NS - - - - Purpose 4
neg add NA obj NS - - - - Contrast 846
neg add NA obj/sub NS - + - - Disjunction 228
neg cau bas obj/sub NS - - - - Concession 3449
neg cau bas obj/sub NS - - - - Substitution 55
neg cau non-b obj/sub NS - - - - Concession 237
neg cau non-b obj/sub NS - - - - Substitution 123
pos add NA obj anti - - - - Asynchronous 737
pos add NA obj chron - - - - Asynchronous 869
pos add NA obj sync - - - - Synchronous 1492
pos add NA obj/sub NS + - - - Instantiation 241
pos add NA obj/sub NS + - - - Level-of-detail 187
pos add NA obj/sub NS + - - - Manner 227
pos add NA obj/sub NS - - - - Conjunction 6756
pos cau bas obj chron - - - + Cause 374
pos cau bas obj chron - - - - Cause 173
pos cau bas obj/sub NS - - + - Condition 415
pos cau bas obj/sub NS - - - + Purpose 3
pos cau bas sub NS - - - + Purpose 202
pos cau non-b obj anti - - - - Cause 907
pos cau non-b obj/sub NS - - + - Condition 693
pos cau non-b obj/sub NS - - - + Purpose 92

Table 14: Unique patterns of UDims and DRs in the training set of explicit data, shown here as supplementary
material for the experiments on data augmentation.
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F Preprocessing

The experiments on RST are carried out on RST-DT. We follow the gold division of the corpus for training
and test sets and take 20% from the training set for validation. We utilize the preprocessing method by Ji
and Eisenstein (2014) and binarize the RST trees in order to obtain pairs of discourse units linked by
DRs. The 78 relations are mapped to 18 broad classes based on the template in Braud et al. (2016), but as
Same-Unit and Attribution are not covered in Sanders et al. (2018), the two relations are excluded in our
experiments, leaving a set of 16 RST relations.

The experiments on PDTB are performed on PDTB 3.0. We follow the data split used in Ji and
Eisenstein (2015), i.e., sections 2-20 for training, sections 0-1 for validation, and sections 21-22 for testing,
and discard DRs with fewer than 100 instances to alleviate data imbalance, as proposed in Kim et al.
(2020), leaving 14 senses from Level-2 (L2) of the sense hierarchy.

G Statistics of UDims

We follow the format of the graph in Roze et al. (2019).
Figure 5 shows statistics of UDims for the training set of RST-DT.

Figure 5: Statistics of UDims for the training set of RST-DT.

Figure 6 shows statistics of UDims for the training set of PDTB implicit relation data.

Figure 6: Statistics of UDims for the training set of PDTB implicit relation data.
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H Label Frequency for Training Sets of RST and PDTB Implicit Relations

Table 15 shows label frequency in the training set of RST.

Label Frequency
Explanation 1384
Manner-Means 302
Summary 300
Elaboration 11122
Contrast 1544
Evaluation 862
Joint 2932
Background 1328
Topic-Comment 212
Enablement 890
Cause 994
Condition 474
Topic-Change 322
Textual-
Organization

234

Temporal 754
Comparison 408

Table 15: Label frequency in the training set of RST.
Table 16 shows label frequency in the training set of PDTB implicit relations.

Label Frequency
Level-of-Detail 2493
Conjunction 3562
Concession 1164
Cause 4469
Instantiation 1117
Equivalence 252
Substitution 278
Asynchronous 985
Synchronous 325
Cause+Belief 157
Purpose 1102
Manner 191
Contrast 607
Condition 152

Table 16: Label frequency in the training set of PDTB implicit relations.
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I Hyper-parameter Settings

The arguments of the input sequences are padded to a fixed length of 250 tokens, and all the model
parameters are initialized with the Xavier uniform initialization (Glorot and Bengio, 2010). The output
sizes of the feed-forward networks g and ϕ described in section 3.3.1 and section 3.3.2 are both set to
128 through manual tuning. The dropout probability is kept at 0.2 for all the experiments. In line with
MC dropout, we keep all the dropout layers active during inference time, and run the model for UDim
classification three times and obtain the average predictive distributions. The UDim embeddings are set
with a dimension size of 100 in all the experiments, except for InputDimCat in section 3.3.2, where the
dimension sizes of the UDim embeddings are set to be 2 * number of values, which we find sufficient
through experimentation. Similarly, we also run the DR classifier three times and obtain the average
predictive distribution. The batch size is set to the largest value that the GPU machine can accommodate.

The model learning rate is set to 1e− 5 and it is trained for a maximum of 30 epochs, with an early-
stopping scheme monitoring performance improvement for DR classification on the validation set with a
threshold of 7 epochs. The AdamW optimizer (Loshchilov and Hutter, 2018) is used and a warmup ratio
of 0.06 is set for the scheduler. A weight decay of 0.1 is applied, and gradients are clipped to a maximum
of 1.0. The implementation is based on the PyTorch machine learning framework (Paszke et al., 2019). A
single A5000 GPU with a capacity of 24GB is used for all the experiments.

J Statistical Significance Test for Model Results

The saved models are used to predict DR sense labels on the test set of RST or PDTB, and different
models are compared pairwise, in line with Stuart-Maxwell test.

Table 17 shows Stuart-Maxwell test of statistical significance of results for RST.

Model A Model B Difference p-value
RST baseline InputForRelCls 31.53487265756919 0.007444391838374066
RST baseline InputDimCat 64.59896992698941 4.0166800266956324e-

08
RST baseline InputDimAtt 107.31845836146087 5.266424736880601e-

16
RST baseline TrainonGoldTestonPred 63.96165551732709 5.19121909560304e-

08
InputForRelCls InputDimCat 43.01215622117389 0.00015676857689742404
InputForRelCls InputDimAtt 134.2049214835401 3.1837974277302182e-

21
InputForRelCls TrainonGoldTestonPred 57.65006061709332 6.363774121513998e-

07
InputDimCat InputDimAtt 178.08228924962432 5.7895617480969986e-

30
InputDimCat TrainonGoldTestonPred 75.50117669436882 4.596013953778202e-

10
InputDimAtt TrainonGoldTestonPred 90.04348995437392 9.735088746634535e-

13

Table 17: Statistical significance test for results of RST models. Compared with the baseline, all the model results
are statistically significant.

Table 18 shows Stuart-Maxwell test of statistical significance of results for PDTB implicit DR classifi-
cation.
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Model A Model B Difference p-value
PDTB impl baseline InputForRelCls 96.37746867104653 8.322748692517058e-

15
PDTB impl baseline InputDimCat 97.67850546549909 4.6673553418486555e-

15
PDTB impl baseline InputDimAtt 35.46139837486632 0.0007189097931712012
PDTB impl baseline TrainonGoldTestonPred 106.07628543197474 1.0923958667709962e-

16
InputForRelCls InputDimCat 98.47524634808387 3.2737145426570587e-

15
InputForRelCls InputDimAtt 154.30765485412508 2.788891357957465e-

26
InputForRelCls TrainonGoldTestonPred

95.28342048662472
1.3526258777197362e-
14

InputDimCat InputDimAtt 108.8129041233804 3.1898108418072124e-
17

InputDimCat TrainonGoldTestonPred 155.30024500712676 1.7579323354258866e-
26

InputDimAtt TrainonGoldTestonPred 136.33343659405318 1.1401098443142066e-
22

Table 18: Statistical significance test for results of PDTB models. As is shown, all the model results are statistically
significant.
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K Detailed Results for Cascaded Classifier

This part involves two experiments. To get an estimate of the upper limit of only using UDims for DR clas-
sification, we experiment with using a single MLP to predict DRs based on gold UDims (MLPGoldUDims),
which represents an upper limit of the approach of universal classifier.

The second experiment simulates the cascaded classifier, where UDim classification is performed first
and predicted UDims are used for DR classification. In this experiment, input is only used for UDim
classification and the predicted UDims are combined via an attention mechanism for DR classification.
The training objective is to minimize losses of DR classification and UDim classification.

Table 19 shows the results, indicating a large gap between using predicted UDims (UDimAtt, i.e. using
attention of embeddings of predicted UDims) and gold UDims (MLPGoldUDims) for DR classification.

F1 Acc.
RST(MLPGoldUDims) 56.55 79.60
RST(UDimAtt) 32.24 55.50
PDTB impl.((MLPGoldUDims) 73.00 85.79
PDTB impl.(UDimAtt) 41.69 56.21

Table 19: Results on cascaded classification of UDims and DRs. UDimAtt denotes combining predicted UDims
with an attention mechanism, which performs better than simple concatenation of predicted UDims here.

Table 20 shows the detailed performance on DR classification for RST, based on the cascaded classifier.

precision recall f1 frequency
Background 44.44 36.04 39.80 111

Cause 36.36 24.39 29.20 82
Comparison 0.00 0.00 0.00 29
Condition 76.09 72.92 74.47 48
Contrast 68.32 75.34 71.66 146

Elaboration 59.42 82.79 69.19 796
Enablement 62.96 73.91 68.00 46
Evaluation 30.14 27.50 28.76 80

Explanation 37.42 55.45 44.69 110
Joint 37.50 1.42 2.73 212

Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 65.96 42.47 51.67 73

Textual-Organization 33.33 11.11 16.67 9
Topic-Change 13.79 30.77 19.05 13

Topic-Comment 0.00 0.00 0.00 24

Table 20: Detailed results of RST DR classification with the cascaded classifier.

Table 21 shows test performance on UDim classification for RST, with the cascaded classifier based on
UDimAtt.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

UDimAtt 74.66 58.44 55.41 63.02 48.16 83.09 83.29 88.85 84.52 88.36 78.56 77.15 74.48 86.89 86.13 99.84 98.91 98.31

Table 21: Results for UDim classification on RST for the cascaded classifier based on UDimAtt

Table 22 shows the detailed performance on DR classification for PDTB implicit relation data, based
on the cascaded classifier.

Table 23 shows test performance on UDim classification for PDTB implicit relation data, with the
cascaded classifier based on UDimAtt.

L Full Results for UDim Classification on RST and PDTB

Table 24 shows test performance on UDim classification for RST.
Table 25 shows test performance on UDim classification for PDTB implicit DRs.
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precision recall f1 frequency
Asynchronous 65.00 74.29 69.33 105

Cause 71.71 63.05 67.10 406
Cause+Belief 00.00 00.00 00.00 15
Concession 59.38 58.16 58.76 98
Condition 77.78 46.67 58.33 15

Conjunction 47.63 68.22 56.10 236
Contrast 55.36 58.49 56.88 53

Equivalence 00.00 00.00 00.00 30
Instantiation 00.00 00.00 00.00 124

Level-of-detail 40.00 58.65 47.56 208
Manner 00.00 00.00 00.00 17
Purpose 79.05 93.26 85.57 89

Substitution 42.11 61.54 50.00 26
Synchronous 66.67 22.86 34.04 35

Table 22: Detailed results of PDTB implicit DR classification with the cascaded classifier.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

UDimAtt 68.62 68.97 66.46 71.28 64.66 82.55 100.00 84.66 80.80 87.51 78.65 76.32 76.87 80.44 87.58 100.00 99.52 89.29

Table 23: Results for UDim classification on PDTB implicit relation data for the cascaded classifier based on
UDimAtt

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

TrainonGold
TestonPred 73.65 57.78 57.06 60.69 47.18 82.50 64.22 87.82 85.16 87.43 78.45 77.53 73.78 88.79 85.91 99.73 98.91 98.37

InputDimCat 75.33 57.72 56.88 62.57 48.43 82.64 79.95 89.30 83.52 88.41 78.13 77.64 74.48 87.49 86.02 99.78 98.97 98.20
InputDimAtt 74.09 59.02 56.32 60.85 45.42 82.72 74.95 88.42 86.15 87.60 77.86 76.71 75.46 87.21 86.40 99.78 98.86 98.48
InputFor
RelCls 73.19 60.34 58.33 61.39 46.41 82.53 83.29 88.36 85.16 87.54 78.84 78.13 75.14 87.00 86.45 99.84 98.91 98.37

Table 24: Results for UDim classification on RST.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

TrainonGold
TestonPred 66.84 66.41 63.50 69.61 58.10 81.42 100.00 84.66 77.10 86.55 75.77 72.82 74.95 76.53 87.17 100.00 99.52 87.17

InputDimCat 68.59 69.71 66.43 72.12 60.72 82.46 100.00 81.68 79.84 87.71 77.97 74.74 76.53 79.75 87.37 100.00 99.45 88.81
InputDimAtt 69.03 68.40 65.66 74.24 59.93 80.16 100.00 77.10 81.08 88.95 77.49 74.19 77.08 77.21 85.86 100.00 99.31 89.09
InputFor
RelCls 66.27 65.25 62.48 70.66 58.76 82.10 100.00 84.66 78.92 86.41 75.77 73.03 75.22 77.97 87.71 100.00 99.52 88.81

Table 25: Results for UDim classification on PDTB implicit relation data.
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M Ablation Studies for RST

Table 26 presents results of ablation studies for RST DR classification.

DR UDim P. R. F1

Background

-pol 44.55 44.14 44.34
-bop 48.28 37.84 42.42
-imp 48.89 39.64 43.78
-soc 44.55 40.54 42.45
-temp 45.65 37.84 41.38
-spec 45.26 38.74 41.75
-alt 43.56 39.64 41.51
-con 41.07 41.44 41.26
-goal 42.86 43.24 43.05

Cause

-pol 42.86 21.95 29.03
-bop 33.33 25.61 28.97
-imp 34.92 26.83 30.34
-soc 32.00 29.27 30.57
-temp 35.82 29.27 32.21
-spec 38.71 29.27 33.33
-alt 34.25 30.49 32.26
-con 36.67 26.83 30.99
-goal 35.29 29.27 32.00

Comparison

-pol 52.00 44.83 48.15
-bop 54.17 44.83 49.06
-imp 51.61 55.17 53.33
-soc 66.67 41.38 51.06
-temp 52.17 41.38 46.15
-spec 47.62 34.48 40.00
-alt 50.00 41.38 45.28
-con 58.33 48.28 52.83
-goal 46.43 44.83 45.61

Condition

-pol 82.50 68.75 75.00
-bop 87.50 72.92 79.55
-imp 80.00 75.00 77.42
-soc 80.43 77.08 78.72
-temp 73.47 75.00 74.23
-spec 77.27 70.83 73.91
-alt 83.72 75.00 79.12
-con 80.95 70.83 75.56
-goal 76.09 72.92 74.47

Contrast

-pol 68.75 67.81 68.28
-bop 75.89 73.29 74.56
-imp 78.57 67.81 72.79
-soc 73.76 71.23 72.47
-temp 73.15 74.66 73.90
-spec 75.19 68.49 71.68
-alt 75.36 71.23 73.24
-con 72.41 71.92 72.16
-goal 78.79 71.23 74.82

Elaboration

-pol 71.61 83.67 77.17
-bop 71.84 83.67 77.31
-imp 72.23 82.04 76.82
-soc 70.75 84.80 77.14
-temp 73.66 81.16 77.23
-spec 73.77 81.28 77.35
-alt 73.36 84.05 78.34
-con 76.74 81.66 79.12
-goal 74.91 78.77 76.79

Enablement

-pol 71.43 76.09 73.68
-bop 77.27 73.91 75.56
-imp 72.00 78.26 75.00
-soc 73.91 73.91 73.91
-temp 68.63 76.09 72.16
-spec 64.41 82.61 72.38
-alt 66.67 78.26 72.00
-con 75.00 78.26 76.60
-goal 74.00 80.43 77.08

Evaluation

-pol 39.68 31.25 34.97
-bop 38.89 26.25 31.34
-imp 41.67 31.25 35.71
-soc 36.62 32.50 34.44
-temp 42.00 26.25 32.31
-spec 36.84 35.00 35.90
-alt 44.90 27.50 34.11
-con 40.58 35.00 37.58
-goal 33.33 35.00 34.15

Explanation

-pol 50.55 41.82 45.77
-bop 46.85 47.27 47.06
-imp 51.16 40.00 44.90
-soc 48.19 36.36 41.45
-temp 43.30 38.18 40.58
-spec 54.00 49.09 51.43
-alt 50.00 44.55 47.12
-con 49.49 44.55 46.89
-goal 38.69 48.18 42.91
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Joint

-pol 67.10 73.11 69.98
-bop 69.12 70.75 69.93
-imp 65.97 74.06 69.78
-soc 70.98 64.62 67.65
-temp 63.60 75.00 68.83
-spec 63.60 71.70 67.41
-alt 70.51 72.17 71.33
-con 64.43 76.89 70.11
-goal 67.26 71.70 69.41

Manner-Means

-pol 75.00 44.44 55.81
-bop 75.00 44.44 55.81
-imp 71.43 37.04 48.78
-soc 68.75 40.74 51.16
-temp 66.67 44.44 53.33
-spec 73.68 51.85 60.87
-alt 65.00 48.15 55.32
-con 57.14 44.44 50.00
-goal 72.22 48.15 57.78

Summary

-pol 65.00 40.62 50.00
-bop 66.67 43.75 52.83
-imp 80.00 50.00 61.54
-soc 80.00 37.50 51.06
-temp 85.71 37.50 52.17
-spec 75.00 46.88 57.69
-alt 61.90 40.62 49.06
-con 68.18 46.88 55.56
-goal 71.43 46.88 56.60

Temporal

-pol 65.22 41.10 50.42
-bop 66.04 47.95 55.56
-imp 54.29 52.05 53.15
-soc 66.67 41.10 50.85
-temp 54.69 47.95 51.09
-spec 68.52 50.68 58.27
-alt 59.18 39.73 47.54
-con 61.22 41.10 49.18
-goal 72.97 36.99 49.09

Textual-Organization

-pol 66.67 88.89 76.19
-bop 63.64 77.78 70.00
-imp 72.73 88.89 80.00
-soc 66.67 88.89 76.19
-temp 72.73 88.89 80.00
-spec 66.67 88.89 76.19
-alt 57.14 88.89 69.57
-con 66.67 88.89 76.19
-goal 66.67 88.89 76.19

Topic-Change

-pol 62.50 38.46 47.62
-bop 46.15 46.15 46.15
-imp 38.46 38.46 38.46
-soc 57.14 30.77 40.00
-temp 45.45 38.46 41.67
-spec 41.67 38.46 40.00
-alt 62.50 38.46 47.62
-con 50.00 38.46 43.48
-goal 36.36 30.77 33.33

Topic-Comment

-pol 45.45 20.83 28.57
-bop 37.50 25.00 30.00
-imp 41.18 29.17 34.15
-soc 46.67 29.17 35.90
-temp 40.00 25.00 30.77
-spec 46.67 29.17 35.90
-alt 52.94 37.50 43.90
-con 40.00 41.67 40.82
-goal 31.58 25.00 27.91

Table 26: Ablation studies for RST, based on InputForRelCls. The lowest F1 scores are shown in blue, although
there are cases when the differences between values are quite small.
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N Ablation Studies for PDTB Implicit DR Classification

Table 27 presents results of ablation studies for PDTB implicit DR classification.

DR UDim P. R. F1

Asynchronous

-pol 63.11 61.90 62.50
-bop 74.73 64.76 69.39
-imp 66.04 66.67 66.35
-soc 56.15 69.52 62.13
-temp 68.09 60.95 64.32
-spec 65.35 62.86 64.08
-alt 63.55 64.76 64.15
-con 59.65 64.76 62.10
-goal 64.15 64.76 64.45

Cause

-pol 66.58 66.26 66.42
-bop 64.99 69.95 67.38
-imp 64.93 67.49 66.18
-soc 64.49 60.84 62.61
-temp 65.30 66.75 66.02
-spec 69.83 59.85 64.46
-alt 69.28 56.65 62.33
-con 65.26 64.78 65.02
-goal 71.64 59.11 64.78

Cause+Belief

-pol 11.11 06.67 08.33
-bop 00.00 00.00 00.00
-imp 00.00 00.00 00.00
-soc 09.09 06.67 07.69
-temp 00.00 00.00 00.00
-spec 00.00 00.00 00.00
-alt 10.71 20.00 13.95
-con 00.00 00.00 00.00
-goal 20.00 06.67 10.00

Concession

-pol 58.54 48.98 53.33
-bop 63.41 53.06 57.78
-imp 58.43 53.06 55.61
-soc 66.22 50.00 56.98
-temp 57.14 53.06 55.03
-spec 50.00 62.24 55.45
-alt 55.45 57.14 56.28
-con 70.77 46.94 56.44
-goal 59.15 42.86 49.70

Condition

-pol 77.78 46.67 58.33
-bop 81.82 60.00 69.23
-imp 80.00 53.33 64.00
-soc 81.82 60.00 69.23
-temp 83.33 66.67 74.07
-spec 77.78 46.67 58.33
-alt 87.50 46.67 60.87
-con 77.78 46.67 58.33
-goal 71.43 33.33 45.45

Conjunction

-pol 56.68 66.53 61.21
-bop 53.31 71.61 61.12
-imp 54.58 63.14 58.55
-soc 50.48 67.37 57.71
-temp 55.16 65.68 59.96
-spec 53.77 69.49 60.63
-alt 50.31 69.49 58.36
-con 51.44 68.22 58.65
-goal 49.46 77.54 60.40

Contrast

-pol 61.11 41.51 49.44
-bop 43.64 45.28 44.44
-imp 48.84 39.62 43.75
-soc 55.56 47.17 51.02
-temp 60.53 43.40 50.55
-spec 52.17 45.28 48.48
-alt 52.50 39.62 45.16
-con 45.83 41.51 43.56
-goal 42.59 43.40 42.99

Equivalence

-pol 29.73 36.67 32.84
-bop 33.33 03.33 06.06
-imp 25.93 23.33 24.56
-soc 18.42 23.33 20.59
-temp 28.00 23.33 25.45
-spec 22.22 13.33 16.67
-alt 40.00 20.00 26.67
-con 18.52 33.33 23.81
-goal 29.73 36.67 32.84

Instantiation

-pol 80.25 52.42 63.41
-bop 71.15 59.68 64.91
-imp 81.61 57.26 67.30
-soc 80.49 53.23 64.08
-temp 74.51 61.29 67.26
-spec 71.03 61.29 65.80
-alt 75.53 57.26 65.14
-con 79.57 59.68 68.20
-goal 64.89 68.55 66.67
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Level-of-Detail

-pol 46.62 59.62 52.32
-bop 51.47 50.48 50.97
-imp 49.79 57.21 53.24
-soc 49.32 51.92 50.59
-temp 49.79 55.77 52.61
-spec 49.43 62.02 55.01
-alt 47.39 56.73 51.64
-con 55.61 54.81 55.21
-goal 52.38 47.60 49.87

Manner

-pol 66.67 47.06 55.17
-bop 69.23 52.94 60.00
-imp 80.00 47.06 59.26
-soc 100.00 47.06 64.00
-temp 63.64 41.18 50.00
-spec 80.00 47.06 59.26
-alt 72.73 47.06 57.14
-con 66.67 47.06 55.17
-goal 68.75 64.71 66.67

Purpose

-pol 86.87 96.63 91.49
-bop 91.40 95.51 93.41
-imp 88.54 95.51 91.89
-soc 90.53 96.63 93.48
-temp 89.47 95.51 92.39
-spec 92.47 96.63 94.51
-alt 87.00 97.75 92.06
-con 93.41 95.51 94.44
-goal 92.39 95.51 93.92

Substitution

-pol 40.74 42.31 41.51
-bop 50.00 50.00 50.00
-imp 45.45 38.46 41.67
-soc 48.00 46.15 47.06
-temp 41.38 46.15 43.64
-spec 47.83 42.31 44.90
-alt 45.00 34.62 39.13
-con 51.85 53.85 52.83
-goal 50.00 53.85 51.85

Synchronous

-pol 46.67 20.00 28.00
-bop 45.00 25.71 32.73
-imp 44.44 22.86 30.19
-soc 47.62 28.57 35.71
-temp 22.22 11.43 15.09
-spec 64.29 25.71 36.73
-alt 30.77 22.86 26.23
-con 43.75 20.00 27.45
-goal 43.75 20.00 27.45

Table 27: Ablation studies for PDTB implicit DR classification, based on InputForRelCls. Similar to RST, lowest
F1 scores are shown in blue, with the exception of Cause+Belief, for which removing the majority of UDims yields
00.00.
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Abstract

Voice-based AI development faces unique chal-
lenges in processing both linguistic and par-
alinguistic information. This study compares
how large audio-language models (LALMs)
and humans integrate speaker characteristics
during speech comprehension, asking whether
LALMs process speaker-contextualized lan-
guage in ways that parallel human cognitive
mechanisms. We compared two LALMs’
(Qwen2-Audio and Ultravox 0.5) processing
patterns with human EEG responses. Using
surprisal and entropy metrics from the mod-
els, we analyzed their sensitivity to speaker-
content incongruency across social stereotype
violations (e.g., a man claiming to regularly
get manicures) and biological knowledge viola-
tions (e.g., a man claiming to be pregnant). Re-
sults revealed that Qwen2-Audio exhibited in-
creased surprisal for speaker-incongruent con-
tent and its surprisal values significantly pre-
dicted human N400 responses, while Ultravox
0.5 showed limited sensitivity to speaker char-
acteristics. Importantly, neither model repli-
cated the human-like processing distinction
between social violations (eliciting N400 ef-
fects) and biological violations (eliciting P600
effects). These findings reveal both the poten-
tial and limitations of current LALMs in pro-
cessing speaker-contextualized language, and
suggest differences in social-linguistic process-
ing mechanisms between humans and LALMs.

1 Introduction

Humans are remarkably adept at extracting speaker
characteristics from vocal cues. Within millisec-
onds of hearing a voice, listeners can perceive a
speaker’s gender, age, health condition, personality
traits, and other socio-demographic attributes (La-
van et al., 2024). The perceived speaker attributes
then form a critical context for language compre-
hension, shaping how linguistic input is processed
and interpreted (Wu and Cai, 2024a). For example,
when we hear someone say “The first time I got

pregnant I had a hard time,” it is straightforward
when coming from a female speaker but would be
puzzling if a man were to say it.

Electroencephalography (EEG) studies show
that when people hear sentences containing speaker
incongruencies—such as “The first time I got preg-
nant. . . ” spoken by a man (violating biological
knowledge) or “I like to get manicures. . . ” spo-
ken by a man (violating gender stereotypes)—their
brain responses diverge from speaker-congruent
conditions, showing an N400 effect (Martin et al.,
2016; Van Berkum et al., 2008; Van den Brink
et al., 2012) or a P600 effect (Lattner and Friederici,
2003; Foucart et al., 2015). These neural responses
show that speaker characteristics actively shape the
real-time processing of spoken language.

The human capacity for speaker-contextualized
language processing has recently been explained
through a rational inference framework (Wu and
Cai, 2024b). This framework proposes that humans
engage in rational inference during real-time lan-
guage comprehension—a process where listeners
actively reason about the most likely interpretation
given both linguistic input and speaker character-
istics. Using social-stereotype violation (e.g., men
getting manicures) and biological-knowledge viola-
tion (e.g., men getting pregnant) as test cases, they
showed that when encountering speaker-content
mismatches that violate social stereotypes, listeners
can still arrive at a “literal” interpretation through
effortful integration with their social knowledge, re-
flected in N400 effects. However, when faced with
biological impossibilities, listeners rationally infer
potential errors in the input and engage in error
correction processes, manifested as P600 effects.

Recent advances in large language models
(LLMs) have demonstrated increasing capabilities
in contextual understanding (Zhu et al., 2024) and
multimodal processing (Wang et al., 2024; Zhang
et al., 2024). While initially focused on text, these
models have expanded into multimodal tasks, show-
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ing remarkable abilities in integrating inputs from
diverse modalities like vision and speech. This
evolution has led to the development of large audio-
language models (LALMs) that can process audio
inputs, including speaker characteristics, acoustic
features, along with other contextual information.

The integration of LLMs into audio process-
ing has progressed through several stages (Peng
et al., 2024). Early attempts focused on incorpo-
rating Transformer architectures into traditional
speech models, as exemplified by HuBERT’s self-
supervised learning on unlabeled speech data (Hsu
et al., 2021). More recent approaches have shifted
toward direct audio processing with LLMs by map-
ping audio features to tokens, not only for higher
computational efficiency but also enabling richer
paralinguistic processing through end-to-end mul-
timodal integration (e.g., Chu et al., 2024).

This paradigm shift has produced models that
are capable of increasingly complex tasks: Au-
dioPaLM can preserve speaker voice characteristics
during speech processing and generation (Ruben-
stein et al., 2023), SALMONN can perform audio-
based storytelling and speech-audio co-reasoning
(Tang et al., 2023), and Qwen2-Audio can explic-
itly identify speaker demographics and emotions
(Chu et al., 2024). These emerging abilities raise
questions about whether LALMs process speaker-
contextualized language in ways that parallel hu-
man cognitive mechanisms.

As these models are increasingly deployed in
interactive settings where they must interpret and
respond to diverse speakers, understanding their
social-linguistic processing has both theoretical and
practical implications. On the one hand, compar-
ing LALMs with human processing can provide
insights into models’ emergent cognitive mecha-
nisms, an approach that has been widely used with
deep neural networks (AlKhamissi et al., 2024,
2025; Schrimpf et al., 2018); on the other hand,
identifying divergences between human and model
processing helps pinpoint potential limitations in
current architectures or training method, suggesting
directions for developing more natural human-AI
interactions.

To this end, we utilize computational metrics
that have been shown to capture humans’ real-time
language processing. Specifically, surprisal (Hale,
2001; Levy, 2008), which reflects the unpredictabil-
ity of a word given its context, has been linked to
increased processing effort and has been shown
to predict reading times (Smith and Levy, 2013)

and N400 amplitudes (Krieger et al., 2024; Salic-
chi and Hsu, 2025). Entropy, which captures the
uncertainty within the probability distribution of
upcoming stimuli, was suggested to be associated
with P600 amplitudes (Salicchi and Hsu, 2025).

In this research, we investigate whether LALMs
align with human cognitive mechanisms in social-
linguistic processing. We use the EEG data from
Wu and Cai (2024b) as a benchmark of human
processing and examine: a) whether LALMs align
with humans in perceiving speaker characteristics
and use them to guide real-time language process-
ing; b) whether LALMs align with humans in the
specific mechanism in processing speaker-content
relationships.

2 Method

2.1 Human EEG data

The human data were EEG responses to speech
stimuli from native Mandarin Chinese speakers.
The study employed a 2×2 factorial design cross-
ing Congruency (speaker-congruent vs. speaker-
incongruent) with Type (social vs. biological).
Congruency was manipulated by matching or mis-
matching speaker characteristics with the sentence
content, while Type distinguished between viola-
tions of social stereotypes and biological knowl-
edge. The experimental materials consisted of
80 self-referential sentences (each with a speaker-
congruent and a speaker-incongruent audio version)
in Mandarin Chinese, with speaker characteristics
varying along gender and age dimensions (Table 1).
All sentence audios were generated using text-to-
speech technique with consistent acoustic proper-
ties.

The EEG data were collected from 60 partic-
ipants while they listened to these sentences. A
region of interest of 59 central-posterior sites was
selected, and trial-level amplitudes were averaged
across these sites before being further averaged
over 300-600 ms (N400) and 600-1000 ms (P600)
post-critical word onset. Their results revealed that
social incongruency elicited a long-lasting N400
effect (across the 300-600-ms and the 600-1000-
ms time windows), while biological incongruency
elicited a P600 effect (600-1000 ms).

2.2 LALM metrics

We collected the computational metrics from two
LALMs: Qwen2-Audio 7B Instruct (Chu et al.,
2024) and Ultravox 0.5 8B (www.ultravox.ai). We
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Category Example English translation
SM 在工作单位我一般都是穿西服打领带。 At the workplace I usually wear a suit and a tie.
SF 这个周末我要先去做美甲然后理发。 This weekend I’m going to get a manicure and then a

haircut.
SA 我最近上班压力太大需要休息。 I’ve been working too hard lately and I need a break.
SC 他把我的玩具抢走了我要去找妈妈告状。 He took my toys away from me and I’m going to tell

mummy about it.
BM 我需要定期去医院检查前列腺的健康状况。 I need to go to the hospital to check my prostate on a

regular basis.
BF 我第一次怀孕的时候过得很艰难。 The first time I got pregnant I had a hard time.
BA 我发现我脸上的老年斑越来越多了我正在寻找新

的治疗方法。

I noticed that I’m getting more and more age spots on
my face and I am looking for new treatments.

BC 我在等我的乳牙掉下来然后我要把它扔到房顶
上。

I’m waiting for my milk tooth to fall out and then I’m
going to throw it on the roof.

Table 1: Examples of Stimuli used in Wu and Cai (2024b) with English translations. SM: socially congruent with
male speakers; SF: socially congruent with female speakers; SA: socially congruent with adult speakers; SC: socially
congruent with child speakers; BM: biologically congruent with male speakers; BF: biologically congruent with
female speakers; BA: biologically congruent with adult speakers; BC: biologically congruent with child speakers.
Critical words are underscored.

obtained the surprisal and entropy of the critical
word through a sentence continuation task where
we inputted the audio sentences that were cut
short at the critical word following a text-based
instruction to guide the model to continue the au-
dio sentence by outputting text (see Appendix for
prompts).

Surprisal was computed as the negative log prob-
ability of the target word given its context:

S(wt) = − log2 P (wt|C) (1)

Where wt represents the target word (i.e., the
critical word that distinguishes speaker-congruent
and -incongruent conditions); C represents the con-
text before the target word, including the text-based
instruction and the audio sentence; P (wt|C) was
the word probability. For words containing multi-
ple tokens, we calculated the joint probability at
the token level.

Entropy was calculated over the probability dis-
tribution of the model’s predictions at the target
word position:

H(wt) = −
∑

P (wx|C) log2 P (wx|C) (2)

Where wx represents possible continuations. For
words containing multiple tokens, we calculated
the sum of the entropy for each token in the word.
To test the generalizability across languages, we
additionally created an English version of each sen-
tence by translation and adaptation. The English
audio was generated using the same standard as the
Chinese audio. Metrics were collected for both the

original Chinese stimuli and their English transla-
tions to test cross-linguistic generalization. We also
collected these metrics from the text-based stimuli
(the text transcription of those audio sentences) to
serve as the baseline.

3 Results

We examined the model-brain alignment from two
perspectives. First, we examined whether the
LALM response patterns resembled humans by
replicating the analyses in the human study on
LALM data. Second, we examined whether LALM
responses could predict human brain responses by
including LALM metrics as additional predictors
for the human brain responses. For all analyses,
we used linear mixed-effects (LME) modeling with
maximal random-effect structure determined by
forward model comparison (α = 0.2, Matuschek
et al., 2017). For surprisal and entropy analyses,
we used item-level data and included the random
effect of Item; for model-EEG alignment analyses,
we used trial-level data and included the random
effects of both Participant and Item.

3.1 Surprisal (Qwen2-Audio)
To test whether surprisal metric replicated the hu-
man brain pattern, we conducted LME analyses
with Congruency (congruent = -0.5, incongruent
= 0.5) and Type (social = -0.5, biological = 0.5)
as interacting fixed effects, along with text-based
surprisal as control, and showed a significant main
effect of Congruency (β = 0.41, SE = 0.19, t =
2.12, p = .037) and text-based surprisal (β = 3.97,
SE = 0.30, t = 13.17, p < .001), suggesting that
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Figure 1: Surprisal values from Qwen2-Audio and Ul-
travox 0.5 models for speaker-congruent (blue) and
speaker-incongruent (red) utterances, shown separately
for social and biological conditions in Chinese and En-
glish.

the LALM model was sensitive to speaker-content
incongruency regardless of violation type. The
critical interaction between Congruency and Type
was absent (β = -0.20, SE = 0.38, t = -0.52, p =
.602), suggesting that unlike humans, the model
processed social and biological violations similarly.
The same pattern was replicated in English ma-
terials, as there was a significant main effect of
Congruency (β = 0.73, SE = 0.20, t = 3.55, p <
.001) and text-based surprisal (β = 3.89, SE = 0.32,
t = 12.14, p < .001), while the interaction between
Congruency and Type was absent (β = -0.17, SE
= 0.41, t = -0.42, p = .678).

3.2 Surprisal (Ultravox 0.5)

Unlike Qwen2-Audio, the results for Ultravox 0.5
only showed a significant main effect of text-based
surprisal (β = 4.09, SE = 0.36, t = 11.32, p <
.001) for Chinese materials, while the main effect
of Congruency (β = 0.07, SE = 0.08, t = 0.85, p =
.399) or the interaction between Congruency and
Type was absent (β = -0.20, SE = 0.16, t = -1.23,
p = .222), suggesting that this model might not

be sensitive to speaker-content relationships. The
same pattern was shown in English materials, as
there was a significant main effect of text-based
surprisal (β = 2.41, SE = 0.42, t = 5.71, p < .001),
and no main effect of Congruency (β = 0.05, SE
= 0.10, t = 0.44, p = .663) or interaction between
Congruency and Type (β = -0.05, SE = 0.21, t =
-0.26, p = .799).

3.3 Entropy (Qwen2-Audio)

To test whether entropy metric replicated the hu-
man brain pattern, we conducted LME analyses
with Congruency and Type as interacting fixed ef-
fects, along with text-based entropy as control, and
showed that there was only a significant main ef-
fect of text-based entropy (β = 10.27, SE = 0.36,
t = 28.49, p < .001) for Chinese materials. Nei-
ther the main effect of Congruency (β = -0.09, SE
= 0.15, t = -0.61, p = .546) nor the interaction
between Congruency and Type (β = -0.17, SE =
0.30, t = -0.55, p = .582) reached significance, sug-
gesting that the model’s uncertainty in prediction
was primarily driven by the linguistic properties of
the input rather than speaker-content relationships.
The same pattern was shown in English materials,
as the main effect of text-based entropy emerged (β
= 8.71, SE = 0.42, t = 20.89, p < .001), while the
main effect of Congruency (β = -0.04, SE = 0.17,
t = -0.21, p = .836) and the interaction between
Congruency and Type remained absent (β = -0.37,
SE = 0.34, t = -1.07, p = .289).

3.4 Entropy (Ultravox 0.5)

The pattern observed in Qwen2-Audio was repli-
cated with Ultravox 0.5, as there was only a signif-
icant main effect of text-based entropy (β = 9.50,
SE = 0.23, t = 41.77, p < .001) for Chinese ma-
terials. Neither the main effect of Congruency (β
= -0.01, SE = 0.02, t = -0.48, p = .630) nor the
interaction between Congruency and Type (β =
0.04, SE = 0.05, t = 0.90, p = .369) reached sig-
nificance. This pattern was further replicated with
English materials, as there was only a significant
main effect of text-based entropy (β = 3.63, SE =
0.70, t = 5.22, p < .001). Neither the main effect of
Congruency (β = -0.03, SE = 0.04, t = -0.64, p =
.526) nor the interaction between Congruency and
Type (β = -0.05, SE = 0.08, t = -0.63, p = .531)
reached significance.
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Figure 2: Entropy values from Qwen2-Audio and Ul-
travox 0.5 models for speaker-congruent (blue) and
speaker-incongruent (red) utterances, shown separately
for social and biological conditions in Chinese and En-
glish.

3.5 Surprisal-EEG alignment (Qwen2-Audio)

To test whether Surprisal could predict EEG re-
sponse and whether the prediction varied across
conditions, we added Surprisal (a scaled contin-
uous variable) as a fixed effect interacting with
Congruency and Type to the original LME anal-
yses of EEG amplitude in Wu and Cai (2024a).
For 300-600 ms, the results revealed a significant
main effect of Surprisal (β = -0.50, SE = 0.16, t
= -3.12, p = .002), while it did not interact with
Congruency (β = 0.15, SE = 0.26, t = 0.57, p =
.574), Type (β = 0.18, SE = 0.32, t = 0.56, p =
.579), or the interaction between Congruency and
Type (β = 0.17, SE = 0.52, t = 0.34, p = .736).
For 600-1000 ms, there was no main effect of Sur-
prisal (β = -0.22, SE = 0.18, t = -1.21, p = .229),
or interaction with Congruency (β = 0.23, SE =
0.30, t = 0.76, p = .447), Type (β = 0.53, SE =
0.36, t = 1.50, p = .138), or three-way interaction
with Congruency and Type (β = -0.09, SE = 0.60,
t = -0.16, p = .877). These results suggested that
surprisal significantly predicted N400 responses in

a condition-independent manner, while it did not
contribute to P600 responses.

3.6 Surprisal-EEG alignment (Ultravox 0.5)

For 300-600 ms, the results revealed a marginally
significant main effect of Surprisal (β = -0.33, SE
= 0.18, t = -1.79, p = .078), while it did not interact
with Congruency (β = 0.33, SE = 0.28, t = 1.16,
p = .250), Type (β = 0.23, SE = 0.37, t = 0.62,
p = .539), or the interaction between Congruency
and Type (β = -0.34, SE = 0.56, t = -0.60, p =
.548). For 600-1000 ms, there was no main effect
of Surprisal (β = 0.26, SE = 0.20, t = 1.26, p
= .212), or its interaction with Congruency (β =
0.19, SE = 0.32, t = 0.61, p = .544), Type (β =
0.46, SE = 0.38, t = 1.22, p = .227), or the three-
way interaction with Congruency and Type (β =
-0.31, SE = 0.63, t = -0.49, p = .626). These results
suggested that unlike Qwen2-Audio, Ultravox 0.5’s
surprisal did not reliably predict either N400 or
P600 responses, despite showing a trend predicting
N400.

3.7 Entropy-EEG alignment (Qwen2-Audio)

To test whether Entropy can predict EEG response
and whether the prediction varied across conditions,
we added Entropy (a scaled continuous variable)
as a fixed effect interacting with Congruency and
Type. The results revealed no significant main ef-
fect of Entropy (300-600 ms: β = -0.19, SE =
0.17, t = -1.14, p = .259; 600-1000 ms: β = 0.02,
SE = 0.18, t = 0.12, p = .907), or interaction with
Congruency (300-600 ms: β = 0.34, SE = 0.26, t
= 1.31, p = .193; 600-1000 ms: β = -0.05, SE =
0.30, t = -0.18, p = .861), Type (300-600 ms: β =
0.44, SE = 0.34, t = 1.29, p = .202; 600-1000 ms:
β = 0.36, SE = 0.37, t = 0.98, p = .333), or the
three-way interaction with Congruency and Type
(300-600 ms: β = -0.64, SE = 0.52, t = -1.24, p
= .220; 600-1000 ms: β = -0.59, SE = 0.60, t
= -0.98, p = .329). These results suggested that
the model’s predictive uncertainty did not predict
human neural responses for either N400 or P600.

3.8 Entropy-EEG alignment (Ultravox 0.5)

The results revealed no significant main effect of
Entropy in the N400 time window (300-600 ms:
β = 0.04, SE = 0.18, t = 0.20, p = .844), but a
marginal main effect in the P600 time window (600-
1000 ms: β = 0.31, SE = 0.18, t = 1.76, p = .083).
There were no significant interactions with Congru-
ency (300-600 ms: β = 0.32, SE = 0.25, t = 1.28,
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Figure 3: Main effect coefficients of Surprisal and En-
tropy on N400 and P600 amplitudes from LME analy-
ses. Dark blue indicates a significant effect, light blue
indicates marginal effects, and alice blue indicates non-
significant effects for Qwen2-Audio and Ultravox 0.5
models.

p = .204; 600-1000 ms: β = 0.27, SE = 0.30, t =
0.89, p = .375), Type (300-600 ms: β = 0.11, SE
= 0.34, t = 0.33, p = .744; 600-1000 ms: β = 0.17,
SE = 0.36, t = 0.48, p = .633), or the three-way
interaction with Congruency and Type (300-600
ms: β = -0.48, SE = 0.50, t = -0.96, p = .340;
600-1000 ms: β = -0.27, SE = 0.60, t = -0.45, p
= .652). These results suggested that, similar to
Qwen2-Audio, the model’s predictive uncertainty
did not strongly predict human neural responses for
either N400 or P600, though there was a trend for
higher entropy to predict larger P600 amplitudes.

4 Discussion

Our results revealed varying degrees of align-
ment between humans and LALMs in the social-
linguistic processing of speech. Qwen2-Audio
showed sensitivity to speaker-content incongru-
ency through increased surprisal for incongruent
utterances and significantly predicted human N400
responses. In contrast, Ultravox 0.5 showed no
sensitivity to speaker-content relationships in its

surprisal patterns and did not reliably predict hu-
man neural responses, despite showing a trend for
N400.

Moreover, neither model showed human-like dis-
tinctions between social and biological violations,
and both models’ predictive uncertainty (entropy)
was primarily driven by linguistic properties rather
than speaker-content relationships and generally
did not predict human neural responses, though
Ultravox 0.5 showed a marginal trend for higher
entropy predicting larger P600 amplitudes.

The distinct neural signatures for social versus bi-
ological violations in humans likely reflect different
cognitive mechanisms. As Wu and Cai (2024b) sug-
gested, social violations may be processed through
semantic integration where linguistic content and
speaker characteristics are integrated with prior
knowledge about social roles and stereotypical be-
haviors, leading to N400 effects. In contrast, bio-
logical violations may trigger error detection and
correction processes that attempt to resolve the
physical impossibility, resulting in P600 effects.
This distinction reflects rationality in human cogni-
tion.

Unlike humans who engage in active reanaly-
sis when encountering biological impossibilities
(reflected in the P600), current LALMs operate
through single-pass forward prediction without
mechanisms for backtracking or reanalysis. This
may relate to the fact that current LLMs are typi-
cally trained to predict tokens one at a time, opti-
mizing for local coherence rather than longer-range
consistency. While some models are beginning to
explore multi-token prediction windows (Gloeckle
et al., 2024; Liu et al., 2024) that could theoreti-
cally capture longer-range dependencies and sup-
port reanalysis-like processes, most still lack simi-
lar mechanisms.

