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Abstract

A parser for Minimalist grammars (Stabler,
2013) has been shown to successfully model sen-
tence processing preferences across an array of
languages and phenomena when combined with
complexity metrics that relate parsing behavior
to memory usage (Gerth, 2015; Graf et al., 2017;
De Santo, 2020b, a.o.). This model provides a
quantifiable theory of the effects of fine-grained
grammatical structure on cognitive cost, and can
help strengthen the link between generative syn-
tactic theory and sentence processing. However,
work on it has focused on offline asymmetries.
Here, we extend this approach by showing how
memory-based measures of effort that explicitly
consider minimalist-like structure-building
operations improve our ability to account for
word-by-word (online) behavioral data.

1 Introduction

Formally specifying hypotheses about how gram-
matical structure drives processing cost makes it pos-
sible to connect long-standing ideas about cognitive
load in human language processing with represen-
tational assumptions in theoretical syntax — thus
adding to the interpretability of theories of sentence
comprehension, and to the plausibility of particular
syntactic analyses/theories of syntactic representa-
tions (Bresnan, 1978; Berwick and Weinberg, 1982;
Kaplan and Bresnan, 1982; Hale, 2001, 2011).

In this sense, recent studies have argued that
the behavior of a parser for Minimalist grammars
(Stabler, 1996) can link structural complexity to
memory usage. In particular, this takes the form
of a specific implementation of Stabler (2013)’s
top-down parser, coupled with complexity metrics
measuring how a tree traversal algorithm recruits
memory resources (Kobele et al., 2013). This
model makes fully specified commitments to (a)
the nature of the structures built during the parsing
process, (b) the time-course of the structure building
operations connecting linear input to hierarchical

representations, and (c) a psychologically plausible
theory of how cognitive resources are linked to
parsing operations to derive measures of sentence
difficulty. Thanks do these commitments, this
approach offers an insightful, empirically grounded
reframing of past theories trying to bridge the study
of competence and the study of performance (e.g.,
the Derivational Theory of Complexity; Miller and
Chomsky, 1963; Fodor and Garrett, 1967; Berwick
and Weinberg, 1983; De Santo, 2020b).

From an empirical perspective, computational
modeling work in this framework has proved
successful in accounting for a number of processing
preferences across a variety of phenomena cross-
linguistically (Gerth, 2015; Graf et al., 2017, a.o.).
Most of this work has focused on deriving estimates
of offline (over a whole sentence) effort, which then
has been used to qualitatively evaluate categorical
contrasts between minimally different sentence
pairs. However, if we aim to probe the cognitive
plausibility of a Minimalist Grammar model, it
is important to understand its ability to capture
fine-grained sentence comprehension processes,
beyond broad, sentence-level complexity profiles
(Demberg and Keller, 2008; Li and Hale, 2019).

In this paper, we extend this approach by
extracting a metric of word-by-word effort from
memory-usage measures defined in previous work
on offline effects. We then evaluate this complexity
metric based on its ability to capture difficulty
profiles in self-paced reading from a large scale
dataset. As this model implements theories of
effort grounded in memory load, we also compare
its predictions to those of a metric (surprisal)
estimating word predictability (Hale, 2001).

2 MG Parsing and Cognitive Effort

We adopt a model combining a parser for Minimalist
Grammars with metrics measuring memory usage.
In the rest of this section we outline the core intu-
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itions behind this approach to sentence difficulty.
While it is possible to implement alternative cog-
nitive models incorporating Minimalist Grammar
parsers, we refer to the specific set of choices made
here as the MG model for ease of discussion.

2.1 A Brief introduction to MGs
Minimalist Grammars (MGs; Stabler, 1996)
are a mildly-context sensitive, transformational
formalism incorporating ideas from the Minimalist
Program (Chomsky, 1995). An MG grammar
consists of a sets of lexical items associated with a
non-empty string of syntactic features and two core
transformational operations — Merge and Move.
Merge is a binary operation encoding subcategoriza-
tion, while Move is a unary operation allowing for
a movement approach to long-distance, filler-gap
dependencies. Importantly for us, the central data
structure of MGs is a derivation tree, explicitly
encoding the sequence of Merge and Move opera-
tions required by a given sentence (Michaelis, 1998;
Harkema, 2001; Kobele et al., 2007). Derivation
trees differ from more commonly known phrase
structure trees in that moving phrases remain in
their base position, and thus the final, linear word
order of a sentence is not directly reflected in the
order of the leaf nodes in the tree (see Figure 1a).

