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Abstract

We investigate the performance of state-of-
the-art (SotA) neural grammar induction (GI)
models on a morphemically tokenised English
dataset based on the CHILDES treebank (Pearl
and Sprouse, 2013). Using implementations
from Yang et al. (2021b), we train models and
evaluate them with the standard F1 score. We
introduce novel evaluation metrics—depth-of-
morpheme and sibling-of-morpheme—which
measure phenomena around bound morpheme
attachment. Our results reveal that models with
the highest F1 scores do not necessarily induce
linguistically plausible structures for bound
morpheme attachment, highlighting a key chal-
lenge for cognitively plausible GI.

1 Introduction

Functional morphemes are a key focus of cur-
rent generative research in First Language Acquisi-
tion (FLA) due to their role in shaping the overall
structure of language (Guasti, 2017; Dye et al.,
2018; Biberauer, 2019). The computational task of
grammar induction (GI) takes as input a corpus of
unlabelled sentences and outputs the predicted hier-
archical structure for these sentences based purely
on the latent statistics of the corpus; see §2.2 for
an overview of GI and Figure 3 for an example
of induced structures. GI thus provides a lower
bound on the types of grammatical structures that
can be inferred from linguistic signal alone, partic-
ularly when appropriate acquisitional metrics are
employed, and recent advances in GI (Kim et al.,
2019) necessitate a reevaluation of its performance
in the context of FLA. This paper is concerned with
bridging the gap between the state-of-the-art (SotA)
in GI and in FLA by evaluating the performance
of neural GI models on morphemically tokenised
English child-directed speech (CDS).

To provide a more cognitively realistic setup (see
§3) we propose a modification to the input of
SotA neural GI systems: we only use CDS, which

we morphemically tokenise (see §3.2 and §3.3)
in order to reflect the salience of functional mor-
phemes in FLA (Shi, 2013). We select SotA neu-
ral grammar induction models: Compound Prob-
abilistic Context-Free Grammar (C-PCFG; Kim
et al., 2019), Neural PCFG (N-PCFG; Kim et al.,
2019), and Tensor Decomposition PCFG (TN-
PCFG; Yang et al., 2021b).

We evaluate the models using the standard mea-
sure – F1 score. Furthermore, we propose two
original evaluation metrics—depth-of-morpheme
and sibling-of-morpheme—specific to evaluating
the attachment of functional morphemes (see §4.1).
Our original evaluation metrics reveal that the mod-
els with highest F1 do not necessarily induce the
most linguistically plausible structures.

2 Background

2.1 Functional morphemes

The distinction between lexical and functional
items is fundamental in the study of human lan-
guage structure (Dye et al., 2018). Functional
items encode grammatically salient information
and serve as the locus for the grammatical organisa-
tion of language, as per the Borer-Chomsky Conjec-
ture (Borer, 1984; Baker, 2008). During the initial
focus on lexical items exhibited in FLA (Brown,
1973; Shi and Werker, 2003), functional items serve
as high-frequency “edge elements”, which aid in
segmentation of language input and in identifying
the category of the lexical item they occupy pre-
dictable positions in relation to (Mintz, 2013; Biber-
auer, 2019). Thus, for example, the consistently sig-
nals the left-edge of a (definite) noun phrase while
-ed consistently signals the right edge of a (past-
tense) lexical verb. The edge significance approach
is considered SotA in FLA (see i.a. Christophe et al.
(2008) and Dye et al. (2018) for further discussion).
By tokenising bound functional morphemes (see
§3.3), we reflect their salience in FLA.
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Inflectional morphology, the productive combi-
nation of lexical and functional items, starts to
emerge in child-produced speech in stages related
to the overall vocabulary size and mean length of
utternace (MLU) (Brown, 1973; Devescovi et al.;
Ravid et al., 2020). English is a quite strongly iso-
lating language, so most functional items appear
as free morphemes (separate words), and there are
few bound functional morphemes, which appear as
affixes (see §3.3). In GI systems the bound func-
tional morphemes are ignored because tokens are
treated as atomic units. Our approach—morphemic
tokenisation—addresses the loss of “edge” infor-
mation that follows from this practice by splitting,
for example, runs into the lemma run and the bound
functional morpheme -s before training. This al-
lows the system to learn the grammatical rules gov-
erning bound morphemes, which play a crucial role
in syntax.