An open question is the precise mechanism by
which LALMs utilize speaker information in their
predictions. Unlike humans who readily identify
speaker characteristics from voice and use this in-
formation to guide comprehension, it remains un-
clear whether LALMs explicitly represent speaker
identity (e.g., assigning a gender category to a
voice) or simply learn statistical associations be-
tween acoustic features and linguistic content. This
distinction has implications for understanding both
model processing and human cognition. For hu-
mans, the N400 and P600 effects depend on cor-
rectly identifying speaker characteristics and ap-
plying relevant world knowledge. If LALMs do
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not explicitly represent speaker identity but still
show some degree of sensitivity to speaker-content
relationships, this would suggest that explicit cate-
gorization may not be necessary for content predic-
tion, though it might be essential for the rational in-
ference processes that humans employ when resolv-
ing incongruencies. Future research could probe
this question by examining model representations
of speaker characteristics and their relationship to
linguistic predictions.

Lastly, our findings also raise ethical consider-
ations regarding LALMs’ gender (and age) bias,
which has been widely shown in LLMs (Kotek
et al., 2023; Zhao et al., 2024). The observation
that Qwen2-Audio showed increased surprisal for
gender-nonconforming utterances indicates that it
might have internalized societal gender stereotypes
during training. While such sensitivity may fa-
cilitate natural interactions with humans, it also
risks perpetuating harmful stereotypes if deployed
in applications that influence decision-making or
content generation.

In conclusion, we show that LALMs can poten-
tially detect speaker-content violations and predict
human N400 responses, but this capability varies
between models. While Qwen2-Audio showed
some level of alignment with human processing,
neither Qwen2-Audio nor Ultravox 0.5 captured
the human-like rational inference (as reflected by
the distinction between social and biological vio-
lations), suggesting potential limitations in current
LALM architectures or LLM architectures in gen-
eral regarding real-time error analysis mechanisms.

5 Limitations

Several limitations of the current study should be
acknowledged. First, our analyses focused on only
two LALMs with a relatively small set of stim-
uli, which may not be representative of all current
audio-language models or the full range of potential
speaker-content relationships. A larger-scale inves-
tigation would better characterize the variation in
speaker-content processing capabilities across dif-
ferent model architectures and training paradigms.
Additionally, While surprisal and entropy are es-
tablished metrics that have been linked to N400
and P600 responses respectively, they may be in-
sufficient to capture the full range of processing
distinctions that humans exhibit. Future research
could explore alternative metrics such as analyz-
ing activation patterns in different model layers,

or utilizing representation similarity analysis be-
tween model embeddings and neural data. Finally,
we only examined models’ "static" responses to
speaker characteristics, whereas humans show dy-
namic adaptation to individual speakers over in-
creasing contexts (Grant et al., 2020). Human lis-
teners rapidly adjust their predictions based on a
speaker’s established patterns—for example, be-
coming less surprised by stereotype-incongruent
statements from a speaker who consistently vio-
lates stereotypes. This adaptive processing, which
involves updating speaker models in real-time and
adjusting predictions accordingly (Wu et al., 2025),
represents an aspect of human language processing
that our current single-utterance design cannot cap-
ture. Future work should examine how LALMs’
predictions evolve across multiple utterances from
the same speaker to better assess their capability
for speaker-specific adaptation.
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A Appendix: prompts for sentence
continuation task

A.1 Qwen2-Audio
Chinese materials (audio)
System: 你是一个实验中的参与者，你需要仔
细听下面的录音。

User: 请补全录音中的句子，例如‘我喜欢
吃‘，你可以回答‘苹果‘。直接回答补充的内
容，不要说其他内容。录音：

User: (audio)

English materials (audio)
System: You are a participant in an experiment, you
need to listen carefully to the following recording.

User: Please complete the sentence from the
recording, for example if you hear ’I like to eat’,
you can answer ’apples’. Just answer with the com-
pleting content, don’t say anything else. Recording:

User: (audio)

Chinese materials (text)
System: 你是一个实验中的参与者，你需要认
真完成下面的任务。

User: 请补全以下句子。例如，‘我喜欢
吃‘，你可以回答‘苹果‘，直接回答补充的内
容，不要说其他内容。句子：(text)

English materials (text)
System: You are a participant in an experiment,
you need to complete the following task carefully.
User: Please complete the following sentence. For
example, ’I like to eat’, you can answer ’apples’.
Just answer with the completing content, don’t say
anything else. Sentence: (text)

A.2 Ultravox 0.5
Chinese materials (audio)
System: 请补全录音中的句子，例如’我喜欢
吃’，你可以回答’苹果’。直接回答补充的内
容，不要说其他内容。(audio)

English materials (audio)
System: Please complete the sentence from the
recording. For example, if you hear ’I like to eat’,
you can answer ’apples’. Just answer with the com-
pleting content, don’t say anything else. (audio)

Chinese materials (text)
System: 请补全以下句子。例如，’我喜欢
吃’，你可以回答’苹果’。直接回答补充的内
容，不要说其他内容。句子：(text)

English materials (text)
System: Please complete the following sentence.
For example, if you hear ’I like to eat’, you can
answer ’apples’. Just answer with the completing
content, don’t say anything else. Sentence: (text)
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Abstract

Speech errors are a natural part of communi-
cation, yet they rarely lead to complete com-
municative failure because both speakers and
comprehenders can detect and correct errors.
Although prior research has examined error
monitoring and correction in production and
comprehension separately, integrated investi-
gation of both systems has been impeded by
the scarcity of parallel data. In this study, we
present SPACER, a parallel dataset that captures
how naturalistic speech errors are corrected
by both speakers and comprehenders. We fo-
cus on single-word substitution errors extracted
from the Switchboard corpus, accompanied by
speaker’s self-repairs and comprehenders’ re-
sponses from an offline text-editing experiment.
Our exploratory analysis suggests asymmetries
in error correction strategies: speakers are more
likely to repair errors that introduce greater se-
mantic and phonemic deviations, whereas com-
prehenders tend to correct errors that are phone-
mically similar to more plausible alternatives or
do not fit into prior contexts. Our dataset 1 en-
ables future research on integrated approaches
toward studying language production and com-
prehension.

1 Introduction

Production errors are common in naturalistic
speech; however, they rarely lead to a complete
breakdown in communication, as interlocutors are
able to monitor, detect, and repair errors in real-
time. For this reason, characterizing the process of
error correction has remained a shared goal of both
language comprehension and production research.

Comprehenders process errors by integrating per-
ceived linguistic input with prior context and ex-
pectations, and might arrive at an interpretation
different from the literal meaning of the linguistic
input (Ferreira et al., 2002; Ferreira and Stacey,

1The dataset and code are available at: https://github.
com/goldengua/SPACER-CMCL

2000; Dempsey et al., 2023; Bader and Meng,
2018; Levy et al., 2009; Gibson et al., 2013). One
possible mechanism is that they perform rational
inference over the perceived errors (Levy et al.,
2009; Levy, 2008; Gibson et al., 2013; Futrell et al.,
2020; Ryskin et al., 2018; Poppels and Levy, 2016;
Zhang et al., 2023). When the perceived form is
incongruent with prior context or similar to a more
plausible alternative, comprehenders might over-
ride the literal input and reconstruct an alternative
interpretation.

In language production research, speech errors
have played a crucial role in shaping our under-
standing of the cognitive machinery of production,
including the role of online control (Fromkin and
Fromkin, 1973; Levelt, 1983; Dell, 1986). Numer-
ous studies analyzing the temporal and distribu-
tional properties of speech errors have found ev-
idence of a two-stage monitoring and correction
process, which operates first on internal represen-
tations and then on the articulated linguistic signal
(Levelt, 1983; Blackmer and Mitton, 1991; Hart-
suiker and Kolk, 2001; Nooteboom and Quené,
2017). Although the mechanism of monitoring
has remained a point of contention in the liter-
ature (Levelt, 1999; Nozari et al., 2011; Hickok
et al., 2011; Roelofs, 2020; Gauvin and Hartsuiker,
2020), accounts of repair processing have posited
sustained competition between activated represen-
tations and selection control as potential mecha-
nisms of correction (Hartsuiker and Kolk, 2001;
Nozari et al., 2016; Nooteboom and Quené, 2019;
Gauvin and Hartsuiker, 2020).

Much of our understanding of speakers and com-
prehenders’ error correction strategies comes from
research traditions that have made limited contact
with each other. In particular, existing datasets or
experimental paradigms focus solely on corrective
behavior in the absence of an interlocutor. How-
ever, in a communicative context, speaker choices
may exhibit a balance between ease of production
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and communicative efficiency (Ferreira and Dell,
2000; Jaeger and Levy, 2006; Jaeger, 2010; Ko-
randa et al., 2018; Goldberg and Ferreira, 2022;
Futrell, 2023). For example, speakers may preemp-
tively hyperarticulate words to improve comprehen-
sibility (Aylett and Turk, 2004; Arnold et al., 2012;
Meinhardt et al., 2020) or modulate the acoustic
characteristics of their speech in response to lis-
tener feedback (Pate and Goldwater, 2015; Buz
et al., 2016). Comprehension can be talker-specific
as well: comprehenders can tailor their expecta-
tions to the speaker (Ryskin et al., 2020) and adapt
their error correction strategies accordingly (Futrell
and Gibson, 2017; Brehm et al., 2019).

In this study, we present a parallel dataset of
Speech Production and Comprehension Error Re-
pairs (SPACER) that captures how naturalistic
speech errors are corrected by speakers and compre-
henders. First, we compiled a corpus of naturalistic
utterances with single-word substitution errors and
repairs, as well as utterances that are not corrected
by speakers. These utterances were then presented
to comprehenders in a web-based text editing ex-
periment, where each case is annotated by four to
six comprehenders. Our dataset contains 1056 in-
stances of naturalistic speaker’s utterances as well
5808 comprehenders’ responses to speaker’s initial
utterances. We also provide an exploratory analy-
sis on how well comprehender’s error correction
behavior can be predicted by lexical properties of
speaker’s error and repairs, and vice versa. Our
results suggest that asymmetries between error cor-
rection behaviors by comprehenders and speakers
might be related to interaction between the two
modes. The dataset offers resources to build ex-
perimental and computational work that bridges
comprehension and production and informs how
interaction affects strategic cue weighting in error
monitoring.

2 Dataset

We focus on how comprehenders engage with utter-
ances that may or may not have been corrected by a
speaker in their original context. Figure 1 illustrates
the design of the dataset. We assume that both the
speaker and the comprehender can perform error
correction, and we remain agnostic to the mech-
anism that accomplishes this process. Suppose a
speaker produces an initial utterance (... people
don’t want the heat of the northeast), which may
contain an error, or non-optimal choice of words.

The speaker can monitor the initial utterance and
may correct heat into cold. After receiving the
initial utterance, comprehenders engage in an inter-
pretation process, where the final response might
not be the same as the literal meaning of the initial
utterance.

The development of this dataset involved a two-
step process. First, we identified and extracted
utterances with and without word substitutions and
overt repairs from the Switchboard corpus (Godfrey
et al., 1992) of spontaneous speech. Subsequently,
these utterances were presented as stimuli to partici-
pants in a web-based correction experiment. Hence,
for each utterance, this dataset provides a speaker’s
final production along with a group of comprehen-
ders’ annotations. The two stages of this process
are detailed below.

2.1 Naturalistic Speaker Correction Data

We identify and extract stimuli for the correction
experiment from Switchboard NXT annotations
(Calhoun et al., 2010), a subset of the Switchboard
corpus that provides gold-standard disfluency an-
notations generated by human raters. While words
in the corpus are annotated as fluent, reparandum,
and repair, the reparandum label encompasses a
variety of disfluencies such as filled pauses, false
starts, repetitions, and substitutions. We program-
matically identify substitutions using the following
criteria. First, we only consider utterances with
an equal number of reparandum and repair anno-
tations to filter out instances where the speaker’s
utterance plan may have undergone structural re-
visions. Next, we focused on utterances where
(i) the word labeled reparandum (bolded) was im-
mediately followed by a non-identical word that
was labeled repair (underlined; see 1) or where
(ii) the speaker repeated the reparandum sequence
almost verbatim except for a single-word change
(2). Finally, we eliminated instances where the
reparandum was either a filled pause, false start,
repetition, or a contracted form 2.

1. I I think that might be talking referring to uh
something kind of uh alternative to the draft
you know

2. So until I see the entire quote old guard of
the Soviet military of the Soviet government

2We eliminate instances of contractions such as I’ve since
they are reduced forms of multiword expressions such as I
have
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Figure 1: An illustration of the dataset design. Suppose a speaker produces an initial utterance. Both the speaker and
the comprehender may engage in error monitoring and correction processes, resulting in speaker final production
and comprehender final response being either the same as the initial utterance (represented in gray bubbles) or
different from it (represented in green bubbles). Each utterance is annotated by four to six comprehenders.

completely roll over and disappear preferably
buried I still consider them a threat

For utterances with multiple substitutions and re-
pairs, we generate variants of the original utterance
with each containing only one reparandum-repair
position (see Appendix A for examples).

Finally, the selected utterances were screened
for inappropriate content by three human annota-
tors. This process yielded a total of 576 distinct
utterance frames that featured errors repaired by
the speaker (henceforth, speaker corrected or SC
utterances). Furthermore, we also included 480
sentences from the same corpus that did not feature
any overt repair made by the speaker (henceforth,
speaker uncorrected or SU utterances; see Fig. 2).

2.2 Correction Experiment

We conducted human error correction experiments
to understand how selected utterances are corrected
during comprehension. 66 native English speakers
participated in the experiment. Participants were
recruited online via Prolific and compensated at
$16/hr. The experiment takes around 30 minutes.

The stimuli consisted of 1056 initial utterances,
which included both the SC (speaker corrected)
and SU (speaker uncorrected) utterances. We dis-
tributed the 1056 selected utterances into 12 lists.
Each list contains 48 SC utterances and 40 SU
utterances. Each list is annotated by four to six
subjects.

The subjects are presented with initial utterances
along with proceeding context, and are instructed to
check the quality of the last sentence from speech
transcriptions and make necessary corrections by
replacing the erroneous word with a more appro-
priate choice (Fig. 3). They also received explicit
instruction to avoid insertion or deletion of word(s)

(see Appendix B for the detailed instructions pro-
vided to participants).

Figure 3: An illustration of comprehension experiment.
A comprehender is presented with the key sentence to-
gether with preceding context. The comprehender is
instructed to make necessary edits in the textbox and
slide bar to indicate their confidence level.

We exclude subjects that made less than two
corrections throughout the experiment (N = 3),
and subjects who did not move confidence bars
(N = 3). After subject exclusion, 528 trials were
further removed because they contain word inser-
tion or deletion, resulting in 5808 responses with
either one or no substitution.

3 Analysis

3.1 Descriptive summary
As shown in Table 1, our dataset contain a total of
1056 initial utterances, where 576 initial utterances
have been corrected by speakers (SC utterances).
Each initial utterance is annotated by four to six
comprehenders, yielding a total of 5808 responses
with either one or no substitution. 34.7% of trials
were corrected by the comprehender.

We focus on the items that are corrected by
speakers (SC), and analyzed lexical properties of
the critical target that has undergone correction
(error) and its corresponding corrected form (re-
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 Like all these people are just standing  sitting around just going you know like what shall we do→

 Speaker Uncorrected (SU) 
 Well when they meant the topic you know of what's wrong with the public schools my first impulse was it
 isn't really what's wrong with the public schools
 Speaker Corrected (SC)
 I don't think we've missed a fish store on the entire east → northeast coast of the United States

 Comprehender Uncorrected (CU)
 Like all these people are just standing around just going you know like what shall we do

 Comprehender Corrected (CC)

 I don't think we've missed a fish → tourist store on the entire east coast of the United States

 Well when they meant the topic you know of what's wrong with the public schools my first impulse 
 impression was it isn't really what's wrong with the public schools

→

Figure 2: Examples of speaker uncorrected (SU), speaker corrected (SC), comprehender uncorrected (CU), and
comprehender corrected (CC) utterances in the SPACER dataset. Words highlighted in red were initially produced a
speaker and later corrected. Words highlighted in green are corrections made by either the speaker in the original
context or by a participant in the comprehension experiment. A grey highlight indicates that the word was not
corrected by the participant. Note that for each SU and SC utterance, there may be up to four responses, which
we classify as either CC or CU responses depending on whether or not the participant made a correction in their
response.

Comprehender
Corrected Uncorrected Total

Speaker Corrected 1437 1731 3168
Speaker Uncorrected 578 2062 2640
Total 2015 3793 5808

Table 1: Instances of speaker corrected and speaker
uncorrected utterances that were corrected or remained
uncorrected by participants in the correction experiment

pair). We first analyzed the part-of-speech (POS)
categories of the critical words (error and repair).
Figure 4 shows the distribution of part-of-speech
categories for speaker initial produced errors and
the corresponding repairs. The errors and repairs
vary by POS category, with determiners (DET),
pronouns (PRON), and verbs (VERB) exhibiting
the highest frequency of both errors and repairs,
whereas auxiliaries (AUX), particles (PART), and
proper nouns (PROPN) show relatively fewer oc-
currences.

We further analyzed how the POS categories of
speaker-produced errors would affect comprehen-
der’s error correction behavior. Figure 5 shows
the number of corrected and uncorrected responses
given speaker-produced errors with different part-
of-speech (POS) categories. The results suggest
variation in comprehenders’ tendency to correct
errors depending on the POS category of the pre-
sented errors, with higher correction rates for de-

Figure 4: The POS categories of speaker-produced er-
rors and corresponding repairs in speaker corrected ut-
terances.

terminers (DET), verbs (VERB), and pronouns
(PRON).

We examined how often comprehenders cor-
rected errors in speaker-corrected versus speaker-
uncorrected utterances. Figure 6 presents the pro-
portion of corrected and uncorrected responses
across items in the speaker uncorrected items (top
panel) and speaker corrected items (bottom panel).
A higher proportion of items were corrected in
the speaker corrected items than in speaker un-
corrected items. While initial utterances that are
corrected by speakers are also more likely to be cor-
rected by comprehenders, there is great variation
between items.
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Figure 5: The number of corrected and uncorrected re-
sponses across different part-of-speech (POS) categories
of presented errors in the speaker corrected utterances.

Figure 6: The proportion of corrected and uncorrected
responses for each item in the speaker corrected condi-
tion (top) and speaker uncorrected condition (bottom).
Each bar represents an individual item, with corrected
responses shown in teal and uncorrected in gray.

3.2 Inter-rater agreement

Figure 7 shows the number of corrected and un-
corrected responses by each subject. There is vari-
ability across subjects, with some participants cor-
recting a substantial proportion of responses while
others made few or no corrections. The average
Cohen’s Kappa across all lists is 0.213, indicating
fair agreement between subjects. Figure 8 displays
pairwise agreement scores between subjects across
all items (distributed in 12 lists). This suggests

that while some systematic agreement is present,
variability in responses remains substantial.

Figure 7: The number of corrected and uncorrected
responses for each subject, sorted by the number of
corrected responses.

3.3 Computational Metrics

For words that are corrected by either a speaker or
a comprehender and their corresponding corrected
counterparts, we calculated the following computa-
tional metrics: word predictability, word frequency
in SUBTLEXus (Brysbaert and New, 2009), word
length, semantic and phonemic distance between
the initial word and the corrected word. We de-
fine word predictability as the log probability of
the target word given proceeding context, which
we estimated from a pre-trained GPT-2 (small, un-
cased) transformer language model (Radford et al.,
2019; Misra, 2022). The semantic distance is cal-
culated using the cosine distance between GloVe
word embeddings (Pennington et al., 2014). To
compute the phonemic distance, we first convert
the words to their corresponding IPA forms us-
ing the Carnegie Mellon Pronouncing Dictionary,
and subsequently compute the Levenshtein edit dis-
tance between these forms.

4 Exploratory Analysis: Modeling
Corrections

The dataset could provide opportunities for the in-
vestigation of asymmetric strategies on error cor-
rection during language production and compre-
hension. We present an exploratory analysis that
examines the parallels between speaker and com-
prehender corrections. In particular, we ask (i)
whether the lexical properties of the speaker’s error
and repair are predictive of a comprehender’s de-
cision to correct and (ii) whether comprehender’s
responses over the perceived initial utterance are

148



Figure 8: Pairwise agreement scores between subjects across 12 different lists of items.

predictive of the speaker’s decision to repair. We
model both these choices as functions of the rela-
tive frequency and predictability of the initially
produced/perceived word and target correction, as
well as the phonemic and semantic distance be-
tween these forms.

4.1 Speaker Model

A significant challenge in modeling whether or not
a speaker has made correction in naturalistic con-
texts is that instances where a speaker could have
made a correction but decided not to can only be
reliably and accurately determined in highly con-
trolled production studies. Here, we use compre-
hender corrections to approximate instances where
a correction could have been made by the speaker.
We make this assumption for two reasons. First,
comprehender repairs give us a distribution over
possible speaker repairs and may include the true
repair. Furthermore, we assume that the speaker
may be incentivized to correct when she believes
there is a greater discrepancy between the speaker’s
intended and comprehender’s inferred meaning re-
spectively.

Consider the following corrections made by the
original speaker and three of the comprehenders in
the experiment. Based on observed corrections, we
define a critical window at the position where
either a speaker or a comprehender has made a
correction.

3. Speaker Corrected: Well we also in this area
seem to have a lot of retirees people who don’t

want the heat of Florida but don’t want the
cold of the northeast

4. Comprehender Corrected #1: Well we also in
this area seem to have a lot of retirees people
who don’t want the heat of Florida but don’t
want the cold of the northeast

5. Comprehender Corrected #2: Well we also in
this area seem to have a lot of retirees people
who don’t want the heat of Florida but don’t
want the chill of the northeast

6. Comprehender Corrected #3: Well we also in
this area seem to have a lot of retired people
who don’t want the heat of Florida but don’t
want the heat of the northeast

For each critical window, we compute the dif-
ference in frequency, predictability, phonemic, and
semantic representations of the speaker’s initial pro-
duction (e.g., heat or retirees) and the various com-
prehender responses in those positions (e.g., chill
or cold in response to heat and retired in response
to retirees). We develop the following maximally-
converging mixed-effects logistic regression model
(Barr et al., 2013) to predict correction decisions in
speakers:
SpeakerCorrected ∼ ∆LogProbability +
∆Frequency + Semantic Distance + Phonemic
Distance + 1|item + 1|critical window

where ∆ denotes the difference between the
frequency and log probability of the speaker’s
initial production and the comprehender’s re-
sponse. We included random intercepts for item
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and critical window to account for the participant-
level variability at each correction site. We set
SpeakerCorrected = 1 for critical windows
where the speaker did, in fact, make a repair
(for example, 3–5). For all other instances,
SpeakerCorrected = 0 (for example, 6).

4.2 Comprehender Model
When modeling comprehenders’ corrections, we
restrict the analysis to speaker corrected utterances.
In particular, we only consider critical windows
defined by the speaker’s repair (3–5), thus exclud-
ing responses such as (6). We compare the word
in the critical window in comprehender’s final re-
sponse (chill or cold) with the word in the per-
ceived initial utterance (heat), and annotate it as
corrected or uncorrected. We use the same met-
rics (relative frequency, predictability, semantic,
and phonemic distance), which we calculate over
the critical word in the initial utterance (heat) and
the repair in speaker’s final production (cold), to
predict whether a comprehender will make a cor-
rection in their final response.

We then use the following parallel model to pre-
dict correction decisions in comprehenders:
ComprehenderCorrected ∼ ∆LogProbability
+ ∆Frequency + Semantic Distance +
Phonemic Distance + 1|item + 1|critical
window + 1|subject

4.3 Results
The results from the mixed-effects models reveal
key asymmetries in how speakers and comprehen-
ders decide to correct errors, with distinct influ-
ences from predictability, frequency, phonemic
form, and semantic features. Model coefficients
are summarized in Figure 9.

In the speaker model, the correction behavior
is a function of the initially produced/perceived
word and the comprehender’s final response. When
the log probability difference between the compre-
hender’s final inferred response and their initial
perceived word is higher, a speaker is less likely to
self-correct (β = −0.260, SE = 0.04, p < 0.01).
This suggests that if comprehenders could recover
the intended meaning from the perceived erroneous
form, the speaker is less likely to intervene. Ad-
ditionally, greater semantic distance between the
comprehender’s initial perception and their final
response increases the likelihood of correction
(β = 0.227, SE = 0.08, p < 0.05), indicating
that speakers are more likely to correct when their

utterance creates a significant meaning deviation.
Phonemic distance exhibits a similar effect, with
greater phonemic dissimilarity between the com-
prehender’s perceived word and the corrected form
leading to a higher probability of correction (β =
0.270, SE = 0.05, p < 0.001). Word frequency
does not significantly impact speaker correction
behavior (β = −0.05, SE = 0.04, p = 0.21), sug-
gesting that lexical frequency alone is not a primary
driver of corrective processes in production.

In contrast, the comprehenders’ corrections are
based on the difference between the speaker’s erro-
neous production and their intended repair. Unlike
speakers, comprehenders are more likely to correct
when the speaker’s repair has a much higher log
probability than the produced error, as indicated
by a significant positive effect of log probability
difference (β = 0.278, SE = 0.07, p < 0.01).
This suggests that comprehenders rely more heav-
ily on contextual expectations when detecting er-
rors and overriding them. While semantic dis-
tance also increases the likelihood of correction
(β = 0.139, SE = 0.07, p < 0.05), its ef-
fect is weaker compared to speakers, implying
that comprehenders may is less sensitive to se-
mantic deviations. Crucially, phonemic distance
has the opposite effect in comprehension com-
pared to production: while speakers are more
likely to correct errors when phonemic distance
is large, comprehenders exhibit reduced correc-
tion likelihood as phonemic distance increases
(β = −0.404, SE = 0.08, p < 0.001), suggest-
ing the comprehenders are more likely to correct
errors that are phonemically similar to the intended
meaning. As in the speaker model, frequency does
not significantly influence comprehender correc-
tions (β = 0.0068, SE = 0.007, p = 0.92).

5 Discussion

In this study, we develop SPACER, a parallel
dataset of speech errors and repairs, which is de-
signed to examine how speakers and comprehen-
ders engage in error correction. We identified nat-
urally occurring speech errors and repairs from
speech corpus, and used web-based experiments
to examine how speech errors are detected and
corrected by comprehenders. We conducted ex-
ploratory analysis on the asymmetries of error cor-
rection strategies between production and compre-
hension. Specifically, we used linear models to pre-
dict whether lexical properties of speaker-produced
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Figure 9: Model coefficients from speaker and comprehender logistic regression models. Error bars denote standard
error. Significance: *** (p < 0.001), ** (p < 0.01), * (p < 0.05), ns (p > 0.05)

errors and repairs are predictive of how the errors
would be corrected by comprehenders, and whether
comprehender’s error correction could inform the
speaker’s self-repair. Our analysis show asymme-
tries between error correction by speakers and com-
prehenders.

Our dataset links production and comprehension
and enables a principled comparison between the
two modes. Previous studies have largely exam-
ined production and comprehension of errors sep-
arately (Ryskin et al., 2018; Dell, 1986; Levelt,
1983; Blank et al., 2018), making it difficult to as-
sess whether and how these processes might share
underlying principles. Our dataset bridges the gap
by examining how speakers and comprehenders
make choices about error correction on the same
utterance. This parallel structure enables integrated
analysis of correction strategies in production and
in comprehension, providing a valuable resource
for future studies.

Our exploratory analysis reveals key asymme-
tries in how speakers and comprehenders engage in
error correction. Comprehenders are likely to cor-
rect errors that are phonemically similar to a more
plausible alternative, or when the error is not sup-
ported by contextual cues. Speakers, on the other
hand, are more likely to self-correct errors that
might not be recoverable for comprehenders. The
asymmetries might imply potential interplay be-
tween comprehension and production, arising from
differing demands of the two modalities: while
speakers correct their own speech to ensure commu-

nicative clarity given the message that they know
they want to communicate, comprehenders may be
able to use predictability and form-based cues to
successfully recover the intended word. The in-
verse effects of phonemic distance in our models
—where comprehenders correct more when errors
are phonemically similar to an alternative, while
speakers correct more when errors are phonemi-
cally distant from the intended meaning – suggest
that interlocutors may engage in complementary er-
ror correction strategies. Future work can leverage
SPACER for more principled computational models
that simulate error correction as a rational inference
process over various linguistic constraints and cues.

6 Limitations

The dataset is restricted to single-word substitution
errors and does not include other common types
of speech error such as insertions, deletions, and
transpositions. While this allows for a controlled
investigation of the error correction process, it may
not capture other types of errors and correction
strategies in naturalistic communication. Future
work could expand SPACER to include a broader
range of error types to better understand the full
spectrum of production and comprehension repair
mechanisms.

A key challenge when studying how speakers
may adapt their correction strategies in naturalistic
contexts is that the intended lexical target is often
difficult to determine. In other words, while speech
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error corpora provide positive examples of speaker
corrections, they do not provide instances of neg-
ative examples i.e., where a speaker could have
made a repair, but opted against it. Our corpus ap-
proach allows us to locate speech errors that have
been overtly repaired, but we do not have access
to speaker’s true communicative goal to identify
uncorrected speech errors. We used the distribution
of comprehender corrections as an approximation
for speaker’s communicative goal, to identify er-
rors that could have been corrected by the speaker
but were left uncorrected. We acknowledge that the
approximation may be different from the speaker’s
intended meaning.

We used a web-based experiment to investigate
how utterances are interpreted and corrected by
comprehenders. There are several differences be-
tween our experiment and real-time language com-
prehension. First, comprehenders were presented
with the full key sentence, whereas listeners do not
have access to the entire utterance at once. Second,
comprehenders are given unlimited time to make
corrections. In contrast, real-time comprehension is
constrained by limited cognitive and processing re-
sources. Third, the text-based presentation method
does not provide prosodic and phonetic cues. Com-
prehenders might rely on disfluencies and pauses
to detect errors. Finally, it bears mentioning that
the speaker and comprehender corrections are sit-
uated in entirely different contexts, separated by
both time and space.
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Speakers enhance contextually confusable words. In
Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics, pages 1991–
2002.

Kanishka Misra. 2022. minicons: Enabling flexible be-
havioral and representational analyses of transformer
language models. arXiv preprint arXiv:2203.13112.

Sieb Nooteboom and Hugo Quené. 2019. Temporal
aspects of self-monitoring for speech errors. Journal
of Memory and Language, 105:43–59.

Sieb G Nooteboom and Hugo Quené. 2017. Self-
monitoring for speech errors: Two-stage detection
and repair with and without auditory feedback. Jour-
nal of Memory and Language, 95:19–35.

Nazbanou Nozari, Gary S Dell, and Myrna F Schwartz.
2011. Is comprehension necessary for error de-
tection? a conflict-based account of monitoring in
speech production. Cognitive psychology, 63(1):1–
33.

Nazbanou Nozari, Michael Freund, Bonnie Breining,
Brenda Rapp, and Barry Gordon. 2016. Cogni-
tive control during selection and repair in word pro-
duction. Language, cognition and neuroscience,
31(7):886–903.

John K Pate and Sharon Goldwater. 2015. Talkers ac-
count for listener and channel characteristics to com-
municate efficiently. Journal of Memory and Lan-
guage, 78:1–17.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Till Poppels and Roger Levy. 2016. Structure-sensitive
noise inference: Comprehenders expect exchange
errors. In CogSci.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

153



Ardi Roelofs. 2020. On (correctly representing)
comprehension-based monitoring in speaking: Re-
joinder to nozari (2020). Journal of Cognition, 3(1).

Rachel Ryskin, Richard Futrell, Swathi Kiran, and Ed-
ward Gibson. 2018. Comprehenders model the na-
ture of noise in the environment. Cognition, 181:141–
150.

Rachel Ryskin, Shukhan Ng, Katherine Mimnaugh,
Sarah Brown-Schmidt, and Kara D Federmeier.
2020. Talker-specific predictions during language
processing. Language, cognition and neuroscience,
35(6):797–812.

Yuhan Zhang, Rachel Ryskin, and Edward Gibson.
2023. A noisy-channel approach to depth-charge
illusions. Cognition, 232:105346.

A Example items and illustration of the
pre-processing pipeline

• Original utterance: it depends on whether you
whether we figure that we have a defense ori-
ented military or an aggressive aggression ori-
ented military

• Frame 1: it depends on whether you whether
we figure that we have a defense oriented mil-
itary or an aggression oriented military

• Frame 2: it depends on whether we figure
that we have a defense oriented military or an
aggressive aggression oriented military

B Instructions and prompts provided to
participants in the web-based editing
experiment

Figure 10: Instructions provided to participants at the
beginning of the error correction experiment.

Figure 11: Sample practice trial with feedback to ensure
familiarization with the above instructions.

154



Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 155–164
May 3, 2025 ©2025 Association for Computational Linguistics

Are Larger Language Models Better at Disambiguation?

Ziyuan Cao
Department of Linguistics
The Ohio State University

cao.1610@osu.edu

William Schuler
Department of Linguistics
The Ohio State University
schuler.77@osu.edu

Abstract
Humans deal with temporary syntactic ambigu-
ity all the time in incremental sentence process-
ing. Sentences with temporary ambiguity that
causes processing difficulties, often reflected
by increase in reading time, are referred to as
garden-path sentences. Garden-path theories of
sentence processing attribute the increases in
reading time to the reanalysis of the previously
ambiguous syntactic structure to make it con-
sistent with the new disambiguating text. It is
unknown whether transformer-based language
models successfully resolve the temporary am-
biguity after encountering the disambiguating
text. We investigated this question by analyzing
completions generated from language models
for a type of garden-path sentence with ambigu-
ity between a complement clause interpretation
and a relative clause interpretation. We found
that larger language models are worse at resolv-
ing such ambiguity.

1 Introduction

Linguistic analysis of neural language models sug-
gests that pre-trained language models capture the
syntax of natural languages (Hewitt and Manning,
2019) and represent the incremental syntactic pro-
cessing states similar to those of humans (Marvin
and Linzen, 2018; Futrell et al., 2019). People expe-
rience processing difficulties while they encounter
a continuation of a sentence that conforms to the
less likely interpretation of the previously ambigu-
ous syntactic structure. Such processing difficul-
ties, called garden path effects, can be observed in
eye-tracking and self-paced reading experiments
as increases in reading time for the disambiguating
continuation (Frazier and Rayner, 1982; Christian-
son et al., 2001). Through the surprisal theory
(Hale, 2001; Levy, 2008), prior studies observed
garden path effects in autoregressive language mod-
els (van Schijndel and Linzen, 2018; Futrell et al.,
2019). However, it is unclear whether autoregres-
sive language models finally resolve the temporary

syntactic ambiguity after being exposed to the dis-
ambiguating text.

We probed the incremental syntactic representa-
tions of language models by analyzing their com-
pletions of garden-path prefixes. We used a set of
garden-path sentences that were originally curated
to study the garden-path effect in humans (Altmann
et al., 1992). We chose this set of garden-path sen-
tences since completions of this set of sentences
generated by language models seem to be indica-
tive of their incremental syntactic representations.
In other words, the completions generated by a
language model can be used to probe whether the
language model successfully resolves the tempo-
rary syntactic ambiguity after they have seen the
disambiguating text.

We gathered 30 garden-path sentences from Alt-
mann et al. (1992) and modified some of them
to make each of them have a similar form. We
evaluated autoregressive language models of five
families on whether each of them successfully re-
solve the temporary ambiguity in each of the 30
garden-path sentences. For each model, we sam-
pled 50 completions and used a dependency parser
to judge whether each completion is grammatically
correct. Aggregating those judgments, we found
that larger language models are worse at resolving
temporary ambiguities. A follow-up experiment
based on models’ preference between two possi-
ble continuations of garden path prefixes showed
the same trend with weaker significance. Overall,
this paper provides evidence that larger language
models are worse at recovering from syntactic am-
biguity, suggesting that they are not maintaining
explicit syntactic structures.

2 Related Work

Multiple studies have found that larger language
models are not always better. From a behavioral
perspective, a recent inverse scaling challenge col-
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lected and reported a diverse set of tasks which the
larger language models show worse performance
(McKenzie et al., 2023). Most tasks reported are
not about fundamental linguistic capabilities. For
example, one of the tasks involves redefining par-
ticular symbols and evaluating whether language
models recognize the redefinition. Another study
looked at how BERT-style models understand gar-
den path sentences via auxiliary question answer-
ing tasks and found that BERT-style models do not
perform better than humans on question answering
accuracy despite being bidirectional (Irwin et al.,
2023).

From a cognitive modeling perspective, it was
shown that surprisals from larger and more capa-
ble (measured by perplexity) language models are
worse at predicting human reading time of naturally
occurring texts due to their superhuman capabilities
of predicting rare words. (Oh and Schuler, 2023;
Oh et al., 2024). It was also shown that surprisals
from neural language models cannot entirely ex-
plain human syntactic processing difficulties (van
Schijndel and Linzen, 2020; Arehalli et al., 2022;
Huang et al., 2024). The lack of explanatory power,
however, is not compared among models of differ-
ent sizes.

Several works have looked at how language mod-
els handle ambiguity. Aina and Linzen (2021)
studied whether language models recognize struc-
tural ambiguities by analyzing completions from
the models. However, it did not focus on compar-
ing models of varying sizes. Hanna and Mueller
(2024) investigated how language models process
garden-path sentences with mechanistic interpreta-
tion. Irwin et al. (2023); Li et al. (2024); Amouyal
et al. (2025) investigated how language models
process garden-path sentences with question an-
swering. However, those work only looked at how
language models process garden-path sentences
indirectly through comprehension questions.

3 Experiment 1: Probing for Syntactic
Representation by Completions

The purpose of this experiment is to compare how
language models of different sizes resolve tempo-
rary syntactic ambiguity. We chose garden path
sentences where the completions generated by a
language model are indicative of its incremental
syntactic representation. The original material was
collected by Altmann et al. (1992) to investigate the
effect of referential context on sentence processing.

An example garden path sentence of our evalua-
tion set is

(1) The householder told the builder that he
had arranged to pay that the bill was fair.

Until one encounters that the bill, the sentence is
ambiguous. The segment of text, that he had ar-
ranged to pay, can be interpreted as either a relative
clause or a (partial) sentential complement clause.
After one encounters that the bill, this ambiguity
can be resolved. At this point, the relative clause
interpretation is the only consistent interpretation.
Increase in reading time was observed for the dis-
ambiguating region, that the bill, in the garden path
sentence compared to that of a non-ambiguous con-
trol (Altmann et al., 1992). Garden path theories
predict that one will adopt the sentential comple-
ment interpretation at first (Frazier and Rayner,
1982). It attributes the increase in reading time to
the reanalysis of structure after one encounters the
disambiguating texts. However, it is possible that
language models are led down the garden path and
don’t resolve the ambiguity even after encountering
the disambiguating region.

To find out whether a language model resolves
the temporary ambiguity, consider the disam-
biguated prefix,

(2) The householder told the builder that he
had arranged to pay that the bill ...

If a language model successfully resolves the tem-
porary ambiguity, it should recognize that the bill
is the subject of a clause that serves as the comple-
ment of the predicate told. On the other hand, if a
language model fails to resolve the ambiguity, the
model often incorrectly treats the bill as the com-
plement of pay and it may generate ungrammatical
completions without a complete sentential com-
plement. An example ungrammatical completions
generated by a language model is

(3) * The householder told the builder that he
had arranged to pay that the bill in two
weeks.

Therefore the completions generated by language
models can serve as a probe for the incremental
syntactic representation of the language models.

Materials We gathered 30 sentences from Alt-
mann et al. (1992) and transformed them into a
similar form such that each sentence contains a
temporary syntactic ambiguity between a relative
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Figure 1: The proportion of grammatical completions
for models of different sizes. It shows a log-linear re-
lationship between the model’s size and proportion of
grammatical completions. A permutation test (10,000
samples) shows that the negative slope is significant
(p < 0.005).

clause interpretation and a complement clause inter-
pretation and the disambiguating region starts with
a noun phrase (e.g., the bill) which is the subject
for another clause. We provided the disambiguated
prefixes of a similar form as that of Example 2 to
the language model. The full prefixes can be found
the in appendix A.

Evaluation For each prefix, we sampled 50 com-
pletions (with temperature = 1) from language mod-
els with different sizes in five model families, in-
cluding GPT-2 (Radford et al., 2019), GPT-Neo
(Black et al., 2021, 2022), OPT (Zhang et al., 2022),
Pythia (Biderman et al., 2023), and Llama-2 (Tou-
vron et al., 2023). We measured how well each
model resolves the ambiguity by the proportion
of grammatical completions that it generated. To
judge whether a completion is grammatical, we can
look at whether the model’s completion treats the
noun phrase at the end of the prefix as the subject
of a complete clause. We automatically analyzed
the structure of the part of the sentence after the
second complementizer that using the spaCy de-
pendency parser (Honnibal and Johnson, 2015). If
the noun phrase in the disambiguating region is
annotated as the subject of a clause, we know that
the completion is grammatical. On the other hand,
if it is annotated as the root of the tree, we know
that the completion is ungrammatical. We observed
that the dependency parser correctly discriminates
between the two cases for 98 out of 100 sampled
model completions. Note that this automatic la-

beling scheme may produce false positives since
a completion may still be ungrammatical even if
the noun phrase in the disambiguating region is
treated as the subject of the complement clause.
However, we observed that this rarely happens on
our test sentences and it can only underestimate the
proportion of ungrammatical completions.

Result We calculated the accuracy of each model
as the proportion of completions that are gram-
matical. The accuracy of each language model is
shown in Figure 1. The line fit shows a trend that
larger models are worse at generating grammatical
completions. A permutation test was conducted
to determine the significance of the slope. Each
simulation was constructed by randomly permuting
the sample completions among all different models.
A permutation test of 10,000 simulation shows that
the negative slope is highly significant (p < 0.005).

Discussion The result that larger language mod-
els are worse at resolving temporary syntactic am-
biguities is at first surprising. It contradicts the
perceived general trend that larger language mod-
els have better linguistic capabilities (though see
Oh and Schuler (2023); Oh et al. (2024)).

This result, however, does not imply that smaller
language models are better at resolving temporary
ambiguities. It is possible that smaller language
models focus on the more recent information while
completing a prefix. In contrast, larger language
models may rely on the broader context and treat
the disambiguating texts as a text error. The next ex-
periment investigates this hypothesis using a modi-
fied set of sentences used in experiment 1.

4 Experiment 2

A follow-up experiment was conducted to test
whether larger language models are more likely
to treat the local contradicting information as a text
error compared to smaller language models. To test
this, we present the model a set of prefixes with text
errors near the end. The following is one example
of such prefixes,

(4) * The householder had arranged to pay
that the bill ...

This prefix is constructed by removing the main
predicate with the ambiguous relative clause from
the same stimulus used in experiment 1. Note that
there is no obvious grammatical completion of Ex-
ample 4. If it is the case that smaller language
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Figure 2: This figure shows the tendency of different
models on recognizing text errors. Larger language
models tend to treat the local contradicting information
as text errors while smaller language models tend to
ignore the broader context.

models are more likely to focus on the more recent
information but larger language models tend to fo-
cus on the broader context, the smaller models will
complete the prefix as if the bill is a subject that
starts a clause and the larger models will complete
the prefix as if that the bill is a text error. Here’s
one example completion which indicates that the
language model treats the end of the prefix as a text
error as if the word “that” was not in the sentence,

(5) * The householder had arranged to pay
that the bill to the landlord.

Similar to experiment 1, we used the completions
generated by a language model to probe for the
model’s representation of the prefix.

Materials We modified the 30 sentences used in
experiment 1 to make each of them have a similar
form as example 4. Each sentence contains a text
error with a duplicate determiner.

Evaluation Similar to experiment 1, for each
model and each prefix, we sampled 50 completions.
To distinguish whether the model treats the dupli-
cate determiners as a text error, we used the spaCy
dependency parser to recognize whether the noun
phrase at the end of the prefix is the root of the de-
pendency tree. We aggregated all the completions
generated by the language model to calculate the
proportion of the completions where the duplicate
determiners are recognized as a typo.

Result As shown in Figure 2, larger models are
more likely to recognize the duplicate determiners

Figure 3: Proportion of correct judgments for models of
different sizes.

as a text error and complete as if only one deter-
miner exists while smaller models are more likely
to ignore the earlier part of the prefix and complete
it as if the noun phrase at the end is the start of a
clause.

5 Experiment 3: Probing for Syntactic
Representation by Targeted Evaluation

The method used in experiment 1 can reveal
whether language models resolve the ambiguity be-
tween the relative clause interpretation and the sen-
tential clause interpretation. However, it is not clear
how it can be applied to investigate language mod-
els’ representation of other types of ambiguities. In
this experiment, we used syntactic judgment of lan-
guage models to probe how they represent garden
path prefixes. Consider a pair of prefixes that only
differ in the last token, such as,

(6) David’s father told the builder that David’s
mother had arranged to pay that the
bills were fair and was proud of him-
self/*herself.

If the language model successfully discards the sen-
tential clause interpretation, it should prefer himself
over herself. Therefore language models prefer-
ence on such pairs of prefixes can shed light on
whether they disambiguate garden path prefixes.

Materials We gathered 36 sentences with ambi-
guity between a relative clause interpretation and a
sentential clause interpretation from Altmann et al.
(1992). We manipulated the gender of the sub-
ject of the matrix clause and that of the subject of
the relative clause and append and was proud of
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himself/herself at the end of each sentence. This re-
sulted in 72 pairs of sentences. One of the sentence
in each pair indicates successful disambiguation
and the other sentence indicates incorrect repre-
sentation. The complete set of test sentences is in
Appendix B.

Result As shown in Figure 3, we observed a trend
that larger language models produce fewer correct
judgments. A permutation test shows a weak sig-
nificance of this trend (p < 0.1).

6 Conclusion

By analyzing completions of garden-path sentences
generated by language models and examining the
preference of language models on a set of pairs
of garden path sentences, we showed that larger
language models are worse at resolving temporary
syntactic ambiguities. This challenges the view that
neural language models maintain explicit syntactic
structure during their incremental processing of
language.