Since MGs are able to exemplify the structurally
rich analyses of modern generative syntax, they can
contribute to the development of models of sentence
processing that provide insights into the connection
between fine-grained syntactic structure and offline
processing behavior. This is the intuition behind a
line of computational modeling work which, start-
ing with Kobele et al. (2013), has shown that a top-
down parser for MGs (Stabler, 2013) is successful
in predicting offline processing difficulty contrasts.

2.2 MG Parsing
Stabler (2013)’s parser is adapted from a standard
recursive-descent parser for CFG, accounting for
the mismatch between the order of lexical items in a
derivation tree and the linear surface order. Broadly,
the parser scans the nodes from top to bottom and
from left to right. Given the way Move is imple-
mented however, simple left-to-right scanning of the
leaf nodes yields an incorrect word order. In order
to keep track of the derivational operations affecting
linear order, the MG variant follows the standard
approach of predicting nodes downward (toward
words) and left-to-right only until a Move node is
predicted. At that point, the pure top-down strategy

is discarded, and the parser instead follows the short-
est path towards predicting the moved item’s base
position (a string-driven strategy). After a position
for the mover has been found, the parser continues
from the point where the the top-down strategy had
been paused (Figure 1b).

The memory stack associated to the parser
plays a fundamental role in this: if a parse item is
hypothesized at step i, but cannot be worked on
until step j, it must be stored for j − i steps in a
priority queue. For instance, consider the derivation
tree in Figure 1a for the sentence Who do the Gems
love __?. Here, the node for do is predicted at step
3 but it is only flushed out of the parser’s stack at
step 10. This is because a movement dependency
for who has been postulated at Spec,CP. Upon
encountering who in the input string and predicting
a movement operation, the parser cannot integrate
the mover into the structure until a base position for
it has been predicted and confirmed (at step 8 and 9).
While doing so, the parser will predict intermediate
structure (e.g., a position for an auxiliary in C,
which could be occupied by do), but it will not
match that prediction against the linear input until
the search for who has been resolved.1

Stabler’s algorithm seems to capture some core
properties of human language processing strategies:
it works incrementally, and it is predictive — it
makes hypotheses about how to build the upcoming
syntactic structure that need to be confirmed based
on the input (Marslen-Wilson and Tyler, 1980;
Tanenhaus et al., 1995; Phillips, 2003; Demberg and
Keller, 2009, a.o.). As in other aspects of cognition,
prediction also plays a crucial role in language
processing. In the MG model, this is reflected by the
fact that the predictive abilities of the string-driven
top-down approach guide how the parser recruits
memory resources. However, the psycholinguistic
literature traditionally refers to prediction in the
context of ambiguity resolution — the task of
choosing between multiple, alternative structural
hypotheses available to the parser during processing
(Traxler and Pickering, 1996; Wagers and Phillips,
2009; Chambers et al., 2004; Hale, 2006). This
predictive aspect has been shown to have a signif-
icant role in determining processing cost (Traxler
and Pickering, 1996; Wagers and Phillips, 2009;
Chambers et al., 2004), and to be modulated by past
experience (Ellis, 2002; Hale, 2006; Levy, 2013).

1The reader in referred to (De Santo, 2020b, Chp. 2) for
a deeper discussion of the differences in stack-usage between
a string-driven traversal and a classic top-down traversal.
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In this respect, Stabler’s parser can be equipped
with a search beam discarding the most unlikely
predictions. Here though, we follow Kobele et al.
(2013) in ignoring the beam and assuming that
the parser is equipped with a perfect oracle, which
always makes the right choices when constructing
a tree. Essentially, the MG model adopts determin-
istic parsing strategy. This idealization is clearly
implausible from a psycholinguistic point of view,
but has a precise purpose: to ignore the cost of
choosing among several possible predictions and fo-
cus on the specific contribution of structure-building
strategies to processing difficulty. However, the
MG model has enough flexibility to allow for
the implementation and evaluation of theories of
ambiguity resolution and reanalysis (Chen and
Hale, 2021; De Santo and Lee, 2022; Ozaki et al.,
2024). We come back to this possibility in Section 5.