2.2 Neural grammar induction
Grammar induction (GI) is the task of finding the
latent structure of a natural language, a grammar,
based on a set of raw sentences from the language,
a corpus. Most statistical attempts at GI rely on a
sequence of POS tags as input (Carroll and Char-
niak, 1992; Klein, 2005; Perfors et al., 2011), and
attempts to use raw text underperform (Klein and
Manning, 2004). Using POS tags (or other deriva-
tives of raw text) is unrealistic from an FLA point
of view because it postulates the existence of a
standalone POS induction system. Neural systems
do not require such modification of the input and
achieve SotA results (Kim et al., 2019).

The general principle in neural grammar in-
duction systems is to parametrise probabilities
of (phrase-structure) rules with neural networks.
Dyer et al. (2016) lay the foundations for neural
GI with the Recurrent Neural Network Grammar
(RNNG), and more recent works include Neural
PCFG (N-PCFG; Kim et al., 2019), Compound
PCFG (C-PCFG; Kim et al., 2019), Neural Lexi-
calised PCFG (NL-PCFG; Zhu et al., 2020), Neu-
ral Bi-Lexicalised PCFG (NBL-PCFG; Yang et al.,
2021a), Tensor Decomposition PCFG (TN-PCFG;
Yang et al., 2021b), SimplePCFG (Liu et al., 2023).
Character-based PCFG (Jin et al., 2021) has a sim-
ilar motivation to ours: to utilise the information
inside a word. However, we specifically target the
smallest standalone linguistic unit, morphemes, in-
stead of naively placing equal importance on all
alphanumeric characters. Tsarfaty et al. (2020) pro-

vide preliminary support for the marriage of mor-
phological information with neural unsupervised
approaches.

3 Experimental setup

3.1 Systems
We perform experiments using C-PCFG, N-PCFG,
and TN-PCFG. To optimise the computational re-
source requirements, we use the implementations
of Yang et al. (2021a), and the C-PCFG and N-
PCFG experiments rely on SimplePCFG (Liu et al.,
2023). All of the systems work with a preset num-
ber of non-terminals (nt) and terminals (t). The
number of nt and t in our experiments follows the
previous experimental setup of Yang et al. (2021a).

3.2 Data
We use the CHILDES Treebank (CHITB; Pearl and
Sprouse, 2013), which consists of child-directed
speech (CDS) sentences with phrase structure an-
notations. We use all of the Brown-Adam data
for testing because its annotations are most widely
verified. The remaining sentences are randomly
split between training and validation. Table 1 dis-
plays the number of sentences in each split. CDS
differs from adult speech, and especially the Penn
Treebank (PTB; Marcus et al., 1993), as shown
in previous works (Gelderloos et al., 2020; Jones
et al., 2023). In this specific instance, it is worth
noting that: sentences of length one are common
in CDS, but constitute trivial examples for the GI
task, so we eliminate them; CHITB consists of a
smaller vocabulary and shorter sentences than PTB;
CHITB is not canonical (e.g. includes unfinished
sentences).

PTB CHITB

№ S T S T MT

Train 2-21 39 912 140 643 676
Valid 22 1.7 40 24 129 136
Test 23 2.4 56 16 82 86

Table 1: Count in thousands of sentences (S), standard
tokens (T) and morphemic tokens (MT) in PTB WSJ
sections (№) and in CHITB.

3.3 Morphemic tokenisation
The data in CHITB comes standardly tokenised,
and we additionally render it lowercase and remove
punctuation. The procedure for morphemic tokeni-
sation is as follows: 1) identify words with bound
functional morpheme endings; 2) ensure the word
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is not an exception; 3) split the original word into
a word lemma and a functional morpheme, using
en_core_web_lg (Montani et al., 2020) and regu-
lar expressions; 4) save the lemma and functional
morpheme.