7 Limitations

We only investigated models’ behavior on limited
types of garden-path sentences since it is not obvi-
ous how completions of other types of garden-path
sentences can tell us whether the model success-
fully resolves the ambiguity. Also, we only inves-
tigated language models’ behavior in English. In
experiment 3, we noticed that the two Llama-2 vari-
ants have comparable performance as the smaller
GPT2 variants and OPT variants. It is possible
that the trend is reversed for models that are larger
than the ones we tested with. We leave it for future
work.
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A Stimuli for experiment 1

1 The householder told the builder that he had
arranged to pay that the bill

2 The woman told the policeman that she had
been trying to avoid that the arrestment

3 The student told the tutor that she had con-
sulted that the professor

4 The doctor told the patient that she had been
ready to examine that the X ray

5 The captain told the colonel that he had con-
tacted that the commander

6 The manager told the woman that he was con-
fident about that the project

7 The minister told the councilor that he had
agreed to see that the proposal

8 The bank manager told the woman that he had
misunderstood that the situation

9 The driving instructor told the woman that he
had been impressed by that her skill

10 The solicitor told the woman that he had
doubts about that the validity

11 The headmistres told the boy that she was
worried about that his behavior

12 The sales assistant told the man that she had
dealt with that the faults

13 The journalist told the woman that he had been
working with that the next issue

14 The doctor told the woman that he was wor-
ried about that the health condition

15 The electrician told the man that he was im-
pressed by that his explanation

16 The teacher told the father that she was
shocked by that his attitude

17 The musician told the guitarist that he was
impressed by that the play

18 The auctioneer told the woman that he had
just sold a painting for that the price

19 The politician told the journalist that he agreed
with that the deal

20 The Queen Mother told the comedian that she
was amused by that the show

21 The film director told the actress that he had
heard of that her accomplishments

22 The baker told the old lady that he had been
baked a cake for that the party

23 The couple told the boy that they had brought
a gift for that their child

24 The photographer told the model that he had
taken bad photos of that the pose

25 The social worker told the father that she was
horrified by that his attitude

26 The ski instructor told the girl that he was
happy with that her performance

27 The patient told the nurse that he was com-
plaining about that the chest pain

28 The young boy told the girl that he was fright-
ened of that his classmate

29 The man told the policewoman that he had
been talking to that the young girl

30 The antique dealer told the woman that he was
talking to that another dealer
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B Stimuli for experiment 3

1 John’s mother told the builder that John’s fa-
ther had arranged to pay that the bills were
very fair and was proud of herself/himself

2 John’s mother told the tutor that John’s father
had consulted that the projects had been bor-
ing and was proud of herself/himself

3 John’s mother told the policewomen that
John’s father had been talking to that the in-
cidents were terrifying and was proud of her-
self/himself

4 John’s mother told the patient that John’s fa-
ther had some good news about that the X
ray images were clear and was proud of her-
self/himself

5 John’s mother told the colonel that John’s fa-
ther had contacted that the enemies were now
advancing and was proud of herself/himself

6 John’s mother told the man that John’s father
had been insulted by to take a running jump
and was proud of herself/himself

7 John’s mother told the woman that John’s fa-
ther was confident about to return in a fort-
night and was proud of herself/himself

8 John’s mother told the councillor that John’s
father had agreed to see to submit further de-
tails and was proud of herself/himself

9 John’s mother told the policeman that John’s
father had been trying to avoid to contact the
lawyer and was proud of herself/himself

10 John’s mother told the woman that John’s fa-
ther had misunderstood to repeat the last ques-
tion and was proud of herself/himself

11 John’s mother told the officer that John’s
father had been meeting that gradually
things were changing and was proud of her-
self/himself

12 John’s mother told the woman that John’s
father had been impressed by to ensure
she drove with care and was proud of her-
self/himself

13 John’s mother told the woman that John’s fa-
ther had doubts about to confirm the new state-
ment and was proud of herself/himself

14 John’s mother told the boy that John’s father
was worried about to concentrate on his home-
work and was proud of herself/himself

15 John’s mother told the man that John’s father
had dealt with that the faults would be repaired
and was proud of herself/himself

16 John’s mother told the woman that John’s fa-
ther had been working with to outline the next
case and was proud of herself/himself

17 John’s mother told the woman that John’s fa-
ther was worried about to be positive about
the illness and was proud of herself/himself

18 John’s mother told the woman that John’s fa-
ther was impressed by to explain it all to her
friend and was proud of herself/himself

19 John’s mother told the father that John’s father
was shocked by that his attitude was appalling
and was proud of herself/himself

20 John’s mother told the guitarist that John’s
father was impressed by to audition again on
Friday and was proud of herself/himself

21 John’s mother told the wife that John’s father
was worried about to come and visit more
often and was proud of herself/himself

22 John’s mother told the woman that John’s fa-
ther had risked his life for to install a smoke
detector and was proud of herself/himself

23 John’s mother told the woman that John’s fa-
ther had just sold a painting for to give him
the fee and was proud of herself/himself

24 John’s mother told the man that John’s father
was pleased to see to order another coffee and
was proud of herself/himself

25 John’s mother told the journalist that John’s
father agreed with to write a report on the
subject and was proud of herself/himself

26 John’s mother told the comedian that John’s
father was amused by to impersonate the other
guests and was proud of herself/himself

27 John’s mother told the actress that John’s fa-
ther had heard of to audition for the next film
and was proud of herself/himself
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28 John’s mother told the old lady that John’s
father had baked a cake for to pay the bill on
Saturday and was proud of herself/himself

29 John’s mother told the boy that John’s father
had brought a gift for to share it with his friend
and was proud of herself/himself

30 John’s mother told the woman that John’s fa-
ther wanted to go with to meet her outside the
museum and was proud of herself/himself

31 John’s mother told the woman that John’s
father was talking to that the chairs were
exquisite and was proud of herself/himself

32 John’s mother told the model that John’s father
had taken bad photos of to pose again the next
day and was proud of herself/himself

33 John’s mother told the father that John’s father
was horrified by to change his attitude and was
proud of herself/himself

34 John’s mother told the girl that John’s father
was happy with to try a more difficult slope
and was proud of herself/himself

35 John’s mother told the nurse that John’s father
was complaining about to treat her with more
care and was proud of herself/himself

36 John’s mother told the girl that John’s father
was frightened of to bully someone her own
age and was proud of herself/himself

37 John’s father told the builder that John’s
mother had arranged to pay that the bills were
very fair and was proud of himself/herself

38 John’s father told the tutor that John’s mother
had consulted that the projects had been bor-
ing and was proud of himself/herself

39 John’s father told the policewomen that John’s
mother had been talking to that the inci-
dents were terrifying and was proud of him-
self/herself

40 John’s father told the patient that John’s
mother had some good news about that the
X ray images were clear and was proud of
himself/herself

41 John’s father told the colonel that John’s
mother had contacted that the enemies were

now advancing and was proud of him-
self/herself

42 John’s father told the man that John’s mother
had been insulted by to take a running jump
and was proud of himself/herself

43 John’s father told the woman that John’s
mother was confident about to return in a fort-
night and was proud of himself/herself

44 John’s father told the councillor that John’s
mother had agreed to see to submit further
details and was proud of himself/herself

45 John’s father told the policeman that John’s
mother had been trying to avoid to contact the
lawyer and was proud of himself/herself

46 John’s father told the woman that John’s
mother had misunderstood to repeat the last
question and was proud of himself/herself

47 John’s father told the officer that John’s
mother had been meeting that gradually
things were changing and was proud of him-
self/herself

48 John’s father told the woman that John’s
mother had been impressed by to ensure
she drove with care and was proud of him-
self/herself

49 John’s father told the woman that John’s
mother had doubts about to confirm the new
statement and was proud of himself/herself

50 John’s father told the boy that John’s mother
was worried about to concentrate on his home-
work and was proud of himself/herself

51 John’s father told the man that John’s mother
had dealt with that the faults would be repaired
and was proud of himself/herself

52 John’s father told the woman that John’s
mother had been working with to outline the
next case and was proud of himself/herself

53 John’s father told the woman that John’s
mother was worried about to be positive about
the illness and was proud of himself/herself

54 John’s father told the woman that John’s
mother was impressed by to explain it all to
her friend and was proud of himself/herself
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55 John’s father told the father that John’s mother
was shocked by that his attitude was appalling
and was proud of himself/herself

56 John’s father told the guitarist that John’s
mother was impressed by to audition again
on Friday and was proud of himself/herself

57 John’s father told the wife that John’s mother
was worried about to come and visit more
often and was proud of himself/herself

58 John’s father told the woman that John’s
mother had risked her life for to install
a smoke detector and was proud of him-
self/herself

59 John’s father told the woman that John’s
mother had just sold a painting for to give
him the fee and was proud of himself/herself

60 John’s father told the man that John’s mother
was pleased to see to order another coffee and
was proud of himself/herself

61 John’s father told the journalist that John’s
mother agreed with to write a report on the
subject and was proud of himself/herself

62 John’s father told the comedian that John’s
mother was amused by to impersonate the
other guests and was proud of himself/herself

63 John’s father told the actress that John’s
mother had heard of to audition for the next
film and was proud of himself/herself

64 John’s father told the old lady that John’s
mother had baked a cake for to pay the bill on
Saturday and was proud of himself/herself

65 John’s father told the boy that John’s mother
had brought a gift for to share it with his friend
and was proud of himself/herself

66 John’s father told the woman that John’s
mother wanted to go with to meet him outside
the museum and was proud of himself/herself

67 John’s father told the woman that John’s
mother was talking to that the chairs were
exquisite and was proud of himself/herself

68 John’s father told the model that John’s mother
had taken bad photos of to pose again the next
day and was proud of himself/herself

69 John’s father told the father that John’s mother
was horrified by to change his attitude and was
proud of himself/herself

70 John’s father told the girl that John’s mother
was happy with to try a more difficult slope
and was proud of himself/herself

71 John’s father told the nurse that John’s mother
was complaining about to treat him with more
care and was proud of himself/herself

72 John’s father told the girl that John’s mother
was frightened of to bully someone her own
age and was proud of himself/herself
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Abstract

In cases of pervasive uncertainty, cognitive sys-
tems benefit from heuristics or committing to
more general hypotheses. Here we present a
hierarchical cognitive model of lexical process-
ing that synthesizes advances in early rational
cognitive models with modern-day neural ar-
chitectures. Probabilities of higher-order cate-
gories derived from vector representations ex-
tracted from the middle layers of an encoder
language model have predictive power in ac-
counting for several reading measures for both
predicted and unpredicted words and influence
even early first fixation duration behavior. The
results suggest that lexical processing can take
place within a latent, but nevertheless discrete,
space in cases of uncertainty.

1 Introduction

Skilled readers are able to quickly and accurately
leverage real-world and linguistic knowledge to
understand texts. Lexical and syntactic factors
strongly influence the speed and accuracy of sen-
tence processing (Levy, 2008; Brennan and Hale,
2019). In addition to factors such as lexical fre-
quency, word length, and syntactic processes, there
is also lexico-semantic structure in language as it
unfolds in time. Such higher-order abstractions are
posited to be advantageous for any cognitive sys-
tem to track (Kwisthout et al., 2017), such as antici-
pating or quickly integrating the semantic category
that a word belongs to into one’s understanding of
a sentence (Federmeier and Kutas, 1999; Roland
et al., 2012).

Despite clear macro structure in the predictabil-
ity of individual words (e.g., the mention of couch
versus sofa), it has been less clear how semantic
structure influences reading times. The present pa-
per aims to account for such macro structure and
better understand how the semantic predictability
of words shapes reading behavior. We quantify this
structure using Bayesian Gaussian mixture models

trained over embeddings of cloze responses, which
we apply to a standardized dataset of reading times
with associated predictability norms. Then, we
obtain “semantic” estimates using cluster probabili-
ties derived from the above Bayesian Gaussian mix-
ture modeling process, which we incorporate into
models of “early” predictive processing measures
of reading times and a later, a more “semantic”
reading time measure.

2 A hierarchical model of reading times

C

k w

wf wℓ

RT

Figure 1: Our hierarchical model relating linguistic vari-
ables to reading time. C is the context (potentially in-
cluding extralinguistic components), k a semantic clus-
ter, w the observed word and wf and wℓ its frequency
and length respectively, RT is a measure of reading time
such as fixation go-pass duration (FGPD) ; arrows de-
note random variable dependencies ; shaded variables
are observable, unshaded ones are latent/unobserved.

Reading times partially reflect the contextual
or conditional probability of a linguistic event
(such as a word or syntactic structure), in that low-
probability events are correlated with longer read-
ing times (e.g., de Varda et al., 2024; Shain et al.,
2024). Since the advent of neural language models,
researchers have taken a strongly lexical approach
to these analyses, though there is a growing appre-
ciation that estimates of a word or syntactic struc-
ture’s probability in context do not tell the full story
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about what makes written language easier or harder
to read (Gruteke Klein et al., 2024). Reliance
on lexical estimates of predictability may over-
estimate the uncertainty of the linguistic future
(Kwisthout et al., 2017) and thus under-estimate
the importance of higher-order prediction and over-
estimate processing difficulty (Ozaki et al., 2024).
For example, a comprehender may make more gen-
eral linguistic predictions (e.g., the CAT concept) or
more specific ones (e.g., “oriental longhair”; Degen
et al., 2020; Roland et al., 2012; Federmeier and
Kutas, 1999). We present a clustering method that
estimates these higher-order, lexico-semantic hy-
pothesis spaces K, which we demonstrate provides
additional predictive power in explaining reading
times beyond word-level information alone. Quan-
tifying higher-order structure ties the modern lexi-
cal approach to hierarchical Bayesian processing
models and early surprisal approaches (e.g., Levy,
2008). We outline such a model in Figure 1.

3 Applying cloze data to the study of
rational language comprehension

Accounting for hierarchical processing in reading
requires suitable resources for estimating these
hierarchical categories. While the contemporary
approach to estimating lexical predictability over-
whelmingly relies on language model surprisal, hu-
man beings and language models do not align make
the same prediction (Smith and Levy, 2011). We
aggregate cloze production data (Taylor, 1953) into
quasi-semantic clusters using Bayesian Gaussian
mixture modeling. We focus on the Provo Corpus,
in which participants read an incomplete text and
guessed the identity of the next word for each word
in a sentence (“serial cloze”; Luke and Christian-
son, 2016, 2018; Lowder et al., 2018), which is one
of the only parallel datasets with reading time and
cloze production statistics.

In the Provo corpus, college-age American En-
glish speaking participants incrementally guessed
the identity of each non-initial word wi for every
preamble p = w1 . . . wi−1 in order. The resulting
cloze corpus consists of 41 236 unique continua-
tions across 2398 unique preambles, from a collec-
tion of 55 short, multi-sentence web texts. Cloze
probabilities are defined as follows:

P (word | p) = count(word ∩ p)

count(p)

The Provo corpus also includes reading time data
for each of these texts from 84 participants from

the same population. We focus on two reading time
measures for their relative cognitive transparency
and to minimize the number of statistical compar-
isons (Von der Malsburg and Angele, 2017): first
fixation duration (FFD) and first go-past duration
(FGPD). FFD is often conceptualized as reflecting
early-stage visual processes while FGPD is thought
to reflect additional time for semantic integration.
Both FFD and FGPD measures are sensitive to
quantitative indicators of lexical and syntactic pre-
dictability (Staub, 2015).

4 Clustering model

We model semantic predictability using a Dirich-
let process mixture (Antoniak, 1974) of Gaussians
trained with variational inference (Blei and Jordan,
2006) on the set E ⊂ Rd of token embeddings
of participants’ best guesses in a serial cloze task.
More precisely: we model E as a sample drawn
from a weighted sum of d-dimensional multivariate
Gaussian variables ki (components)

∑
i πiki. This

can be reformulated as a two-step process of first
sampling one component k from a set K, then sam-
pling an embedding from k. If we identify each
component with the set of the embeddings it gener-
ated, K can then be seen as a clustering of E, which
can be approximated by estimating a probability
distribution over components P (e ∈ k) for each
embedding e ∈ E and assigning e to its maximum-
likelihood component argmaxk∈K P (e ∈ k).

The number of unique word forms in a clus-
ter (of approximately 36 000 completions) ranged
from 1 to 1534, showing substantial skew with a
mean/median/mode of 128/5/2 words per cluster.
Clustering results in a drop in uncertainty during
naturalistic reading that reduces the complexity of
the prediction process by lowering the size of the
hypothesis space from that of the whole vocabulary
|V | to an average of |K|+E[|k|], making it a more
tractable (and therefore more plausible) problem
for readers to solve. We demonstrate an example
case in Figure 2. More details of our implementa-
tion can be found at the clamp repository github
page.1

Part-of-speech labels are strong predictors of
clusters, with further subcategorizations being ev-
ident by assessing the component words for each
cluster. The resulting clusters partially encode part-
of-speech, with cluster agreement index (Rabbany
and Zaïane, 2017) of 0.42 between part-of-speech

1https://github.com/calicolab/clamp
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Figure 2: Word and POS repartition by cluster for responses to the preamble “Interestingly, the heaviest isotopes
physicists have. . . ”. Plot made using ggalluvial (Brunson, 2020).

labels and our clustering. We present a visualiza-
tion of cluster structure by word and by POS for a
single preamble in Figure 2.

In contrast to lexical approaches and in keep-
ing with the hierarchical nature of prediction
(Kwisthout et al., 2017), out-of-sample words (i.e.,
words with a cloze probability of 0 that are the em-
pirical next word in a sentence) may also attain a
non-zero probability, which we explore in the next
section.2

5 Predicting reading times

Hierarchical prediction mechanisms empower read-
ers to make less precise predictions in cases of un-
certainty, and result in greater ease of processing
even at early stages (Kwisthout et al., 2017). We
clustered human responses in the cloze (next-word
prediction) portion of the Provo corpus by extract-
ing their contextual representations from the hidden
layers of RoBERTa (Liu et al., 2019). As described
above, we apply Bayesian Gaussian mixture mod-
els and interpret the resulting clusters as approxi-
mations of higher-order lexico-semantic categories.

2In principle, it is possible to leverage the uncertainty
in a mixture model’s assignment of a data point to clusters.
In practice, most embeddings are assigned to a cluster with
probability 1 due to properties of the embedding space that
make lexical representations highly distinct from each other.

In that setting, the probability of a cluster C for a
given preamble p is the sum of the cloze probabili-
ties (eq. 3) of its elements:

P (C | p) =
∑

word∈C
P (word | p, C)

We constructed linear mixed effects models of FFD
and FGPD measures for words in the Provo corpus
that were either responses produced in the cloze
task (P (word > 0; guessed; Table 1) or were not
observed (unguessed; Table 2). Such cases are
precisely where we would expect uncertainty to
promote maintaining a general hypothesis rather
than a very specific one about upcoming words
(Bannon et al., 2024; Kwisthout et al., 2017; Giu-
lianelli et al., 2024).

Following Luke and Christianson (2016), we
include several basic predictors to model reading
times for each word — log word frequency, word
number, sentence number, word length, LSA Con-
text Score, and cloze probability (where applicable)
to the base model with maximal random intercepts
and slopes. LSA Context Score was defined as the
fit between the empirical next word and the sur-
rounding context using a cosine similarity distance
metric, which was reported to significantly influ-
ence processing in Luke and Christianson (2016).
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Coefficient β E t p β E t p

Intercept −0.02 0.04 −0.64 n.s. 0.01 0.03 0.26 n.s.
Cluster Probability −0.03 0.01 −3.35 *** −0.02 0.01 −2.36 *

Word frequency −0.05 0.03 −1.73 . — — — —
Sentence Number −0.01 0.01 −1.23 n.s. 0.02 0.01 1.85 .
Word in Sentence −0.02 0.01 −1.78 . 0.01 0.01 1.04 n.s.

Word Length 0.18 0.03 7.20 *** 0.04 0.02 2.60 **
LSA Context Score −0.01 0.01 −1.07 n.s. −0.02 0.01 −1.84 .

Table 1: Linear mixed effects model for FGPD for words with non-zero cloze probability. Singularity issues
affecting model convergence led to the removal of the word frequency term from the FFD model. . represents
p < 0.1; ** p < 0.01; *** p < 0.001.

Figure 3: First fixation duration (FFD) and go-pass duration (FGPD) as a function of cluster probability for words
that were guessed in the cloze norms. Cluster probability has a facilitative effect on both word types for both
eyetracking measures.

Our analyses focus on FGPD and FFD specifically.

We tested for the importance of the Cluster Prob-
ability measure P (C | p) through model compari-
son against a base model that did not include Clus-
ter Probability as a predictor. Including Cluster
Probability in the model resulted in significant im-
provements in ∆LL via a likelihood ratio test for
all measures and datasets. All models showed the
same pattern, such that next words belonging to
higher-probability clusters were read more quickly,
for both early visual stages (FFD) and higher or-
der semantic stages (FGPD) and for guessed and
unguessed words. For words that were guessed,
cloze probability did not significantly predict either
gaze measure and was thus excluded from the final
model.

Furthermore, for such zero-cloze probability
words, the effect of Cluster Probability on FPGD
was larger (Satterwhaite t(640) = −4.37) than

the effect of lexical frequency (t(440) = 3.85) for
words that had zero-probability cloze but non-zero
probability of that cluster. We visualize this re-
lationship for FGPD in Figure 3 and present the
results for zero-cloze FFDs in Table 2.

6 Related work

We are not the first to cluster language model rep-
resentations. Others modeled semantic processing
in analyses of reading times, typically comparing
static word vectors for next words against prior con-
text with cosine similarity (e.g., Luke and Chris-
tianson, 2016; Staub et al., 2015) or, more recently,
used such similarities as a smoothing factor for sur-
prisal distributions —slightly improving surprisal
theory fits to reading time measures (Meister et al.,
2024). Gaussian processes are particularly com-
mon in cognitive modeling of linguistic category
learning (Kleinschmidt and Jaeger, 2015; Toscano
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Coefficient β E t p β E t p

Intercept −0.03 0.04 −0.72 n.s. −0.01 0.03 −0.27 n.s.
Cluster Probability −0.04 −0.01 −4.37 *** −0.03 0.01 −3.29 **

Word frequency −0.08 −0.02 −3.85 *** −0.06 0.02 −3.45 ***
Sentence Number −0.05 0.01 −4.09 *** — — — —
Word in Sentence −0.01 0.01 −0.93 n.s. — — — —

Word Length 0.19 0.02 9.67 < .001 0.02 0.02 1.12 n.s.
LSA Context Score −0.02 0.01 −1.72 . −0.01 0.01 −1.38 n.s.

Table 2: Linear mixed effects model for FGPD for words with 0 cloze probability but non-zero cluster probability.
Backwards elimination from the FFD model recommended removal of other control variables. . represents p < 0.1;
** p < 0.01; *** p < 0.001.

and McMurray, 2010). Modeling semantics using
Dirichlet distributions (as in topic modeling Blei
and Jordan, 2006) has also proven successful in
modeling human semantic memory (Steyvers et al.,
2006).

Other work in computational psycholinguistics
has tested whether language processing involves a
semantic comparison between alternatives in con-
textual language space (Giulianelli et al., 2023).
We believe the current proposal that readers rep-
resent semantics as scalar, but nevertheless quasi-
discrete, categories is a novel synthesis of these
areas. The present results support the proposal
that efficient, rational language processing can be
achieved by combining levels of granularity of lin-
guistic predictions.

7 Conclusion

Here we presented a hierarchical cognitive model
of lexical processing that synthesizes early rational
cognitive models with modern-day neural architec-
tures. We argue that language model representa-
tions can be combined with human cloze data to in-
fer higher-order structure. Cluster probabilities had
predictive power in accounting for several reading
measures for both predicted and unpredicted words
and influence even early first fixation duration be-
havior. The results suggest that lexical processing
can take place at a featural level in cases of uncer-
tainty (Federmeier and Kutas, 1999; Roland et al.,
2012; Kwisthout et al., 2017).

8 Limitations

This work is meant as a proof of concept for a hi-
erarchical model of lexical processing and the use
of transformer language models as predictors of
reading times, not only through next-word proba-

bilities, but also through their internal contextual
representations of words. This study is by no mean
exhaustive, and further replications and refinements
using other datasets should be undertaken in the
future using a wider variety of datasets.

Our work did not explore the potential semantic
capacity of next word prediction-based language
models. We did not consider larger models, nor
simpler ones. We did not vary the number of clus-
ters or manipulate the hyperparameters we used for
the mixture model; future work should determine
the optimal number of clusters.

The cloze norms and the eye tracking data here
are relatively limited compared to real-world read-
ing. The data are limited to American English
which makes asking questions about other phe-
nomena (e.g., morphosyntactic processing) more
challenging. The data were gathered from highly
literate populations at a prestigious university in
the United States and are not representative of all
people. Many individuals vary substantially in their
language experience and this variability, which
shapes processing fluency (e.g., Breen et al., 2024).

Some believe that lexicalized language model
probabilities are the best probabilistic predictor of
reading time and neural data (Shain et al., 2024),
though this claim may not hold for all types of
stimuli (de Varda et al., 2024; Szewczyk and Fed-
ermeier, 2022). Perhaps more pertinently, the use
of surprisal as a measure of linguistic predictabil-
ity is not central to our question; we demonstrated
that cloze responses are highly structured and that
modeling this structure accounts even for early lan-
guage processing dynamics. Future work should
examine how to automate the discovery of semantic
probabilities using language models directly.

The appropriateness of modeling LLM embed-
dings as samples drawn from a mixture of mul-
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tivariate Gaussians has not – to our knowledge –
been extensively studied. The semantic structure
of cloze responses can be approached from several
angles, ranging from ontologies such as WordNet
(Miller, 1995), to feature sets (Turton et al., 2020),
to representing words by their distributional se-
mantics, the approach we take here. However, the
clustering results presented here are suggestive of
meaningful distributional sub-structure, and could
in principle be replicated by many other cluster-
ing algorithms, such as k-means or agglomerative
clustering.
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Abstract 

LLM-surprisal is a computational measure 
of how unexpected a word or character is 
given the preceding context, as estimated 
by large language models (LLMs). This 
study investigated the effectiveness of 
LLM-surprisal in modeling second 
language (L2) writing development, 
focusing on Chinese L2 writing as a case to 
test its cross-linguistical generalizability. 
We selected three types of LLMs with 
different pretraining settings: a multilingual 
model trained on various languages, a 
Chinese-general model trained on both 
Simplified and Traditional Chinese, and a 
Traditional-Chinese-specific model. This 
comparison allowed us to explore how 
model architecture and training data affect 
LLM-surprisal estimates of learners’ essays 
written in Traditional Chinese, which in 
turn influence the modeling of L2 
proficiency and development. We also 
correlated LLM-surprisals with 16 classic 
linguistic complexity indices (e.g., 
character sophistication, lexical diversity, 
syntactic complexity, and discourse 
coherence) to evaluate its interpretability 
and validity as a measure of L2 writing 
assessment. Our findings demonstrate the 
potential of LLM-surprisal as a robust, 
interpretable, cross-linguistically applicable 
metric for automatic writing assessment 
and contribute to bridging computational 
and linguistic approaches in understanding 
and modeling L2 writing development. All 
analysis scripts are available at 
https://github.com/JingyingHu/ChineseL2Writ
ing-Surprisals. 

1 Introduction 

The rapid development of large language models 
(LLMs) has opened new avenues for modeling 
second language acquisition (SLA) and 
quantifying interlanguage systems. Among these, 

LLM-derived surprisal (hereafter LLM-surprisal), 
an information-theoretic measure, has shown 
strong potential for quantifying linguistic 
unpredictability across different contexts. 

LLM-surprisal has been widely used in 
psycholinguistics studies to model human 
language comprehension (Wilcox et al., 2023; 
Huber et al., 2024). Recent research has 
highlighted its potential in modeling second 
language (L2) writing development. For example, 
Cong (2025) found that LLM-surprisal is 
potentially linked to L2 writing naturalness and can 
effectively capture lexical diversity and syntactic 
complexity in English L2 writing. As such, LLM-
surprisal shows promise as a holistic metric for 
evaluating English L2 writing proficiency.  

Despite these findings, the cross-linguistic 
generalizability of LLM-surprisal remains 
underexplored, particularly in typologically distant 
languages such as Chinese. The linguistic 
complexities that LLM-surprisal captures in 
Chinese L2 writing may differ from those observed 
in Cong’s (2025) studies on English L2 writing. 
Therefore, a closer investigation of these 
differences is crucial not only for validating the 
cross-linguistic applicability of LLM-surprisal but 
also for understanding what specific linguistic 
features LLM-surprisal measures in the Chinese L2 
writing context.  

LLMs have recently demonstrated impressive 
language understanding and generation abilities, 
but their performance can vary across model 
architecture, scale, and training data. Notably, most 
mainstream LLMs are trained predominantly on 
English or other high-resource languages, raising 
concerns about their efficacy in low-resource 
settings or typologically diverse language contexts. 
Among these, Traditional Chinese texts remain 
particularly underrepresented due to their non-
Latin script and limited presence in large-scale 
training corpora. This study also examined how 
different types of LLM (multilingual, Chinese-
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general, and Traditional-Chinese-specific language 
models) process Traditional Chinese written texts, 
contributing to broader discussions on multilingual 
LLM performance in low-resource settings. 

To summarize, the present study investigates the 
potential of LLM-derived surprisal as a robust and 
cross-linguistically applicable metric for L2 
writing assessment, addressing the following 
research questions: 

(1) Cross-linguistic efficacy of LLM-
surprisal in L2 writing assessment  
Can LLM-surprisal differentiate proficiency 
levels in Chinese L2 writing, thereby 
supporting its validity as a cross-linguistic 
metric for L2 writing evaluation? 

(2) The efficacy of multilingual LLMs in low-
resource language settings  
If so, how do three types of LLMs, which 
vary in the scale of their training data on 
Traditional Chinese, differ in their ability to 
evaluate Chinese L2 writing? 

(3) LLM-surprisal’s interpretability in the 
Chinese L2 context  
What aspects of linguistic complexity are 
captured by LLM-surprisal in Chinese L2 
writing, and how do they differ from those 
captured in English L2 writing assessment? 

For RQ1, we hypothesize that LLM-surprisal 
can differentiate different proficiency levels in 
Chinese L2 writing. That is, advanced-level essays 
tend to exhibit lower LLM-surprisal scores than 
beginner-level ones, as higher proficiency is 
associated with more natural and predictable 
language production.  

For RQ2, among three LLMs examined, we 
hypothesize that the LLM pre-trained on 
Traditional Chinese-specific data will outperform 
both multilingual and general Chinese LLMs in 
modeling Chinese L2 writing development, due to 
its language-specific optimizations.  

For RQ3, unlike classic complexity indices, 
which focus on specific aspects of language, we 
hypothesize that LLM-surprisal can capture the 
multidimensional nature of linguistic complexity in 
Chinese L2 writing. Building on prior work in 
English L2 research (Cong, 2025; Tang, 2024), we 
hypothesize that LLM-surprisal also captures 
lexical and syntactic complexity in the context of 
Chinese L2 writing assessment. Moreover, it may 
further capture character-level and discourse-level 
features, given the typological differences between 
Chinese and English. 

The significance of this study lies in both its 
theoretical and practical contributions. By 
validating the effectiveness of LLM-surprisal in 
Chinese L2 writing, this study not only introduces 
a new potential quantitative metric for the 
automated writing assessment system for Chinese 
but also provides empirical evidence supporting 
the cross-linguistic applicability of surprisal as a 
universal and robust metric for L2 writing 
assessment. Additionally, by analyzing what 
linguistic complexity LLM-surprisal specifically 
measures in Chinese L2 writing, this study further 
improves the interpretability of LLM-surprisal in 
modeling L2 acquisition. Practically, the study 
provides insights into how LLMs can be applied in 
SLA research, particularly in selecting models for 
low-resource languages like Traditional Chinese. 

2 Related Work 

2.1 LLM-surprisal and multilingual LLMs 

Mathematically, LLM-surprisal is defined as the 
negative log-probability of a word given its 
preceding context as computed by LLMs (Misra, 
2022). LLM-surprisal has shown a strong 
correlation with human language comprehension, 
with higher LLM-surprisal indicating greater 
processing difficulty. Behavioral studies found that 
the higher LLM-surprisal predicts longer reading 
times, as cognitive load increases when processing 
less predictable input (Goodkind & Bicknell, 2018; 
Rethi,2021). Neurocognitive further supports this 
relationship: words with higher surprisal elicit 
larger N400 amplitudes or increased P600 
responses, both of which are neural markers of 
processing difficulty (Aurnhammer et al., 2021; Li 
et al., 2024).  

The application of LLM-surprisal has also been 
extended to evaluate human language 
production. Recent studies suggest that LLM-
surprisal has merged as a promising metric for 
assessing both writing quality and language 
proficiency among English L2 learners. Tang 
(2024) analyzed essays written by English L2 
learners and found that as proficiency increases, 
learners convey more informative content while 
maintaining lower levels of unpredictability in their 
writing, as measured by entropy and LLM-
surprisal respectively. Cong's (2025) study also 
confirmed LLM-surprisal's predictive power in 
tracking English L2 writing development, showing 
that it numerically represents the interplay between 
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syntactic complexity and lexical diversity in 
English L2 interlanguage development. 

However, the robustness of LLM-surprisal as a 
metric for assessing Chinese L2 writing quality has 
not been sufficiently investigated. Furthermore, the 
typological difference between English and 
Chinese raises critical questions about whether 
LLM-surprisal captures comparable dimensions of 
linguistic complexity in Chinese L2 contexts. This 
dual gap highlights the need to examine both LLM-
surprisal’s cross-linguistic validity and its capacity 
to capture language-specific features in non-
English settings.  

The choice of LLM is important, as the 
effectiveness of LLM-surprisal is contingent upon 
the underlying language model's performance. 
Higher quality language models can produce more 
accurate surprisal estimates, which in turn better 
predict human behavior (Hao et al., 2020; Oh, 
2023). A key consideration in LLM selection is 
whether to use a multilingual or monolingual 
model, yet previous studies have reported mixed 
findings. While some studies suggest that English-
centric multilingual LLMs perform robustly across 
languages (Nguyen et al., 2023;  Joshi et al., 2024; 
Kargaran et al., 2024), Xu et al. (2023) found that 
multilingual LLMs rely on translation-like 
behavior for cross-linguistic generalization, which 
may introduce biases in language-specific tasks. 
Moreover, multilingual LLMs tend to perform 
significantly better on high-resource languages, 
particularly those using Latin scripts, but struggle 
with low-resource languages and complex 
linguistic structures (Alam et al., 2024; Shu et al., 
2024).  

Based on these findings, and given that 
Traditional Chinese is a low-resource language in 
LLM training, it remains unclear how multilingual, 
Chinese-general, and Traditional Chinese-specific 
LLM differ in their ability to capture Traditional 
Chinese linguistic complexity or to provide more 
reliable surprisal estimates. Addressing these gaps 
is critical for understanding the applicability of 
LLM-surprisal in assessing Chinese L2 writing. 

2.2 Classic linguistics indices in assessing 
Chinese L2 writing development 

Previous studies on Chinese L2 writing assessment 
primarily focus on syntactic and lexical complexity 
indices. Early Chinese L2 studies adapted T-unit 
analysis from English, but Jin (2007) found it 
ineffective for distinguishing proficiency levels 

due to Chinese’s topic-prominent structure. As an 
alternative, Jin (2007) proposed the Terminal 
Topic-Comment Unit (TTCU), which was later 
validated as a more effective measure (Jiang, 2013; 
Yu, 2021). Recent research has shifted from large-
grained to more fine-grained syntactic analysis. At 
the level of phraseological complexity, Lu & Wu 
(2022) identified noun-phrase complexity as a 
stronger predictor of L2 Chinese writing quality, 
while Hu et al. (2022) highlighted the importance 
of word-combination-based measures. Hao et al. 
(2024) found that fine-grained syntactic indices 
more effectively predicted Chinese L2 writing 
quality than large-grained ones. 

Lexical complexity indices have also been 
widely used in Chinese L2 writing evaluation. For 
example, Wang (2017) found that lexical errors, the 
number of unique word types, and the use of high-
frequency words were effective indicators of the 
writing performance of Chinese learners.  

It is worth noting that Chinese Proficiency 
Grading Standards for International Chinese 
Language Education (2021) (hereafter referred to 
as the Grade Standard), which defines the 
characters, vocabulary, and syntactic structures that 
Chinese learners at each proficiency level are 
expected to master, provides an effective tool for 
measuring Chinese L2 writing complexity. For 
example, Wang et al. (2022) used advanced-level 
vocabulary and grammar items from the Grade 
Standard to assess lexical and grammatical 
sophistication in Chinese L2 writing. They found 
that the use of advanced-level vocabulary and 
grammatical structure was strongly correlated with 
learner proficiency.  

Despite these findings, few studies have focused 
on lexical semantic diversity and its role in tracking 
Chinese L2 writing development. Different from 
lexical diversity measured by TTR (the ratio of 
unique word types of total words), lexical semantic 
diversity is a computationally derived measure of 
the variability in a word's meaning across different 
contexts (Hoffman et al., 2012). A word with a high 
semantic diversity value indicates that it appears 
across more varied, semantically distinct contexts. 
Berger et al. (2017) found that advanced learners of 
English have greater lexical semantic diversity 
values in their language production, suggesting 
they can use words across many semantic diverse 
contexts.  

Taken together, various linguistics complexity 
indices were used to characterize Chinese L2 
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learners’ writing development, which provides a 
strong foundation for testing the reliability and 
validity of the new indices. Among the classic 
indices, the role of Grade Standard and lexical 
semantic diversity needs to be further investigated. 
Moreover, while much attention has been given to 
lexical, phrasal, and sentence-level complexity in 
Chinese L2 writing, relatively little is known about 
whether discourse-level features can effectively 
distinguish different proficiency levels. LLM-
surprisal, which captures both the local and global 
unpredictability and naturalness based on prior 
context information, holds the potential to fill this 
gap by evaluating L2 quality at the discourse level 
or textual level that spans across a larger context.   

Furthermore, previous studies have emphasized 
the need for assessment metrics that are sensitive to 
Chinese-specific linguistic properties. Unlike 
English, a subject-prominent language, Chinese is 
a topic-prominent and pro-drop language, allowing 
subject omission in the discourse (Li and 
Thompson, 1976; Liu,2010). Chinese also has a 
logographic writing system, where each character 
represents a morpheme or meaning unit, in contrast 
to English’s alphabetic system (Wang, 2015). 
Additionally, Chinese lacks rich inflectional 
morphology found in English and instead relies on 
aspect markers and contextual cues (Klein et al., 
2000). These typological differences not only set 
Chinese apart from English but also shape how 
Chinese L2 learners implicitly organize their 
writings across lexical, syntactic, and discourse 
levels.  

Therefore, this study applied LLM-surprisal to 
Chinese L2 writing to examine its predictive power 
in assessing writing proficiency and its ability to 
capture Chinese-specific typological features. 
Additionally, we examined the interpretation of 
LLM-surprisal in the Chinese L2 writing context, 
and how this may differ from its established 
interpretations in English L2 assessment.  

3 Method 

3.1 Dataset 

We used the publicly available TOCFL Learner 
dataset1 (Lee et al., 2018), which collected written 
essays from the standardized Test of Chinese as a 
Foreign Language. This dataset includes 2,837 
essays written by learners from 46 different L1 

 
1 https://github.com/NYCU-NLP/TOCFL 

backgrounds, covering proficiency levels A2 to C1, 
as defined by the CEFR framework. Although each 
essay was originally scored on a 0-5-point scale by 
at least two Chinese teachers, only essays that 
scored above 3, which is indicative of sufficient 
proficiency to meet the passing grade, were 
included in this dataset. 

In the present study, we selected 65 essays from 
each CEFR level (A2, B1, B2, C1) to ensure 
balanced comparisons across proficiency groups. 
These essays were also carefully matched based on 
their scores and the learners' L1 backgrounds (see 
Appendix A for details). Given that LLM-surprisal 
can be influenced by text length, we also explicitly 
controlled for essay length in the experiment, with 
each essay containing approximately 200 Chinese 
characters. After applying these controls, we 
compiled a balanced dataset of 260 Traditional 
Chinese essays for subsequent analysis.  

3.2 LLM-surprisals calculation 

LLMs-surprisals were calculated as shown below 
in (1) (Misra, 2022; Cong, 2025).  

     𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤!) = −𝑙𝑜𝑔𝑃	(𝑤!|(𝑤"…!$")  (1) 

In order to answer whether LLM-surprisal can 
effectively distinguish different proficiency levels 
in Chinese L2 writing, we calculated mean LLM-
surprisal scores for each essay. Specifically, we 
first computed character-wise surprisal within each 
essay, and the surprisal scores of all characters were 
summed and then divided by the essay length (total 
number of characters). We hypothesize that low 
surprisal, as an indicator of low unpredictability, is 
associated with advanced learner’s writing, given 
that as proficiency increases, proficient learners 
tend to produce natural writings in their L2.  

Three transformer-based language models were 
selected to calculate the LLM-surprisal scores:  

1) bigscience/bloom-7b1 (Le Scao et al., 2023), 
a large-scale multilingual model trained on 45 
natural languages with 7.07 billion parameters;  

2) hfl/chinese-llama-2-7b (Cui et al., 2023), a 
pre-trained transformer model trained on both 
simplified and traditional Chinese language with 7 
billion parameters;  

3) Taiwan-LLM-7B-v2.1-chat (Lin and Chen, 
2023), an LLM exclusively tailored for Traditional 
Chinese with 7 billion parameters, with an 
emphasis on linguistic norms specific to Taiwan.  
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These selections enable us to compare how 
model architecture and training data of LLM affect 
their ability to model (Traditional) Chinese L2 
writing, especially in the low-resource language 
setting. All selected LLMs are publicly available 
on HuggingFace (https://huggingface.co/). We 
utilized minicons (Misra, 2022) to conduct a 
systematic evaluation of different LLMs' behavior.  

3.3 Classic Chinese complexity indices 

To tease apart what aspects of L2 Chinese the 
LLM-indices can characterize, and to examine the 
reliability and validity of the LLM-surprisal, we 
selected 16 well-established Chinese complexity 
indices, including character, lexicon, syntax, clause, 
discourse coherence, and text length indices. These 
indices have been validated in previous Chinese L2 
writing research and have also been incorporated 
into different linguistic complexity calculation 
tools (Cui et al., 2022; Sung et al., 2016). We used 
L2C-Rater (Wang & Hu, 2021) and CTAP for 
Chinese (Cui et al., 2022) to calculate these 
complexity indices. Additionally, we correlated 
these indices with LLM-surprisal to better 
understand what aspects of linguistic complexity 
are captured by LLM-surprisal in Chinese L2 
essays. 

We first calculated the cohesive complexity: 
first personal pronouns per token. As a pro-drop 
and topic-prominent language, Chinese allows the 
omission of subject pronouns when they can be 
inferred from context (Li & Thompson, 1989), a 
phenomenon known as zero anaphora. At the 
discourse level, this feature results in fewer overt 
first-person pronouns compared to non-pro-drop 
languages, which rely on pronoun retention to 
maintain coherence. Therefore, the appropriate use 
of first-person pronouns, particularly the 
management of pronoun dropping and retention, 
serves as a crucial indicator of learners' 
grammatical knowledge and their mastery of 
Chinese-specific discourse conventions. Moreover, 
it also allows us to examine whether LLM-surprisal 
is sensitive to discourse-level cohesive complexity.   

Given the Chinese L2 context, we also included 
the character, lexical, and syntactical 
sophistication indices based on the Grade 
Standard, which provides a standardized metric for 
assessing the difficulty of Chinese characters, 
words, and grammatical structure for Chinese L2 
learners. Higher levels indicate greater complexity 
or difficulty. For each essay, we calculated the 

average levels of characters, average levels of 
words, and average levels of grammar. Advanced 
Chinese learners are expected to produce writings 
with higher average levels in all three dimensions.  

In addition to lexical sophistication, we included 
lexical semantic diversity, following Cong (2025). 
We used the semantic diversity norms established 
by Chang & Lee (2018), which provide a semantic 
diversity value for each Chinese character. By 
mapping each character in the essays to its 
corresponding value using a dictionary-based 
approach, we calculated the mean lexical semantic 
diversity for each essay. Higher lexical semantic 
diversity is expected to be observed in advanced 
learners’ essays due to their ability to utilize diverse 
contextual words.  

For clausal complexity, we calculated four 
important phrases per simple clause: coordinate 
phrases, noun phrases, prepositional phrases, and 
verb phrases. Additionally, syntactical indices such 
as mean dependency distance and the height of the 
highest parse tree were also included to measure 
syntactical complexity. Moreover, we included 
text length indices such as mean length of 
sentences, clauses, and T-units, as well as the 
number of clauses per sentence, and number of T-
units per sentence to measure sentence production 
complexity. We expect that advanced Chinese 
learners show higher values for these clausal, 
syntactical, and text length indices in their essays.  

4 Results  

Statistical analyses were conducted in R (R Core 
Team, 2023). The results of the Shapiro–Wilk test 
and Levene's test on all dependent variables 
suggested that the data violates the assumptions 
(normality and homogeneity of variance) for 
parametric tests. Therefore, we used non-
parametric statistical tests throughout the paper. 
The alpha level is 0.05.  

4.1 LLM-surprisal’s efficiency in modeling 
Chinese L2 writing development  

 In order to answer whether LLM-surprisal can 
differentiate proficiency levels in Chinese L2 
writing, we conducted three separate Kruskal-
Wallis tests to examine the differences in LLM-
surprisal across different proficiency levels. Effect 
sizes for the statistical tests are reported in Table 1. 