The bound functional morphemes in English
of interest in this work are listed below, followed
by the percentage that they represent of the training
tokens:

• present progressive -ing, 2.7%
• regular plural -s, 1.64%
• regular past tense -ed, 0.82%
• regular third person present tense -s, 0.49%
After morphemic tokenisation, the structure of

the parse trees also needs to be appropriately modi-
fied to reflect the presence of the new tokens. We at-
tach the bound functional morpheme as illustrated
in Figure 1. A complete list of cases illustrated
with syntactic trees is provided in Appendix A.

S

NP

PRP

she

VP

VBZ

walks

S

NP

PRP

she

VP

VBZ

VB

walk

PRS

s

Figure 1: Regular third person present -s. (L) Original
tree. (R) Rewritten tree post morphemic tokenisation.

The exceptions where morphemic tokenisa-
tion should not be applied depend on the lan-
guage, and for English include: plural-only nouns
(e.g. trousers), as these forms are monomorphemic;
irregular forms of third person singular verbs (is,
has, goes, does); and words which coincidentally
end in -ed or -ing (e.g. bed or sting).

4 Results and analysis

The standard method of assessing GI is to use a
sentence-level F1 score, which is calculated based
on the gold annotations of the test set. We present
the F1 scores for the different models in Table 2.

From Table 2 it is apparent that the morphemi-
cally tokenised data performs on par or better than
the standardly tokenised data when using a large
number of non-terminals and terminals. The high-
est F1 is achieved by N-PCFG (nt8192 t16384),
where the standard tokenisation slightly outper-
forms the morphemic tokenisation. Overall sys-
tems with a higher number of non-terminals and
terminals, which can capture more subtle variation

Model Morphemic Standard
Left-branching 14.17 14.83
Right-branching 71.94 73.77
Random trees 36.45 36.61
TN-PCFG (nt9000 t4500) 73.81 45.75
C-PCFG (nt2048 t4096) 68.79 59.86
C-PCFG (nt512 t1024) 41.99 72.95
N-PCFG (nt4096 t8192) 69.19 60.83
N-PCFG (nt8192 t16384) 78.56 79.01

Table 2: Sentence-level F1 for constituency parses for
morphemic and standard tokenisation.

in the data, perform better. The right-branching
baseline achieves an F1 score comparable and even
higher than for some neural models. This trend
is apparent for both standard and morphemic to-
kenisation because English has a right-branching
pattern (Greenberg, 1963). The high performance
of right-branching baselines for English is reported
for C-PCFG (Kim et al., 2019, Table 1) and for
TN-PCFG (Yang et al., 2021b, Table 1).

4.1 Functional morpheme evaluation

F1 is reliant on annotations, which for natural lan-
guages are prone to ambiguity because the target
grammar may not necessarily be known. We devise
annotation-independent evaluation metrics focused
on the structure of attachment of functional mor-
phemes.

4.1.1 Depth-of-morpheme
We assume that the nodes for bound functional
morphemes are sibling nodes for the lexeme they
combine with (see §3.3 and Figure 1). To establish
whether a bound functional morpheme is correctly
attached in the predicted tree, we check whether it
is found at the same depth as the lexeme it forms
a word with. If the depth differs, then the pre-
dicted subtree is incorrect in describing the func-
tional morpheme attachment. We perform depth-of-
morpheme evaluation on the models with highest
F1: TN-PCFG (nt9000 t4500), N-PCFG (nt8192
t16384), and the right-branching baseline; the re-
sults are displayed in Table 3.

TN-PCFG N-PCFG Right-br.
-ed 100 55.11 30.49
-ing 100 41.11 21.37
-s 95.11 95.95 40.88

Table 3: Percentage of bound functional morphemes
attached at the correct depth. -s has two uses (§3.3).