The result showed significant differences in 
LLM-surprisal scores across proficiency levels for 
all three LLMs (Bloom: χ2=33.39, p<.000, 
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𝜂2=0.12; Chinese-LLaMA: χ2=32.4, p<.000, 
𝜂2=0.12; Taiwan-LLM: χ2=62.81, p<.000, 
𝜂2=0.23), indicating that LLM-surprisal is 
effective in distinguishing between L2 proficiency 
levels. Among the three LLMs, Taiwan-LLM 
demonstrated the largest effect size, suggesting its 
greater sensitivity to proficiency differences.  

As a post-hoc analysis, to identify the specific 
proficiency levels at which the LLM-surprisal 
indices become informative, we conducted Mann-
Whitney U tests on LLM-surprisal scores between 
adjacent proficiency levels. The results are 
visualized in Figure 1. Detailed descriptive 
statistics can be found in Appendix B. 

 LLM-surprisal scores calculated by Bloom and 
Chinese-LLaMA showed a similar trend across 
different proficiency levels. That is, as proficiency 
levels increase from A2 to B2 level, the mean 
LLM-surprisal scores slightly increase. However, 
no statistically significant difference was found in 
LLM-surprisal scores between the B1 and B2 
levels (p > .05).  Notably, the C1 level showed 
significantly lower LLM-surprisal scores than the 
other proficiency levels. In summary, LLM-
surprisal scores calculated by Bloom and Chinese-
LLaMA exhibited less distinct separation between 
adjacent levels, but both confirmed that advanced 
Chinese learners produce essays with the lowest 
LLM-surprisal score. 

Taiwan-LLM showed the most consistent LLM-
surprisal trends across proficiency levels, with 
surprisal scores decreasing significantly as 
proficiency increased. All pairwise comparisons 
were statistically significant (p < .05). These results 
support our hypothesis. That is, Taiwan-LLM can 
capture the surprisal scores difference across all 

proficiency levels. In other words, Taiwan-LLM is 
more sensitive to the subtle variations in learner 
writing at different proficiency stages. 

In summary, these findings confirm that LLM-
surprisal effectively differentiates proficiency 
levels in Chinese L2 writing, supporting its cross-
linguistic applicability despite typological 
differences between Chinese and English. Across 
three LLMs, essays written by advanced Chinese 
learners (C1) consistently exhibited the lowest 
surprisal scores. On the other hand, Taiwan-LLM 
outperformed both Bloom and Chinese-LLaMA, 
given that it shows the largest effect size in the 
Kruskal-Wallis tests and demonstrated a more 
distinct separation between adjacent proficiency 
levels. 

4.2 Interpreting LLM-surprisal in Chinese 
L2 writing context 

To further validate the effectiveness of LLM-
surprisal and identify which aspects of linguistic 
complexity it captures in Chinese L2 writing, we 
conducted a correlation analysis between LLM-
surprisal scores and 16 classic complexity indices.  

Table 1 provides the results of Kruskal–Wallis 
tests on three LLM-surprisal indices and 16 classic 
linguistic complexity indices. We found that most 
classic indices showed generally stronger effects 
than the new LLM-surprisal indices, suggesting 
that the classic complexity measures at the levels 
of characters, lexicon, phrases, coherence, syntax, 
and text length remain robustly informative in 
indexing Chinese L2 writing development. 

Figure 2 shows a heatmap visualization of 
Spearman's rank correlations between LLM-
surprisal scores and 16 classic complexity indices.  

 
Figure 1: Paired comparisons across four proficiency levels (A2–C1).  Significance notation: *p < 
0.05; **p < 0.01; ****p < 0.0001; ns: p > 0.05. 
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At the discourse coherence level, all LLM-
surprisal scores were positively correlated with 
first personal pronouns per token, indicating that 
essays with lower surprisal scores tend to have 
fewer first personal pronouns per token, that is, less 
first personal pronouns repetition in the essay. 

At the character level, all LLM-surprisals were 
strongly negatively correlated with average 
character levels, indicating that essays with lower 
mean surprisal scores had higher average character 
levels. Taiwan-LLM surprisal showed the strongest 
correlation coefficient, which means Taiwan-LLM 
is more effective at capturing character complexity 
than the other two LLMs.  

At the lexicon level, all LLM-surprisals were 
strongly negatively correlated with average word 
levels and lexical semantic diversity, indicating that 
essays with higher mean surprisal scores had 

higher average word levels and higher lexical 
semantic diversity. Taiwan-LLM also showed the 
highest correlation coefficient here.  

Notably, only Taiwan-LLM surprisal scores 
correlated with clausal, syntactic, and sentence 
complexity indices. First, Taiwan-LLM surprisal 
scores were strongly negatively correlated with 
prepositional phrases per simple clause, noun 
phrases per simple clause, and coordinate phrases 
per simple clause. That indicated that essays with 
lower mean surprisal scores had more complex 
phrases per clause. Second, Taiwan-LLM surprisal 
scores were strongly negatively correlated with 
mean dependency distance and the height of the 
highest parse tree, indicating that essays with lower 
surprisal scores exhibited higher syntactic 
complexity. Third, Taiwan-LLM surprisal scores 
also strongly negatively correlated with the mean 
length of sentence, clause, and T-units, as well as 
number of clauses per sentence.  

We also found strong positive correlations 
within LLMs-surprisal scores. That is not 
surprising, since they are all transformer-based 
decoder models and share the core architecture. 
Besides that, Taiwan-LLM showed a higher 
correlation coefficient with Chinese-LLaMa than 
with Bloom. The stronger correlation may be 
attributed to the overlapping Traditional Chinese 
training data within these two Chinese LLMs. 

Taken together, LLM-surprisal can capture 
linguistic complexity at the levels of coherence, 
characters, lexicon, phrases, syntax, and text length 
in Chinese L2 writing. 

5 Conclusions and Discussions 

In this study, we attempted to answer whether 
LLM-surprisal can serve as an effective and 
interpretable metric for L2 writing assessment 
across languages, and whether multilingual LLMs 
can effectively handle low-resource languages, 
such as traditional Chinese text.  

Consistent with our hypothesis, we found that 
LLM-surprisal can effectively differentiate essays 
written by Chinese L2 learners across different 
proficiency levels. Specifically, advanced Chinese 
L2 learners exhibit lower surprisal values in their 
essays compared to less proficient learners. In line 
with  Cong's (2025) work on English L2 writing, 
the present study demonstrates that LLM-surprisal 
is also effective in a typologically distinct language, 
such as Chinese, thereby further supporting its 
cross-linguistic robustness as a measure of 

 Index χ2 (3) Sig Eta2 
 
LLM- 
surprisal 
scores 
  

Bloom surprisal 33.392 0.000 0.119 
Chinese-LLaMA 
surprisal 32.397 0.000 0.115 
Taiwan-LLM 
surprisal 62.808 0.000 0.234 

Classic 
index: 
cohesive 
complexity 

First Personal 
Pronouns per Token 
 

 
94.124 

 

 
0.000 
 

0.356 
 

Classic 
index: 
character 

Average Character 
Levels 
 

159.049 
 

0.000 
 

0.610 
 

Classic 
indices: 
lexicon 
 

Lexical Semantic 
Diversity 98.308 0.000 0.372 
Average Word 
Levels 165.828 0.000 0.636 

 
Classic 
indices: 
clausal 
complexity 
 
  

Coordinate Phrases 
per Simple Clause 70.698  0.000  0.264  
Noun Phrases per 
Simple Clause 77.881  0.000  0.293  
Prepositional 
Phrases per Simple 
Clause 

29.662 
  

0.000 
  

0.104 
  

Verb Phrases per 
Simple Clause 30.388  

 
0.000  

 
0.107  

Classic 
indices: 
syntactic 
complexity 
  

Mean Dependency 
Distance 69.672  0.000  0.260  
The Height of the 
Highest Parse Tree 46.281  0.000  0.169  
Average 
Grammatical Levels 9.317  0.025  0.025  

 
 
 
Classic 
indices:  
text length 
 
 
 
 
  

Mean Length  
of Sentences  112.998 0.000 0.430 
Mean Length  
of Clauses  92.557 0.000 0.350 
Mean Length  
of T-Units  132.487 0.000 0.506 
Number of Clauses 
per Sentence 59.361  0.000  0.220  
Number of T-Units 
per Sentence  20.253  0.000  0.067  

Table 1:  Efficacy comparisons between the classic 
and the LLM-Surprisal indices in modeling Chinese 
L2 writing proficiency and development. 
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linguistic proficiency. These findings align with 
previous studies that demonstrated the cross-
linguistic universality of surprisal effects in 
naturalistic reading (Wilcox et al., 2023; Xu et al., 
2023). Extending this line of work, the present 
study broadens the application of LLM-surprisal 
by applying it to modeling language production, 
particularly within the contexts of automated L2 
writing assessment and L2 acquisition modeling. In 
sum, this study highlights the potential of LLM-
surprisal as a universal and effective metric for 
modeling human language behavior across both 
receptive (comprehension) and productive (writing) 
modalities. 

Could the cross-linguistic efficacy of LLM-
surprisal lie in its ability to capture multiple 
dimensions of linguistic complexity, including 
language-specific features? L2 learners' writing 
development is complex and encompasses multiple 
facets of language complexity. Cong's (2025) study 
on English L2 writing showed that LLM-surprisal 
functions as an integrated measure, capturing both 

lexical diversity and syntactic complexity. We 
speculate that LLM-surprisal may serve as a proxy 
for evaluating both linguistic complexity and the 
naturalness of learners’ essays in the Chinese L2 
writing context. Our correlation analysis indicated 
that LLM-surprisal computed by Taiwan-LLM 
significantly showed a significant correlation with 
a wide range of linguistic complexity indices (see 
Figure 2), suggesting its capacity to model 
language complexity at the character, lexical, 
syntactic, clausal, sentential, and discourse levels. 
In other words, while LLM-surprisal can capture 
similar linguistic complexities in both English and 
Chinese L2 contexts, it also uniquely showed 
sensitivity to certain characteristics specific to 
Chinese, such as character complexity and 
cohesive complexity. For example, we found that 
essays with lower surprisal scores exhibit reduced 
usage of first-person pronouns, a characteristic of 
pro-drop languages such as Chinese where subject 
pronouns can be omitted when implied by the 
context. Therefore, this study suggests that LLM-

 
Figure 2: Correlations coefficients heatmap of LLMs-surprisals and 16 selected classic linguistic complexity 
indices. Darker colors indicate stronger correlations. Insignificant cells are left blank. 
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surprisal can capture the appropriate use of first-
person pronouns following Chinese-specific 
discourse coherence conventions. 

With the rapid development of LLMs, it has 
become increasingly important to understand how 
multilingual LLMs and monolingual LLMs differ 
in their performance across tasks. Previous studies 
showed mixed findings on whether multilingual or 
monolingual language models perform better 
(Goyal et al., 2020; Rönnqvist et al., 2019; 
Kargaran et al., 2024). In the present study, we 
utilized three different LLMs (Bloom, Chinese-
LLaMa, Taiwan-LLM) to calculate the mean 
surprisal scores of each essay written in Traditional 
Chinese. The three LLMs feature different 
architectural designs and were trained on 
progressively larger Traditional Chinese data, 
allowing us to further investigate LLM’s 
performance in low-resource languages. Among 
the tested models, Taiwan-LLM exhibited the best 
performance, characterized by the largest effect 
sizes, clear distinctions between different 
proficiency levels, and strong correlations with 
multiple classic language complexity indices. In 
contrast with Chinese-general LLM, Taiwan-LLM 
is trained on Traditional Chinese data with diverse 
textual sources, and can better capture linguistic 
features in the Chinese learners’ essays written in 
Traditional Chinese. In short, LLM selection is 
indeed crucial for low-resource languages, as the 
performance of these models heavily depends on 
the availability and quality of training data specific 
to such languages. Our findings highlight that 
monolingual LLMs outperformed multilingual 
LLMs in the low-resource language setting. 

Why does the Taiwan-LLM outperform the 
other two models? The strong performance of the 
Taiwan-LLM may initially raise concerns about 
potential data overlap or overfitting, especially 
given its pretraining on traditional Chinese texts. 
However, we argue that the observed outstanding 
performance cannot be fully attributed to such data 
familiarity. Our correlation analysis provides 
evidence that the LLM-surprisal estimates reflect 
more than mere memorization of surface patterns. 
Specifically, Taiwan-LLM surprisal scores showed 
significant correlations with a broad range of 
linguistic complexity indices, including lexical 
diversity, syntactic depth, and discourse coherence. 
These correlations suggest that the model captures 
meaningful structural and functional aspects of 
language that are relevant to L2 proficiency, rather 

than simply reproducing patterns from potentially 
familiar training data. In this sense, Taiwan-LLM’s 
strongest performance likely reflects a genuine 
sensitivity to various linguistic complexity indices 
of proficient writing, thereby reinforcing the 
interpretability and potential utility of LLM-
surprisal in L2 assessment contexts. 

This study has important implications in 
different aspects. First, this study introduces, 
validates, and demystifies LLM-surprisal as a 
novel and robust tool for analyzing linguistic 
complexity in Chinese L2 writing. Given its 
powerful ability to capture Chinese-specific 
features, this study expands our methodological 
toolkit for automatic Chinese L2 essay scoring or 
writing assessment. This study also advances 
computational approaches to modeling L2 
acquisition and human language behavior. We not 
only demonstrate LLM-surprisal’s cross-linguistic 
utility in modeling language production but also 
provide insights into the role of LLM architecture 
and training data in modeling linguistic complexity 
in the low-resource language setting. 

6 Limitations 

This study provides new insights into LLM-
surprisal as a cross-linguistic metric for L2 writing 
assessment. However, several limitations should be 
acknowledged. First, the number of essays per 
proficiency level is limited. The writing genres 
were also not well-controlled. This is attributed to 
the inherent design of the Test of Chinese as a 
Foreign Language (TOCFL). This standardized 
test assigns different genres to different proficiency 
levels, for example, practical messages and picture-
based storytelling at A2, functional writing and 
letters at B1–B2, and argumentative or report-style 
essays at C1. Genre variability may introduce 
differences in rhetorical structure, topical content, 
and linguistic features, potentially confounding the 
relationship between LLM-surprisal and 
proficiency, as different genres have distinct lexical 
and syntactic characteristics. Although our results 
showed the robust effectiveness of LLM-surprisal 
in evaluating L2 essay proficiency with a broad 
spectrum of genres, the nature of the dataset and the 
variability of writing tasks in this study restrict our 
ability to isolate genre-specific effects. Future 
research should investigate the impact of genre by 
analyzing essays from a single genre across 
multiple proficiency levels and using larger, more 
balanced datasets 
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We maintain that our correlation analysis 
provides an approach to unpack LLM-surprisal, 
improving LLMs’ interpretability and transparency 
in L2 modeling. While the Taiwan-LLM 
demonstrated particularly strong performance, 
questions about the potential overlap between its 
training data and the learner essays remain outside 
the scope of our current investigation. Future 
studies should evaluate model performance on out-
of-domain writing samples and systematically 
investigate how different pretraining corpora 
influence surprisal estimates. In addition, fine-
tuning multilingual models on controlled datasets 
may help disentangle the effects of language 
exposure, model architecture, and data familiarity 
in surprisal-based assessments. 

Another limitation lies in our exclusive focus on 
written text, which leaves open questions about 
how LLM-surprisal operates in spoken or 
multimodal L2 contexts. LLM-surprisal can also be 
measured at phoneme or utterance level. Previous 
studies have shown that disfluencies tend to occur 
before high-surprisal and syntactically complex 
elements (Dammalapati et al., 2021), and words 
with higher surprisal are associated with longer 
articulation durations (Lazic et al., 2025). Future 
studies should explore the applicability of surprisal 
in L2 spoken data and the effectiveness of LLM-
surprisal on automatic phonetic evaluation of L2 
speech. 
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Appendix A. L1 Backgrounds Distribution 
of L2 Learners in the Writing Dataset 

L1 of L2 
Learners 
  

Number 
of Essays 
per Level  

Total 
number of 

essays   
Percentage 
of Dataset   

English 18 72 27.69% 
Vietnamese 14 56 21.54% 
Japanese 13 52 20.00% 
Korean 9 36 13.85% 
Indonesian 6 24 9.23% 

French 2 8 3.08% 

Hungarian 1 4 1.54% 
Russian 1 4 1.54% 

Swedish 1 4 1.54% 

Appendix B. Summary of LLM-Surprisal 
Scores, Mean (SD) for Chinese L2 Essays 
across Four CEFR Proficiency Levels 

  Bloom Chinese-LLaMA Taiwan-LLM 

A2 3.45(0.37) 3.06 (0.39) 1.64 (0.18) 
B1 3.63(0.33) 3.16 (0.28) 1.59 (0.17) 
B2 3.67(0.45) 3.18 (0.35) 1.51 (0.17) 
C1 3.17(0.62) 2.85 (0.38) 1.34 (0.25) 
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Abstract

Animacy is a well-documented factor affect-
ing language production, but its influence on
Language Models (LMs) in complex structures
like Object Relative Clauses (ORCs) remains
underexplored. This study examines LMs’ sen-
sitivity to animacy in English ORC structure
choice (passive vs. active) using surprisal-
based and prompting-based analyses, along-
side human baselines. In surprisal-based anal-
ysis, DistilGPT-2 best mirrored human prefer-
ences, while GPT-Neo and BERT-base showed
rigid biases, diverging from human patterns.
Prompting-based analysis expanded testing to
GPT-4o-mini, Gemini models, and DeepSeek-
R1, revealing GPT-4o-mini’s stronger human
alignment but limited animacy sensitivity in
Gemini models and DeepSeek-R1. Some LMs
exhibited inconsistencies between analyses, re-
inforcing that prompting alone is unreliable
for assessing linguistic competence. Corpus
analysis confirmed that training data alone can-
not fully explain animacy sensitivity, suggest-
ing emergent animacy-aware representations.
These findings underscore the interaction be-
tween training data, model architecture, and
linguistic generalization, highlighting the need
for integrating structured linguistic knowledge
into LMs to enhance their alignment with hu-
man sentence processing mechanisms.

1 Introduction

Animacy belongs to a set of semantic factors known
to affect language production due to its central-
ity in human communication (Cooper and Ross,
1975). Previous studies have found that the ani-
macy status of nouns affects how structures are
formed. Specifically, one commonly investigated
structure is object relative clauses (ORC). Many
studies found that ORCs with animate head nouns
are more likely to be produced in the passive struc-
ture instead of the active structure (e.g., Gennari
et al., 2012; Humphreys et al., 2016; Wu et al.,

2022). For example, English speakers overwhelm-
ingly prefer passive structures like (1-a) in Table
1 over their active counterparts (1-b), whereas in
describing an inanimate target, (1-c) and (1-d) are
equally probable.

The concept of animacy—distinguishing be-
tween living and non-living entities—is rooted
in human beings’ perceptual, cognitive, and lin-
guistic development (Gelman, 1981; Leslie, 1994;
Rakison and Poulin-Dubois, 2001). However,
transformer-based pre-trained language models
(LMs) learn solely from text, raising the question
of whether they exhibit human-like sensitivity to
animacy when processing complex syntactic struc-
tures like ORCs, or if their behavior differs due to
their text-based learning paradigm.

Recent studies have begun exploring this ques-
tion, finding that while some LMs demonstrate sen-
sitivity to animacy constraints, this varies across
models (Hanna et al., 2023; Kauf et al., 2023; Yun
et al., 2023), leaving open the question of whether
LMs encode animacy as an abstract linguistic fea-
ture or simply reflect statistical patterns in text.
Particularly relevant to the current study, Yun et
al. (2023) reported ChatGPT-3.5’s higher proba-
bility of generating active ORCs when the head
noun was inanimate and the agent noun was ani-
mate than when both were animate. However, their
study did not fully control for all possible animacy
configurations of head and agent nouns. And the
rapid advancement of LMs highlights the need for
continued research to refine our understanding of
their linguistic processing.

To address the gap, we use psycholinguistically
guided minimal pairs to systematically test how an-
imacy influences active vs. passive ORC structure
choice across a full list of animacy conditions: AA
(animate head noun + animate agent), IA (inani-
mate head noun + animate agent), AI (animate head
noun + inanimate agent), and II (inanimate head
noun + inanimate agent). This approach allows
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No. Cond. Head
Noun

Agent
Noun Structure Example

(1-a) AA animate animate passive the man who’s being punched by the woman
(1-b) AA animate animate active the man that the woman is punching
(1-c) IA inanimate animate passive the sandbag that’s being punched by the woman
(1-d) IA inanimate animate active the sandbag that the woman is punching

Table 1: Sample ORCs varied by head noun animacy.

us to determine whether LMs replicate humanlike
animacy effects or diverge from human processing,
providing insight into the role of animacy in LMs’
ORC structure selection.

2 Related Works

2.1 Animacy in object relative clauses

One of the widely studied structures affected by
animacy in psycholinguistics is the object relative
clause (ORC): the animacy status of nouns involved
in the ORC was found to affect whether the ORC
is produced in passive or active structures in many
languages (e.g., Gennari et al., 2012; Hsiao and
MacDonald, 2016; Rodrigo et al., 2018; Wu et al.,
2022). Specifically, the passive ORC is strongly
preferred when both the head noun and the agent
noun are animate (Condition AA), but this prefer-
ence diminishes when the head noun is inanimate
and the agent noun remains animate (Condition
IA).

One explanation for the preference for passive
ORCs is the animacy-based accessibility mecha-
nism (Gordon et al., 2001), which suggests that
animate nouns are conceptually salient and more
likely to take the subject role in ORCs, leading
to a passive preference (J. K. Bock and Warren,
1985). Alternatively, the similarity-based competi-
tion mechanism (K. Bock et al., 1992; McDonald
et al., 1993) argues that two animate nouns (e.g.,
man and woman in Table 1) create higher cogni-
tive load than inanimate-animate pair (e.g., sand-
bag and woman) due to conceptual competition
in working memory. To ease this load, speakers
prefer passives, which postpone the agent noun
(Gennari et al., 2012). While both mechanisms
predict animacy effects on ORC structure choice,
they differ in their explanations for the passive pref-
erence in animate-head ORCs. However, past stud-
ies have only tested two (AA, IA: Gennari et al.,
2012; Hsiao and MacDonald, 2016; Humphreys
et al., 2016; Wu et al., 2022) or three (AA, IA, AI:
Rodrigo et al., 2018) conditions, leaving gaps in

understanding the full scope of animacy effect.
Which structure would speakers prefer when pro-

ducing ORCs with inanimate head nouns and inan-
imate agents (condition II)? Would they equally
choose passive or active because there are no ani-
mate head nouns urgently in need of a subject role?
Or would they still strongly favor passives because
due to the cognitive load imposed by competition
between two similar inanimate nouns? Due to the
lack of studies incorporating all four animacy con-
ditions, the relationship between animacy status
and ORC structure preference is not clear. This
gap extends beyond psycholinguistics to LMs, as
investigating animacy-driven structure choices in
LMs can provide insights into whether they reflect
human-like processing or rely on different under-
lying mechanisms. Conversely, exploring these
patterns in LMs may also offer predictions about
what to expect in the underexplored conditions,
guiding future psycholinguistic research. To bridge
these gaps, the current study first exposes human
participants to all four animacy conditions to es-
tablish a baseline. This not only fills a critical gap
in psycholinguistics but also lays the groundwork
for evaluating LMs’ animacy-sensitivity in making
syntactic decisions in the following steps.

2.2 Animacy in LMs

The role of animacy in language modeling has
been a topic of interest in computational linguistics.
Early work by Elman (1990) showed that a simple
recurrent network trained on synthetic language
data formed distinct clusters for animate and inani-
mate entities, suggesting that basic LMs developed
animacy-sensitive representations.

More recent studies have examined how animacy
is integrated into broader linguistic behavior in
LMs. Kauf et al. (2023) found that LMs exhibit
sensitivity to animacy as it relates to selectional
constraints, indicating that animacy is integrated
into their broader event knowledge. Hanna et al.
(2023) found that LMs can infer animacy from con-
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textual cues and adjust their processing accordingly,
though not always to the same extent as humans.

Several studies have also explored how animacy
affects syntactic structure choice. Futrell and Levy
(2018) found that recurrent neural network lan-
guage models (RNN LMs) learn animacy as an
abstract feature that influences word order, though
its effect was weaker and less consistent than other
factors like constituent length. In a more targeted
investigation, Yun et al. (2023) prompted GPT-3.5
with sentence fragments and observed significantly
more active ORCs when the head noun was inan-
imate than when it was animate, suggesting that
animacy influences structural choices in LMs. Pa-
padimitriou (2024) found that animacy is a strong
predictor of subjecthood in mBERT’s embedding
space: animate nouns were more likely to be clas-
sified as agents, even when controlling for syntac-
tic role. This finding supports the idea that LMs
encode subjectivity in gradient and functionally-
driven ways, with animacy as a core dimension.

Building on this line of research, our study goes
beyond the typical binary manipulation of head
noun animacy in ORC configurations. We intro-
duce a four-way animacy design that systemati-
cally varies both head noun and agent animacy
across conditions (AA, IA, AI, II). Our investiga-
tion consists of three complementary experiments:
(1) surprisal-based analysis, (2) training corpus ex-
amination, and (3) direct prompting-based analysis.
Our goal is to determine whether LMs show an-
imacy sensitivity in ORC processing, and if so,
whether their animacy effects reflect an emergent
linguistic pattern or are merely artifacts of train-
ing data biases. We hypothesize that (1) LMs will
exhibit systematic surprisal-based animacy effects,
but with model variations, (2) corpus distributions
alone will not fully account for LMs’ structure
choices, and (3) prompting analysis will reveal
animacy-driven patterns in ORC selection for some
LMs, if not all.

3 Psycholinguistic Data

Design Fruitful previous studies, including Gen-
nari and MacDonald (2009) with 82 native English
speakers, Montag and MacDonald (2015) with 30,
and Humphreys et al. (2016) with 16, have consis-
tently found that animacy affects the choice be-
tween passive and active ORCs, particularly in
Conditions AA and IA, using similar picture-based
elicitation tasks. In the current study, we used 20

illustrated scenes created with Procreate and sup-
plemented with licensed clip art (See Appendix A
for an example). Each scene depicted four dis-
tinct events, all involving the same action (e.g.,
hitting, pulling, pushing, chasing, lifting), vary-
ing by the animacy of the agent and patient: AA:
Animate Agent – Animate Patient (e.g., a woman
lifting a boy); IA: Animate Agent – Inanimate Pa-
tient (e.g., a woman lifting a box); AI: Inanimate
Agent – Animate Patient (e.g., balloons lifting a
boy); II: Inanimate Agent – Inanimate Patient (e.g.,
balloons lifting a box). We also included 50 filler
scenes depicting unrelated events (e.g., riding bikes,
playing cards), designed to elicit a range of struc-
tures including simple and subject relative clauses.
Participants viewed the images and responded to
questions. Their choice of active or passive rela-
tive clause structure was analyzed. As a proof-of-
concept psycholinguistic study, five adult native
English speakers each produced twenty responses.
Their structure choices were coded accordingly.
This preliminary study establishes a human base-
line for evaluating LM behavior, as no prior work
has systematically investigated all four animacy
configurations of ORCs.

Result Our preliminary results align with previ-
ous research in two key ways: (1) a general pref-
erence for passives overall (Gennari et al., 2012;
Montag et al., 2017), and (2) higher passive usage
in AA and AI compared to IA (e.g., Humphreys
et al., 2016; Rodrigo et al., 2018). As shown in
Figure 1, passive structures were strongly preferred
in AA (96%) over IA (63%), with a significant
difference (B = 2.69, p = 0.02∗) confirmed by
binomial mixed-effects logistic regression. AI also
showed a high passive rate (95%), comparable
to AA, consistent with findings by Rodrigo et al.
(2018) in Spanish and Japanese. Our study further
provides new insights into the II condition. While
II did not differ significantly from other conditions
(p > 0.5), its passive rate (82%) was noticeably
higher than IA (63%), suggesting that even with-
out an animate noun, similarity-based competition
between two inanimates may still promote passive
use.

These results reinforce the complex role of ani-
macy in ORC structure choice. The strong passive
preference in AA and AI aligns with the expec-
tation that animate head nouns favor the subject
position, making passivization the preferred struc-
ture (Gennari et al., 2012; Rodrigo et al., 2018).
The IA condition, which lacks both an animate
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Figure 1: Human responses: ORC structure choice by
animacy condition. AA represents ORCs with animate
head noun and animate agent; IA: inanimate head noun,
animate agent; AI: animate head noun, inanimate agent;
II: inanimate head noun and agent.

head noun and animacy congruence, showed the
lowest passive preference, suggesting that the ab-
sence of these factors results in weaker motivation
for passivization. The II condition, despite the
absence of an animate noun, exhibited a higher pas-
sive rate than IA, suggesting that similarity-based
competition may still influence structure choice
even among inanimate referents. While we ac-
knowledge the limitations of our sample size1, the
clear alignment of our findings with prior research
and the observed significant effects suggest that an-
imacy effects in ORC processing extend beyond a
simple binary contrast and involve a more complex
interaction between competition and accessibility
mechanisms.

4 LMs and Experiments

4.1 Surprisal-based analysis

Dataset Following our psycholinguistic paradigm
and previous research (e.g., Gennari and MacDon-
ald, 2009; Humphreys et al., 2016), we designed
experimental English prompt minimal pairs (Cong,
2022), each consisting of a written context story
and a pair of target sentences. Expanding on our
psycholinguistics experiment, we developed a set
of 384 prompt pairs, with 96 pairs per animacy
condition. Each pair includes both a passive ORC
target sentence and its active counterpart. For in-

1Our ongoing psycholinguistic research with 35 partici-
pants replicates these findings. Details will be published in a
forthcoming paper.

stance, in Table 2, the target sentences (passive:
“The baby that is held by the father is crying”; ac-
tive: “The baby that the father holds is crying”)
both serve as grammatically valid answers to the
final question in the context story. We hypothesize
that LMs will select different target sentences de-
pending on the animacy condition, despite potential
variations due to model differences.

Experimental Design and LMs We evaluated
the performance of various LMs on ORCs’ struc-
ture choice: DistilGPT-2 (Sanh et al., 2019), GPT-
Neo (Black et al., 2021; Gao et al., 2020), BERT-
large-uncased (Devlin et al., 2018), and the BERT-
base-uncased (Devlin et al., 2018). See Table 3
for summary. These differences, including size,
architecture (masked vs. causal), and training data
diversity, are likely to influence how each LM pro-
cesses syntactic structure and animacy-sensitive
patterns, and thus are important for interpreting
model–human comparisons.

In the current analysis, the preference for a par-
ticular answer is measured by the surprisal score
of each target sentence given by LMs (Cong et al.,
2023; Hale, 2001; Michaelov and Bergen, 2022).
For GPT-type LMs, surprisal was calculated as the
negative log probability of the word given left con-
text (Levy, 2013). We computed the surprisal score
at the sentence level. When the LMs tokenizer
splits the target in more than one token, we take the
average of the surprisal score of its subtokens (See
Appendix B for out-of-vocabulary (OOV) ratios
by animacy condition for each LM). For BERT-
type models, which are bidirectional and trained
via a masked language modeling objective, sur-
prisal was calculated as the sum of the negative log
probabilities of each word, conditioned on both its
preceding and following context—normalized by
the total number of tokens in the sentence. This
sentence-level surprisal aligns with BERT’s bidi-
rectional training: unlike autoregressive models
that rely solely on left context, denoising autoen-
coding models like BERT and RoBERTa are ex-
plicitly trained to make word predictions based on
both left and right contexts. Our surprisal calcu-
lation for BERT therefore mirrors its underlying
architecture and learning objective, supporting a
more principled comparison with GPT-style mod-
els. To keep consistency in operation, we used
minicons (Misra, 2022) for both BERT and GPT-
type LMs, specifically the scorer module for the
masked language models such as BERT (i.e., the
scorer.MaskedLMScorer class), and standard au-
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Context Story Structure Target Sentence
There are two babies, a mother, and a father in the
scene. The father holds the crying baby. The mother
holds the smiling baby. Which baby is crying?

Passive The baby that is held by the father is cry-
ing.

Active The baby that the father holds is crying.

Table 2: Example prompt pair for surprisal analysis.

Model Arch. Size Training
Data

BERT-base masked 110M BooksCorpus,
Wikipedia

BERT-large masked 340M BooksCorpus,
Wikipedia

DistilGPT-2 causal 82M OpenWebText
GPT-Neo causal 1.3B The Pile

Table 3: Summary of LMs used in the surprisal-based
analysis.

toregressive language models such as DistilGPT-2
(i.e., the scorer.IncrementalLMScorer class). When
the passive structure in a prompt pair receives a
lower mean surprisal score than its active counter-
part, we coded the outcome variable choose-psv as
1, otherwise as 0.

For statistical analysis, binomial logistic mixed-
effects model was fitted for each LM with choose-
psv as the dependent variable, Animacy as the main
predictor (categorical). The random-effects struc-
ture included only Items. The LME4 package in
R (Bates, 2014) was used for statistics modeling.
Post-hoc comparisons were conducted with the em-
means package (Lenth, 2019), applying Tukey ad-
justments for pairwise comparisons. Our imple-
mentation is available on our Github page.

Results Figure 2 shows structure selection rates
by animacy for each LM, with darker bars indi-
cating passive selection and lighter bars represent-
ing active selection. Several key patterns emerged.
First, different LMs exhibited distinct structural
biases: BERT-large (B = 0.79, p < 0.001), BERT-
base (B = 2.71, p < 0.001), and DistilGPT-2
(B = 0.92, p < 0.001) showed overall strong
passive preference, whereas GPT-Neo significantly
favored actives across conditions, shown by its sig-
nificant negative intercept (B = −0.78, p < 0.01).

Next, for each LM, the results (see Figure 2)
showed significant animacy effects for BERT-large
(p < 0.001), DistilGPT-2 (p < 0.01), and GPT-
Neo (p < 0.001), while BERT-base did not reach

significance (p = 0.06). BERT-large showed sig-
nificantly lower passive selection rates in IA and
AI conditions compared to AA and II, suggesting
that BERT-large is less likely to choose passives
when the head noun and agent differ in animacy
features.

DistilGPT-2 chose significantly fewer passives
in IA, indicating an increased selection for actives
when the head noun is animate and the agent is
inanimate. GPT-Neo, unlike other models, showed
a stronger passive preference in IA compared to AI
and II. BERT-base, due to its exceptionally high
passive selection rates across all conditions, did not
exhibit significant effect of animacy.

To evaluate the alignment between LMs and
human responses, we conducted Pearson corre-
lation analyses and RMSE (Root Mean Square
Error) calculations between each LM’s passive
selection rates and human data. The results re-
ported DistilGPT-2’s highest Pearson correlation
(r = 0.98) and lowest RMSE (0.14), suggesting
closer alignment with human patterns. GPT-Neo
showed the lowest Pearson correlation (r = −0.66)
and highest RMSE (0.55), indicating its substantial
divergence from human patterns. Figure 3 visu-
alizes passive selection rates across animacy con-
ditions for each LM, with the red line represent-
ing human response patterns from psycholinguistic
data. The figure further highlights DistilGPT-2’s
closer alignment to human behavior (navy blue
line), while GPT-Neo exhibits the greatest diver-
gence (light blue line).

4.2 OpenWeb corpus analysis

While surprisal-based experiment found varying
degrees of animacy sensitivity in LMs, an open
question remains: Is this sensitivity an emergent
linguistic property or merely a reflection of the dis-
tribution in the training data? Specifically, do LMs
assign surprisal scores based on inherent animacy
effects, or are these scores simply mirroring the
animacy-driven distribution of ORCs in the train-
ing data?

Method To address this question, we exam-
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Figure 2: Structure selection rate by animacy and LM
according to surprisal-based analysis.

Figure 3: Passive selection pattern comparison between
LMs and human data.

ined the structural distribution of active and pas-
sive ORCs across animacy conditions in the Open-
Web corpus (Gokaslan and Cohen, 2019), an open-
source reproduction of OpenAI’s WebText dataset,
which was used to train GPT-2. We randomly
selected over 8,000 sentences from the corpus
and used a custom syntactic parsing pipeline us-
ing SpaCy to automatically extract sentences con-
taining ORCs. The extraction procedure iden-
tified ORCs based on the presence of a head
noun, an embedded verb phrase, and an agent
noun—accounting for both overt and omitted rel-
ative pronouns. Manual examination of the au-
tomatically identified ORCs was conducted and
only those with correct annotations were retained.
Each validated ORC was then categorized as ac-

tive or passive, and the animacy status of both the
head noun and agent noun was annotated. This
allowed us to quantify the frequency of active and
passive ORC structures across different animacy
conditions.

Then, we conducted Pearson correlation tests
to assess whether the ORC distribution in Open-
Web alone could account for the animacy-driven
ORC patterns found in human responses, to iden-
tify which LMs’ surprisal scores best aligned with
human responses, and to determine whether incor-
porating corpus data could enhance the explanatory
power of LMs in modeling human behavior.

Results Only 1.34% of our examined sentences
were found to contain a complete ORC. As shown
in Table 4, these ORCs are skewed toward actives
(71.03%) over passives (28.97%) and are imbal-
anced by animacy, with IA conditions dominating
(66.36%). Particularly, active IA ORCs alone ac-
count for 53.27% of all ORCs, suggesting a pro-
nounced structural bias in the training corpus. In
contrast, AA and AI conditions are rare, compris-
ing only 4.67% and 1.87% of the total ORCs, re-
spectively.

Struct. AA
(%)

IA
(%)

AI
(%)

II
(%)

Sum
(%)

Passive 0.93 13.08 0.93 14.02 28.97
Active 3.74 53.27 0.93 13.08 71.03

Total 4.67 66.36 1.87 27.10 100

Table 4: ORCs found in OpenWeb sample grouped by
animacy and structure.

Pearson correlation tests (Table 5) indicate that
corpus data alone has low predictive power for
both human responses (R2 = 0.12, p = 0.66)
and DistilGPT-2’s surprisal values (R2 = 0.26,
p = 0.49). While the corpus shows moderate pre-
dictive power for GPT-Neo (R2 = 0.78, p = 0.12),
the negative correlation (r = −0.89) suggests that
GPT-Neo follows an opposite trend from corpus-
based distributions.

Among the four tested LMs (DistilGPT2, GPT-
Neo, BERT-large, and BERT-base), DistilGPT2
accounted for the highest variance in human re-
sponses (R2 = 0.96, p = 0.02), explaining 95.6%
of the variance with statistical significance. Adding
OpenWeb further increased the explained variance
to 98.7%, but the lack of significance suggests that
the combined model did not outperform DistilGPT-
2 alone. The other three LLMs showed weaker
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alignment with human behavior. GPT-Neo exhib-
ited strong divergence, as indicated by its negative
estimates and low R2 values, suggesting an op-
posite structure preference. BERT-large explained
only 9% of the variance (not significant), indicating
it is a weak predictor of human responses. BERT-
base captured 88.4% of the variance but was not
significant, and incorporating OpenWeb did not
improve its predictive power.

4.3 Prompting-based analysis
LMs To further strengthen our investigation, we
conducted a supplementary analysis using prompt
engineering. In addition to the four previously
examined LMs, we included four recent state-of-
the-art models: GPT-4o-mini (Achiam et al., 2023),
Gemini-1.5-flash (Team et al., 2023), Gemini-2.0-
flash, and DeepSeek-R1 (Guo et al., 2025). This
analysis used the same dataset as the surprisal anal-
ysis, which consists of 384 context stories paired
with sentences containing passive and active ORCs.

Method Each LM was prompted to select the
more appropriate syntactic structure based on the
given context. The structured prompt explicitly in-
structed the model as follows: "Read the following
context carefully, which includes a short story and
a question at the end. Two possible answers are
provided. Your task is to choose the answer that
sounds most natural to a native English speaker.
Please respond with either "1" for the first option
(Passive) or "2" for the second option (Active)".

Same as surprisal-based analysis, LMs’ choice
was recorded as 1 for passive and 0 for active in
the variable choose-psv for each trial. The passive
selection rate was calculated as the proportion of
trials in which the model selected passive within
each animacy condition.

For model comparison, we computed Pearson
correlation, MSE and RMSE. Pearson correlation
evaluates the linear relationship, while RMSE quan-
tifies the average deviation of model predictions
from human responses, with lower values indicat-
ing better fit. Together, these measures provide a
comprehensive evaluation of how closely or differ-
ently each LM perform compared to human.

Design Considerations While our human ex-
periment used picture-based elicitation (See Ap-
pendix A for an example), we opted for a con-
trolled, text-based prompting design in this anal-
ysis. This choice was made to avoid confounds
introduced by image recognition and visual reason-
ing, which current LMs may not reliably handle

in a standardized way. Instead, we used context
stories that mirrored the structural and referential
properties of the original visual stimuli, allowing
us to isolate syntactic preference.

That said, a potential alternative design could
involve describing the visual scene and posing a
direct question (e.g., “Who is wearing red?”), then
analyzing the model’s free-text response. Such a
design could more closely simulate the referential
pressure that led to ORC production in humans and
may be explored in future work.

Results As shown in Figure 4, the structure
choices made by different LMs in the prompt engi-
neering experiment show great variation. Several
noticeable patterns emerged. First, BERT mod-
els (BERT-large, BERT-base) exhibit limited varia-
tion in response, overwhelmingly favoring passive
ORCs (near 100%) across all conditions. Gem-
ini models (Gemini-1.5-flash, Gemini-2.0-flash),
on the other hand, strongly prefer actives, with
Gemini-2.0-flash selecting active ORCs in nearly
100% of all conditions. Both model families seem
to lack human-like variation in structure choice.
GPT models (DistilGPT2, GPT-Neo, GPT-4o-mini)
and DeepSeek-R1 show more variation. ANOVA
analysis confirms significant differences among
LMs compared to human responses (df = 8,
p < 0.001). Post-hoc tests indicate that while all
LMs deviate from human responses to some ex-
tent, GPT-4o-mini exhibits the smallest difference
(diff. = 0.19, p = 0.01).

Model evaluation (see Figure 5) showed GPT-
4o-mini as the top performer, with the highest cor-
relation to human data (estimate = 0.98), high-
est explained variance (R2 = 96.4%), and lowest
RMSE (estimate = 0.21). BERT models (espe-
cially BERT-base) performed the worst, as they
explained almost no variance in human data and
had weak correlations. DistilGPT2 and GPT-Neo
showed moderate alignment, indicating they cap-
ture some trends but weren’t very strong predictors.
Gemini models and DeepSeekR1 performed incon-
sistently, they had low variance explained and high
RMSE, suggesting they aren’t reliable in matching
human responses.

5 Discussion

5.1 LMs show animacy sensitivity with
model-specific variations

Our surprisal-based and prompting-based analyses
revealed LMs’ varying sensitivity to animacy in
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R2 Adjusted R2 F-statistic p-value

How Corpus Explains Human Responses
OpenWeb (corpus) 0.12 -0.33 0.26 0.66

How Corpus Explains GPT Models
DistilGPT-2 0.26 -0.12 0.69 0.49
GPT-Neo 0.78 0.67 7.13 0.12

How LMs Explain Human Responses
DistilGPT-2 0.96 0.93 42.93 0.02*
DistilGPT-2 + OpenWeb 0.99 0.96 37.11 0.12
GPT-Neo 0.44 0.16 1.58 0.34
GPT-Neo + OpenWeb 0.72 0.15 1.26 0.53
BERT(large) 0.09 -0.36 0.20 0.70
BERT(large) + OpenWeb 0.18 -1.43 0.12 0.90
BERT(base) 0.88 0.83 15.29 0.06
BERT(base) + OpenWeb 0.93 0.80 6.95 0.26

Table 5: Regression results: corpus vs. LMs and human ORC structure choice.
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Figure 4: Passive selection rate by animacy and LM in
prompting-based analysis

ORC structure choice, aligning with Hanna et al.
(2023). The surprisal-based analysis reveals that
DistilGPT-2’s lower passive selection rate in IA
compared to AA and AI aligns well with human
data and psycholinguistic predictions (Gennari et
al., 2012; Hsiao and MacDonald, 2016). Accord-
ing to the similarity-based competition mechanism
(Gennari et al., 2012), passives should be more fre-
quent in animacy-congruent conditions (AA and
II). Among the tested LMs, only BERT-large fol-
lowed this expected pattern, while BERT-base con-
sistently over-selected passives, diverging from hu-
man data. Similar to Ettinger (2020), we report
greater sensitivity of BERT-large to linguistic con-
straints than BERT-base. GPT-Neo showed a gen-
eral preference for actives but unexpectedly showed
its highest passive rate in IA, contradicting human
data and psycholinguistic theories.
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Figure 5: Evaluation of LMs’ performance by human
responses in prompting-based analysis

Some LMs performed inconsistently across
prompting- and surprisal-based analyses.
DistilGPT-2 and BERT-large performed poorly
in prompting, explaining only 11.55% and 0.75%
of human variance, respectively, likely due to
fundamental task differences. As Hu and Levy
(2023) pointed out, prompting is not a substitute
for direct probability measurements in LMs, and
results may vary within the same LM.

Among the four newly tested LMs in prompting-
based analysis, GPT-4o-mini best mirrored human
patterns, despite an overall lower rate of passive
selection. In contrast, Gemini models (Gemini-1.5-
Flash and Gemini-2.0-Flash) showed minimal vari-
ation across animacy conditions, suggesting that
their internal representations likely do not align
with established linguistic theories (Cong, 2024).
Gemini-2.0-Flash, in particular, overwhelmingly
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favored active structures (∼100%), justifying its
choices by claiming actives sound more direct and
natural in English, whereas passives feel overly for-
mal. DeepSeek-R1 exhibited structural variation
across animacy conditions but in a theoretically
ungrounded way. While psycholinguistic studies
consistently report higher passive rates in AA than
IA (Gennari et al., 2012; Hsiao and MacDonald,
2016), DeepSeek-R1 showed little distinction be-
tween these conditions, deviating from both human
behavior and psycholinguistic predictions.

5.2 Training data alone fails to explain
animacy sensitivity in LMs

Our analysis of ORC distribution in OpenWeb sug-
gests that training data alone is a weak predictor
of LMs’ structure choices, as reflected in surprisal
results. While training data influences LM behav-
ior (Chai et al., 2024), it fails to fully account for
observed animacy effects, challenging the idea that
these effects stem solely from training biases. In-
stead, our findings suggest that some LMs, par-
ticularly DistilGPT-2 (surprisal-based) and GPT-
4o-mini (prompting-based), develop emergent an-
imacy sensitivity beyond exposure, aligning with
human data and psycholinguistic predictions (Gen-
nari et al., 2012; Hsiao and MacDonald, 2016),
despite training corpus’ limited explanatory power.
DistilGPT-2 alone explains 95.6% of the variance
in human responses, indicating that its animacy sen-
sitivity cannot be attributed to corpus distributions
alone.

That said, the predominance of active ORCs in
IA conditions in the corpus may still contribute
to LMs’ preference for active structures in these
cases. This pattern is consistent with Roland et al.
(2007), they also found higher percentage of active
ORCs in IA conditions compared to AA in both
the Brown corpus (IA: 53%, AA: 25%) and the
Switchboard corpus (IA: 69%, AA: 9%). Our cor-
pus analysis revealed an even stronger dominance
of active ORCs in IA conditions, reinforcing the
influence of corpus-based biases.

Ultimately, while corpus distributions shape
structure choices to some extent, they fail to ex-
plain the deeper, human-like patterns observed in
surprisal-based and prompting-based analyses. The
strong alignment between certain LMs and human
responses suggests that animacy sensitivity in LMs
arises from more than just statistical learning—it
may reflect deeper linguistic generalization.

5.3 Optimize LMs with psycholinguistic
knowledge

Despite carefully controlled input pairs and explicit
instructions, many LMs failed to capture human-
like animacy effects, with only a few demonstrating
satisfactory sensitivity. Gemini-1.5-Flash, Gemini-
2.0-Flash, DeepSeek-R1, and GPT-Neo showed
little alignment with human patterns.

It is likely that these LMs struggle with the
syntactic-semantic interface required for ORC
structure choice processing, particularly when two
structures convey the same meaning. Their train-
ing on large, diverse datasets may not emphasize
fine-grained semantic features that guide human
sentence processing. Future LM development and
optimization could benefit from explicit integra-
tion of semantic and syntactic knowledge and tar-
geted training on animacy effects and structural de-
pendencies. Moving beyond surface-level pattern
recognition towards deeper linguistic representa-
tion would improve LMs’ alignment with human-
like reasoning and formal (psycho-)linguistic theo-
ries.

6 Conclusion

To conclude, we found that LMs exhibited animacy
sensitivity, though the extent varied across mod-
els, as reflected in their ORC structure choices.
While some models aligned closely with human
data, others diverged significantly, highlighting
variation in how LMs process animacy in syntactic
structures. DistilGPT-2 and GPT-4o-mini showed
the strongest alignment, while Gemini models,
DeepSeek-R1, and GPT-Neo failed to capture ani-
macy effects meaningfully.

While training data influences LM behavior to
some extent, it does not fully explain their animacy
sensitivity, suggesting that some models develop
emergent linguistic generalizations beyond mere
statistical learning. To improve LMs’ alignment
with human cognition, future development should
integrate psycholinguistic insights, refine semantic-
syntactic training, and move beyond surface-level
pattern learning. Strengthening linguistic represen-
tations will inspire the development of psychologi-
cally plausible models.

Limitations

While this study offers valuable insights into LMs’
sensitivity to animacy in English ORC structure
choice, several limitations remain.
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Our current surprisal analysis computed aver-
age surprisal across tokens at the sentence level.
While this approach simplifies comparison across
sentence types, future work could adopt additive
surprisal values, which better reflect joint probabil-
ities over token sequences. Moreover, exploring
surprisal at more localized levels—such as word-
or phrase-level surprisal given left context—may
better align with psycholinguistic processing and
production (for this, we thank our anonymous re-
viewer for the suggestion). In addition, analyzing
surprisal using a binary outcome variable (choose-
psv) was conducted to mirror human production,
but using raw surprisal differences as the dependent
measure could potentially yield additional insights.
This is an alternative analysis that can be done in fu-
ture work to identify more fine-grained distinctions
in model preferences.

Our psycholinguistic proof-of-concept study in-
volved a limited number of human participants.
While our findings are consistent with prior liter-
ature documenting animacy effects—particularly
in AA, IA, and AI conditions—a larger sample
size would strengthen empirical comparisons with
LMs. Furthermore, in this project, we did not col-
lect separate animacy norming data for our stimuli,
which could improve future experimental control
and interpretation in the future.

Our corpus analysis used a representative sam-
ple of the OpenWeb corpus to approximate natural
distributional patterns, but it does not reconstruct
LMs’ full pretraining data. Broader corpus compar-
isons and controlled datasets would offer a more
robust estimate of the linguistic patterns LMs are
exposed to.

Lastly, although not the focus of the current
work, future studies could incorporate layer-wise
probing to explore whether animacy effects arise
during lexical encoding, syntactic composition, or
higher-level integration processes.
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A Appendix: Psycholinguistic
Experiment Procedure

Figure 6 presents an example trail from the elicita-
tion task used in the psycholinguistic experiment.
Participants viewed the image for 3 seconds be-
fore hearing a prompt question (e.g., “Who wears
red?”). They then responded based on their obser-
vation of the scene. To encourage the production
of ORCs without directly instructing participants,
we told them their responses would help another
participant identify characters or objects in the im-
ages. To prevent reliance on surface-level features
like color (e.g., “red”) or position (e.g., “on the
left”), participants were informed that these fea-
tures would change for the next group, while the
actions would remain constant. This setup subtly
prompted the use of ORCs by emphasizing actions
as the most stable and reliable descriptors.

Figure 6: Sample stimulus image illustrating an ORC
elicitation scenario

B Appendix: Surprisal-based analysis:
out-of-vocabulary ratio

To ensure that surprisal differences across animacy
conditions were not artifacts of tokenization, we ex-
amined the out-of-vocabulary (OOV) rates for each
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LM by animacy condition. We acknowledge that
word-level splits in subword tokenization may re-
duce the psycholinguistic validity of surprisal at the
individual item level. However, Nair and Resnik
(2023) found that BPE surprisal retains predictive
power when comparing condition-level means—a
pattern directly relevant to our study design, and
that BPE-based models like GPT-2 still yield reli-
able surprisal–reading time correlations at the ag-
gregate level.

Figure 7 shows the OOV percentage across an-
imacy condition within each LM in our surprisal-
based analysis. We see that OOV rates within
each LM were quite consistent across animacy
conditions. For example, BERT models ranged
from 19.6% (AA) to 21.5% (II), while GPT models
ranged from 33.9% (IA) to 36.5% (AI/II) (Distil
GPT2 and GPT neo, BERT-base and BERT-large
were combined due to the same OOV score). This
stability across conditions suggests that differences
in surprisal are unlikely to be driven by variability
in tokenization. Thus, while GPT-based models
naturally exhibit higher OOV due to their subword
vocabularies, the uniformity of these rates across
animacy conditions allows for meaningful interpre-
tation of surprisal trends in line with the broader
goals of our study.

Figure 7: OOV by animacy by LM
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Abstract
Language syllabification is the separation of
a word into written or spoken syllables. The
study of syllabification plays a pivotal role in
morphology and there have been previous at-
tempts to study this phenomenon using graphs
or networks. Previous approaches have claimed
through visual estimation that the degree distri-
bution of language networks follows the Power
Law distribution, however, there have not been
any empirically grounded metrics to determine
the same. In our study, we implement two kinds
of language networks, namely, syllabary and
lexical networks, and investigate the syllabifi-
cation of four European languages: English,
French, German and Spanish using network
analysis and examine their small-world, ran-
dom and scale-free nature. We additionally
empirically prove that contrary to claims in pre-
vious works, although the degree distribution
of these networks appear to follow a power law
distribution, they are actually more in agree-
ment with a log-normal distribution, when a
numerically grounded curve-fitting is applied.
Finally, we explore how syllabary and lexical
networks for the English language change over
time using a database of age-of-acquisition rat-
ing words. Our analysis further shows that the
preferential attachment mechanism appears to
be a well-grounded explanation for the degree
distribution of the syllabary network.

1 Introduction

A graph is a mathematical structure that is defined
by a set of vertices (or nodes) that are potentially
connected by edges (or links). In the last two
decades, the formal study of graphs as well as their
applications have received tremendous attention
from the scientific community resulting in an expo-
nential growth of academic publications.

The rapid rise of this field of research stems
from the synergy of two main factors. First, this
discipline benefited from the definition and charac-
terization of special networks such as small-world

networks (Watts and Strogatz, 1998) and scale-free
networks (Barabási and Albert, 1999; Albert et al.,
1999). Second, the amount of digital data has dou-
bled in size every year (Lv et al., 2017), resulting
in significant developments in associating various
aspects of languages with graph-based approaches
(Todorovska et al., 2023; Quispe et al., 2021; Liang
et al., 2019).

In this work, we investigate the use of social
networks in the context of syllabification. Syllabifi-
cation has been used to study the division of a word
into its constituent syllables and units of pronuncia-
tion. The syllable constitutes the key building block
in phonetics (Laver, 1994) and in phonological the-
ory (Fudge, 1969; Hooper, 1972; Selkirk, 1982).
It aids word modelling in automatic speech and
concatenative synthesis (Marchand and Damper,
2007). For instance, Müller, Möbius, and Prescher
(2000, p.225) (Müller et al., 2000) write “sylla-
ble structure represents valuable information for
pronunciation systems.” In morphology, syllabifi-
cation is also critical to understanding word forma-
tion as well as subsequent morphological changes
(Ding et al., 2019). Furthermore, syllabification has
greatly contributed to the comprehension of lan-
guage acquisition (Langus et al., 2017), as it helps
identify the pronunciation and rhythm of words. In
our work, we study syllabification using network
analysis, a powerful framework for revealing struc-
tural patterns that traditional linguistic methods
may overlook.

Our work explores syllable networks and lexi-
cal networks in four European languages: English,
French, German and Spanish. We quantitatively
examine the organization of syllables and lexicons
in the languages using network analysis. We have
concerns that the visual estimation of log plots for
degree distribution patterns is inadequate for iden-
tifying power law. Thus, we perform a detailed
empirical analysis of the degree distribution of our
networks. Furthermore, we use the concept of age-
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of-acquisition for different words, to investigate the
phenomena of preferential attachment.

2 Previous Work

Syllabification using network science has been pre-
viously explored only in three languages. First,
there have been efforts to develop networks of syl-
lables for the Portuguese language (Soares et al.,
2005) in which the nodes represented syllables, and
corresponding edges represented the co-occurrence
of syllables in words (i.e. the pair of syllables oc-
curred together in at least one word). The authors
used two datasets for their study: (1) a Portuguese
dictionary with 22,064 words; and (2) the works
of Machado de Assis (Caldwell, 1970). This work
claimed the presence of a mechanism of prefer-
ential attachment to explain the structure of their
syllabary networks. Their finding was based on log-
log plots inspection of the degree distributions as
well as the calculation of the power law exponent
(i.e. gamma), whose value was compatible with
the gamma value range that is commonly found in
this kind of network (Albert and Barabási, 2002).

Second, syllabic and graphemic (character) net-
works for two Chinese dictionaries have also been
generated (Peng et al., 2008) previously: (1) a Pu-
tonghua dictionary (CEDICT) consisting of 21,727
multisyllabic words and 8,834 monosyllabic words;
and (2) a Cantonese dictionary (CULEX) includ-
ing 35,732 multisyllabic words and 5,737 mono-
syllabic words. Considering the segmental (base
syllable) and supra-segmental (tone) features of a
syllable, the authors developed three levels of syl-
lable networks: base-syllable, tonal syllable, and
Chinese-character levels. Upon visual inspection
of log-log plots and comparison of gamma values,
it was suggested that the syllabary networks fol-
lowed a power-law distribution. Upon analyzing
the power law exponent of the networks, they found
an increasing order in the values of gamma, thus
inferring preferential attachment to be strong at the
base level, stronger at the tonal level and strongest
at the character level networks.

Lastly, Croatian syllabic networks have been de-
veloped (Ban et al., 2013) using two large corpora:
(1) the Croatian Wikipedia; and (2) the composi-
tion of 3218 articles from Croatian blogs. They
construct three co-occurrence syllable networks
and one directed, weighted first-neighbour syllable
(formed by connecting only neighbour syllables)
network. Although a formal power law analysis

was not done, the authors visualized a log-log plot
for the degree distribution of the co-occurrence syl-
lable networks to estimate a premise for power law
distribution.

Considering these works, our work explores syl-
lable networks in four main European languages:
English, French, German and Spanish. In addi-
tion to syllabary networks, we also model lexical
networks to reflect the importance of words in the
mental lexicon, a concept central to psycholinguis-
tics (e.g., Coltheart et al., 2001; Aitchison, 2012).
We analyze our networks through the lens of ran-
dom, small-world, and scale-free models to develop
insights into the linguistic structure and cognitive
processing. We also suspect that a visual inspection
of log-log plots of degree distribution is insufficient
to estimate the presence of a power law accurately.
Instead, statistical measures like Maximum Likeli-
hood Estimation (MLE) and goodness-of-fit tests
prove to be more accurate (Goldstein et al., 2004;
Clauset et al., 2009). Thus we conduct a more
rigorous numerical analysis related to the degree
distribution of our networks. Finally, we use a
database of age-of-acquisition rating words to look
into the hypothetical mechanism that is commonly
used to explain a scale-free degree distribution, that
is the preferential attachment (Barabási and Albert,
1999).

3 Languages and lexicons used

Four European languages (English, French, Ger-
man, and Spanish) were chosen for the current
work. These languages were selected due to the
availability of lexicons containing marked syllable
boundaries in both the spelling (written) and pro-
nunciation (spoken) domains1. All these languages
are from the Indo-European family and are divided
between the Germanic (English and German) and
Romance (French and Spanish) subgroups (Algeo
and Butcher, 2013).

All entries of these lexicons which were non-
words, incomplete, or contained non-alphabetic
characters are excluded from the network analy-
sis. Additionally, proper nouns as well as all in-
stances of homophones and homographs were also
removed except in cases where these entries existed
only with the same syllable boundaries. In such
cases, one copy of the word was kept.

1We used the same methodology for the two domains.
Since the results were highly similar, we only report the ones
that are related to the spelling domain for the sake of simplicity
and readability.
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4 Network Analysis

4.1 Construction
For each of the four languages under investiga-
tion, we have developed two ways to build and
study the networks, namely a ‘syllabary network’
and a ‘lexical network’. In the first representa-
tion, the nodes represent a word and two words are
connected when they share at least one common
syllable. In the second representation, the nodes
represent each unique syllable of the language and
a link is generated when two syllable nodes have at
least one word in common. The dataset and code
for this study are available here 2.

Figures 1 and 2 respectively show an example
of lexical and syllabary network for the following
short list of 8 English words: “a–mi–a–bil–i–ty”,
“a–vail–a–ble”, “bin”, “cred–i–bil–i–ty”, “in–cred–
u–lous”, “mile”, “sim–i–lar–i–ty”, and “sim–u–la–
tion” (the symbol ‘–’ denotes a syllable bound-
ary). For instance, within the lexical network, there
is a link between the words “credibility” and “in-
credulous” as they share the same syllable, namely
“cred”. Similarly, within the syllabary network,
the syllables “vail” and “ble” are connected as the
word “available” contains them. The nodes that do
not have any connections (i.e. their degree is zero)
such as “mile” and “bin” are called hermits. Note
that the largest connected subgraph is called the
giant component whereas an island is defined as a
connected subgraph that is not part of any larger
connected subgraph.

Figure 1: Example of an English lexical network

4.2 Key Properties
A network analysis was conducted by measuring a
set of elementary characteristics known to formally
define the main types of networks: random
network (Erdős and Rényi, 1959), small-world

2https://github.com/Rusali28/
Network-analysis-syllabification-study

Figure 2: Example of an English syllabary network

network (Watts and Strogatz, 1998) and scale-free
network (Barabási and Albert, 1999). These
properties help us gain insights into the structure,
cognitive efficiency and robustness of the language
system. The following topological features were
numerically evaluated:

Average Connectivity: This focuses on the degree
of each node i in the network, denoted by ki. It
counts the average number of connections per node
and indicates if our language networks are complex
or not. If the number of nodes (N) is much larger
than the average connectivity, ⟨k⟩ ≪ N , then the
networks are complex by nature.

Density of a Network: Represents the proportion
of possible relationships in the network that are
present. It indicates the level of co-occurrences
between the syllables and words. A lower density
may potentially reflect phonotactic rules that
restrict certain combinations.

Diameter of a Network: Defines the maximum
distance between any two nodes in a network,
reflecting overall connectivity, and how efficiently
nodes are linked. A larger diameter for the lexical
network indicates greater morphological diversity
or isolated word groups. For the syllabary network,
a larger diameter suggests a more fragmented
structure, potentially due to rare or borrowed
syllables.

Average Distance (or Average Path Length):
Measures the average number of steps required to
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connect any two nodes in the network. A longer
path length indicates a more fragmented language
system with distinct syllable groups, thereby re-
flecting greater phonological diversity or complex
word formation rules. A shorter length suggests
that the syllables or lexicons are efficiently
connected, thus speakers can easily transition
between them during language processing. Small
average distance (with high clustering) contributes
as an indicator of small-world networks.

Average Clustering Coefficient: Measures the
tendency of nodes to form tightly connected groups
in the network. It determines how well a node’s
nearest neighbors are also connected to each other.
High clustering coefficients for the lexical network
suggest that words sharing syllables tend to form
dense groups, reflecting phonotactic consistency
and morphological relationships. High coefficients
for the syllabary networks also indicate that
frequently co-occurring syllables form dense
clusters, revealing common phonological patterns.
A high clustering coefficient is also a characteristic
of small-world networks.

Distance of a Random Network (Erdös–Rényi
Model): Same as the average distance. It is used
to compare values with the lexical and syllabary
networks, to identify their small-world nature.

Clustering Coefficient of a Random Network
(Erdös–Rényi model): Similar to the average clus-
tering coefficient. It is calculated to compare values
with the lexical and syllabary networks, to identify
their small-world nature.

4.3 Degree Distribution
The distribution of degree, denoted as P(k), is used
to measure the frequency of nodes in a network
given a k connectivity. P(k) is a key metric for char-
acterizing the structure of a network. For instance,
scale-free networks have power-law distribution
(Barabási and Albert, 1999) whereas random
networks have Poisson-type distribution (Erdős
and Rényi, 1959). To formally and adequately
describe the degree distribution of the networks of
our study, we used three main candidate models
for curve fitting: power law distribution, lognormal
distribution, and exponential distribution.

Power Law Distribution: Suggests that a small
number of nodes have high connectivity, while the

majority of other nodes have fewer connections.
This structure is characteristic of scale-free
networks, where frequently occurring syllables
continue to gain more connections over time
(growth driven by preferential attachment). If our
networks follow a power law, it will indicate a
pattern of hierarchical organization, where syllable
usage is dominated by a few central syllables that
appear in many words.

Lognormal Distribution: Suggests that, while
some nodes may be highly connected, the dis-
tribution of connections is more balanced, with
many nodes having moderate connectivity. Unlike
a strict power law, it allows for a more gradual
transition between high- and low-degree nodes.
With respect to syllabification, this distribution
implies that syllable connectivity is not only
influenced by preferential attachment but also by
phonotactic constraints and linguistic rules. This
suggests that although some syllables are more
common, their distribution is shaped by additional
factors beyond just frequency-based reinforcement.

Exponential Distribution: Suggests that connec-
tions between nodes are relatively uniform, indi-
cating that there are no highly dominant syllables
or lexicons. This implies that syllable usage is al-
most random, without strong structural constraint
or preferential growth. An exponential distribution
in our networks will suggest that all syllables have
almost equal probability of occurring in different
words, which contradicts known linguistic patterns
of syllable frequency and phonotactic constraints.
Some previous studies (Vitevitch, 2009; Masucci
and Rodgers, 2006) on language networks have
suggested the presence of exponential degree distri-
butions in certain conditions like highly restricted
phonological systems. This model will help us
verify whether syllabification networks follow a
simple decay process rather than a structured pro-
cess of phonology and lexical organization.

5 Results

Tables 1 show the results of the key properties for
the lexical and syllabary networks, respectively. In
both tables, the details of the largest connected
component (i.e. giant component) are provided.
The islands in our study represent small separate
networks within the network consisting only of 2
to 3 nodes.
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Figure 3: Word as node (lexical network).
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(a) English lexicon.
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(b) French lexicon.
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(d) Spanish lexicon.

Figure 4: Syllable as node (syllabary network).
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Table 1: Values of the key properties for the lexical and syllabary networks.

Features Lexical Networks Syllabary Networks
English French German Spanish English French German Spanish

Number of nodes 33,464 31,155 20,344 31,238 7,605 4,664 4,043 2,264
Number of islands 8 5 3 0 28 20 8 3
Number of hermits 1,245 297 84 95 1,225 282 79 93

Giant component
Number of nodes 32,202 30,847 20,253 31,142 6,321 4,338 3,947 2,165
Number of links 20,352,425 24,235,869 9,676,660 46,186,583 44,698 53,430 35,868 34,945
Avg connectivity 1,216.4 1,555.8 951.3 2,957.1 14.1 24.6 18.2 32.3
Density 0.039 0.051 0.047 0.095 0.001 0.003 0.002 0.007
Avg distance 2.3 2.0 2.1 1.9 2.9 2.8 2.8 2.5
Diameter 9 7 7 5 10 8 7 6
Avg clustering coeff. 0.73 0.6 0.67 0.59 0.41 0.5 0.54 0.69

Table 2: Average distance and clustering coefficient for the lexical networks and their random counterparts.

Language Lexical networks Erdös–Rényi random networks
Average distance Clustering coefficient Average distance Clustering coefficient

English 2.3 0.73 1.5 0.039
French 2.0 0.60 1.4 0.051
German 2.1 0.67 1.4 0.047
Spanish 1.9 0.59 1.3 0.095

The most striking difference between the four
languages is the number of hermits elicited in
the English language for the lexical network. It
is about one order of magnitude larger than its
counterparts. This finding reflects the fact that the
English language has an unusually large number
of loan words compared to other languages (e.g.
“zigzag”, “seigneur” are hermits because they are
words whose syllables are unique). England being
the subject to several invasions throughout its his-
tory, the English language ended up absorbing im-
mense amounts of foreign vocabulary from Greek,
Latin, Norman-French, Old French, Old Norse, and
the Celtic languages as well as actively adopted
words from around the parts of the world that used
to be in the British Empire, and beyond (Bryson,
2001).

We observe that for all the networks, the average
connectivity k satisfies the condition ⟨k⟩ ≪ N, indi-
cating that the networks are sparse, an expected at-
tribute for complex networks (Albert and Barabási,
2002). These results are in agreement with previous
findings related to Portuguese (Soares et al., 2005),
Chinese (Peng et al., 2008) and Croatian (Ban et al.,
2013) language networks. Results from Tables 2
and 3 show that the networks have high clustering
coefficient values when compared to corresponding
Erdös–Rényi random (ER) networks whereas their
average network distances are quite similar to the

distances calculated for the ER random networks.
Thus, our networks exhibit characteristics of small-
world networks (i.e. high clustering coefficients
and small average distances).

Of critical importance, we also numerically
tested whether or not the empirical degree distri-
bution of the networks was heavy-tailed by fitting
three candidate distributions to the data : a power
law distribution, a log-normal distribution, and an
exponential distribution (Alstott et al., 2014). In
the case of lexical networks, it is apparent from the
four plots shown in Figure 3 that the log-normal
distribution offers a better fit than the exponential
model, which is not heavy-tailed. The values of the
mean (µ) and standard deviation (σ) supporting the
lognormal distribution are given in Table 4, for all
the networks.

Concerning the syllable networks, Figure 4
shows that the degree distribution of those networks
can be reasonably well modeled with a power law
distribution. The associated γ values are displayed
in Table 4 and are consistent with the values of γ
generally observed in complex networks (1 < γ <
3). This finding is also comparable with values of
complex networks that follow preferential attach-
ment. In agreement with the study conducted by
Broido and Clauset (Broido and Clauset, 2019), we
also find that the lognormal distribution is a better
fit for our networks than the power law distribution,
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Table 3: Average distance and clustering coefficient for the syllabary networks and their random counterparts.

Language Syllabary networks Erdös–Rényi random networks
Average distance Clustering coefficient Average distance Clustering coefficient

English 2.9 0.41 3.3 0.002
French 2.8 0.50 2.6 0.006
German 2.8 0.54 2.9 0.005
Spanish 2.5 0.69 2.2 0.014

Table 4: Parameters of lognormal distribution and power law distribution.

Language English French German Spanish
Nodes of the network Words Syllables Words Syllables Words Syllables Words Syllables
Gamma (γ) 4.6 2.1 4.1 2.0 2.9 2.1 4.8 2.0
Best fit Linear Linear Linear Linear Linear Linear Linear Linear
µ 7.99 -8.80 7.65 0.94 7.20 -4.76 8.38 1.14
σ 0.32 3.35 0.40 2.04 0.45 2.04 0.28 2.02

even if the latter can be seen at first sight as a good
fitting curve.

To further strengthen our empirical evaluation
of the network’s degree distribution, we perform
the degree distribution fit using the two-parameter
Zipf-Mandelbrot law and compare the fit against
the lognormal distribution. To determine which dis-
tribution fits the best, we measure the goodness of
fit using Akaike Information Criterion (AIC) and
Bayesion Information Criterion (BIC). The results
from Table 5 show that for both the lexical and
syllabary networks, the AIC and BIC values for the
lognormal distribution are lower than those for the
Zipf-Mandelbrot model. Thus, these results further
indicate that the lognormal distribution consistently
provides a better fit for our networks. These find-
ings therefore suggest that syllable organization is
shaped by a combination of preferential attachment,
phonological constraints and linguistic rules rather
than an unrestricted rich-get-richer mechanism.

6 Preferential Attachment and
Age-of-Acquisition

The mechanism of preferential attachment helps
to understand the growth of a complex network
(Barabási and Albert, 1999; Hills et al., 2009). It
is associated with the metaphoric “rich-get-richer”
expression. Given a network with a pre-existing
fixed number of nodes and edges, when a new node
is introduced to the network, the existing nodes
to which the new node will connect are selected
by a preferential mechanism, i.e. the probability
of selection is directly proportional to the degree
of the pre-existing nodes. This means that nodes
with larger degrees will have higher probabilities

to attract new nodes and generate more edges, as
the network evolves into a larger network with time
(Barabási and Albert, 1999). Owing to preferential
attachment, as well-connected nodes continue to
accumulate more edges and nodes with time, this
mechanism also proceeds to support the power law
distribution (Stumpf and Porter, 2012), hence the
scale-free nature of complex networks.

In this section, we explore the effects of an age
of acquisition (AoA) database in an attempt to val-
idate the theory of preferential attachment for the
English language networks. Age of acquisition
refers to the age range in which an individual ac-
quires knowledge over certain aspects of language
(e.g. vocabulary, grammar). Here, we focus on
the age of acquisition of vocabulary using a dataset
(Kuperman et al., 2012) of AoA ratings for 30,121
English content words including nouns, verbs, and
adjectives.

We take this longitudinal vocabulary data to cu-
mulatively construct syllabary and lexical networks
over time. In other terms, a network at a time in-
stant t is built from words known (i.e. acquired)
at time t and all the proceeding words before t.
Going through the AoA database, we generate 23
networks, one for each year starting from 4 to 25
years old. We perform two measures on these lon-
gitudinal networks. The first measure is the size
of the networks, that is, the number of nodes in
the networks. It corresponds to the measure of
vocabulary size for the lexical networks and the
number of syllables (an index of flexibility in word
combination) for the syllabary networks. Figure
5a shows that the rate of syllabary development is
slower than the lexical one. Both trajectories reach
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Table 5: AIC and BIC values for Lognormal and Zipf distributions in lexical and syllabary Networks.

Features Lexical Networks Syllabary Networks
English French German Spanish English French German Spanish

AIC (lognormal) 91599.64 163654.51 139663.52 147018.4 7832.26 7381.2 5329.9 4731.59
AIC (zipf) 361063.23 341027.47 199321.54 374468.74 21798.45 15072.72 13185.03 7604.13
BIC (lognormal) 91612.88 163668.97 139677.82 147032.51 7841.54 7390.33 5338.44 4739.82
BIC (zipf) 361088.49 341052.51 199345.30 374493.79 21818.73 15091.88 13203.88 7621.18

Figure 5: Longitudinal analysis.
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(b) Kendall’s Tau correlation over time.

a plateau in adolescence with, at this time, a pool
of about 5,000 syllables to assemble over 20,000
words.

For the second measure, we use a correlational
analysis, in which the network growth allows us
to assess the hypothesis of a preferential attach-
ment. If preferential attachment3 plays a role in
shaping the English networks, then a negative re-
lationship should be found between the AoA and
degree. The first syllables that individuals acquire
in earlier years should indeed be more connected
over time than those learnt later in life. Figure
5b shows the Kendall’s Tau correlation coefficient
(Kendall, 1938) between degree and age of acqui-
sition over time. This correlation coefficient was
chosen since it is a non-parametric correlation mea-
sure that does not assume a linear relationship, thus
making it more suitable for studying degree distri-
butions, which are often skewed and not normally
distributed. It provides a more robust measure of
association, as opposed to the Pearson correlation
coefficient (Anscombe, 1973). It can be seen that
the degree and AoA of the syllabary network have a
negative relationship that amplifies over time, thus

3As previously mentioned, even if a lognormal distribution
is a better fit to model our networks, preferential attachment
may still influence local network growth, especially in early
language acquisition. Thus, power law distribution is still a
reasonable fit.

supporting the theory of preferential attachment.
As the age increases, newly acquired syllables tend
to connect more likely to highly connected exist-
ing syllables. For the lexical network, the situation
is reversed: the Kendall’s Tau correlation coeffi-
cient elicits a positive correlation, reflecting dif-
ferent growth dynamics. As some new words are
learnt over time, all their syllabic sub-parts are
more likely to be linked to an existing stock of
syllables. This highlights the importance of fre-
quently used syllables, in their role as anchors in
vocabulary expansion over time. The dual pattern
indicates the contribution of broader linguistic con-
straints in shaping the overall network structure.

7 Conclusion

We used network science to study the syllabifica-
tion of the English, French, German and Spanish
languages. We built syllabary networks in which
nodes and links constitute syllables and words, re-
spectively. Furthermore, to acknowledge the ubiq-
uitous prevalence of the mental lexicon in the lan-
guage sciences, we also generated and studied the
properties of lexical networks in which the roles
are reversed, namely nodes and links act for words
and syllables, respectively. By studying the two
types of networks, our study acknowledges the role
of syllables in influencing word formation, as well
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as the role of words in structuring how syllables
interact within the lexicon. Thus, we attempt to
capture both the phonological and lexical network
dynamics.

All these networks exhibited small-world prop-
erties, having high clustering coefficients and small
average distances when compared to their corre-
sponding random networks. Previous studies on
syllabary networks related to Portuguese, Chinese
and Croatian languages, have all assumed that they
are scale-free as their degree distribution looked
as to follow a power law. However, this statement
was mostly based on visual inspection. When an
analysis of degree distribution is conducted under
more rigorous circumstances using curve fitting,
the results show that all our networks’ degree dis-
tributions are consistently better modelled with
a log-normal distribution. Our finding is in line
with a few studies that have questioned and rebut-
ted the claim of previously reported scale-free net-
works (e.g. Clauset et al., 2009; Broido and Clauset,
2019).

Finally, unlike earlier studies on syllabification
that all dealt with static networks, we examined
the English networks from a dynamic perspective
using longitudinal data from the database of age-of-
acquisition rating words. This approach allowed us
to validate the preferential attachment mechanism
for the syllabary network. Although our analysis
shows that syllabification networks are better de-
scribed by a lognormal distribution rather than a
strict power law, this does not rule out preferen-
tial attachment as a contributing mechanism (Hills
et al., 2009; Vitevitch, 2008). We find that prefer-
ential attachment can still operate locally in early
network growth. This implies that language net-
work growth is influenced by both preferential at-
tachment and additional linguistic constraints, like
phonological and morphological structures.

These findings in our work have important im-
plications for linguistic modeling. Considering
phonotactic constraints and linguistic rules have
a role to play in the networks, models of lexical
evolution must account for structured constraints
beyond simple preferential attachment. Further-
more, cross-linguistic comparisons of degree distri-
butions could further help us understand how these
constraints vary across mutliple languages, thereby
providing deeper insights into the universality of
phonological organization.

8 Limitations

While our study provides new insights into syllabi-
fication networks, we address a few limitations in
this section. First, the focus of our study is limited
to four Indo-European languages. This generates a
scope for cross-linguistic validation with typolog-
ically diverse languages, with different structures
(e.g. Turkish, Finnish). Second, while our results
demonstrate that a lognormal distribution better
models the degree distribution than power law, we
still observe reasonable behaviour with respect to
power law as well. Future work could explore
alternative mixture models to refine this finding.
Third, while we confirm that preferential attach-
ment influences network growth, our study does
not quantify its relative impact compared to linguis-
tic constraints like phonotactic rules, morphologi-
cal constraints, cognitive biases, etc. A quantitative
comparison of these factors could provide deeper
insights into their contributions.
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Abstract

Creolization and code-switching are closely
related contact-induced linguistic phenomena,
yet little attention has been paid to the connec-
tion between them. In this paper, we propose an
agent-based cognitive model which provides a
linkage between these two phenomena focusing
on the statistical regularization of language use.
That is, we identify that creolization as a con-
ventionalization process and code-switching as
flexible language choice can be optimal solu-
tions for the same cognitive model in different
social environments. Our model postulates a
social structure of bilingual and monolingual
populations, in which a set of agents seek for
optimal communicative strategy shaped by mul-
tiple cognitive constraints. The simulation re-
sults show that our model successfully captures
both phenomena as two ends of a continuum,
characterized by varying degrees of regulariza-
tion in the use of linguistic constructions from
multiple source languages. The model also re-
veals a subtle dynamic between social structure
and individual-level cognitive constraints.

1 Introduction

Creolization and code-switching, despite being two
distinct linguistic phenomena, share notable simi-
larities in many aspects. For example, both occur
in a social situation that involves language contact,
where multiple linguistic communities encounter
and engage in communication; both involve speak-
ers processing linguistic signals encoded in differ-
ent languages; and, most importantly, both result
in utterances with a mixture of linguistic represen-
tations from multiple source languages.

However, creolization and code-switching are of-
ten studied with different theoretical and empirical
focus (Muysken, 2013). Creolization, on one hand,
is often treated as a population-level phenomenon,
drawing attention primarily from historical and
sociolinguists whose main goal is to depict the
change and evolution of linguistic representations

as a function of social movements (Thomason and
Kaufman, 1988; Mufwene, 2011).1 On the other
hand, research on code-switching leans towards
the individual level, with joint force from psycho-
and contact linguistics to understand the psycho-
logical mechanism adopted by bilingual speakers
(Green and Abutalebi, 2013; Green and Wei, 2014)
as well as the grammatical and structural configura-
tions constraining code-switching (Myers-Scotton,
1997; Muysken, 2000; Poplack, 1980).

In the current study, we aim to bring together
these two closely related phenomena, focusing on
the statistical aspect of language use (Bybee, 2006;
Reali and Griffiths, 2009). In short, our use of the
term creolization mainly focuses on its convention-
formation nature, while the use of the term code-
switching mainly focuses on the flexibility of lan-
guage choice. In this sense, we consider creoliza-
tion and code-switching as two ends of a contin-
uum, varying in the degree of statistical regular-
ization in the use of linguistic constructions from
multiple source languages. Crucially, we identify
that creolization as a conventionalization process
and code-switching as flexible language choice can
be optimal solutions for the same cognitive model
in different social environments. 2

1There are certainly different levels of explanations in cre-
ole studies (e.g., individual strategies, the role of the inductive
bias in L1 acquisition, etc.). However, many studies conceptu-
alize creoles (and other similar communicative systems, e.g.,
pidgins) as new languages/linguistic systems, which implies
certain degree of conventionalization that is only meaningful
at the population or subcommunity level.

2Our use of the term creolization here presupposes the an-
swer to a theoretical question that is still under debate, in par-
ticular whether creolization is a distinct process or whether it is
fundamentally similar to other forms of language change (Jour-
dan, 2021; Mufwene, 2004; McWhorter, 1998). By referring
to a mix of constructions drawn from multiple languages as
‘creolization’, we follow recent work which eschews pidginiza-
tion as a step in creolization. However, this debate between
pidginization and creolization is beyond the scope of the cur-
rent study: our model can be applied to other frameworks.
The optimal codes we identify could be construed as operating
during pidginization or any process where new signals are con-
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Through an agent-based cognitive model, we
aim to provide a linkage between creolization as
a population-level process and code-switching as
an individual-level effect. Our model postulates
a social structure of bilingual and monolingual
populations, in which a set of agents engage in
communication with each other. For each agent,
their communicative strategy is shaped by multi-
ple cognitive constraints. Specifically, each agent
seeks to minimize their cognitive effort while main-
taining the communicative success with their part-
ner, a computational problem that we implement
information-theoretically.

To preview the results, our model successfully
captures both creolization and code-switching on
the continuum of statistical regularization. Specif-
ically, our model shows that when bilinguals put
more cognitive effort in tracking their partner’s
identity and develop a partner-specific communica-
tive strategy, they can rely on a simpler strategy
per partner, leading to creolization as a conven-
tionalization process. In contrast, when bilinguals
put less effort into partner tracking, they will have
to use a strategy that is more uncertain, leading
to code-switching. Moreover, our model reveals a
subtle dynamic between the social structure and the
individual-level cognitive constraints: more inten-
sive contact within the bilingual population is more
likely to lead to creolization, but only when the
bilingual agent puts enough effort into developing
a partner-specific communicative strategy.

2 Background

A creole is a fully developed natural language with
native speakers, often found to emerge in com-
munities with intensive multilingual contact (e.g.,
colonies) as a strategy to address the need to com-
municate among speakers of different languages
(Mufwene, 2004; Thomason and Kaufman, 1988).
How creoles emerge is still an ongoing debate.
McWhorter (1998) believes that creole is a spe-
cial synchronically definable typological class that
emerges from pidgins. However, opponents includ-
ing Mufwene see creoles as more of a sociohis-
torical construct—they are just contact-heavy ver-
naculars of their lexifiers (i.e., the language from
which the lexicon of a creole is primarily drawn)
(Mufwene, 1996, 2004). Under this view, the con-

ventionalized. Meanwhile, the term code-switching might also
have a different emphasis here than in many code-switching
studies. We use this term to indicate the freedom to choose
between languages when conveying a certain meaning.

structions of a creole reflect features of the various
source languages in contact as a result of a selection
process. That is, from the combined “feature pool”
of source languages, individuals select features for
the creation of the new language. Such idiolectal
selections then gradually converge through nego-
tiation and compromise during communications,
allowing the language to evolve into a new commu-
nal system that is unique enough from all source
languages (Mufwene, 2002, 2004). In this paper,
we adopt this “feature pool” viewpoint, and we
model the bilingual strategy in language contact
as a selection process from the pool of linguistic
constructions from source languages.

Another contact-induced phenomenon in bilin-
gual communication is code-switching, which un-
like creolization, gives the speaker freedom to
choose constructions from multiple languages dur-
ing language production. According to Green
and Abutalebi (2013), code-switching can happen
in three interaction contexts: (1) single-language,
where one language is used in one environment
(e.g. at work) and the other in a second distinct en-
vironment (e.g. at home); (2) dual-language, where
both languages are used but typically with differ-
ent speakers; and 3) dense code-switching, where
speakers switch languages within a single utterance,
or even adapt words morphologically from one lan-
guage in the context of the other. Later, Green and
Wei (2014) proposed a control process model of
code-switching, where the above interaction con-
texts determine whether the two languages are com-
petitive (as in the single- and dual-language con-
texts) or cooperative (as in the dense code-switch
context). If the two languages are competitive,
cognitive efforts are needed to suppressed the non-
target language, preventing it from entering into
planning. If, however, the two languages are coop-
erative, neither needs to be suppressed. Speakers
can choose whichever available construction that is
most appropriate on the basis of semantic, syntactic
and collocational considerations.

Conceptually, we view the key difference be-
tween creolization and code-switching as a matter
of the degree of regularization with regard to the
usage of linguistic constructions (Mufwene, 2020).
At the one end is creolization, where linguistic con-
structions are used in a highly conventionalized
way although the speakers are at the disposal of
a repertoire of constructions from multiple source
languages. That is, given a specific intended mean-
ing, native speakers of a creole will agree on the
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construction to be used to express that meaning. At
the other end is code-switching. Although bilin-
guals of the same languages may share some intu-
itions about where a switch can happen within a
sentence, possibly due to some grammatical con-
straints (Poplack, 1980; Muysken, 2000), it will
not be surprising at all if they choose different con-
structions and switching points to express the same
intended meaning.

3 Modeling Framework

Through an agent-based model of bilingual strate-
gies in a language contact scenario, we explore
how creolization and code-switching are optimal
solutions to a cognitive constraint problem within
the bilingual population at two ends of a continuum
which varies the regularization of linguistic con-
structions from multiple source languages.3 Our
model has two components. First, there is a social
structure consisting of bilingual and monolingual
populations, and a set of agents communicate with
each other within this social structure. Second, at
the individual level, each agent follows a commu-
nicative policy that is shaped by multiple cognitive
constraints.

3.1 Communication within a social structure

There are two languages LA and LB in our toy sce-
nario, and they share a discrete common meaning
spaceM. Each language consists of a disjoint set
of |M| possible constructions (representing words,
morphemes, syntactic patterns, and other strategies
languages may use to convey meaning) for these
meanings, CA and CB. Therefore, there are 2|M|
constructions in total, forming a joint construction
space for the entire society CA+B = CA ∪ CB.

In a communicative event, a speaker agent ai,
first comes up with an intended meaning m ∈M.
Then, they select a construction c ∈ C to realize
the intended meaning and send it to the listener
agent aj . The agent ai’s selection of construction
c given meaning m follows a communicative pol-
icy, which is a probability distribution p(c | m, aj)
to produce construction c given meaning m for
listener aj . In general, the goal of the sender in
each communication is to choose a construction c
in a way that helps the receiver aj reconstruct the
meaning m from it.

Figure 1 shows the social structure of a language

3Code for this model is available at https://github.
com/cj-torres/creolization-codeswitching.

BilingualMonolingual LA

(1 − r)/2

r

(1 − r)/2

Monolingual LB

Figure 1: The social structure in a language contact
scenario. A bilingual agent (in the middle) communi-
cates both with monolingual agents (on the sides) and
with other agents from the same bilingual population.
The arrows represent the communication pathway along
with the intensity of contact for each pathway.

contact scenario that defines the dynamics between
agents. It consists of three agents, corresponding
to three linguistic communities4: (1) two separate
monolingual agents, one speaking LA and the other
LB, and (2) a bilingual agent, which speaks both
languages. For monolingual agents, given an in-
tended meaning, they can only select a construction
from their corresponding language, that is, either
c ∈ CA or c ∈ CB. For the bilingual agent, it
can select constructions from the joint set of both
languages c ∈ CA+B.

The arrows in Figure 1 represent the dynamic
of interaction among the three linguistic commu-
nities.5 First, the bilingual speakers communicate
among themselves, with the proportion of com-
municative events, or contact intensity, being r.
Second, the bilingual agent communicates with
each monolingual agent separately, with (1− r)/2
representing the intensity of contact, that is, the
proportion of communicative events that the bilin-
gual agent has with the corresponding monolingual
agent.6 There is no direct communication between
the two monolingual agents in this social structure.

4In the current version of our model, we assume the ho-
mogeneity within each community, in the sense that each
individual within a community follows the same cognitive
model and the same dynamic of interaction. Therefore, each
community is represented as only one agent in our model.

5For simplicity, we assume that the communicative policy
of monolingual groups remains stable and is not influenced
by bilingual speakers, although this is not necessarily the case
in a real language contact scenario (Thomason and Kaufman,
1988). Therefore, we only focused on the evolution of commu-
nicative policy within the bilingual group, without specifying
any interaction within each monolingual group.

6Again, for simplicity, we assume that the intensity of
contact with each monolingual group is equal, but our model
is capable of accommodating unequal intensity as well.
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3.2 Cognitive model for communicative policy
The cognitive model specifies at the individual level
the communicative policy of the bilingual agent.
This policy is subject to multiple competing con-
straints, and the goal of the agent is to search for an
optimal policy striking a balance among these con-
straints. In this section, we first give a conceptual
overview of these constraints and how they shape
our individual-level cognitive model. We then turn
to the mathematical formalization of our model.

3.2.1 Conceptual Overview
The fitness of the communicative policy is gov-
erned by two primary constraints. The first one is
communicative success. That is, when encoding
an intended meaning, the speaker should choose a
construction such that their communicative partner
can reconstruct the intended meaning based on the
construction they receive. The second constraint is
cognitive effort. A policy that involves more com-
plicated decision-making processes may be more
costly, inducing greater demand for working mem-
ory and cognitive control, and therefore will be less
favored due to the limited cognitive resources that
agent is equipped with.

The constraint of cognitive effort can be further
decomposed into two components, namely, part-
ner tracking and construction selection. The
idea behind partner tracking is that the communica-
tive policy needs to be partner-specific (Hawkins
et al., 2023; Kleinschmidt and Jaeger, 2015). This
means that the speaker should adopt a distinct pol-
icy based on the identity of the specific partner they
interact with. Such a partner-specific policy is es-
pecially important for the bilingual population in
a language contact scenario, since the policy ef-
fective for monolingual speakers of LA does not
work on monolingual speakers of LB. In addition
to keeping track of the partner’s identity, the second
part of the cognitive effort results from construc-
tion selection. Specifically, given a communicative
partner, the agent needs to select a specific con-
struction to encode the intended meaning. Higher
uncertainty in selecting the appropriate construc-
tion increases the cognitive demand for decision-
making (Hick, 1952; Kuperberg and Jaeger, 2016;
Fan, 2014; Zénon et al., 2019; Zheng and Meister,
2025). If the agent can consistently rely on a spe-
cific construction to convey a particular meaning
to a given partner, the selection process becomes
more automatic, thus reducing cognitive effort.