N-PCFG has the highest F1, but appears not to
be expressive enough to encode the examined lin-
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guistic phenomena: this is likely because it cap-
tures a higher frequency of simple cases. TN-
PCFG makes no errors on -ed and on -ing. The
right-branching baseline, although comparable in
F1 score with the neural models, underperforms
on the task of correctly attaching the bound func-
tional morpheme. These insights highlight the im-
portance of acquisitionally-focused evaluation, be-
cause standard NLP measures, such as F1, may
obscure task-specific errors.

train track
s

Figure 2: N-PCFG prediction for the structure of the
morphemically tokenised phrase “train tracks”. The
induced structure implies the functional morpheme -s
combines with the whole noun compound.

Note however that the binary nature of depth-of-
morpheme also obscures patterns which may be of
linguistic interest. For example, N-PCFG predicts
that the plural noun morpheme -s attaches to the
whole noun compound as displayed in Figure 2,
and the depth-of-morpheme of -s is therefore in-
correct (the expected pattern is for -s to attach to
the single noun preceding it, as displayed in Fig-
ure 5). However, the induced structure might be of
linguistic interest because the compounding of the
nouns is not implausible. To gain deeper insight,
depth-of-morpheme should be used in combination
with sibling-of-morpheme, the metric introduced
in the following section.

4.1.2 Sibling-of-morpheme evaluation

We next analyse the sibling of the bound functional
morpheme in the predicted tree. The sibling is the
span of the smallest tree immediately dominating
the tree where the functional morpheme node ap-
pears; in linguistics, this notion is also referred to as
a sister. For example, the sibling of -ed in Figure 3
is knock (as predicted by TN-PCFG) and the sub-
tree spanning one down (as predicted by N-PCFG).
The sibling predicted by TN-PCFG is linguistically
plausible, whereas the one predicted by N-PCFG is
not – not only does it group two words in a gram-
matically unlikely constituent, but it implies the
functional morpheme does not combine with the
verb.

To systematically look for patterns in the siblings
of morphemes, we look at the siblings’ semantic

you

knock ed
one

down driver you
knock

ed
one down

driver

Figure 3: Predicted trees for the sentence “You knocked
one down, driver.”; TN-PCGF (L) and N-PCFG (R).

role labels (SRL)1, obtained via SRL BERT2 (Shi
and Lin, 2019), and whether there is any relation to
the depth-of-morpheme measure. For an overview
of SRLs please consult Jurafsky and Martin (Chap-
ter 21; 2025). Beyond standard SRLs we introduce
two more labels: the “straddles boundary” category
signifies that the sibling of the morpheme spans
more than one semantic role and this kind of at-
tachment is always incorrect, because it poses a
grammatically incoherent constituency. The “all O”
category, where all of the leaves in the sibling are
labelled as (O)utside of a semantic role, applies to
cases which may include a constituent boundary,
or more rarely where a constituent was missed by
the SRL model.

SRL TN-PCFG N-PCFG

Count % Correct Count %Correct

Overall 1796 95.43 1796 78.12
ARG1 780 95.38 790 *91.65
ARG2 211 *91.94 210 *89.52
V 398 *99.75 118 *98.31
ARGM 63 95.24 72 77.78
all O 32 96.88 40 75.0
ARG0 27 92.59 26 *100
ARG3 3 100 3 100
ARG4 2 100 14 *14.29
strad. b. 6 *0 249 *0

Table 4: Comparison of SRL Tag Performance: TN-
PCFG vs. N-PCFG. Statistically significant (p < 0.05)
difference from the Overall marked with *.

Verbal instances are ones where the bound mor-
pheme is attached to a verb identified by the SRL
model (Figure 3 illustrates a verbal instance). In the
verbal instance, the only correct label for the sib-
ling of the morpheme is V. The TN-PCFG system
correctly attaches all instances of -ed and -ing to a
single lexeme with SRL V (also see Table 3), but N-
PCFG makes errors where the bound morpheme is
attached to lexemes tagged as direct object (ARG1),
indirect object (ARG2), adjuncts (ARGM), and oth-
ers.