Importantly, in policies that achieve a constant

level of communicative success, partner tracking
and construction selection compete with each other
for limited cognitive resources during bilingual-to-
bilingual communication, resulting in a trade-off
between the two.7

For the communication with monolinguals, bilin-
guals always need to track the monolingual’s iden-
tity to select an appropriate construction under the
pressure for communicative success. Moreover,
communication with different monolinguals results
in exposure to a mixed selection of constructions
from both languages, leading to a marginal distri-
bution with an irreducible amount of uncertainty.

For the communication between bilinguals, since
they know both languages, language choice does
not affect communication success anymore, and
a trade-off between partner tracking and construc-
tion selection now occurs. When agents attempt
to minimize attention to partner identity they will
revert to policies which reflect a mix of the lan-
guages they’ve been exposed to when they can
do so without impacting communicative success.
However, a mixture of LA and LB has a high uncer-
tainty over construction selection since construc-
tions from both languages are valid for each mean-
ing. Attempting to reduce this uncertainty in all
policies means that bilinguals must devise a third,
separate, conventionalized communication system
with one another. This creation of a conventional
system means the bilinguals must be attentive of
construction selection even among each other, thus
increasing the load on partner tracking.

Therefore, partner tracking and construction
selection are in a trade-off in the bilingual-to-
bilingual policies: increasing effort in partner track-
ing reduces the effort needed to address the un-
certainty in construction selection, and vice versa.
Given this trade-off, no policy can simultaneously
minimize both partner tracking and construction se-
lection while maintaining communicative success.
Instead, the agent needs to figure out an optimal
balance.

To sum up, at the individual level, the commu-
nicative policy followed by an agent is under the
constraints of communicative success and cogni-
tive effort, with latter being further decomposed

7There is actually also a trade-off between cognitive effort
and communicative success, such that a policy that achieves
higher communicative success may require greater cognitive
effort. However, this trade-off is not the main focus of the
current investigation, and the constraint of communicative
success, given our setup, primarily impacts how the bilingual
agent speaks with monolinguals (see Appendix B).

210



into partner tracking and construction selection. To
find an optimal policy, the agent seeks to minimize
the cognitive effort by striking a balance between
the effort for partner tracking and the effort for
construction selection.

3.2.2 Mathematical Formalization
For each listener agent a and meaning m, a speaker
agent has a policy p(c | m, a). As mentioned
above, we are interested in a tradeoff between part-
ner tracking and construction selection while en-
suring communicative success. We model this with
the following objective function to be minimized
for the communicative policy for speaker agent a∗,
consisting of three terms reflecting partner tracking,
construction selection, and communicative success:

Ja∗ = E
a,m

[∑

c

p (c | m, a) log
p (c | m, a)

p (c | m)

]

︸ ︷︷ ︸
partner tracking; I(a; c | m)

+ α E
a,m

[∑

c

p (c | m, a) log
1

p (c | m, a)

]

︸ ︷︷ ︸
construction selection; H(c | m,a)

+ β E
a,m

[∑

c

p (c | m, a) log
1

qa (m | c, a∗)

]

︸ ︷︷ ︸
communicative success; L(p)

,

(1)

where qa is the decoder policy for the listener agent
a used with speaker agent a∗ derived from its en-
coder via Bayes’ rule.8 The scalar α governs the
tradeoff between the two components of cognitive
effort: partner tracking and construction selection.
The relative weight of cognitive effort compared
to communicative success is governed by scalar
parameter β. However, we are not primarily inter-
ested in the behavior of these interactions, so for
our purposes β will remain fixed at a value ensuring
that communication systems bilinguals share with
monolinguals do not degrade. More information
on this choice can be found in Appendix B.

Here in Equation 1 we have used information-
theoretic quantities I(a; c | m) and H(c | m, a) to
represent cognitive effort. This is in line with recent
work in neuroscience, cognitive science, and psy-
cholinguistics which has constrained the complex-
ity of policies in this way (Tishby and Polani, 2011;

8For monolinguals the encoder is fixed as language LA or
LB and does not update (see Figure 2 for a depiction of these
policies).

van Dijk and Polani, 2013; Genewein et al., 2015;
Zaslavsky et al., 2018; Gershman, 2020; Futrell,
2021; Lai and Gershman, 2021; Futrell, 2023).

The first term of Equation 1 is the mutual infor-
mation between the variable a and the variable c
given m or I(a; c | m). It represents how much
information an agent must use about its interlocu-
tors in determining which constructions c to select
given its policy. The second term in Equation 1 is
the conditional entropy H(c | m, a), a value which
represents, among other things, the uncertainty in-
herent in the distribution p(c | m, a). The final
term L(p) represents the communicative success
expected given policy p.

What we will seek to answer in this investigation
is how this policy varies with respect to α between
0 and 1. The behavior on the extremes are relatively
easy to predict. For α = 0, the objective reduces to

Ja∗ = I(a; c | m) + βL(p), (2)

and we would predict speakers will attempt to
choose policies that are close to the marginal dis-
tribution p(c | m), that is, a policy which does
minimal partner tracking to achieve the desired
level of communicative success. For α = 1 we
instead get

Ja∗ = I(a; c | m) +H(c | m, a) + βL(p)
= H(c | m) + βL(p), (3)

which means that speakers choose as deterministic
a policy as possible when L(p) is not impacted (see
Appendix A for the full derivation of Equation 3).
At these extreme ends we will see that social de-
mography does not matter. However, we will also
see that for intermediate values of α, the speaker’s
policy is heavily mediated by the social structure
of their environment.

4 Procedure

With the agent communication structures and objec-
tive functions defined we are able to calculate opti-
mal policies using gradient descent. We investigate
whether the resulting policies that bilinguals share
with each other entrench constructions from one or
the other language, or whether the policies show
freedom to choose between constructions from LA

and LB. The former resembles creolization in the
feature pool model, where bilinguals select mixes
of features from both languages (Mufwene, 2004).
The latter resembles code-switching, with agents
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Figure 2: Model initialization: all bilingual agents are
initialized to perform code-switching, where the agent
has equal probability to choose constructions from LA

or LB given a meaning m. Monolingual agents are
initialized to use only one language.

being able to freely use constructions from either
language. We assume for sake of simplicity that
the monolingual populations are so large that they
resist changing in response to contact, but we leave
the bilingual population policies free to update.

Model initialization. We set the number of mean-
ings |M| to 5. Three agents are initialized: the
monolingual LA speakers, the monolingual LB

speakers, and the bilingual speakers. Monolingual
speakers were initialized with language policies
reflecting their language, either LA or LB, which
were disjoint mappings from meanings to construc-
tions. Bilingual speakers were initialized with map-
pings reflecting a uniform mixure of LA and LB.
We show initializations for bilingual and monolin-
gual agents in Figure 2.

Model training. During training, the bilin-
gual agent’s language policies were updated
using gradient descent. Training was per-
formed for five different values of α ∈

{0.0, 0.25, 0.5, 0.75, 1.0} and for five different val-
ues of r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. β was kept con-
stant at a value of 10.0. Training was performed
until successive improvements of the loss due to
gradient descent were less than 10−4.

5 Result

Our model successfully captures both creolization
and code-switching, as we explain below. Figure 3
shows the optimal bilingual-to-bilingual commu-
nicative policies with varying α and bilingual-to-
bilingual contact intensity r.9 Figure 4 shows the
overall cognitive effort in communicative policies,
again with varying α and r. We now highlight three
critical findings in our model result.

Effect of uncertainty in construction selection.
First, the model result shows that as the bilingual
agents prioritize partner tracking (i.e., lowering α),
they become more likely to adopt code-switching
as their optimal communicative policy, such that
the constructions from both source languages LA

and LB are kept active for each meaning (as seen
in panels from the top rows in Figure 3). In con-
trast, when the bilingual agents prioritize minimiz-
ing construction selection costs (i.e., increasing α),
they are more likely to develop creolization within
the bilingual population: for each meaning, only
one construction from either LA or LB is selected
deterministically, resulting in a highly convention-
alized use of linguistic constructions (as seen in
panels from the bottom rows in Figure 3).

Effect of contact intensity. We also observed
that higher contact intensity within the bilingual
population leads to increased creolization. As
shown in Figure 3, when r increases (indicating
stronger contact among bilinguals), the optimal
policy usually assigns the full—or nearly full—
probability mass to a single construction. In other
words, for each meaning a convention is established
using source constructions from either LA or LB .
To illustrate why this is the case we analyzed the
effects of choosing constructions from LA over LB

in conveying a single meaning mi for varying lev-
els of r and α. The results can be seen in Figure 4.
The effect of variable r on policy optima is clearer
in these charts: as r increases, the optimal policy
with respect to cognitive effort gradually moves

9As mentioned above, β was set such that bilingual-to-
monolingual communication was always accurate. However,
to see how these policies appear after training, and to see the
effect of varying β on them, see Appendix B.
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Figure 3: Optimal communicative policies p(c | m) for bilingual agents speaking to bilingual agents, as a function
of (1) the penalty α applied to the uncertainty of construction selection, and (2) the contact intensity r within
the bilingual population (as opposed to bilingual-to-monolingual contact). Code-switching corresponds to a
communicative policy that probabilistically alternates between the languages LA and LB, as found at α = 0.0 (top
row). Creolization corresponds to a policy that combines constructions from the two languages, but where the
outputs are deterministic, as found at α = 1.0 (bottom row). For intermediate values of the uncertainty penalty α,
the outcome (code-switching vs. creolization) is determined by the contact intensity r.

away from an equal probability of using either lan-
guage towards the highly conventionalized use of
one language for a given meaning (i.e., moving
away from the middle point to the sides).

For all values of α we see another general effect:
higher r, which means less monolingual contact,
leads to lower possible cognitive costs. Such a re-
sult can be explained by Green and Wei (2014)’s
model: when the contact with monolingual popula-
tion is weak, bilinguals are less likely to encounter
single- and/or dual-language contexts, where cog-
nitive control is needed to suppress the non-target
language.

When α = 0 or α = 1, no effect of contact
intensity. Our result also reveals an interaction
between the bilingual-to-bilingual contact intensity
and α, a model parameter that represents how the
two sub-components of the cognitive constraint are
prioritized. As shown in Figure 4, the contact in-
tensity only influences optima when 0 < α < 1.
When α = 0, the bilingual population always
adopts code-switching as their optimal policy re-
gardless of their internal contact intensity. On
the other hand, when α = 1, the optimal pol-

icy is always creolization.10 Counterintuitive as
it may seem at first glance, this dynamic suggests
that, on the one hand, in order for creolization to
emerge, the bilingual agent must put enough ef-
fort to develop a somewhat partner-specific pol-
icy (i.e., α > 0), regardless of the bilingual-to-
monolingual contact intensity. On the other hand,
in order to derive code-switching, that is, to keep
the representation from both languages active for
bilingual communication, the bilingual agent must
to some extent ignore partner identity and put at
least some effort to address a more uncertain selec-
tion over constructions (i.e., α < 1), regardless of
the bilingual-to-monolingual contact intensity.

6 Discussion

This paper presents an agent-based cognitive model
aiming to capture two common phenomena in bilin-
gual language use, namely creolization and code-
switching, as two ends of a continuum of varying
regularization. We set up the stage for our modeling
in a language contact scenario with bilingual agents
communicating among themselves and with mono-

10Technically, the value of α can go beyond 1. However,
the result of α > 1 will be qualitatively the same as when
α = 1, with creolization being the optimal strategy.
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Figure 4: Cognitive effort in communicative policies for a random meaning and its two candidate constructions,
with varying penalty α applied to the uncertainty of construction selection. Cognitive effort is calculated as the sum
of partner tracking and the uncertainty in construction selection (i.e., the first two terms in the objective function
given by Equation 1). Each line within each panel shows how the choice to use constructions from LA versus LB (x
axis) affects the overall optimality of the cognitive effort (y axis), given the contact intensity r within the bilingual
population (line color). Optimal solutions with minimal cognitive effort for each r are shown as red dotted lines.
These optima were calculated for 1000 values of r ∈ [0.0, 1.0), with only r ∈ {0.0, 0.1, ..., 0.8, 0.9} shown here
for ease of visualization.

lingual agents of two different languages. Within
the model, the bilingual agent’s communicative
policy is constrained by communicative success
and cognitive effort, with the latter pressure further
breaking down into partner tracking and construc-
tion selection subcomponents. The bilingual agent
is trained with the goal of striking a balance among
these constraints by updating their language poli-
cies using gradient descent. We find that the opti-
mal solution—creolization versus code-switching—
varies with the contact intensity bilinguals have
with monolinguals, but the effect varies by relative
importance of the cognitive effort subcomponents.

The reason for the transition in bilingual-
to-bilingual communication policies from code-
switching to creolization as a function of contact
intensity can be seen in Figure 4, which shows
how the choice of meaning–construction mapping
affects the cognitive effort (the sum of partner track-
ing and construction selection in Equation 1). At
extremum α = 0.0, the optima (indicated by a
red line) all lie at the .5 mark, meaning that the
optimal strategy to choose a construction given
meaning is always an even probability between LA

and LB, that is, a code-switching strategy. How-
ever, as α increases, a bifurcation in optima appears
for critical bilingual population values. This bi-
furcation corresponds to the bilingual-to-bilingual
contact intensity at which bilingual speakers can
reduce cognitive effort by entrenching the use of
LA or LB at the exclusion of the other. As α rises,
so does this critical contact intensity value until
α = 1.0, where code-switching is never cogni-
tively preferred. In reality, of course, both conven-

tionalization and flexible use of constructions are
observed in bilingual communities, and the critical
question is more about which strategy is preferred
under which condition. Therefore, we expect the
actual value of α, if we are able to fit our model
on some form of empirical data, would lie between
these two extreme values.

From the perspective of code-switching, our
model of bilingual strategy shares similarities with
some other models previously proposed in the lit-
erature, especially the one in Green and Abutalebi
(2013). Specifically, the model in their work tracks
how different social contexts change the mode
of control bilinguals may apply. Such a context-
dependent control echos the partner-tracking com-
ponent in our model, in the sense that the identity
of communicative partner forms one aspect of the
contextual information which the bilingual speaker
depends on to select their optimal policy. Despite
this similarity, our model differs from many oth-
ers in that we aim to capture the phenomenon at a
different timescale. That is, for our model, it char-
acterizes the optimal strategy of code-switching
at the population level. In contrast, many studies
in the existing code-switching literature focus on
the communicative strategy within each individ-
ual communicative event (e.g., the processing of a
single sentence), and they often look into what spe-
cific conditions within that communicative event
(e.g., grammatical configurations, processing mode,
etc.) trigger or allow code-switching. This is an
important question that the current study has left
unaddressed, and is worth investigating in future
extensions of our model.
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From the perspective of creolization, unlike
code-switching, the phenomenon is typically ap-
proached with a highlight on the special role of
inductive bias during the language acquisition in
children. The learning process in adults, in contrast,
was not at the center of theoretical focus in the liter-
ature, or at least has been viewed as only playing a
secondary role. Certainly, our model by no means
aims to downplay the significant role of children’s
language acquisition in creole genesis. However,
our result also suggests that, at least under certain
cognitive pressures and social circumstances, cre-
olization seems to be inevitable even though the
model does not specify any acquisition process for
inter-generational transmission, which is a setup
typically considered pidginization. In fact, more
and more psycholinguistics research have proposed
that the learning mechanism in children may not
be fundamentally different from the one in adults
(Chang et al., 2006, 2000). It is therefore crucial to
ask to what extent the effect of children’s acquisi-
tion bias on creolization is fundamentally different
from the effect of adults’ imperfect learning, and
to what extent the empirical difference between the
two observed in the literature is a qualitative versus
a quantitative one.

One thing which remains unaddressed is the
possible typological differences creoles display
(McWhorter, 1998). This is outside the scope of
this model due to the model’s very simple nature.
Our own model assumes no preference between
constructions, such that constructions from either
language are equally likely to be selected by bilin-
guals in creolization. In other words, the model
incorporates no inductive biases with respect to
constructions. Explaining the common traits of
creoles—for example the loss of gender and case—
may require resorting to a more detailed charac-
terization of the learnability and inductive bias of
certain linguistic features, which is more sophisti-
cated than our model can provide. To what degree
creoles are typologically unique is still a matter of
heated debate. We do not intend this work to stake
any claim on this matter.

7 Conclusion

We successfully provide a cognitive model which
when paired with the correct social environment
can explain both code-switching and creolization
as behavioral optima among bilinguals for certain
parameterizations. How to fit such parameteriza-

tions to real bilingual behavior, or whether a single
parameterization exists remain open questions. Is
there a single value for α or is it dependent on other
factors? This remains to be seen.

Limitations

Our model makes a number of assumptions that
might seem unrealistic. We aim to address some
of these in future work, but some are inherent to
attempting to explain such a complex phenomenon
using such a simple model.

Among the inherent assumptions are that both
languages share a discrete common meaning space
M, and a discrete message space. Constructions
are also considered independent of one another.
Neither of these are realistic assumptions, but ad-
dressing them directly would introduce substantial
complexity to the model for unclear gain and so is
not yet a priority.

However, we seek to address some limitations in
the future. One is that we model communities as
homogeneous. In reality bilingual communities ex-
hibit heterogeneity, with different bilinguals having
different levels of proficiency in each language and
maybe different cognitive resources and therefore
different preferred strategies (α). Modeling this is
a priority for future work and will involve changes
to the social network.

The second major limitation we hope to address
with future work is the communicative policy of
monolingual groups, which is currently assumed to
remain stable. This is also not realistic. Language
contact, even of a more moderate kind, can lead to
the creation of sprachbunds with large regions of
shared linguistic features. This may be addressable
in future work with a more detailed social network,
as with the case of heterogeneity. However, with-
out any source of innovation, we should expect
that a community where all policies update should
eventually converge to a common policy.
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Figure 5: Optimal policies (β = 0.01) of the bilingual agent when communicating with different types of partners.
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Figure 6: Optimal policies (β = 10) of the bilingual agent when communicating with different types of partners.

A Deriving Equation 3

Unlike in the α = 0 case it might not be immedi-
ately obvious how setting α = 1 results in Equa-
tion 1 becoming Equation 3 and so we figured it
would be reasonable to devote a little space explain-
ing why this happens. In fact, it is easiest to see
why this is the case by merging the first two terms
in Equation 1. If we do that, we get the condensed
version

Ja∗ = E
a,m

[∑

c

p (c|m, a) log
p (c|m, a)1−α

p (c|m)

]

+ β E
a,m

[∑

c

p (c|m, a) log
1

qa (m|c, a∗)

]
,

(4)

which we get by moving the α parameter inside
of the log terms. Doing this makes it obvious that
when α = 1 the objective function is given as:

Ja∗ = E
a,m

[∑

c

p (c|m, a) log
1

p (c|m)

]

+ β E
a,m

[∑

c

p (c|m, a) log
1

qa (m|c, a∗)

]
,

(5)

with the first term now becoming the expected
value of a cross-entropy term. In fact, this can

be reduced further. If we take the expectation of
the first term with respect to a we get

Ja∗ =E
m

[∑

c

p (c|m) log
1

p (c|m)

]

︸ ︷︷ ︸
H(c|m)

+ β E
a,m

[∑

c

p (c|m, a) log
1

qa (m|c, a∗)

]
,

(6)

since the various p(a) will sum to 1 and the terms
inside the first log do not depend on a. This means
the first term is the conditional entropy H (c | m).

B The effects of β

We stated above that the trade-off between cog-
nitive effort and communicative success (manip-
ulated through β in Equation 1) was not of pri-
mary interest in the current study. This is because,
although including a pressure for communicative
success is necessary to get the results we do, the
manipulation of the term β, given our setup, pri-
marily impacts how the bilingual agent speaks with
monolinguals. For low β their accuracy with mono-
linguals does not matter, and with any α ̸= 0 the
pressure to decrease entropy results in bilingual
agent communication policies drifting off LA and
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LB with their monolingual interlocutors the major-
ity of the time. In other words, the consequences of
entropy-reduction (creolization) become the only
observed effect.

A demonstration of this phenomenon can be seen
in Figure 5 and Figure 6, which show the opti-
mal policies of bilingual speakers when interacting
with different types of communicative partners. For
both figures, we fix α = 0.5, with r varying in the
columns. We set β = 0.01 in Figure 5 and β = 10
in Figure 6. When β is low (β = 0.01), all policies
used by the bilingual agent collapse into a single
one regardless of the type of their communicative
partner. When β is high (β = 10), the bilingual
agent use separate policies corresponding to dif-
ferent types agent populations, and only innovate
the linguistic system when interacting with another
bilingual. Monolingual policies remain accurate
only when β is high enough, and when β is set
in this manner the monolingual policies remain
accurate for all values of α.
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Boğaziçi University
onur.keles1@bogazici.edu.tr

Nazik Dinçtopal Deniz
Department of Foreign Language Education
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Abstract

This paper investigates good-enough parsing
in Turkish by comparing human self-paced
reading performance to the surprisal and atten-
tion patterns of three Turkish Large Language
Models (LLMs), GPT-2-Base, GPT-2-Large,
and LLaMA-3. The results show that Turk-
ish speakers rely on good-enough parsing for
implausible but grammatically permissible sen-
tences (e.g., interpreting sentences such as ‘the
man bit the dog’ as ‘the dog bit the man’). Al-
though the smaller LLMs (e.g., GPT-2) were
better predictors of human RTs, they seem to
have relied more heavily on semantic plausi-
bility than humans. Comparably, larger LLMs
(e.g., LLaMA-3) tended to make more proba-
bilistic parsing based on word order, exhibiting
less good-enough parsing behavior. Therefore,
we conclude that LLMs take syntactic and se-
mantic constraints into account when process-
ing thematic roles, but not to the same extent
as human parsers.

Introduction

Human language comprehension is rapid and in-
cremental, in which listeners or readers build up
provisional interpretations of sentences on the fly.
However, a growing body of work suggests that
these interpretations can occasionally be shallow
or incomplete, leading to syntactic misanalyses.
Good-enough parsing (Ferreira et al., 2002; Fer-
reira and Patson, 2007; Christianson et al., 2001),
argues that language comprehension sometimes re-
lies on heuristics guided by real world knowledge
and may not engage in detailed syntactic analyses.
That is, a sentence, such as ‘the dog was bitten
by the man’ can be interpreted as ‘the dog bit the
man.’ Such errors are more prevalent when the
event described is highly plausible in one partic-
ular direction (e.g., ‘dogs biting people’), but is
reversed in a sentence, such as ‘the dog was bitten
by the man’ especially in noncanonical syntactic

structure like passive constructions due to the con-
flict between real world knowledge and syntactic
structure (Ferreira, 2000).

To our knowledge, good-enough parsing has not
been examined in Turkish, a language that encodes
key thematic roles through overt morphosyntactic
marking that can potentially influence such misin-
terpretations. A passive construction, for instance,
is marked not only by a syntactic operation (e.g.,
Move-Merge in generative approaches) but also
through morphosyntactic operations on the verb
(e.g., the passivizing suffix -Il-).

This paper investigates if Turkish speakers are
prone to good-enough parsing effects and if Turk-
ish LLMs, which are hitherto unexplored in the
context of psycholinguistics, also exhibit these ef-
fects. Specifically, we investigate the extent to
which Turkish speakers and Turkish LLMs use syn-
tactic detail and real world plausibility in their pro-
cessing of active and passive constructions.

To address these questions, we employed (i) a
Self-Paced Reading (SPR) experiment with native
Turkish speakers, using sentences adapted from
Ferreira (2000) and (ii) computational simulations
with three Turkish LLMs (GPT-2-Base, GPT-2-
Large, and LLaMA-3). By comparing human
reading times and model-based surprisal measures,
along with each model’s relative attention to mor-
phological cues, we aim to show how factors like
animacy, semantic plausibility, morphosyntax, and
model capacity jointly shape the likelihood of good-
enough interpretations in Turkish.

Psycholinguistics and LLMs

Recent studies have leveraged LLMs to explore
how well they capture processing patterns in hu-
mans (Salicchi et al., 2023; Marvin and Linzen,
2018; Goldberg, 2019; Wilcox et al., 2023a; Wang
et al., 2024). Surprisal is often used as a predictor
of human reading times, showing strong correla-
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tions across languages and sentence types (Wilcox
et al., 2023a; Oh and Schuler, 2022; Nair and
Resnik, 2023). In particular, it has been claimed
that processing difficulty at a word reflects how un-
expected that word is, given prior context. LLMs
have also been tested with respect to their ability
to detect event plausibility in English (Pedinotti
et al., 2021; Kauf et al., 2024). For example, Kauf
et al. (2023) highlight that current LLMs can infer
thematic relations and can recognize events more
consistently that are truly impossible (e.g., ‘the lap-
top bought the teacher’) than those that are merely
unlikely (e.g., ‘the boy tutored the nanny’). Simi-
larly, Amouyal et al. (2024) presented evidence that
log probabilities from base and instruction-tuned
models can be used as a proxy for human plausibil-
ity judgments, while Kauf et al. (2024) evaluated
how these probabilities map onto graded seman-
tic acceptability. Finally, Ettinger (2020) reported
that although BERT can pick up on role reversal
differences or identify thematic relations, its sensi-
tivity is lower than that of human judgments. To-
gether, these studies suggest that LLMs take into
consideration the syntactic regularities and world
knowledge, albeit not always matching the precise
patterns found in human data and there seems to be
variation among different models.

While most of the work on LLMs have centered
on English, there is growing interest in multilingual
settings and underrepresented languages, including
Turkish. Recent work has tested Turkish LLMs for
different linguistic tasks like indexical shift (Oğuz
et al., 2024) and universal dependency annotation
evaluation (Akkurt et al., 2024). However, as far
as we are concerned, psycholinguistic evaluation
in Turkish LLMs remains sparse. Our investiga-
tion therefore addresses a key gap by providing
a direct comparison between human data and the
predictions of autoregressive Turkish LLMs with
differing sizes in an experiment designed to test
good-enough parsing effects.

Methodology

Self-Paced Reading (SPR) Experiment

This experiment examined the predictions of good-
enough parsing model (Ferreira and Patson, 2007)
with native Turkish speakers. 26 native Turkish
speakers (Mage = 19, all college students) partici-
pated in a word-by-word self-paced reading (SPR)
experiment. The experimental sentences, exem-
plified in (1), were translated from the materials

in Ferreira (2000) into Turkish and were slightly
adapted to prevent ambiguity and ensure naturality
(in (1) and elsewhere, PL: plural, ACC: accusative
case, PST: past tense, PASS: passive voice, 1SG:
first person singular marker).

(1) a. Köpek-ler
dog-PL

adam-ı
man-ACC

ısır-dı
bite-PST

sanır-ım
think-1SG

‘I think the dogs bit the man.’

b. Adam-lar
man-PL

köpek
dog

tarafından
by

ısır-ıl-dı
bite-PASS-PST

sanır-ım
think-1SG
‘I think the men were bitten by the dog.’

c. Adam-lar
man-PL

köpeğ-i
dog-ACC

ısır-dı
bite-PST

sanır-ım
think-1SG

‘I think the men bit the dog.’

d. Köpek-ler
dog-PL

adam
man

tarafından
by

ısır-ıl-dı
bite-PASS-PST

sanır-ım
think-1SG
‘I think the dogs were bitten by the man.’

e. Question: Is the event in the sentence plausible?

The experimental sentences manipulated syntac-
tic structure as active voice as in (1a, c) or passive
voice as in (1b, d), word order as non-reversed
as in (1a, b) or reversed as in (1c, d). Half of
the sentences had animate arguments which were
reversible but biased as in ‘the man bit the dog’
and the other half had one animate one inanimate
argument which were irreversible as in ‘the chef
wore the apron.’ Reversing the arguments in the
reversible set would result in permissible but un-
likely events and the reversal of arguments in the
irreversible set would cause semantic anomaly. A
symmetrical set (e.g., ‘the boy kissed the girl’) was
used as control in which the two arguments were
equally likely to be agents. All sets had 21 ex-
perimental sentences. Each sentence ended with a
content-neutral word1 to prevent wrap-up effects.
There were 21 sentences each in reversible and
irreversible sets, with the four conditions manipu-
lating syntactic structure (active, passive) and word
order (reversed, non-reversed), totaling up to 42
experimental items. The experimental sentences
were distributed across four reading lists counter-
balancing for syntactic structure (active, passive)
and word order (reversed, non-reversed). In each
list, the experimental sentences were intermingled
with 21 additional controls and six practice items.

The experiment was prepared on the PCIbex
1Words expressing epistemic modality like perhaps,

maybe, probably.
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experiment building software (Zehr and Schwarz,
2018)2 and an online link to it was shared with the
participants, who read, on their own computer, the
sentences word-by-word moving from one word to
the next with a key-press. Their task was to indi-
cate, by clicking on two possible options presented
under the sentence, if the sentence described a plau-
sible event (see 1e). Accuracy of the response to the
plausibility question, word reading time, and end-
of-sentence plausibility decision time were mea-
sured.

LLM Experiments

Models In addition to Turkish speakers, we
tested the predictions of the good-enough pars-
ing model on three decoder-only Turkish LLMs
using the same experimental item set. We used the
base and large variant of the GPT-2 (Radford et al.,
2019) trained on Turkish (Kesgin et al., 2024b) and
a LLaMA-3 Turkish (Kesgin et al., 2024a), which is
an adapted version of the LLaMA-3 model (Dubey
et al., 2024) fine-tuned using a 30GB dataset of
Turkish. The models used in this study shared the
same architecture as autoregressive models trained
for next token prediction to align well with the SPR
task reported earlier, which tests incremental pro-
cessing. However, these models differ in size and
performance: GPT-2-Base Turkish has 124 mil-
lion parameters, 12 layers, and 12 attention heads;
GPT-2-Large Turkish, 774 million parameters, 36
layers, and 20 attention heads; LLaMA-3-8B Turk-
ish, 8 billion parameters, 32 layers, and 32 attention
heads. To compare with human word reading time,
we calculated model surprisal for each word in each
sentence. We also report a heatmap visualization of
the model’s attention to examine if it shifts based
on the likelihood of the event.

Surprisal We simulated the incremental process-
ing behavior of Turkish speakers as in the SPR task
and estimated surprisal values for each word in the
sentence to examine if model surprisal in Turkish
could predict reading times. To do so, the exper-
imental items were first tokenized using the byte-
pair encoding (BPE) tokenizer (Sennrich, 2015),
resulting in sub-word sequences. Each word wi

in the sentence was then incrementally presented
to the model, conditioned on its preceding context
w1:i−1. Formally, surprisal S(wi) is defined as the
negative log-probability of wi given w1:i−1:

2http://farm.pcibex.net

S(wi) = − logP (wi | w1:i−1) (1)

where w1:i−1 represents the words preceding
wi. In practice, the first word w1 has no context
(w1:0 = ∅), the second word w2 depends on w1,
the third word w3 depends on w1, w2, and so on.

To account for sub-word segmentation, we ag-
gregated the surprisal estimates of all the sub-words
belonging to a single word (following Wilcox,
2020; Oh and Schuler, 2023, and others). If a word
w is decomposed into sub-words (s1, s2, . . . , sk),
its word-level surprisal S(w) is computed as the
following:

S(w) =
k∑

i=1

S(si) (2)

Attention weights Following Li et al. (2024)’s
approach (also see Clark et al., 2019; Voita et al.,
2019, for similar uses), we created a heatmap visu-
alization of attention, which is a common strategy
for probing model interpretability. In the trans-
former architecture (Vaswani et al., 2017), each
layer contains multiple self-attention heads. These
heads compute weighted dot products among to-
ken representations (query, key, value), allowing
the model to capture a wide range of linguistic re-
lationships. This way, we can try to understand
what the model is attending to or looking at when
processing a word wi.

Our focus was the degree of attention to the
post-position tarafından ‘by’, which introduces the
agent in passive constructions in Turkish. For each
condition, we computed (for all attention heads
and layers) and subtracted the attention weights
of the NP local to the post-position from the NP
that is distant, which gives us how much more/less
attention the two NPs received compared to each
other. We then computed the difference between
these relative attention patterns when word order
was reversed and evaluated how reversing word
order (i.e., the condition when event becomes less
likely or impossible) affected these relative atten-
tion patterns. Increased attention toward the distant
NP in the reversed condition may point to a less
accurate interpretation (indicating that the sentence
was processed in a good-enough manner), where
the model relies more on semantic/real-world plau-
sibility cues than on strict syntactic structure. Con-
versely, preference for the local NP would indicate
that tarafından was successfully mapped to the cor-
rect agent phrase that it introduces (as in Figure
1).
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Figure 1: Possible model attention routes from the
post-position tarafından ‘by’ and two noun phrases. A
structural dependency between tarafından and the non-
agentive distant NP is not possible in Turkish. The
brown path indicates the correct dependency (resolved
at the agent), whereas the blue path points to an incor-
rect dependency (resolved at the non-agent subject).

Results and Discussion

SPR Results

Accuracy Table 1 shows Turkish speakers’ accu-
racy in their decisions. Following a strategy similar
to Kauf et al. (2023), if speakers answered ‘plau-
sible’ to reversed orders in biased and irreversible
sets, we considered that response to be erroneous.
For inference, we fit a mixed effect binomial model
to Accuracy with Word Order (Reversed, Nonre-
versed), Structure (Active, Passive) as fixed effects
using lmer (Bates et al., 2005) in R for biased and
irreversible sets separately. Participants and Items
were entered as random effects.

Overall, Turkish speakers were successful (with
a mean accuracy of 90% or higher) in all condi-
tions except for reversed sentences in the reversible
(i.e., biased) condition. For these sentences, we
observed an error rate of 25% for reversed con-
structions, where the reversed order had a signif-
icant negative effect on accuracy (Odd Ratio =
0.11, p < .001). There was no reliable difference
in accuracy for active (30% error) and passive con-
structions (20% error) in the reversed condition
(Odd Ratio = 3.48, p = .13). Reversing the word
order did not result in a decrease in accuracy for ir-
reversible sentences (Odd Ratio = 5.39, p = 0.13).
We attribute this to a good-enough parsing effect
present in the biased set, whereby participants mis-
takenly preferred the interpretation that was more
in line with their real world knowledge, but not
with the syntactic structure of the sentence.

This did not happen for the irreversible sen-
tences, though, possibly because the presence of
an inanimate entity was a strong cue for the cor-
rect structure. Note that good-enough parsing ef-
fects were observed in passive constructions in En-
glish (Ferreira, 2000). We attribute the compara-
ble decrease in accuracy in passive constructions
(compared to that in active counterparts) in Turkish

to the semantic content that the ‘by’-phrase has
in Turkish. Unlike its English counterpart ‘by’,
tarafından is a semantically transparent word car-
rying lexical content that could have provided ad-
ditional cue to the correct parse. The observation
of the decrease in accuracy in active sentences in
Turkish (compared to the lack thereof in English)
can be attributed to the relatively flexible word or-
der in Turkish in which the order of agents and
patients can change depending on the information
structure of the sentence (İşsever, 2003).

Set Word Order Structure Accuracy

Biased Nonreversed Active 96%
Biased Nonreversed Passive 99%
Biased Reversed Active 71%
Biased Reversed Passive 80%
Irreversible Nonreversed Active 97%
Irreversible Nonreversed Passive 92%
Irreversible Reversed Active 99%
Irreversible Reversed Passive 99%

Table 1: Turkish Speakers’ Mean Accuracies on the
Plausibility Task

Word reading time The RTs for each word can
be examined in Figure 2. We fit a mixed effects
regression model on the log-transformed RTs for
the reversible and irreversible sets separately. Word
Order (Reversed, Nonreversed), and Structure (Ac-
tive, Passive) were fit as fixed effects and Partic-
ipant and Item were random effects. In addition,
all models also included Word Length, Previous
Word Length, Region (Verbal, immediately Prever-
bal, Other) as additional predictors. All numeric
factors were centered to prevent collinearity. The
verb region had the highest RT in all conditions
(β = .23, p < .001 for both sets). There was no
significant interaction between Word Order and Re-
gion for the biased set (β = −.05, p = .218 for
preverbal; β = −.07, p = .07 for verbal), mean-
ing that reversal of the arguments did not yield an
online surprisal effect for Turkish speakers.

However, both the verbal (β = .12, p = .001)
and preverbal (β = .04, p = .029) regions had
significantly increased RTs in the reversed con-
dition when the events were irreversible (as in
‘aprons wearing chefs’). This suggests that se-
mantic anomaly was detected at the verbal and
preverbal region. In the preverbal region, which
corresponds to the direct object with accusative
marking (e.g., önlüğ-ü ‘apron-ACC’) in active sen-
tences and the post-position tarafından in passive
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Figure 2: Word-by-word Reading Time (RT) in the Self-Paced Reading (SPR) Task by Set (Biased, Irreversible),
Structure (Active, Passive), and Word Order (Reversed, Nonreversed).

sentences, participants encountered critical mor-
phosyntactic/semantic cues that signaled the up-
coming structure. In active sentences, the pres-
ence of accusative case-marking on an inanimate
argument probably served as a strong predictive
cue as to the theme/patient of the upcoming verb.
Similarly, in passive sentences, encountering the
agentive post-position tarafından could have pro-
vided information about the upcoming passive verb.
These morphosyntactic and semantic cues might
have allowed the readers to construct syntactic and
thematic dependencies before reaching the verb,
where these predictions were ultimately resolved.
This was not the case for biased sentences, in which
both arguments were animate. This animacy in-
formation may have let readers to entertain both
arguments as potential agents and patients.

Decision time Figure 3 shows the sentence-final
decision times for each condition. We fit a mixed ef-
fects regression model to log-transformed decision
times with Word Order (Reversed, Nonreversed)
and Structure (Active, Passive) as fixed effects for
each set. Participants and Items were random ef-
fects. Overall, in biased conditions, both in ac-
tive and passive constructions, the participants took
longer to decide in reversed conditions than in non-
reversed conditions (β = .18, p = .007). In irre-
versible conditions, the opposite pattern was ob-
served and the participants took less time to decide
for reversed sentences (β = −.014, p = .014),
and spent more time on sentences with a canonical

word order.
Let us first consider the reversible condition.

When one argument (e.g., ‘the dog’) is more likely
to do an action (e.g., ’biting’) than the other (e.g.,
‘the man’), reversing their order resulted in delay
in decision times. Together with accuracy data
(reduced accuracy in reversed than non-reversed
conditions), we interpret this delay to good-enough
parsing effects. Although the participants faced
some processing difficulty due to the implausibil-
ity of the event (e.g., ‘the man biting the dog’),
some participants, to some extent, appear to have
interpreted such sentences as their plausible coun-
terparts (e.g., ‘the dog biting the man’). The pat-
tern in the irreversible conditions was not predicted
but is explicable. In irreversible conditions, the
agent (e.g., ‘the chef’) referred to an animate entity
and the patient (e.g., ‘the apron’) was inanimate.
Reversing their order was predicted to cause pro-
cessing difficulty but it appears that the participants
were quick to integrate the animacy information
in their decisions and to detect the implausibility
when the order of the arguments was reversed.

LLM Results

Surprisal The estimated surprisals from each of
the three Turkish models are given in Figure 4. To
investigate if the same critical regions resulted in
difference in model surprisal, mixed effects linear
models were fit for each model and for each set,
resulting in 6 models. Word Length, Preceding
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Figure 3: Semantic Plausibility Decision Time by Set (Biased, Irreversible), Structure (Active, Passive), and Word
Order (Reversed, Nonreversed)

Word Length, Region (Verbal, Preverbal, Other),
Word Order (Reversed, Nonreversed), and Struc-
ture (Active, Passive) were entered as fixed effects.
Item was entered as a random effect. For the biased
set, both variants of the GPT-2 (base and large)
had only preverbal region significant in the passive
voice when the arguments were reversed (β = .37,
p = .04 for GPT-2-Base; β = .28, p = .04 for
GPT-2-Large). In contrast, LLaMA-3 had signifi-
cantly larger surprisal estimates only for the verb re-
gion in the reversed condition (β = .42, p < .001).

As to the irreversibles, the large and base vari-
ants of GPT-2 behaved almost identically except
for the surprisal for the verbal region in the irre-
versible passive condition. Verbs that had reversed
arguments in the passive voice had a larger sur-
prisal estimate (p’s < .001) than the non-reversed
argument in GPT-2-Large. This means that the
larger model was able to detect the semantic bias
on both critical regions whereas GPT-2-Base did
so only for the preverbal region with no signifi-
cant effect of the verbal region (β = .31, p = .07).
All critical regions significantly increased surprisal
estimates in other conditions (p’s < .001). In con-
trast, LLaMA-3 also yielded significantly larger
surprisals for all conditions in the irreversible set
(p’s < .005).

Overall, LLaMA-3 demonstrated a broader sen-
sitivity to structural and semantic cues compared
to the GPT-2 family, particularly in irreversible
sentences. In contrast, GPT-2 models showed sen-
sitivity in specific regions (preverbal for the base
model, and both preverbal and verbal for the larger
variant). This suggests that LLaMA-3 might have
better captured structural and semantic dependen-
cies than the smaller models. Additionally, the
differences in how GPT-2 variants process passive
constructions with reversed arguments suggest that

model size might be influencing the ability to inte-
grate multiple linguistic cues in Turkish,3 with the
larger GPT-2 model estimating higher surprisal for
both critical regions.

Predicting RTs We also tested if model surprisal
predicted Turkish speakers’ word RTs. For this, we
added two additional predictors to the word read-
ing time model described earlier. We added current
word’s wi Surprisal and PrevSurprisal (which corre-
sponds to the surprisal from the previous word wi−1

for potential spillover effects) following Wilcox
et al. (2023b). Then, the baseline model and sur-
prisal models were compared with a likelihood ra-
tio test for each set. We found that the models that
included surprisal as an additional predictor had
significantly greater likelihood for both the biased
(χ2(3) = 28.94, p < .001) and irreversible sets
(χ2(1) = 8.63, p < .01). The general finding that
surprisal predicts reading times is in line with ob-
servations from prior studies (Demberg and Keller,
2009; Shain et al., 2022; Wilcox et al., 2023b).

To investigate which of these language models
best predict human RTs, we split the data by LLM
and fit linear mixed-effects models, one for each
LLM across the two sets. The surprisal derived
from GPT-2-Large predicted the RTs at the critical
region (the verb) (β = .04, p < .001). The sur-
prisal of GPT-2-Base had some predictive power
but it did not reach statistical significance (β =
.04, p = .09). LLaMA-3 surprisal did not predict
the RTs at the critical region (β = .00, p = .759)
but it did predict the RTs at the region preceding
the verb (at the accusative-marked NPs in the active
condition and at the postposition ‘by’ in the passive
condition) (β = .03, p < .002). Overall, these find-

3For comparison, see Appendix A for the surprisal esti-
mates by the same models in English.
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Figure 4: Replication of the SPR Task: Left-context Only Word-by-word Model Surprisal for GPT-2-Large Turkish,
GPT-2-Base Turkish, LLaMA-3-8B Turkish by Set (Biased, Irreversible), Structure (Active, Passive), and Word
Order (Reversed, Nonreversed).

ings indicate that the surprisal values from GPT-2
models (particularly the large variant) accounted
for human RTs at the critical region better than
those from LLaMA-3.

Attention weights Finally, we tested if models’
attention patterns reflected sensitivity to argument
structure, particularly in passive constructions with
tarafından (‘by’) in Turkish. We focused on the
attention weights from tarafından to its local, agent,
NP and the more distant, patient, NP, compar-
ing these patterns across canonical and reversed
word orders. This analysis allowed us to examine
whether the models correctly associated the agent
marker with the more local and structurally correct
NP, or if they showed increased attention to the
distant NP in non-canonical orders, which might
indicate shallower syntactic processing and more
semantic or heuristic processing.

Figure 5 demonstrates the relative change in at-

tention toward distant or local NP when the condi-
tion changed from non-reversed to reversed across
all layers and attention heads. In other words, it
shows us if the attention heads kept looking at the
same NP or changed their attention weights in favor
of either one of the two candidate NPs when the
arguments were reversed. The red colors indicate
change in attention in favor of the local NP, and
the blue colors refer to a change in favor of the dis-
tant NP. A distant NP preference would imply that
the model is associating tarafından more with the
non-agent possibly because of a semantic intrusion.

For biased passive sentences (top row), GPT-
2-Base showed mixed patterns with scattered at-
tention shifts across layers and heads, while GPT-
2-Large demonstrated more consistent but subtle
changes (given the more faded colors) in attention
distribution. LLaMA-3 exhibited the most uniform
pattern, with minimal attention shifts between con-
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ditions. In irreversible passive constructions (bot-
tom row), the patterns were more pronounced. In
the GPT-2 models, there were increasing looks or
sensitivity to the distant NP. While for the base
model distant NP preference took place across dif-
ferent layers, for the large model it mainly occurred
in the deeper layers, albeit less strongly.

LLaMA-3 maintained relatively stable attention
patterns with only a few heads showing strong pref-
erences for either NP. This suggests that LLaMA-
3’s processing of argument structure may be more
immune to word order variations, particularly in
syntactically constrained contexts. Deeper layers
did not display significant attention shifts in either
set. Furthermore, there was increasing attention
weight at the local NP in the irreversible set. We
infer that LLaMA-3 mostly did probabilistic and
syntactically constrained processing, and presum-
ably understood semantically implausible events
with correct mapping of thematic relations. In con-
trast, both GPTs seem to have relied more on se-
mantic cues and mapped tarafından with the more
plausible and animate NP in Turkish.4

General Discussion and Conclusion

Our findings offer converging evidence that Turkish
speakers exhibit good-enough parsing effects, par-
ticularly for biased sentences in which real-world
plausibility (e.g., ‘dogs biting men’ versus ‘men
biting dogs’) competes with syntactic structure.
The SPR experiment revealed that reversed sen-
tences in the biased set generated a good-enough
parsing effect, leading to increased error rates and
slower plausibility decisions. However, this ef-
fect was greatly reduced in the irreversible events
containing semantic anomaly. We conclude that
the animacy cues help participants form accurate
interpretations. Furthermore, all three autoregres-
sive Turkish models (GPT-2-Base, GPT-2-Large,
and LLaMA-3 Turkish) showed sensitivity to struc-
tural and semantic anomalies in their surprisal es-
timates. However, the larger GPT-2 model cap-
tured more linguistic cues than its smaller variant,
and LLaMA-3 model appeared to be the most ro-
bust in assigning correct syntactic dependencies

4For comparability, we also tested the attention weights
of BERT and BERTurk (Schweter, 2020) (see Appendix B),
bidirectional models for English and Turkish, respectively,
and found similar changes in attention, but BERT (compared
to BERTurk) had more shifts to the distant NP in the deeper
layers, which might be related to the greater distance between
the two NPs in English.

even under conditions of unlikely events. In addi-
tion, human reading times were significantly pre-
dicted by LLM-based surprisal, supporting earlier
findings in the literature (Li et al., 2024; Wilcox,
2020). The surprisal analysis also revealed that
GPT-2 better predicted human RTs than LLaMA-
3. This finding aligns well with earlier observa-
tions made for English suggesting that smaller or
mid-sized models (e.g., GPT-2 variants) can mir-
ror human reading patterns (Oh and Schuler, 2023;
Kuribayashi et al., 2023) more closely, in line with
large-scale evidence for surprisal-based predictabil-
ity effects (Shain et al., 2024). Moreover, atten-
tion weight analyses showed that GPT-2 models
often shifted attention toward the more semanti-
cally plausible (but syntactically incorrect) noun
phrase in reversed sentences, presumably reflecting
good-enough heuristics across both biased and irre-
versible stimuli. Meanwhile, LLaMA-3 appeared
more robust in capturing correct agent–patient map-
pings, which was more unlike the human data.

Crucially, Turkish speakers also relied on good-
enough parsing strategies, but only for biased sen-
tences, similar to the English speakers in Ferreira
(2000). This may place their performance between
the heuristic-driven patterns of the GPT-2 models
and the more consistent syntactic mappings ob-
served in LLaMA-3. GPT-2 models appear to rely
more heavily on good-enough strategies than hu-
mans, whereas the attention patterns of LLaMA-3
suggest more syntactically detailed parsing. These
results highlight the potential of LLMs as compu-
tational proxies for psycholinguistic phenomena
and the need to incorporate semantic plausibility
cues into neural parsing models. While human
participants occasionally rely on shallow heuristics,
larger models may attend to semantic and structural
cues differently across representational scales. We
conclude that both Turkish speakers and LLMs are
sensitive to syntactic and semantic constraints, but
differ in how they prioritize these linguistic cues.

These findings raise broader questions about the
architecture of both human and model-based pars-
ing. In the context of good-enough processing,
transformer models appear to operate such that
earlier layers capture syntax-level information and
frequency-based cues, while deeper layers seem
to encode information related to real world plau-
sibility. (See similar observations for human sen-
tence processing, not specifically in the context of
good-enough parsing, e.g., Lowder and Gordon,
2015; and Frazier and Fodor, 1978.) The varia-
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Figure 5: Attention difference between the NPs distant and local to the post-position (in Reversed - Non-reversed
word order) for passive constructions. Results are shown for three Turkish LLMs: GPT-2-Base (12 layers, 12
heads), GPT-2-Large (36 layers, 20 heads), and LLaMA-3-8B (32 layers, 32 heads). Blue regions indicate stronger
attention to Distant NP (incorrect dependency) in reversed word order, while red regions indicate stronger attention
to Local NP (correct dependency. Top row shows differences for biased passive sentences, bottom row does so for
irreversible passive sentences.

tion in attention across layers and heads further
suggests that different layers may support distinct
parsing functions. Future research can examine
if a cascaded cue integration approach can be ex-
tended to good-enough processing in human sen-
tence comprehension. These directions can help
clarify how humans and LLMs balance shallow and
syntactically-detailed processing.

Limitations and Future Research

We can acknowledge several limitations that re-
quire further exploration: (i) We relied on surprisal
and attention analyses, but did not include broader
generative tasks (e.g., full-sentence completions,
direct plausibility ratings from the models). Also,
instead of plausibility ratings, agent and patient
matching tasks could be used to investigate good-
enough parsing. Future work could integrate these
methods to probe whether humans and LLMs in-
terpret semantically implausible sentences accu-
rately. (ii) Our experiments focused on decoder-
only architectures (GPT-2 and LLaMA-3). Other
decoder-models available in Turkish like Kanarya
(Safaya et al., 2022) or alternative model families,
such as T5-based architectures (e.g., TURNA, Ulu-
doğan et al., 2024) and possibly multilingual mod-

els like mGPT (Shliazhko et al., 2023) and Aya
(Üstün et al., 2024), might yield different patterns
of surprisal or attention particularly for language
comprehension tasks in Turkish. (iii) Finally, re-
cent work (Giulianelli et al., 2024) has raised con-
cerns about tokenization granularity and argued
that token-level language models should ideally be
(approximately) marginalized into character-level
representations before being used in psycholinguis-
tic studies. Since the current work relies on token-
level surprisals, we acknowledge that this may in-
troduce a degree of misalignment with human pro-
cessing.
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Metehan Oğuz, Yusuf Umut Ciftci, and Yavuz Faruk
Bakman. 2024. Do llms recognize me, when i is
not me: Assessment of llms understanding of turkish
indexical pronouns in indexical shift contexts. arXiv
preprint arXiv:2406.05569.

228



Byung-Doh Oh and William Schuler. 2022. Entropy-
and distance-based predictors from gpt-2 attention
patterns predict reading times over and above gpt-2
surprisal. arXiv preprint arXiv:2212.11185.

Byung-Doh Oh and William Schuler. 2023. Why does
surprisal from larger transformer-based language
models provide a poorer fit to human reading times?
Transactions of the Association for Computational
Linguistics, 11:336–350.

Paolo Pedinotti, Giulia Rambelli, Emmanuele Cher-
soni, Enrico Santus, Alessandro Lenci, and Philippe
Blache. 2021. Did the Cat Drink the Coffee? Chal-
lenging Transformers with Generalized Event Knowl-
edge. arXiv preprint. ArXiv:2107.10922 [cs].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Ali Safaya, Emirhan Kurtuluş, Arda Goktogan, and
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A Model Surprisal in English

Figure 6: Word-by-word Model Surprisal for the English BERT and BERTurk (Turkish BERT) by Set (Biased,
Irreversible), Structure (Active, Passive), and Word Order (Reversed, Nonreversed)
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B Comparing English and Turkish: Encoder Model Attention

Figure 7: Attention difference between the NPs distant and local to the post-position (in Reversed - Non-reversed
word order) for passive constructions, comparing the English BERT and BERTurk (Turkish BERT) (12 layers, 12
heads). Blue regions indicate stronger attention to Distant NP in reversed word order, while red regions indicate
stronger attention to Local NP. Top row shows differences for biased passive sentences, bottom row does so for
irreversible passive sentences.
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Abstract

Humans tend to predict the next words dur-
ing sentence comprehension, but under unique
circumstances, they demonstrate an ability for
longer coherent word sequence prediction. In
this paper, we investigate whether Transform-
ers can model such hyperprediction observed
in humans during sentence processing, specifi-
cally in the context of Japanese buzzer quizzes.
We conducted eye-tracking experiments where
the participants read the first half of buzzer quiz
questions and predicted the second half, while
we modeled their reading time using the GPT-2.
By modeling the reading times of each word
in the first half of the question using GPT-2
surprisal, we examined under what conditions
fine-tuned language models can better predict
reading times. As a result, we found that GPT-2
surprisal effectively explains the reading times
of quiz experts as they read the first half of
the question while predicting the latter half.
When the language model was fine-tuned with
quiz questions, the perplexity value decreased.
Lower perplexity corresponded to higher psy-
chometric predictive power; however, exces-
sive data for fine-tuning led to a decrease in
perplexity and the fine-tuned model exhibited
a low psychometric predictive power. Overall,
our findings suggest that a moderate amount
of data is required for fine-tuning in order to
model human hyperprediction.

1 Introduction

It is widely recognized that the probability of a
word within a specific context (i.e., surprisal) af-
fects the difficulty of processing during incremental
human language comprehension (Hale, 2001; Levy,
2008). Based on this premise, researchers have
compared a variety of language models in terms
of how well their surprisal correlates with human
reading behavior (Wilcox et al., 2020; Kuribayashi
et al., 2021; Van Schijndel and Linzen, 2021).

However recent works found that this cannot
be applied to very large language models, which
provides a poorer fit to human reading times. Oh
and Schuler (2023) argues that larger Transformer-
based models ‘memorize’ sequences during train-
ing, and their surprisal estimates diverge from hu-
manlike expectations.

In those studies on cognitive modeling, self-
paced reading experiments and eye-movement cor-
pora are employed to utilize data regarding human
reading times (Kennedy et al., 2013; Asahara et al.,
2016; Futrell et al., 2018; Goodkind and Bicknell,
2018; Yoshida et al., 2021). These corpora typi-
cally use newspaper and novel texts as material and
measure the reading time required for participants
to read and comprehend the text. These works
have devoted much attention to understanding ev-
eryday sentence comprehension, particularly the
prediction of the next word (Kuribayashi et al.,
2021; Yoshida et al., 2021). In such typical sen-
tence comprehension, psycholinguistics research
has emphasized humans’ use of contextual informa-
tion to predict the next word while reading (Kutas
and Hillyard, 1984; Altmann and Kamide, 1999;
Kamide et al., 2003).

However, when comprehending a sentence un-
der specialized conditions such as buzzer quizzes,
humans can sometimes make predictions about the
whole sentence that go beyond the next word pre-
diction (hereafter referred to as “hyperprediction”).
This phenomenon requires comprehenders to antic-
ipate not only the next word but also the structure
of subsequent sentences. Although hyperprediction
is a highly advanced and complex aspect of human
predictive processing it has attracted little attention
so far and remains largely unexplored.

In this paper, we aim to fill this gap by eval-
uating the language models’ capacity to model
human predictive processes, particularly in tasks
emphasizing hyperprediction in the context of a
buzzer quiz. Buzzer quiz is a popular type of quiz
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Figure 1: The process of the experiment. Human total reading time measured in the eye-tracking experiment was
modeled with surprisal computed by pre-trained GPT-2 and fine-tuned GPT-2.

game (Tokuhisa, 2012), and buzzer quiz players are
known to engage in this predictive process (Izawa,
2021).

It remains unclear whether human hyperpredic-
tion occurs in more natural reading behaviors be-
yond quiz settings. However, this study focuses
specifically on buzzer quiz scenarios to first ex-
amine the extent to which language models can
simulate human hyperprediction.

In summary, our key contributions are as fol-
lows:

• This paper studies data collected from native
Japanese speakers, which complements most
studies using data collected in western lan-
guages.

• Our results demonstrate that the GPT-2 can
partially model human hyperprediction to
some extent.

• Analyses on fine-tuning reveal that fine-tuned
GPT-2 can model human hyperprediction
more accurately.

2 Related work

2.1 Prediction in human sentence processing
Psycholinguistics research spanning several
decades has consistently suggested that humans
engage in predictive processes while compre-
hending sentences (Ehrlich and Rayner, 1981;
Kutas and Hillyard, 1984; Altmann and Kamide,
1999; Kamide et al., 2003; Pickering and Garrod,
2013; Martin et al., 2018). Psycholinguists have
employed diverse methodologies to explore human
behavior in sentence comprehension. Altmann

and Kamide (1999) and Kamide et al. (2003)
employed the Visual World Paradigm and revealed
that humans utilize contextual cues within sen-
tences to predict upcoming words, such as direct
objects or verbs. Additionally, many researchers
conducted EEG experiments and demonstrated
that encountering a word unrelated to the context
elicits a large N400 response in readers, which is
associated with a semantic gap between a word and
its context (Kutas and Hillyard, 1984; Van Petten
and Kutas, 1990; Frank et al., 2015). Moreover,
the process of next-word prediction during human
sentence processing has been investigated and
recent research has highlighted the empoloyment
of the speech production system in generating
lexical predictions during sentence comprehension
(Martin et al., 2018). These studies emphasize that
humans utilize the preceding context as a crucial
cue for predicting upcoming words.

However, humans demonstrate the ability to pre-
dict longer sequences of words in a special situation
such as in a buzzer quiz (Izawa, 2021). Skilled quiz
players can answer correctly by only listening to
a few words of the question sentence. In this con-
text, they are not only required to predict the next
word but also anticipate the structure of the entire
sentence.

This ability to make strong predictions during
sentence comprehension is a crucial aspect of sen-
tence processing, but it has received limited atten-
tion in previous research. Therefore, this study
specifically focuses on human hyperprediction.
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Question Type

easy

easy

difficult

difficult

Table 1: Examples of parallel quizzes. In each question, the words in red in the first half are contrasted with those in
blue in the second half. The first and second quizzes are the easy type of parallel quizzes, and the third quiz is the
difficult type.

2.2 Surprisal theory
Surprisal theory is a widely accepted concept in
computational psycholinguistics, particularly in
cognitive modeling research. As Eq. (1) shows,
surprisal is calculated as the negative logarithm
of the probability of a word or sequence of words
occurring in a particular context.

Surprisalword = − logP (word|context) (1)

This theory proposes that the processing diffi-
culty of a word is determined by its predictability
within its preceding context (Hale, 2001; Levy,
2008; Smith and Levy, 2013). Put simply, the eas-
ier a word is to predict, the lower the cognitive load
associated with it. Surprisal serves as a measure
of its processing difficulty. In order to evaluate
“human-like” trends of the language models, stud-
ies have been conducted to compare the surprisal
calculated by language models with data obtained
from humans, such as eye movement and EEG
(Fossum and Levy, 2012; Smith and Levy, 2013;
Frank et al., 2015; Wilcox et al., 2020; Yoshida
et al., 2021).

For example, Wilcox et al. (2020) and Goodkind
and Bicknell (2018) compared various models by
computing how well their next-word expectations
predict human reading time behavior on naturalistic
text corpora, and found that the lower perplexity
of a model, the better its psychometric predictive
power.

The previous research most closely related to our
work is Kuribayashi et al. (2021). They used the
Japanese eye-tracking corpus BCCWJ and found
that lower perplexity in Japanese language models

did not always lead to better psychometric predic-
tive power. This contrasts with findings for English
language models. We observe the same trend in
this study on human hyperprediction.

Our work uses eye movement data following
previous research. The surprisal calculated by the
“human-like” language model is expected to cor-
relate better with the human reading time of each
word.

3 Buzzer quiz in Japanese

Buzzer quiz is a type of quiz where participants
compete to answer questions quickly by buzzing
in with a buzzer. In a buzzer quiz, a moderator or
host reads out questions to the players. Each player
is equipped with a buzzer and when players know
the answer to a question, they buzz in to signal that
they want to answer. The first person or team to
buzz in gets the opportunity to answer the question.

While quiz players are listening to the question,
they are said to predict the rest of the question sen-
tence, not just the next word, but the entire sentence
(Izawa, 2021). Typically, the players try to buzz
the button even before the question is fully read.

In order to investigate human predictive process-
ing when reading quiz questions, we experimented
with parallel quizzes, which are typical among
Japanese quizzes and where prediction is said to be
important (Izawa, 2021). Parallel quizzes always
have a consistent format as follows:

For A,X(A) = xa, but what is X(B) ?

The first half of the question sentence is the premise
of the question and the second half is the main topic
of the question, where B can be partially predicted
from A.
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Figure 2: sentence-production task (+predic). Partic-
ipants read the first half of a parallel quiz and predict
what will follow. They orally answered the completion
of the question in the second screen.

Table 1 shows examples of parallel quizzes,
which contrast two elements in the first and second
halves of the question text. In terms of the ease of
predicting the second half of a question, parallel
quizzes fall into two categories. The first and sec-
ond questions of Table 1 are categorized as easy
parallel quizzes, which can be answered by only
listening to the first half of the question without
listening to the second half. For example, the first
parallel quiz on table 1 is about a football pitch.
The first half of the question sentence explains the
shorter edge of the pitch, then the quiz players can
predict that the longer edge of the pitch will be
contrasted and answer correctly (i.e., touchline) be-
fore the sentence is fully read. Skilled buzzer-quiz
players can answer this kind of parallel quiz very
quickly. On the other hand, in the third difficult
parallel quiz, the country contrasted with the word
“the United States of America” is not obvious, so
it is difficult to perfectly predict the second half of
the question.1

4 Experiment

Figure 1 illustrates the experimental procedure,
wherein human reading time was measured through
eye-tracking experiments. Subsequently, these data
were modeled using surprisal computed by lan-
guage models.

4.1 Eye-tracking experiment

We conducted an eye-tracking experiment to mea-
sure the time for reading and predicting parallel
questions.

1One of the quiz players who participated in our experi-
ment told that he was able to anticipate that the United Mex-
ican States would be contrasted with the United States of
America because the only two countries known as “United
States” in the world are the USA and Mexico.

Participants We recruited 32 native Japanese
speakers, aged 18 to 24. Among them, seven par-
ticipants were classified as experts due to their
previous involvement in quiz clubs during high
school or university, where they regularly partici-
pated in buzzer quiz activities. The remaining 25
novice participants had no prior experience with
such activities.

Before the experiment, each participant received
detailed information about the study procedures
and how their data would be used. Written consent
to participate in the experiment was obtained from
each participant.

Stimulus sentences In this experiment, we used
parallel quiz questions as stimulus sentences. All
of them were extracted from a corpus of Japanese
buzzer quiz questions called JAQKET.

We classified the quiz questions into two cate-
gories, easy and difficult, following the classifica-
tion criteria of Izawa (2021). 2 We prepared 20
easy parallel quizzes and 20 difficult quizzes. Easy
questions are those in which reading the first half
of the sentence clearly determines the continuation,
either leading to a single plausible second half or a
limited set of around two to three possible contin-
uations. In contrast, difficult questions are those
where predicting the second half is challenging,
either because multiple continuations remain possi-
ble or because significant domain-specific knowl-
edge is required to narrow down the possibilities.3

Additionally, 40 random quiz sentences were added
as fillers.

Tasks In this experiment, participants performed
two types of tasks: a sentence-production task
(+predic) and a sentence-comprehension task (-
predic). These two tasks were shown to the partic-
ipants in a randomized order.4 In this experiment,
the total reading time (TRT) of each word on the
first screen was measured.

Figure 2 illustrates the process of a sentence-
production task. Participants viewed the first half of
a parallel quiz on the screen. They were instructed
that even though there was no set time limit, they
were encouraged to press the button as quickly as
possible once they found an idea to continue the

2In this book, Japanese buzzer quiz questions are catego-
rized into 25 patterns, and the classification of parallel quizzes
is also discussed.

3These questions were selected from a wide range of gen-
res to avoid bias.

4Each participant read 20 question sentences in +predic
condition and the other 20 in -predic condition.
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Figure 3: sentence-comprehension task (-predic). Par-
ticipants read a sentence and answer a comprehension
test on the following screen.

question.5 After pressing the button, they answered
aloud on the second screen.

Figure 3 depicts the procedure of the sentence-
comprehension task. The first half of a quiz was dis-
played as a declarative sentence. The participants
pressed the button after reading it and answered the
comprehension test on the next screen.

Hypothesis In the -predic condition, participants
were only required to comprehend the content of
the sentence. In contrast, in the +predic condi-
tion, they were tasked not only with understanding
the sentence but also with predicting its continua-
tion. In the current experiment, under time pressure,
words with longer reading times are expected to
serve as key cues for predicting subsequent sen-
tences. Consequently, we anticipated that a lan-
guage model capable of simulating human reading
times would assign greater informational content
(and thus lower probabilities) to these cue words.
Conversely, words that do not serve as cues for
predicting the latter part of the sentence—those
that participants would naturally expect to follow
based on the context—should be assigned higher
probabilities by the language model. For example,
in Figure 1, the word “Japan,” highlighted in red,
is associated with longer reading time.

4.2 Language models
The surprisal for each subword was calculated us-
ing GPT-2 (Radford et al., 2019) published by rinna
(Chou and Sawada, 2021) on Huggingface. Experi-
ments were conducted using both the pre-trained
model6 and fine-tuned models.

The surprisal for the ith subword wi is cal-
culated based on the next-token probabilities

5This replicates the situation in quiz competitions, where
participants must buzz in as quickly as possible.

6GPT-2 used in this experiment was rinna/japanese-
gpt2-medium(https://huggingface.co/rinna/
japanese-gpt2-medium). This model is published
under MIT license.

P (wi|w1, ..., wi−1) computed by the language
models:

Surprisali = − logP (wi|w1, ..., wi−1) (2)

Pre-trained GPT-2 GPT-2 calculated the sur-
prisal for each subword in the sentence utilized
in the eye-tracking experiment.

Fine-tuned GPT-2 We fine-tuned the GPT-2
with parallel quizzes extracted from resources such
as JAQKET(Suzuki et al., 2020), QuizWorks7,
and Quiz-No-Mori8. These corpora include both
datasets curated for academic research and question
collections compiled by quiz enthusiasts.9

From these corpora, we extracted 4,100 parallel
quizzes for fine-tuning. The dataset for fine-tuning
was divided into 10 splits of increasing size, rang-
ing from 10 to 4,100 data points(10, 100, 200, 300,
500, 700, 1,000, 1,500, 2,000, 4,100).10 For each
data size, we conducted fine-tuning five times us-
ing different seed values. The epoch number in
training was set to ten for each fine-tuning. For
conditions with 2,000 data points or fewer, the sen-
tences used for fine-tuning were randomly selected.
Importantly, none of the questions employed in
the eye-tracking experiments were included in the
fine-tuning data.

4.3 Evaluation metrics
Psychometric Predictive Power (PPP): The
surprisal measure serves as a commonly uti-
lized information-theoretic complexity metric. In
essence, a model’s ability to predict human reading
behavior is often assessed by comparing the sur-
prisal values computed by the model with the read-
ing times of human participants. Higher correspon-
dence between the trends of model-generated sur-
prisals and human reading times indicates greater
psychometric predictive power. Previous studies
have evaluated the psychometric predictive power
of language models by comparing the surprisal val-
ues generated by each model with human reading
times.

In our eye-tracking experiment, we quantified
the reading time for each character and computed

7https://quiz-works.com/
8https://quiz-schedule.info/quiz_no_mori/data/

data.htm
9The questions used in the eye-tracking experiment were

excluded from the fine-tuning training data.
10The fine-tuning process with the full dataset size (4,100

data points) required approximately 15 minutes using a single
NVIDIA Tesla T4 GPU.
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the total reading time for each subword by sum-
ming the total reading times of all characters within
the subword. As described in the Experiment sec-
tion, in the +predic condition, longer reading times
are expected for words that serve as cues for pre-
dicting subsequent sentences. If language models
are capable of capturing human hyperprediction,
they would be expected to assign high surprisal
values to such keywords.

To examine the impact of surprisal on model-
ing human reading behavior, we employed a linear
mixed-effects regression (Baayen et al., 2008) with
the lmer function in the lme4 package (Bates et al.,
2015) in R (R Core Team, 2023). This model aimed
to predict the total reading time (TRT) of each sub-
word using the following formula:

log(TRT) ∼ surprisal+ length

+ is_first+ is_last+ lineN

+ segmentN+ log_freq

+ prev_length+ log_freq_prev

+ (1|subject_id) + (1|item_id) (3)

The detailed description of each variable is pro-
vided in table 3 in the Appendix.

The regression model included the surprisal fac-
tor with other baseline factors, which were previ-
ously examined in existing studies (Asahara et al.,
2016; Wilcox et al., 2020; Kuribayashi et al., 2021;
Yoshida et al., 2021). Factors found to be not sig-
nificant (p > 0.05) for modeling reading time were
excluded. The frequency (freq) of each subword
was calculated based on the occurrences of each
token within a corpus of 14 million paragraphs,
extracted from Japanese Wikipedia.

To isolate the effect of surprisal on reading time
modeling, we trained a baseline regression model
without including surprisal information. Following
the approach outlined by Wilcox et al. (2020), we
computed the mean by-segment difference of log-
likelihood between the model with surprisal values
and the baseline model. This metric is referred to
as ∆logLik. A ∆logLik score of zero indicates that
surprisal from a language model is ineffective at
all for reading time modeling. Conversely, a high
∆logLik score suggests that the language model’s
surprisal values are effective for modeling read-
ing time, indicating a high psychometric predictive
power.

condition
#data
points

∆logLik
(/105)

p

-predic 7869 1.602 0.00390
+predic 8361 1.856 0.0215

+predic, novice 6351 1.801 0.00463
+predic, expert 2010 2.140 0.0131
+predic, easy 4579 2.390 0.0115

+predic, difficult 3782 1.912 0.0215

Table 2: PPP (i.e., ∆logLik) for each condition of the
pre-trained GPT-2. These values are the mean per-word
∆logLik of the model on held-out test data, averaged
over 10-fold cross-validation. “#data points” is the num-
ber of reading time annotations used in our experiments.
p shows the p-values of paired permutation tests on 10
∆ logLik values of 10-fold cross-validation using bro-
man package on R.

Figure 4: Relationship between the size of data used
for fine-tuning (X-axis) and mean perplexity of the five
fine-tuned models with different seeds (Y-axis). As the
fine-tuning data set enlarges, a corresponding decrease
in perplexity is observed.

Considering the low amount of data, we report
mean per-word ∆logLik of the model on held-out
test data, averaged over 10-fold cross-validation as
suggested by Wilcox et al. (2020).

Perplexity (PPL): In order to evaluate if fine-
tuning enabled the language models to better pre-
dict the next word in parallel quizzes, we calcu-
lated the perplexity of each model. PPL is the
inverse geometric mean of next-word probabili-
ties P (wi|w1, ..., wi−1) in a text that consists of N
words (w1, w2, ..., wN ), and it is a typical evalua-
tion metric for unidirectional language models:

PPL =
N∏

i=0

P (wi|w1, ..., wi−1)
− 1

N (4)

A low perplexity (PPL) suggests that the lan-
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guage model effectively anticipates the next word
based on its contextual information. The goal of
training and fine-tuning language models is to min-
imize the perplexity computed by the model. In
our experiments, we evaluated the perplexity of a
language model using texts from the eye movement
data, ensuring they do not overlap with the training
dataset.

5 Results

5.1 GPT-2

Table 2 shows the psychometric predictive power
(i.e., ∆logLik) for each condition of the pre-trained
GPT-2. In the +predic condition, the surprisal
term was found to be significantly effective in the
regression model (p < 0.05). In the sentence-
production experiment (i.e., +predic condition), the
participants read the first half of parallel quiz ques-
tions, and predicted what would follow. Therefore,
these findings suggest that the pre-trained language
model can effectively model the reading time asso-
ciated with human hyperprediction when reading a
parallel quiz question.

5.2 Fine-tuned GPT-2

Figure 5 illustrates the relationship between the size
of the dataset used for fine-tuning and psychomet-
ric predictive power (∆logLik) of language models
in +predic condition (i.e., sentence-production ex-
periment). Each point represents a language model,
with the Y-axis indicating the model’s psychomet-
ric predictive power (higher scores indicate better
performance) and the X-axis indicating the size
of the dataset. The number of data points used
for fine-tuning ranged from 10 to 4,100: 10, 100,
200, 300, 500, 700, 1,000, 1,500, 2,000, and 4,100.
The plot for 100 represents the PPP value of the
pre-trained model.

Blue points represent the modeling of the read-
ing time for novice participants, while red points
represent expert participants.

As Figure 4 shows, the perplexity tended to de-
crease as the number of data used for fine-tuning
increased.

Novice participants Language models fine-
tuned with parallel quiz questions exhibited higher
psychometric predictive power values than the pre-
trained model. Increasing the amount of data used
for fine-tuning resulted in a smaller increase in psy-
chometric predictive power.

The maximum value of psychometric predictive
power was achieved with the language model fine-
tuned with 1,500 sentences in the +predic, novice,
easy condition and 1,000 sentences in the +predic,
novice, difficult condition.

Expert participants The highest psychometric
predictive power for the fine-tuned model, regard-
less of the number of data points used, was ob-
served when expert participants read easy types
of parallel quizzes (i.e., +predic, expert, easy con-
dition). We believe that the high PPP values re-
flect the longer reading times for keywords of the
question sentences in the +predic condition when
experts read easy quiz questions.

In both easy and difficult conditions, the psycho-
metric predictive power of fine-tuned models in-
creased with the number of data points used for fine-
tuning. The maximum psychometric predictive
power was reached at 2,000 (+predic, expert, easy
condition) or 1,500 data points (+predic, expert, dif-
ficult condition); however, beyond this threshold,
a sharp decrease in psychometric predictive power
was observed. Interestingly, across all four condi-
tions, the peak psychometric predictive power did
not coincide with the maximum quantity of training
data.

6 Discussion

In this study, we focused on a phenomenon defined
as hyperprediction, where humans are thought to
predict not just the immediate next word, as is
typically assumed during sentence comprehension,
but also longer sequences of words and overall
sentence structure. We utilized cognitive model-
ing techniques to examine if language models can
capture this particular aspect of human prediction
processing ability.

The pre-trained GPT-2 demonstrated its highest
psychometric predictive power in the +predic, ex-
pert, easy condition, where human hyperprediction
was expected to be most prominent. Conversely, it
exhibited lower scores in the +predic, novice, diffi-
cult conditions, where hyperprediction was more
challenging. Our findings suggest that even the
pre-trained GPT-2 can partially capture human hy-
perprediction.

The surprisal from GPT-2 correlates better with
the reading times of experts rather than novices,
and with the +predic condition over the -predic
condition. We consider that this result potentially
implies the following: These results suggest that
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Figure 5: Relationship between the size of data used for fine-tuning (X-axis) and psychometric predictive power, i.e.,
∆logLik (Y-axis). Error bars are standard errors of by-fold mean ∆logLik per token, using 10-fold cross-validation
for five fine-tuned models with different seeds. The plot for 100 represents the PPP value of the pre-trained model.

the language processing of GPT-2 aligns more with
the hyperprediction capabilities of experts, who ex-
cel at predicting longer word sequences, rather than
the prediction processing of average humans dur-
ing normal reading. This may also suggest that the
reason language models such as GPT-2 don’t repli-
cate the average human behavior is that, at least in
some instances, they emulate expert behavior.

Furthermore, if the language model’s surprisal
can successfully model human hyperprediction,
this might suggest that when humans quickly an-
swer questions in a buzzer quiz, they are not di-
rectly outputting the answer from a limited portion
of the question. Instead, they may be anticipating
the continuation of the question—much like how
the language model operates—before providing
their answer.

The fine-tuned models exhibited the highest psy-
chometric predictive power in the +predic, expert,
easy condition. This condition, characterized by
participants’ familiarity with parallel quizzes and
their ease in making predictions, can be considered
to reflect human hyperprediction. Language mod-
els demonstrated an ability to capture this aspect of
human sentence processing.

As Figure 4 shows, the process of fine-tuning
resulted in a decrease in perplexity, indicating that
language models became more adept at predict-
ing the next word in parallel quizzes. Specifically,
when fine-tuned with 1,500 or 2,000 parallel quiz
sentences or less, lower perplexity corresponded to
higher psychometric predictive power, suggesting
improved model performance.

However, the GPT-2 model fine-tuned with the

most data did not necessarily exhibit the highest
psychometric predictive power value. This could
be attributed to the excessive data causing the
model’s surprisal to the sentence to decrease exces-
sively. Consequently, the model may have failed
to prioritize important words that typically require
longer human reading time. This trend aligns with
previous findings in Japanese language modeling
research (Kuribayashi et al., 2021), which argue
that lower perplexity does not always equate to
human-like performance. A similar trend has been
reported by Oh and Schuler (2023). They revealed
that very large language models underestimated
human processing difficulty. Our results align with
these assertions.

7 Conclusion

This study investigated human hyperprediction in
buzzer quizzes. Human hyperprediction during
sentence processing involves not only predicting
the next word, but also longer sequences of words
and the overall structure of the sentence, which
distinguishes it from regular prediction process-
ing in sentence comprehension. In this study, we
conducted experiments to test whether language
models can capture this particular aspect of human
predictive processing ability.

Our results showed that the pre-trained GPT-2
partially modeled human reading time while read-
ing parallel quizzes, which suggested that language
models can indeed capture aspects of human hyper-
prediction.

Furthermore, language models fine-tuned with
parallel quizzes modeled human hyperprediction
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in buzzer quizzes better than the pre-trained GPT-2.
Specifically, the highest predictive power was ob-
served in conditions where hyperprediction would
be most prominent (i.e., +predic, expert, and easy
condition). Notably, fine-tuning resulted in a sig-
nificant increase in predictive power values. How-
ever, excessive fine-tuning data (exceeding 1,500
or 2,000 data points) led to a decrease in perplexity
and subsequently to reduced psychometric predic-
tive power. This trend aligns with findings reported
in previous work (Kuribayashi et al., 2021). Over-
all, our findings suggest that a moderate amount of
data is required for fine-tuning in order to model
human hyperprediction.

Limitations

In this study, we focused on hyperprediction during
the reading of quiz questions and the subsequent
prediction of their continuations. Hyperprediction
in human sentence processing is particularly promi-
nent in the context of buzzer quizzes. However, the
occurrence of hyperprediction in more general sen-
tence comprehension remains an open question for
future investigation. Exploring other contexts in
which hyperprediction may manifest is a promising
direction for future research.

Our study focused on Japanese parallel quizzes
and employed an eye-tracking experiment to mea-
sure the total reading time for each subword in
parallel quiz questions. However, in buzzer quiz
competitions, questions are typically orally read
aloud. Players utilize intonation and prominence
cues to consider the answer to the quiz, particularly
in parallel quizzes where the moderator emphasizes
the contrasted words in the first half of the question.
Skilled players use phonological cues to anticipate
the answer and buzz in as quickly as possible. Fu-
ture research could explore incorporating these oral
reading dynamics into language models.

Additionally, buzzer quiz players are influenced
by various factors, including game rules and com-
petitors’ scores. Factors like strict penalties for
wrong answers may lead players to hesitate to
buzz in unless they reach a reliable prediction for
the question’s continuation. Conversely, players
with lower scores may adopt a more aggressive
approach, buzzing in even without full certainty
about the answer. These varying confidence levels
in predicting subsequent question text may differ
from the prediction in the simplified situation of our
eye-tracking experiment. Future studies can further

explore these nuanced factors to gain a comprehen-
sive understanding of quiz players’ hyperprediction
and the language model’s ability to capture such
hyperprediction.

Additionally, this eye-tracking experiment re-
cruited a relatively small number of expert partici-
pants. There are 40 target items and 40 filler items,
and given that the sentences are short, a total of 32
participants were few.

As for the statistical analysis, surprisal value
was calculated for each subword. The GPT-2 to-
kenizer utilized in our experiment was trained us-
ing the Byte Pair Encoding (BPE) method. Con-
sequently, since Japanese language is not written
with a space between words, subwords that include
a word boundary exist, resulting in reading time
analyses based on subwords rather than individ-
ual words. For future work, training a tokenizer
using a method that does not contain word bound-
aries within a single subword could allow for more
cognitively valid analyses.

Ethical considerations

The eye-track experiment conducted in our work
was approved by the research ethics committee of
the university.

Buzzer quiz is a game of knowledge where par-
ticipants may feel defeated if they are unable to
answer a question. Prior to conducting the eye-
tracking experiment, we emphasized to participants
that the purpose of the experiment was not to assess
their knowledge level. We made efforts to ensure
that participants felt comfortable and performed
naturally, without undue stress or pressure.

The data collected in this experiment included
the timing of participants’ button presses and the
reading time of each word, calculated from their
gaze location on the screen. These data were
anonymized by assigning a random subject ID to
each participant, thereby ensuring the separation of
personal information from experimental data.

We aimed to ensure fair payment. As mentioned
in the paper, our participants were recruited from
the university and received compensation of 1,000
yen for their one-hour participation in the experi-
ment. The compensation amount was determined
following the university’s guidelines.

Furthermore, in line with the ACL 2023 Policy
on AI Writing Assistance, we utilized ChatGPT by
OpenAI and Grammarly for writing assistance.
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Factor name Type Description
surprisal num surprisal calculated by each language model

TRT num total reading time for each token
length int the number of characters

is_first factor the leftmost token within the line
is_last factor the rightmost token within the line
lineN int the serial number of the line where the token is displayed

segmentN int the serial number of the token within the line
log_freq num log of the frequency of the token

prev_length int length of the previous token
prev_freq num log_freq of the previous token
subject_id factor ID assigned to each participant
item_id factor ID assigned to each item

Table 3: Factors used in regression models.

n_layer 24
n_embd 1024
n_head 16

n_position 1024
vocab_size 32000

Table 4: Model architecture of GPT-2 we used in our work.

Optimizer AdamW
Learning rate 5e-05

Number of epochs 10
Dropout rate 0.1
Batch size 1

Table 5: Hyperparameters for our fine-tuning.

A Factors used in regression model

Table3 shows the description of the factors used
in our regression models. Factors found to be not
significant (p > 0.05) for modeling reading time
were excluded.

The frequency of a token (used in log_freq)
was calculated using 14 million paragraphs ex-
tracted from Japanese Wikipadia.

B Model architecture

The model architecture of GPT-2 we used in our
work is shown in Table4. The model is available
on Hugging Face. 11

C Hyperparameters

Hyperparameters for our work are shown in Table
5, which followed default settings.

11https://huggingface.co/rinna/japanese-gpt2-medium
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Abstract 

This study examines how sentence 

structure shapes contrast predictions in both 

humans and large language models 

(LLMs). Using Mandarin ditransitive 

constructions — double object (DO, “She 

gave the girl the candy, but not…”) vs. 

prepositional object (PO, “She gave the 

candy to the girl, but not…”) as a testbed, 

we employed a sentence continuation task 

involving three human groups (written, 

spoken, and prosodically normalized 

spoken stimuli) and three LLMs (GPT-4o, 

LLaMA-3, and Qwen-2.5). Two principal 

findings emerged: (1) Although human 

participants predominantly focused on the 

theme (e.g., “the candy”), contrast 

predictions were significantly modulated 

by sentence structure—particularly in 

spoken contexts, where the sentence-final 

element drew more attention. (2) While 

LLMs showed a similar reliance on 

structure, they displayed a larger effect size 

and more closely resembled human spoken 

data than written data, indicating a stronger 

emphasis on linear order in generating 

contrast predictions. By adopting a unified 

psycholinguistic paradigm, this study 

advances our understanding of predictive 

language processing for both humans and 

LLMs and informs research on human–

model alignment in linguistic tasks. 

1 Introduction 

Predictive processing is fundamental to how both 

humans and large language models (LLMs) handle 

language. When people read or listen, they 

continuously anticipate upcoming words and 

meanings, facilitating swift integration of new 

information and maintaining efficient 

comprehension (Altmann & Kamide, 1999; 

Christiansen & Chater, 2016; Clark, 2013; 

Kuperberg & Jaeger, 2016; Pickering & Gambi, 

2018). Prediction also underlies language use in 

LLMs, as these models are explicitly designed to 

predict the next token in a sequence (Brown et al., 

2020; Radford et al., 2018, 2019). 

As a linguistic cue, contrast plays a key role by 

guiding attention toward the most distinctive or 

unexpected element in the context and prompting 

the prediction of an alternative (Repp, 2010; Rooth, 

2016). Contrast often involves opposing or 

comparing one element to another of the same 

semantic type (Roberts, 2012). It is often signaled 

by a negation operator (e.g., “not”) or discourse 

markers (e.g., “but”). Empirical findings indicate 

that human comprehenders are highly attuned to 

these cues. Upon encountering contrast markers, 

they actively anticipate an alternative that stands in 

contrast to a previously mentioned element 

(Carlson, 2014; Lowder & Ferreira, 2016). 

A crucial question thus arises: which preceding 

element is being contrasted and which potential 

alternatives should be predicted? Contrast closely 

intersects with focus — the most emphasized or 

central constituent (Calhoun, 2009; Husband & 

Ferreira, 2016; Lowder & Gordon, 2015; Repp, 

2010). Thus, the element chosen for contrast is 

often the sentence’s focus. However, determining 

focus can become complicated in lengthy or 

structurally complex sentences. For instance, 

consider the ditransitive construction “She gave the 

girl the candy, not…”. The focus—and therefore 

the contrast—could fall on the recipient (“the girl”), 

the theme (“the candy”), or the verb (“gave”). 

Depending on which element is in focus, 

comprehenders might predict contrasting 

recipients (e.g., “the father,” “the boy”), contrasting 

themes (e.g., “the toy,” “the cake”), or contrasting 

verbs (e.g., “bought,” “made”). This is because 

ditransitive structure introduces multiple 

arguments and allows flexible constituent orders, 

complicating the task of pinpointing the focal 

element and thus the likely contrast (Paterson et al., 

2007; Shyu, 2010).  

This study thus uses ditransitive structure as a 

testbed for understanding how humans and LLMs 
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predict contrasts, and how sentence structure 

influences these predictions. Two primary 

constructions of the ditransitive pattern are the 

double object (DO) construction (e.g., “She 

bought the girl the candy”) and the prepositional 

object (PO) construction (e.g., “She gave the 

candy to the daughter”). Critically, in Mandarin 

Chinese, these two constructions use the same set 

of segmental materials but in different orders (DO: 

她送给了女孩糖果, literally “She gave to girl 

candy”; PO: 她送了糖果给女孩, literally “She 

gave candy to girl”), making them ideal for 

examining how linear arrangement affects focus 

and contrast. 

Three main hypotheses address the potential 

locus of focus and, by extension, the nature of 

contrast predictions in ditransitive sentences: 

1. The Sentence-Final Hypothesis posits 

that the focus tends to fall at the end of the 

sentence (Xu, 2004; Yan & Calhoun, 

2020), predicting that DO sentences 

would contrast the theme (e.g., “not the 

candy”) and PO sentences would contrast 

the recipient (e.g., “not the girl”).  

2. The Thematic Hierarchy Hypothesis 

proposes that focus falls on the element 

highest in the thematic hierarchy, namely 

the theme, which is more closely related 

to the verb (Shyu, 2010). Thus, both DO 

and PO constructions would yield the 

focus on the theme, leading to identical 

contrast predictions.  

3. The Verb-Dominant Hypothesis claims 

that the verb or entire verb phrase is 

focused (Carlson, 2014; Roettger et al., 

2021). In this scenario, both DO and PO 

constructions would lead comprehenders 

to predict a verb-related contrast (e.g., 

“not bought” or “not sang a song”). 

Notably, the latter two hypotheses predict 

similar outcomes for DO and PO forms, while the 

first emphasizes a structural effect tied to word 

order. Because written language is presented at 

once for readers, its linear-order impact may be 

weaker than in spoken language, where 

information unfolds sequentially (Ferreira & Anes, 

1994), we employ both written and spoken stimuli 

in human experiments to determine whether 

modality modulates the influence of sentence 

structure on contrast prediction. 

Taken together, this work aims to address two 

core questions: 

1. How do humans predict contrasts in 

Mandarin ditransitive constructions and 

how does sentence structure modulate 

these predictions in both written and 

spoken contexts? 

2. How do large language models predict 

contrasts in the same constructions, and 

how similar are these predictions to 

human behavior? 

2 Methods 

2.1 Design and Materials 

We employed a sentence continuation task to 

examine how humans and LLMs predict and 

complete contrasts in ditransitive sentences. A total 

of 42 experimental items were created based on 

previous studies (Cai et al., 2013, 2022), each 

consisting of a ditransitive construction followed 

by a contrast marker. Each item appeared in two 

conditions: a DO construction (e.g., 她送给了女

孩糖果，而不是…; “She gave the girl the candy, 

but not…”) and a PO construction (e.g., 她送了糖

果给女孩，而不是…; “She gave the candy to the 

girl, but not…”). We selected 14 ditransitive verbs 

(e.g., 买 ‘buy’, 交 ‘hand’, 借 ‘lend’, 卖 ‘sell’, 奖 

‘award’, 带 ‘bring’, 扔 ‘throw’, 抛 ‘toss’, 拿 ‘take’, 

捐 ‘donate’, 让 ‘give away’, 还 ‘return’, 送 ‘send’, 

递 ‘pass’), each appearing in three items, yielding 

42 experimental preambles. 

To reduce participants’ focus on contrast 

markers and maintain variety, we incorporated 90 

filler sentences. Each filler contained different 

structures and a connective (e.g., “because,”  “so,”  

“then”). This design aimed to ensure that 

participants engaged with the full range of sentence 

structures and did not develop a strategy specific to 

the contrast condition. 

We used Microsoft Azure to generate spoken 

versions of the experimental items. Specifically, we 

selected a male adult speaker of simplified 

Mandarin (“Yunyang”) at a speed of 0.75 and 

exported the files at 48 kHz. Two types of spoken 

stimuli were created: The first one is the original 

recording from Azure. These versions contained 

natural variations in sentence-final stress, such that 

DO sentences ended with a higher pitch and longer 

duration on the theme, whereas PO sentences 

ended with a higher pitch and longer duration on 
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the recipient; The second type is the normalized 

recording, where segments from one condition 

were replaced with those from the other 

(counterbalanced between two conditions) and also 

added white noise to standardize duration. As a 

result, all segmental and suprasegmental features 

are the same in both conditions. 