1Other annotations (e.g. dependencies) may be used.
2https://paperswithcode.com/lib/allennlp/

srl-bert
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In the non-verbal instance, the morpheme at-
taches to a lexeme which is not identified as a verb
by the SRL tagger, but we nonetheless look to find
the functional role of the sibling in the sentence.
Here there is no one correct SRL (see Appendix A
for the full range of cases). Table 4 displays the per-
centage of morphemes which are found at the cor-
rect depth, grouped by the SRL of their sibling. We
perform Fisher’s Exact Test (Fisher, 1922) to iden-
tify SRLs for which the percentage of correct depth-
of-morpheme differs significantly from the overall
rate of correct depth-of-morpheme for that system.
For TN-PCFG, indirect object (ARG2) siblings of
functional morphemes co-occur with a significantly
lower depth-of-morpheme correct percentage, es-
pecially in comparison with direct object (ARG1)
and adjunct (ARGM) siblings, which follow the
same as the overall rate and appear to pose less of
a challenge for the model. The N-PCFG system
has a very high number of siblings of morphemes
which include a boundary, which lower the Over-
all depth-of-morpheme correctness for the system.
This result again highlights that the system with the
highest F1 does not necessitate the correct attach-
ment of functional morphemes: N-PCFG ( highest
F1) often predicts that the functional morphemes
attach to an implausible constituent.

5 Conclusion

We explore how morphemic tokenisation, an in-
sight inspired by FLA, influences neural GI sys-
tems. We evaluate the GI systems with F1 score,
and conduct further error analysis on the attach-
ment of bound morphemes. Our findings reveal
that high F1 scores do not always correspond to
linguistically meaningful structures for functional
morpheme attachment. In the future, we will apply
this methodology to CDS from morphologically
rich languages, such as the ones in SPMRL (Gold-
berg et al., 2014).

6 Limitations

Morphemic tokenisation follows a generativist per-
spective rather than a theory-neutral approach, so
it may not align with non-generativist frameworks.
The limitations of the novel evaluation metrics
—depth-of-morpheme and sibling-of-morpheme—
mainly stem from the fact that their utility depends
on morphemically tokenised text. Additionally,
there are cases where the binary result of depth-
of-morpheme may not be informative enough (e.g.

Figure 2), which is why the depth-of-morpheme
metric should be used in combination with the
sibling-of-morpheme metric.

English is currently the only language with an
annotated CDS treebank of suitable magnitude, but
our focus on English unfortunately further rein-
forces the dominance of English in NLP research.
Since English is a largely isolating/weakly inflect-
ing language with minimal inflectional morphology,
a morphologically complex language would pro-
vide a more rigorous test for morphemic tokenisa-
tion, with greater potential benefits, but potentially
also increased challenges. Future work will ex-
pand both the linguistic scope and the experimental
design.
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A All cases of tree rewriting

All cases of tree rewriting are shown below in Fig-
ure 4, Figure 5, Figure 6, Figure 7, Figure 8, Fig-
ure 9. The original trees are on the left, and the
rewritten trees are on the right. The trees are con-
structed as explained in §3.3.

ROOT

S

NP

PRP

she

VP

VBZ

walks

ROOT

S

NP

PRP

she

VP

VBZ

VB

walk

PRS

s

Figure 4: Regular 3rd person present -s.

ROOT

FRAG

NP

NNS

shoes

ROOT

FRAG

NP

NNS

NN

shoe

DIV

s

Figure 5: Regular plural -s.
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Figure 7: Progressive -ing.
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Figure 8: Regular past -ed.

ROOT

S

NP

PRP

you

VP

AUX

were

VP

VBN

supposed

S

VP

TO

to

VP

VB

get

NP

DT

the

NNS

babies

ROOT

S

NP

PRP

you

VP

AUX

were

VP

VBN

VB

suppose

ADJ

ed

S

VP

TO

to

VP

VB

get

NP

DT

the

NNS

babies

Figure 9: Adjectivial -ed.
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