Our motivation for including these two types of 

spoken stimuli was twofold. First, the original 

version reflected more natural spoken processing, 

capturing how individuals predicted contrasts in 

everyday speech contexts. Second, the normalized 

version controlled for prosodic differences, 

allowing us to focus on the role of syntactic 

structure and word order in shaping contrast 

predictions. 

2.2 Human experiments 

2.2.1 Participants 

A total of 164 native Mandarin speakers 

participated in this study, divided into three groups 

based on the type of stimuli they received: 52 for 

the written stimuli, 57 for the original spoken 

stimuli, and 55 for the normalized spoken stimuli. 

Following data screening (e.g., incomplete 

responses, procedural errors), we excluded some 

participants’ responses. This resulted in 50 

participants in the written group (27 females, 23 

males; M age = 21.5), 50 participants in the original 

spoken group (17 females, 33 males; M age = 21.8), 

and 48 participants in the normalized spoken group 

(18 females, 30 males; M age = 21.3). 

 

2.2.2 Procedure 

All experiments were conducted online using 

Qualtrics (Qualtrics, 2024). Participants joined a 

Zoom session, shared their screen, and began the 

experiment while the researcher monitored their 

progress. This arrangement helped mitigate 

potential issues associated with online data 

collection, such as inattentiveness or lack of 

engagement. After providing informed consent, 

participants read on-screen instructions and 

examples explaining the sentence continuation task. 

They were asked to type the first, most natural 

completion that came to mind for each presented 

sentence preamble. Each stimulus was presented 

on a separate Qualtrics page.  

Two lists of stimuli were created, with each item 

appearing in only one condition (DO or PO) in each 

list. Participants were randomly assigned to one of 

these lists. Upon completing the task, they 

provided demographic information and received a 

payment of 30 RMB in appreciation for their time. 

2.3 LLMs Experiments 

2.3.1 Models 

We employed three LLMs in this study: OpenAI’s 

GPT-4o (OpenAI, 2024), Meta’s LLaMA-3 (Meta, 

2024), and Alibaba’s Qwen-2.5 (Yang et al., 2025). 

These models were chosen for three main reasons. 

First, they each represented state-of-the-art 

performance at the time of the study. Second, they 

allowed us to compare closed-source (GPT-4o) 

with open-weight (LLaMA-3 and Qwen-2.5) 

systems. Finally, we included English-dominant 

LLMs (GPT-4o and LLaMA-3) alongside a 

Chinese-dominant LLM (Qwen-2.5), ensuring 

coverage of different training backgrounds and 

linguistic emphases. 

 

2.3.2 Procedure 

We collected output from the three language 

models using an R package called “MacBehavior” 

(Duan et al., 2024), which was specifically 

developed for behavioral experimentation with 

large language models. The same stimuli given to 

human participants were presented to each model 

under a “one-trial-per-run” configuration. In this 

setup, each prompt–stimulus pair was input into the 

model in a new conversation, ensuring that no trial 

could be influenced by preceding prompts. The 

prompts mirrored the instructions given to human 

participants — “Please read the first half of a 

sentence and fill in the first word or phrase that 

comes to mind. Make the sentence complete, 

natural, and reasonable. The first half of the 

sentence is:”. We conducted 50 sessions for each of 

the three LLMs, so each item received a total of 50 

responses. This design roughly matched the sample 

size in the human experiments. 

3 Analyses and results 

3.1 Data coding 

We employed the same coding scheme for both 

human and LLM continuations, categorizing 

responses into three main contrast types: (1) Theme 

Contrast (T): The continuation contrasts the theme 

(e.g., “the cake” in “She gave the girl the candy, but 

not the cake.”). (2) Recipient Contrast (R): The 

continuation contrasts the recipient (e.g., “the boy” 
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in “She gave the girl the candy, but not the boy.”). 

(3) Verb or Verb Phrase Contrast (VP): The 

continuation contrasts the verb or verb phrase (e.g., 

“buy” or “sing a song” in “She gave the girl the 

candy, but didn’t buy her one / sing a song to her.”). 

3.2 Statistical analysis 

We adopted a three-step approach to analyze our 

data. First, we examined which continuation type 

was most prevalent across Mandarin ditransitive 

sentences. To this end, we performed a series of t-

tests comparing the mean frequencies of these three 

contrast types. Second, to determine whether 

sentence structure significantly influenced contrast 

predictions, we conducted a linear mixed-effects 

model analysis. We began by aggregating 

responses by item, calculating the percentage of 

each continuation type for each item. We then 

performed a by-item analysis with structure type 

(DO vs. PO), continuation type (T, R and VP; With 

T as reference level), and group (humans vs. LLMs；

Pairwise comparisons were conducted between 

each human modality and model, resulting in a 

total of nine comparisons) as fixed effects, and item 

as a random effect. Finally, to further assess how 

closely the LLM predictions aligned with human 

continuations (both written and spoken), we 

calculated Pearson correlations between the LLMs’ 

aggregated prediction patterns and those in the 

human experiments. This approach allowed us to 

gauge the degree of similarity in contrast prediction 

patterns across the different groups. 

3.3 Results 

3.3.1 Human results 

First, we performed the T-test to investigate which 

continuation type was the dominant. Across all 

three participant groups (written, original spoken, 

and normalized spoken), theme contrasts emerged 

as the most frequent continuation type, followed by 

verb contrasts and then recipient contrasts (see 

Figure 1). Specifically, in the written stimuli group, 

participants produced more theme (M = 0.52) than 

verb (M = 0.42) contrasts, t(4183.5) = −6.56, p 

< .001, while verb contrasts also exceeded recipient 

(M = 0.05, t(2911.3) = 31.28, p < .001). Similarly, 

in the original spoken stimuli group, theme (M = 

0.56) contrasts were more frequent than verb (M = 

0.3274) contrasts, t(4169.4) = −15.88, p < .001, and 

verb contrasts again exceeded recipient (M = 0.11), 

t(3626.8) = 17.83, p < .001. The normalized spoken 

stimuli showed the same pattern: theme (M = 0.60) 

contrasts dominated verb (M = 0.32) contrasts, 

t(4006.3) = −18.82, p < .001, which in turn were 

more frequent than recipient (M = 0.08) contrasts, 

t(3219.7) = 19.92, p < .001. Overall, these findings 

support the Thematic Hierarchy Hypothesis, 

suggesting that the theme is consistently viewed as 

the primary focal element for contrast in 

ditransitive constructions. 

 
 

Figure 1 Average percentages of three types of continuations for ditransitive structures in human participants 

(top panel) and LLMs (bottom panel) 
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Second, the structure can modulate the contrast 

predictions in both written and spoken modalities. 

That is, in all three groups, the difference between 

recipient contrast and theme contrast was larger in 

the PO condition than in the DO condition (written 

stimuli group: β = 0.10, SE = 0.02, t(164) = 5.82, p 

< .001; original spoken stimuli group: β = 0.35, SE 

= 0.02, t(164) = 15.25, p < .001; normalized spoken 

stimuli group: β = 0.28, SE = 0.03, t(205) = 8.49, p 

< .001), as shown in the top panel of Figure 1. This 

pattern suggests a sentence-final bias in the focus 

locus and, consequently, in participants’ contrast 

predictions—partially supporting the Sentence-

Final Hypothesis. 

Third, the modulation effect of structure is larger 

for spoken language than for written language 

(written vs. original spoken: β = 0.25, SE = 0.03, 

t(410) = 7.68, p < .001; written vs. normalized 

spoken: β = 0.18, SE = 0.04, t(451) = 4.59, p < .001), 

as shown in the top panel of Figure 1. These 

findings indicate that spoken language amplifies 

the impact of structural differences (DO vs. PO) on 

how listeners predict contrast, whereas this effect is 

comparatively reduced in written language. 

Moreover, the non-significant difference between 

original and normalized spoken data (original 

spoken vs. normalized spoken: β = 0.07, SE = 0.04, 

t(451) = 1.688, p = .092)  suggests that prosody 

alone may not fully explain the stronger structure 

effect in speech; rather, linear-order presentation 

may heighten the prominence of sentence-final 

elements in spoken modalities. 

 

3.3.2 Model Results 

Similar to the human data, t-tests showed that 

theme contrast was the primary continuation type 

for all three models (GPT-4o, LLaMA-3, and 

Qwen-2.5). However, the relative ranking of verb 

phrase and recipient contrasts differed across 

models. In GPT-4o, theme contrast (M = 0.50) is 

greater than verb phrase contrast (M = 0.39), 

t(4137.4) = −7.11, p < .001, and verb phrase 

contrast exceeded recipient contrast (M = 0.11), 

t(3548.1) = 21.67, p < .001. In LLaMA-3, theme 

contrast (M = 0.40) surpassed recipient contrast (M 

= 0.33), t(3733.6) = 4.49, p < .001, and recipient 

exceeded verb phrase(M = 0.27), t(3727.8) = −4.00, 

p < .001. Finally, in Qwen-2.5, theme (M = 0.42) 

remained significantly higher than verb (M = 0.28), 

t(4159.4) = −9.22, p < .001, whereas the difference 

between verb and recipient (M = 0.30) was non-

significant, t(4192.2) = −1.46, p = .14. 

Similarly, the structure of the ditransitive 

sentences modulated contrast predictions in all 

three models. The difference between recipient 

contrast and theme contrast was significantly larger 

under PO constructions than under DO 

constructions for all three models (GPT-4o: β = 

0.71, SE = 0.06, t(164) = 12.01, p < .001; LLaMA-

3: β = 0.96, SE = 0.06, t(164) = 17.10, p < .001; 

Qwen-2.5: β = 1.00, SE = 0.09, t(164) = 11.42, p 

< .001), indicating that the models generated more 

theme contrasts in DO (than in PO) and more 

recipient contrasts in PO (than in DO). This aligns 

with the human pattern of sentence-final bias on 

contrast predictions. 

 

3.3.3 Comparing Humans and Models 

Having established that sentence structure 

influenced contrast predictions for both humans 

and models, we next examined whether the 

magnitude of this influence differed between the 

two groups. Across all comparisons, the three 

models exhibited a larger structural effect than their 

human counterparts, regardless of whether the 

human data were drawn from the written, original 

spoken, or normalized spoken conditions (GPT-4o 

vs. human: β = 0.61, SE = 0.07, t(451) = 8.62, p 

< .001 (written); β = 0.36, SE = 0.07, t(451) = 4.85, 

p < .001 (original spoken); β = 0.43, SE = 0.08, 

t(451) = 5.50, p < .001 (normalized spoken). 

LLaMA-3 vs. human: β = 0.85, SE = 0.07, t(410) = 

12.07, p < .001 (written); β = 0.61, SE = 0.07, t(410) 

= 8.60, p < .001 (original spoken); β = 0.67, SE = 

0.07, t(410) = 9.10, p < .001 (normalized spoken). 

Qwen-2.5 vs. human: β = 0.90, SE = 0.10, t(410) = 

8.83, p < .001 (written); β = 0.65, SE = 0.10, t(410) 

= 6.30, p < .001 (original spoken); β = 0.90, SE = 

0.10, t(410) = 8.83, p < .001 (normalized spoken)). 

These results indicate that all three models were 

more sensitive to structural differences between the  

DO and PO constructions than human participants. 

In other words, although humans and LLMs both 

adjust their contrast predictions based on sentence 

structure, the magnitude of this adjustment is 

notably larger in LLMs. 

To assess the similarity of contrast prediction 

patterns between humans and LLMs, we computed 

Pearson correlations for each model and each type 
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of human data. As shown in Figure 2, two main 

findings emerged. First, GPT-4o showed the 

highest correlation with human data across all 

modalities, suggesting it was more human-like in 

its contrast predictions compared to LLaMA-3 or 

Qwen2.5. Second, all three models correlated more 

strongly with the spoken human data than with the 

written data, indicating that these models align 

better with the structure-incremental nature of 

speech (GPT-4o vs. human: r = 0.75, p = .083 

(written); r = 0.82, p = <.05 (original spoken); r = 

0.82, p = <.05 (normalized spoken).  LLaMA-3 vs. 

human: r = 0.18, p = .734 (written); r = 0.43, p 

= .390 (original spoken); r = 0.39, p = .439 

(normalized spoken) Qwen-2.5 vs. human: r = 0.26, 

p = .625 (written); r = 0.54, p = .263 (original 

spoken); r = 0.47, p = .351 (normalized spoken)). 

4 Discussion 

The present study investigated how humans and 

LLMs predict contrasts in Mandarin ditransitive 

constructions, focusing on whether sentence 

structure modulates these predictions and whether 

written or spoken modality influences the size of 

this structural effect. Our data revealed two 

primary results. First, for humans, although theme 

contrast was the most frequent continuation overall, 

sentence structure significantly modulated contrast 

predictions, with a stronger effect in spoken 

language than in written language. Second, LLMs 

showed an even stronger structure effect than 

humans, particularly GPT-4o, which most closely 

mirrored human data. 

First, our data addressed a key theoretical 

linguistic question: which element in a Mandarin 

ditransitive sentence is in focus, thereby prompting 

contrast-based predictions? Human data showed 

that in both DO and PO constructions, the theme 

was consistently the focal element. This outcome 

aligns with the Thematic Hierarchy Hypothesis, 

which argues that the theme, closely tied to the verb, 

tends to be the default focus in ditransitive 

structures sentence (Shyu, 2010).   

Critically, sentence structure also modulated 

how human participants predicted contrast in 

ditransitive structures. In the PO construction, there 

were more recipient contrasts predictions than in 

DO construction, because in PO construction (e.g., 

“she gave the candy to the daughter”), the recipient 

appears at the end of the sentence and thus draws 

more attention and induce more predictions that 

stand contrast with it. This finding partially 

supports the Sentence-Final Hypothesis (Xu, 2004; 

Figure 2  Human-model correlations in contrast predictions across structures and modalities. Each subplot 

compares a model’s prediction probabilities (blue solid line) with human responses (red dashed line) under one 

of the three modality conditions (written, original spoken, or normalized spoken). The x axis combines structure 

type (DO, PO) and continuation type (R, T, VP), yielding six categories. The y axis indicates the probability of 

each category. Pearson correlation coefficients (r) show how closely each model align with human data. 
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Yan & Calhoun, 2020), which posits that focus 

naturally gravitates toward the last element in the 

sentence. Nevertheless, theme contrasts remained 

dominant across both DO and PO constructions, 

suggesting that linear order competes with 

overarching thematic structure in directing 

attention. 

We further observed a difference between 

written and spoken modalities. In spoken language, 

participants exhibited a more pronounced effect of 

word order: sentence-final constituents in PO 

constructions attracted more recipient contrasts 

than in DO constructions. This enhanced contrast 

may stem from the incremental nature of speech 

(Ferreira & Anes, 1994), as listeners cannot revisit 

earlier segments and thus rely heavily on each new 

chunk of information. Interestingly, normalizing 

prosody did not attenuate the structural effect (i.e., 

no significant difference between original spoken 

group and normalized spoken group). While 

intonation can highlight final elements in Mandarin, 

our findings suggest that linear order alone can 

drive substantial focus-based predictions, 

emphasizing the importance of modality in shaping 

how comprehenders allocate attention. 

Turning to LLMs, we found that each model 

exhibited a larger structural effect than any of the 

human groups. Similar to human participants, the 

models produced more contrasts on sentence-final 

arguments, but the magnitude of this tendency was 

amplified. Two factors may underlie this difference. 

First, transformer-based LLMs use positional 

embeddings to encode token order (Vaswani et al., 

2017), which makes recently processed tokens 

more salient. This feature can mimic, yet also 

exaggerate, spoken-language emphasis on final 

constituents. Second, LLMs are trained with a 

next-token prediction objective on large text 

corpora, which could favor the final parts of a 

sequence, as the model aims to reduce prediction 

loss by paying attention to the most recent context.  

Our correlation analysis further revealed that all 

three LLMs resembled spoken human data more 

closely than written data, suggesting that next-

token prediction architectures may align more 

naturally with the incremental processing profile of 

speech. 

Together, these findings contribute to broader 

discussions about predictive processing in 

language. Although both humans and neural 

language models depend on anticipatory 

mechanisms (Brown et al., 2020; Pickering & 

Gambi, 2018), their respective mechanisms may 

diverge in how strongly they weight syntactic 

position over other linguistic cues. Our results also 

highlight that the models’ predictive behavior bears 

closer resemblance to the incremental unfolding of 

speech than to the flexible reading patterns of silent 

text comprehension (Christiansen & Chater, 2016). 

Future research could employ more fine-grained 

methods (e.g., eye-tracking) and analyses (e.g., 

attention-weight examinations of LLMs) to 

investigate why humans and models display these 

similarities and discrepancies. 

5 Conclusions 

The current study employed a sentence 

continuation task to examine how humans and 

LLMs predict contrast in ditransitive sentences. 

Two main findings emerged: (1) theme contrasts 

were dominant for human participants, but 

sentence structure significantly modulated these 

contrasts—especially in spoken contexts; (2) 

LLMs showed stronger structural effects than 

humans, with GPT-4o aligning most closely with 

human data. This study highlights the interplay 

between syntactic structure and modality in 

guiding predictions in human language processing 

and offers a clearer lens into how humans and 

LLMs differ in their weighting sentence structure. 

By comparing the two groups in a straightforward 

task, this work offers practical insights for refining 

language models and yields theoretical 

implications for understanding predictive language 

processing across modalities. 

Limitations 

The first limitation is our reliance on the sentence 

continuation paradigm, which is offline and 

intermingles comprehension with production. 

Incorporating more online and time-sensitive 

methods like eye-tracking or neuroimaging 

methods could provide a clearer picture of when 

and how focus-based contrast predictions arise. 

Moreover, although we sampled three 

prominent LLMs, the rapid evolution of language 

models suggests that further comparative studies 

would be valuable—particularly among systems 

trained mainly on Chinese text vs. models relying 

heavily on English corpora.  
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Abstract

This paper uses autoregressive large language
models to explore at which points in a given
input sentence the semantic information is de-
codable. Using representational similarity anal-
ysis and probing, the results show that autore-
gressive models are capable of extracting the
semantic relation information from a dataset
of noun-noun compounds. When considering
the effect of processing the head and modifier
nouns in context, the extracted representations
show greater correlation after processing both
constituent nouns in the same sentence. The
linguistic properties of the head nouns may in-
fluence the ability of LLMs to extract relation
information when the head and modifier words
are processed separately. Probing suggests that
Phi-1 and LLaMA-3.2 are exposed to relation
information during training, as they are able
to predict the relation vectors for compounds
from separate word representations to a simi-
lar degree as using compositional compound
representations. However, the difference in pro-
cessing condition for GPT-2 and DeepSeek-R1
indicates that these models are actively process-
ing the contextual semantic relation informa-
tion of the compound.

1 Introduction

The popularity of transformer-based large language
models (LLMs) has skyrocketed since the success
of Vaswani (2017) with the attention mechanism
and the conception of Bidirectional Encoders from
Transformers (BERT) (Devlin et al., 2019). The
attention-based architecture of LLMs allows them
to carry out a wide variety of natural language pro-
cessing (NLP) tasks, such as classification, senti-
ment analysis, translation and text generation.

Despite the positive reception and widespread
implementation of LLMs, the internal processes of
these complex models remain a key question within
the fields of interpretable and explainable AI. In
particular, the notion that state-of-the-art (SoTA)

LLMs can process and understand word meaning
in a similar way to natural language understanding
remains an ongoing discussion (Bender and Koller,
2020; Piantadosi and Hill, 2022). This has inspired
research into the syntactic and semantic capabilities
of language models in an attempt to unify compu-
tational processes and human language processing.

The objective of this paper is to expand on
the work of Ormerod et al. (2024) to investigate
whether SoTA autoregressive models are capable
of representing the semantic relation information
of noun-noun compounds, and where in an input
sequence the semantic information is decodable.
The original framework uses representational sim-
ilarity analysis (RSA) to compare the extracted
token representations with two datasets of English
noun-noun compounds. The token representations
considered are suited for the bidrectional masked
language models, however, autoregressive LLMs
are unidirectional, meaning that they only rely on
the previous inputs. Therefore, the experiments
are adapted to incorporate a continuation word,
taking the final head word and modifier token rep-
resentations, and the token representation of the
continuation word.

The models in this paper include RoBERTa (Liu
et al., 2019), BERT-Japanese, GPT-2 (Radford
et al., 2019), Phi-1 (Gunasekar et al., 2023),
LLaMA-3.2 (Dubey et al., 2024), and DeepSeek-
R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025).
BERT-Japanese acts as a control subject because
it is not trained on English and therefore should
not be able to decode the English semantic rela-
tion. RoBERTa is included as the top performing
encoder model.

The results show that autoregressive models are
capable of decoding the semantic relation informa-
tion, with strongest correlation occurring from the
final word token representations. The final head
noun token also holds relation information, which
may be accounted for by the level of concreteness
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of the head noun. However, the modifier word
representations still contain some level of relation
information, potentially reflecting frequency of re-
lational information associated with specific modi-
fier nouns in the training data. The models decode
semantic information from the contextual repre-
sentations, although Phi and LLaMA may learn
information about coexisting compound relations
during training as these models can predict relation
information from individual word representations.

2 Background

The first transformer-based model, designed for a
text translation task, consisted of six encoders and
six decoders which were able to convert input se-
quences into output sequences. In the transformer,
encoders are responsible for generating word em-
beddings which capture the content of an input, and
positional encodings which provide information on
the position of each token in the sequence. The
multi-headed self-attention mechanism is a key part
of the architecture which enables each encoder to
focus on different parts of the input as it processes
each token. Attention involves calculating the dot
product of the query and key vectors, which indi-
cates the level of emphasis that each word should
place on other words. The attention weights are
then passed through a softmax layer which gives a
probability distribution that informs the model how
much of each value representation to carry through
to the next layer.

An alternative to the traditional BERT archi-
tecture, autoregressive decoder-based LLMs are
unidirectional, which means that they rely on the
previous input to predict the next token in the se-
quence. They are causal language models, con-
sisting of stacks of decoder layers which take an
input sequence and predict the next most likely
term. These autoregressive models are often used
for text generation and chatbots which are available
to the public, thus it is crucial that their internal
processes are investigated.

2.1 Probing LLMs

Probing is a technique commonly used within NLP
interpretability to investigate whether the represen-
tations are able to capture certain information (He-
witt and Manning, 2019). Due to the complexity of
blackbox models, probing methods are often extrin-
sic, post-hoc approaches. Classifiers are used to de-
termine whether a model can successfully decode

an abstract concept, although they do not provide
causal information. For transformer models, prob-
ing often includes investigating the attention heads
within the self-attention mechanism, embeddings,
and token representations. Ju et al. (2024) used
layer-wise probing to investigate how LLMs en-
code context, highlighting the emphasis that LLMs
place on context knowledge in upper layers. This
is supported by the work of Jawahar et al. (2019),
using sentence-level probing to explore BERT’s
phrasal representations. They concluded that BERT
encodes linguistic information including syntactic
features in its middle layers and semantic features
in the upper layers. Other probing studies have
investigated function word comprehension, long-
distance agreement, and other syntactic phenom-
ena (Kim et al., 2019; Linzen and Baroni, 2021;
Vulić et al., 2020). Probing proves to be a well-
established method for exploring how LLMs are
able to encode and decode semantic and syntactical
information.

2.2 Conceptual combination
A major field of research that aims to bridge the gap
between human language understanding and NLP
focuses on the compositionality of words to form
larger, meaningful phrases and sentences, a process
known as conceptual combination. This process
can be linked to concepts that are intersective, such
as adjective-noun phrases that are overlaps of their
constituent words, as well as noun-noun phrases
which consist of a head noun and a modifier. A
subset of noun-noun phrases can be considered lex-
ical compounds, where they are highly idiomatised
within language such that the combined meaning
is not apparent from the meanings of the individual
nouns themselves.

Early theories of intersective combination take
inspiration from mathematical principles, propos-
ing a fuzzy logic model that relies on a degree of
overlap between two concepts. This early model
led to the Selective Modification (Smith and Os-
herson, 1984; Smith et al., 1988) and Concept
Specialisation models (Cohen and Murphy, 1984)
which can be described as schema-based, where
the head noun is represented by a set of empty slots
and fillers, and its specialisation is determined by
a modifier filling one or more of its slots. The
dual-process model proposes a similar framework,
however this model suggests three approaches to
conceptual combination: relation-based, property-
based, and a hybridisation of two concepts (Wis-
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niewski, 1997). In this instance, relations are rep-
resented as slots within the schema of a head noun
and when a modifier fills a slot, an appropriate re-
lation is chosen. Building on the reasoning that re-
lations drive conception, the Competition Among
Relations in Nominals (CARIN) theory implies
that the modifier representation contains knowl-
edge of certain relations that are frequently used
with the given modifier during conceptual combi-
nation, known as the relational distribution (Gagné,
2001).

2.3 Semantic properties of LLMs
Research into conceptual combination from a lin-
guistic standpoint is far from complete, however
early theories provide a starting point for probing
LLMs to discern whether SoTA models extract
meaningful representations about syntactic and se-
mantic properties of language. In particular, in-
sights into how LLMs handle complex linguistic
structures can shed light on the internal mecha-
nisms and how they relate to or deviate from human
cognitive processes.

Conceptual combination in the context of NLP
has primarily focused on using features to classify
the relations between a head noun and a modifier
word. Ó Séaghdha and Copestake (2008) adopted
distributional kernels for three types of semantic
classification, including the interpretation of com-
pound nouns. For transformer-based language mod-
els, word embeddings have become an area of in-
terest for probing the semantic capabilities. Peters
et al. (2018) concluded that the complex architec-
ture of transformers are capable of learning a hi-
erarchy of linguistic features. Shwartz and Dagan
(2019) evaluated both static and contextualised em-
beddings, concluding that contextualising improves
performance, especially for recognising meaning
shifts. Ettinger (2020) extracted word embeddings
to assess phrasal similarity across layers of trans-
former models for two-word phrases, concluding
that although models are able to represent individ-
ual word content, they struggle at representing the
full compositional phrase meaning. Derby et al.
(2021) investigated how the intermediate layer of
long short-term memory (LSTM) models and trans-
formers capture semantic knowledge, showing that
transformers outperform LSTMs although both are
able to retain semantic information after the target
concept has been provided to the model.

Most recently, Coil and Shwartz (2023) inves-
tigated the interpretation and conceptualisation of

noun-noun compounds on a supervised seq2seq
model and GPT-3, an autoregressive LLM. They
found that GPT-3 outperformed the seq2seq model
when interpreting known compounds, however the
LLM struggled to generalise to unseen, novel com-
pounds. They suggested that GPT-3 relied heavily
on memorisation to interpret previously seen com-
pounds, leading to hallucinations when interpreting
new compounds. Ormerod et al. (2024) focused
on six encoder-based LLMs, including a multilin-
gual model and a non-English monolingual model,
to investigate whether LLMs are capable of repre-
senting the thematic relation shared between two
constituent nouns within a compound. Their work
highlighted the ability of BERT and RoBERTa to
encode the thematic relation between the head and
modifier, although they did not consider autore-
gressive models. Rambelli et al. (2024) also in-
vestigated the semantic relationships shared across
compounds, using prompting and the Surprisal met-
ric on a dataset of noun-noun compounds annotated
with both semantic relations and concreteness rat-
ings. Their results indicated that models identified
semantic relations to varying degrees, influenced by
the concreteness of a given compound. However,
similar to Coil and Shwartz (2023), they found that
LLMs were limited in their ability to generalise to
novel compounds.

As an extension to Ormerod et al. (2024), this pa-
per provides further support to the conclusions that
autoregressive LLMs are able to extract implicit
relation information after processing the full com-
pound. Probing uses fine-grained relation informa-
tion to explore the semantic information extracted
from compounds at a higher level of granularity.

3 Data

Two datasets are used to explore the thematic rela-
tions of noun-noun compounds. The first dataset
includes 300 English noun-noun compounds that
are categorised into groups of 5 compounds (Gagné,
2001). Each group consists of a target compound,
a compound with the same head noun and the same
relation, a compound with the same head noun
but a different relation, a compound with the same
modifier word and the same relation, and a com-
pound with the same modifier and a different rela-
tion. 60 groups of five compounds are constructed
and a ground-truth representational dissimilarity
matrix (RDM) is constructed to reflect whether or
not pairs of compounds share the same thematic re-
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lation. Within each group of five compounds, there
is one target compound, followed by four others
that comply with the experimental conditions given
in Table 1.

M H Experimental Condition
gas lamp Target
battery lamp Same H, same relation
cabin lamp Same H, different relation
gas car Same M, same relation
gas hose Same M, different relation

Table 1: Experimental conditions for each group of five
noun-noun compounds used in the relation category
RSA experiments, with the modifier (M) and the head
noun (H).

The second dataset consists of 60 noun-noun
compounds, where 34 participants were tasked with
ranking the appropriateness of 18 possible relations
for each compound (Devereux and Costello, 2005).
This results in a dataset of 18-dimensional relation
vectors. Compounds which are semantically linked,
i.e. share the same thematic relation, tend to have
similar relation vectors. This dataset provides a
fine-grained representation of the semantic infor-
mation for each compound, useful for probing the
semantic capabilities of the LLMs.

0 10
# Mentions

H USES M
H HAS M

H MADE OF M
M LOCATION IS H

M MAKES H
H BY M

H USED BY M
H FOR M

H DERIVED FROM M
M CAUSES H
H ABOUT M

H IS M
M HAS H

M IS H
H MAKES M

H LOCATION IS M
H DURING M
H CAUSES M

Gas Lamp

0 10
# Mentions

Propane Stove

0 10
# Mentions

Rain Drops

Figure 1: Sample relation vectors for three of the 60
compounds in the 60 compound dataset. Compounds
GAS LAMP and PROPANE STOVE share similar relation
vectors, when compared with RAIN DROPS (Devereux
and Costello, 2005).

4 Experiments

The experimentation consists of two separate exper-
iments, firstly using RSA to assess whether the to-
ken representations extracted layer-by-layer reflect
the semantic relation information shared across the
head and modifier of noun-noun compounds, and

secondly using a linear probing classifier to dis-
cern whether the LLMs can successfully decode
the thematic relation.

Experiment 1, also known as the relation cate-
gory experiment, is designed to determine whether
the relation between nouns influences the model’s
ability to distinguish between noun-noun com-
pounds when presented in pairs. RSA, a technique
commonly used in computational neuroscience, is
useful for comparing disparate data sources by cre-
ating similarity matrices and analysing any shared
structure, or lack of, by calculating the Pearson r
correlation between the two matrices (Kriegeskorte
et al., 2008). Experimental RDMs are constructed
by calculating the cosine similarity of the extracted
token representations, to compare with ground-
truth RDMs which reflect whether two compounds
share the same thematic relation (similar) or not
(dissimilar), see Figure 2. The correlation indicates
how strongly the extracted representations reflects
the relation information represented by the ground-
truth RDM, i.e. the category of relation for each
compound.

mo
un
tai
n b
ree
ze

kit
che

n b
ree
ze

sto
rm
 br
ee
ze

mo
un
tai
n c
ab
in

mo
un
tai
n m

ag
azi
ne

mountain breeze

kitchen breeze

storm breeze

mountain cabin

mountain magazine
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Di
ss
im

ila
rit
y

Figure 2: Ground-truth RDM, representing whether two
compounds share the same thematic relation. The com-
pounds that do not share either the same relation, head
or modifier is not included in the Pearson r calcula-
tions (Ormerod et al., 2024).

This experiment also investigates the effect of
considering the head and modifier in the same sen-
tence, as opposed to considering each word sep-
arately. Higher correlation when the compound
is processed together in the same sentence would
indicate that the semantic relation information is
represented by the models across the compound.

The second experiment, known as the compo-
sitional probe, applies a linear classifier to probe
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whether context is required in order to decode fine-
grained relation information. The original frame-
work set out by Mitchell and Lapata (2008) has
been adapted for this probe experiment, where
the 2-vs-2 testing framework is used to determine
whether the extracted representations of pairs of
compounds align more with ground-truth or with
each other. Using the fine-grained 60-compound
dataset, for each possible pair of compounds (out
of a possible 1770), a linear regression model is
trained on the mean-pooled representations for
RoBERTa and BERT-Japanese, and the final word
token representations of the remaining compounds
for the autoregressive models to predict the 18-
dimension relation vectors.

The regression model generates predictions Y ĩ

and Y j̃ from Y i and Y j . A test is considered suc-
cessful if it satisfies

dist(Y ĩ, Y i) + dist(Y j̃ , Y j) <

dist(Y ĩ, Y j) + dist(Y j̃ , Y i),
(1)

where the distances are calculated as mean
squared errors. Therefore, if the predicted vectors
for i and j are closer to the true relation vectors
for i and j, rather than the other way around, the
test is marked as successful. The probing experi-
ment considers two processing conditions, where
the head and modifier word are processed together
in context and where they are processed separately
before being averaged. If the proportion of suc-
cessful tests is high for the contextual processing
condition, this would suggest that the models are
actively processing the contextual composition of
each compound, rather than relying on previously
learned association information.

Four publicly available autoregressive models
are used, including GPT-2-Small, Phi-1, LLaMA-
3.2-3B, and DeepSeek-R1-Distill-Qwen-1.5B. All
four models adopt different tokenisers to break
down the input sequences into sub-units (tokens).
DeepSeek is of particular interest as it adopts Mix-
ture of Experts (MoE) approach, allowing it to pre-
dict multiple potential outputs simultaneously. For
RoBERTa and BERT-Japanese, the input sequences
are taken as the Gloss sentences from the dataset,
e.g. “It is a MOUNTAIN STREAM.” However, as
the autoregressive models read from left to right,
the input sequences include an additional continu-
ation word so that the token representation can be
extracted from the final word, e.g. “It is a MOUN-
TAIN STREAM [and/but/that]”, where the average

of applying each word is taken. When taking the
processing condition into account, two separate sen-
tences are used, each employing the head noun and
modifier word, e.g. “It is a MOUNTAIN.” and “It is
a STREAM.” Once again, for GPT, Phi, DeepSeek
and LLaMA, the sentences include a continuation
word.

4.1 Relation category RSA

Three experimental RDMs are constructed for each
layer within the models by calculating the pairwise
cosine similarity for the mean-pooled token rep-
resentations, the head noun representations, and
the modifier word representations for the BERT
models. For the autoregressive models, the final
head, final modifier, and final word representations
are used. The Pearson r correlation between each
experimental RDM and the ground-truth RDM is
then plotted to show how well the extracted rep-
resentations reflect the thematic relation of each
compound, see Figure 3.
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Figure 3: Results for the relation category RSA ex-
periment (Section 4.1). The Pearson r correlation is
calculated between the same thematic relation ground-
truth RDM and experimental RDMs across all layers of
six transformer models.

Figure 3 shows that all models, excluding BERT-
Japanese, are capable of capturing the semantic
relation information. As expected, the non-English
model performs poorly, although the head and
modifier representations produce higher correlation
than the mean-pooled compound representations,
suggesting that the separate representations may
contribute to the thematic relation information.

For the autoregressive models, the final word
representation produces the highest correlation to
ground truth, followed by the final head noun rep-
resentations. The correlation for the modifier word
representation is non-zero, which may reflect statis-
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tical and semantic information about how modifier
words are associated with thematic relations in the
language data that the models have been exposed
to during pre-training. The results for DeepSeek
follow a similar trend to LLaMA, which could be
due to the fact that DeepSeek-R1 is partly based
on the LLaMA model. For all four autoregressive
models, the correlation drops for the final word
representations at the final layer.

4.2 Relation category RSA with processing
condition

This is an extension of the previous experiment
that considers whether context affects how well the
models extract the thematic relation. Two exper-
imental RDMs are constructed by comparing the
cosine similarity of the mean-pooled token repre-
sentations for BERT models, and the final word
token representations for the four autoregressive
models, of the compounds presented in context (the
“Together” condition) and in separate sentences (the
“Separate” condition). The results are presented in
Figure 4.

4 8 12
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Co
rre

la
tio

n

* * * * * * * * * *

RoBERTa

Together
Separate

4 8 12
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25
BERT-Japanese

Together
Separate

4 8 12
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

* * * * * *

GPT-2-small

Together
Separate

4 8 12 16 20 24
layer

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Co
rre

la
tio

n

* ****

Phi
Together
Separate

4 8 12 16 20 24 28
layer

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

* * **

DeepSeek
Together
Separate

4 8 12 16 20 24 28
layer

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

***** *********************

LLaMA-3.2-3B

Together
Separate

Figure 4: Results for the relation category RSA experi-
ment with the processing condition (Section 4.2). The
Pearson r correlation is taken between the same rela-
tion ground-truth RDM and the experimental RDMs
of the mean-pooled and final word representations for
the “Together” and “Separate” processing conditions.
Asterisks reflect p < 0.05, i.e. under a paired t-test, the
difference in correlation across processing conditions is
statistically significant.

The “Together” processing condition consis-
tently produces greater correlations when com-
pared with the “Separate” condition, suggesting
that GPT, Phi, DeepSeek and LLaMA represent the
semantic relation information across the compound.
In particular, after performing a paired t-test, the
results are statistically significant across almost all

layers for LLaMA, with statistically significant dif-
ferences for GPT and DeepSeek across the middle
layers, and Phi towards the later layers.

Processing the head and modifier words sepa-
rately still alludes to some ability for the models
to capture the relation information, which could
be the result of the models taking into account the
frequency of modifiers and head nouns coexisting
with a particular relation during training.

For all models except BERT-Japanese, the gap
between the correlations of each processing con-
dition is most defined through the middle layers,
supporting the results above that semantic informa-
tion shared across the compound is encoded in the
middle layers. Correlation for the “Separate” case
for the autoregressive models falls almost to zero,
implying that the token representations reflect very
little semantic information in the final layers.

4.3 Compositional probe

The 2-vs-2 tests are performed pairwise to investi-
gate whether context is required for decoding fine-
grained semantic information.
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Figure 5: Results for the compositional probe experi-
ment (Section 4.3). Proportion of successful tests out of
1770 tests, i.e. the models decode the thematic relation,
using both the “Together” and “Separate” processing
conditions. Asterisks signify tests for false-discovery,
where p < 0.05, i.e. there is a significant difference be-
tween the number of successes across both processing
conditions.

In Figure 5, the results for DeepSeek and GPT
suggest that the models capture relation informa-
tion in context, and contextual combination is re-
sponsible for creating representations that reflect
the semantic information. However, there is little
difference between the processing conditions for
Phi and LLaMA, implying that the models are al-
ready aware of particular thematic relations and
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can identify these from the individual words.
In addition to the probing experiment, a false-

discovery procedure is performed in order to ac-
count for statistical dependencies. These occur-
rences are marked as asterisks. The results for
DeepSeek in particular show a large number of
these tests across all layers, despite such a high
proportion of successful tests.

5 Representations across layers

The experiments show that these models are ca-
pable of extracting semantic information, but in
order to identify the points in the input sentences
at which each model is able to decode the relation
information, the correlation is plotted layer-wise
against the input sentence.
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Figure 6: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for GPT.
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Figure 7: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for Phi.

For GPT, Figure 6 shows that positive correlation
begins at the first head token position. This implies
that, once the model has been exposed to the full
modifier word, it is capable of extracting a level
of semantic relation information. The correlation
is strongest in the middle and later layers for the
final word representations, which aligns with the
results from the relation category RSA experiment
(Section 4.1).

Whilst there is a clear distinction between the
modifier and head token correlations for GPT, the
heatmap for Phi in Figure 7 shows that the modifier
tokens do correlate to some extent with ground-
truth, although this is not high at 0.08. Once again,
the correlation is stronger towards the end of the
input sequence, with the greatest correlation pro-
duced by the final word token representations.
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Figure 8: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for DeepSeek.

For DeepSeek, the heatmap in Figure 8 shows
that the modifier tokens may reflect some of the
semantic relation information of the compounds.
The correlation is most pronounced across the mid-
dle layers of the final word representation, before
decreasing.

Similar to GPT, Figure 9 shows that the correla-
tion for LLaMA begins to increase after the model
has been presented with the full modifier. LLaMA
achieves the highest correlation of 0.21 after pro-
cessing the compound.

6 Discussion

The experimental results support the conclusions
that transformer-based LLMs can retrieve the se-
mantic relation information of noun-noun com-
pounds. Intuitively, the averaged token representa-
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Figure 9: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for LLaMA.

tion for the continuation words led to the greater
correlation, which is to be expected as the autore-
gressive models will have processed the full com-
pound. This result contradicts Ettinger (2020), who
concluded that representations of two-word phrase
embeddings do not reflect the semantic phrasal
composition.

The head noun representations also correlate
with the ground truth RDMs, suggesting some ca-
pability for the head nouns to store relational in-
formation. A possible explanation is the intrinsic
semantic properties of the constituent nouns in the
compounds, where head nouns reflect concrete con-
cepts. From the fine-grained 60-compound dataset,
the top mentioned relations include “H FOR M”,
“H MADE OF M”, and “H USES M”. These rela-
tions are more likely to be shared by at least one
concrete noun (BREAKFAST SUGAR, HORSE STA-
BLES, RAIN DROPS), compared with compounds
that share less common relations such as “H DE-
RIVED FROM M” or “M CAUSES H” (JOB ANXI-
ETY, TAX PRESSURE, THERMAL TORTURE). Com-
pounds which share the top mentioned relations
are more likely to be tangible concepts in the real
world, and thus require less context and inference
than abstract themes. Conclusions from Rambelli
et al. (2024) suggest that the linguistic property of
concreteness may be, to some extent, responsible
for the variation in success of LLMs interpreting
compounds. The results here suggest that LLMs
are leveraging the properties of the head nouns in
order to represent relational information. When
taking into account the processing condition of the
head and modifier nouns (Section 4.2), the results

for the “Separate” condition suggest that the con-
stituent nouns may hold some level of relation in-
formation. In conjunction with the results that the
head noun representations produce higher correla-
tions, it is plausible that the properties of the head
nouns contribute to the models’ ability to reflect
semantic information. The modifier token represen-
tations show slightly positive correlations, where
the models are only exposed to the modifier word
instead of the full compound. This result may sup-
port the CARIN model of conceptual combination
which argues that modifiers contain a relational
distribution and therefore more frequent modifiers
can provide relational information. Models may
learn relational distribution information from com-
pounds processed during pre-training.

The results from Section 4.1 suggest that the four
autoregressive models extract semantic information
towards the middle and later layers, similar to the
results that show BERT models encode the relation
information in the middle layers. The correlation
for LLaMA spikes in the early layers, whilst also
producing peaks around the middle layers. After
probing the layer-wise representations of LLaMA-
2, Liu et al. (2024) found that the lower layers of
the model are responsible for extracting lexical se-
mantic information, and higher layers are better
suited for predictive tasks. This resonates with the
results from the relation category RSA experiment,
where LLaMA produced high correlations for both
the final head token and final word token represen-
tations between layers 6-18.

The decrease in correlation for autoregressive
models in the final layers may be explained by Etha-
yarajh (2019), who concluded that GPT-2, as op-
posed to BERT, does not represent word meanings
in the final layer. The vector space of embeddings
appears to flatten, such that semantics, syntax and
other linguistic properties of language are not re-
flected in the token representations extracted from
the final layer. As a result, further fine-tuning for
specific semantic tasks may be effective when fo-
cused on the middle layers of the transformer mod-
els.

DeepSeek is of particular interest as this model
is a distilled LLM that uses MoE to generate pre-
dictions efficiently. The traditional transformer
architecture is adapted by replacing feedforward
networks (FFNs) with MoE layers (Dai et al., 2024).
Each MoE is similar to a FFN in structure, and a
number of experts are activated in parallel through-
out the transformer when an input is being pro-
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cessed. This complex internal mechanism means
that there may be subnetworks within the model
that each contribute to the model’s overall under-
standing. Contributions from a number of “experts”
may result in the semantic relation information be-
ing decodable at early points in the input sequence,
i.e. from the modifier representations. The distilled
DeepSeek-R1 model is based on both LLaMA and
Qwen, which could explain the similar correlation
patterns for the relation category experiments.

7 Limitations and Future Work

The models included in this paper are all trained on
the same scale of parameters (1-3B). Larger mod-
els may be explored to investigate the effect of the
scale of pre-training, and whether a larger number
of hidden dimension enhances or inhibits the extrac-
tion of meaningful representations. The datasets
are also limited in size, with only 60 possible rela-
tion vectors available for probing. Whilst suitable
for the size of the models being tested in this paper,
investigating LLMs trained on billions of param-
eters and fine-tuned models would require larger
datasets to account for potential noise and model
sensitivity. Additionally, expanding the probing
experiment to consider novel compounds would
explore the generalisability of the findings.

These models were tested using their base config-
urations in order to explore their intrinsic semantic
capabilities. For models such as Phi and LLaMA
where little context required for decoding the re-
lation in the probe experiment, fine-tuning could
reveal contextual composition where the models
can no longer rely on the relation information em-
bedded during training.

Exploring the MoE architecture of DeepSeek
could also reveal whether there are particular “ex-
perts” that are activated to extract semantic infor-
mation, and whether these vary across layers or
vary according to context. Understanding how
DeepSeek dynamically selects experts during the
processing of compounds may lead to further in-
sights on subnetworks that exist within the network,
and how they contribute to the success of the model
interpreting relation information.

8 Conclusion

The main research question concerns whether
autoregressive language models consisting of
decoder-only layers are able to reflect the semantic
relation information of noun-noun compounds, and

which parts of the input sequences make the par-
ticular relation decodable. The RSA and probing
results indicate that the LLMs successfully retrieve
semantic information, with meaningful representa-
tions extracted after the models have been exposed
to the full compound in context. Head noun token
representations also reflect information about the
thematic relation, which may be the result of the
intrinsic concrete properties of the nouns. The mod-
ifier nouns show the potential for embedding rela-
tional information, however this may be explained
by LLMs being exposed to compounds during train-
ing. For GPT and DeepSeek, probing reveals that
they are actively processing the information stored
across the compound in order to accurately predict
the appropriate relation, whereas Phi and LLaMA
appear to predict the relation just as well from the
individual word representations.
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