2.3 Parsing Effort and Tenure
Kobele et al. (2013) introduces a tree annotation
schema to make Stabler (2013)’s tree traversal strat-
egy easy to follow (Figure 1a). Each node in a tree
is annotated with the step at which it was first con-
jectured by the parser and placed in memory (su-
perscript, Index), and the step at which it is con-
sidered completed and flushed from memory (sub-
script, Outdex). Index and Outdex thus fully encode
the relation between a node and stack-states. We can
then use them to link the parser’s traversal strategy,
syntactic structure, and memory usage. In turn, this
allows us to derive predictions about sentence diffi-
culty, based on how the structure of a derivation tree
affects memory (Rambow and Joshi, 1994; Gibson,
2000; Kobele et al., 2013; Gerth, 2015).

The MG model distinguishes several cognitive
notions of memory usage (Graf et al., 2017). Of
interest to us is a measure of how long a node is kept
in memory through a derivation (TENURE). Tenure
for each node is computed considering the moment
a node was first postulated into the structure (i.e.,
placed in the memory stack of the parser) and the
moment such prediction was confirmed (i.e., the
node could be taken out of memory). In practice,
a node’s Tenure can be computed as the difference
between its index and its outdex. Considering again
the annotated MG tree in Figure 1a, Tenure for do
is Outdex (do)−Index (do)=10−3=7.

As mentioned, past work has then formalized this
notion in metrics of offline processing difficulty —-
for instance measuring maximum Tenure (MAXT),
which ties processing difficulty to differences in

grammatical structure over a whole derivation.
Specifically, MAXT has been used to derive categor-
ical processing contrasts, by comparing maximum
Tenure values for derivation trees corresponding
to pairs of sentences with stark asymmetries in re-
ported offline processing preferences. For instance,
Graf and Marcinek (2014) show that MAXT makes
the right difficulty predictions for phenomena such
as right embedding vs. center embedding, nested
dependencies vs. crossing dependencies, as well as
a set of cross-linguistic contrasts involving relative
clauses. Following work has then strengthen the
empirical support for Tenure based metrics, further
demonstrating their ability to qualitatively capture
offline contrasts across languages and constructions
(Gerth, 2015; Graf et al., 2017; Liu, 2018; De Santo,
2019, 2020a). Evaluating this model on online
patterns of effort seems then the natural next step
in the enterprise. In what follows, we leverage
word-by-word Tenure values as already computed
by the MG model to derive online predictions.

3 Evaluating Tenure Online

Building on previous successes of the MG model
in capturing offline contrasts, we ask whether
structure-building effort as captured by Tenure
improves estimates of word-by-word reading time
patterns. We show that Tenure as computed by the
model can be directly leveraged to derive predictors
of processing difficulty. We then evaluate Tenure
against surprisal measures extracted from two
different neural architectures, as an implementation
of expectation-based complexity metrics.

3.1 Reading Time Data
The relative comprehension difficulty of object-
extracted (ORC; 2) over subject extracted (SRC;
1) relative clauses is well-attested both in English
and cross-linguistically (Lau and Tanaka, 2021).

1. The Pearl who welcomed the Diamond.

2. The Pearl who the Diamond welcomed.

Additionally, while this difficulty has been par-
tially linked to the lower frequency/predictability
of ORCs (Chen and Hale, 2021; Vani et al., 2021),
expectation-based approaches have been argued to
fall short in accounting for the overall pattern of rel-
ative complexity. Instead (or additionally), a subject
preference in RCs can be associated to the impact
of memory-related processes/demands (Gibson and
Wu, 2013; Levy, 2013; McCurdy and Hahn, 2024).
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Figure 2.4: Annotated MG derivation tree for Who do the Gems love?. Boxed nodes are those with
tenure value greater than 2, following (Graf and Marcinek, 2014).

actual input received. Because of this, while do is postulated at step 3, it can only be scanned at

step 10. Similarly, T can only be scanned after who, do, and the whole DP the Gems have been

scanned. A summary of the parser’s actions for this example can be found in Table 2.1.

Essential to this procedure is the role of memory: if a node in the tree is hypothesized at step i,

but cannot be worked on (scanned) until step j, it must be stored for j� i steps in a priority queue.

Moreover, an important advantage of a top-down parser is that the input string is read as a stream,

and thus we do not require a separate memory buffer to keep hold of it while the structure is being

built.

To make the traversal strategy easy to follow, I adopt Kobele et al. (2013)’s notation, in which

each node in the tree is annotated with an index (superscript) and an outdex (subscript). Intuitively,

the annotation indicates for each node in the tree when it is first conjectured by the parser (index)

and placed in the memory queue, and at what point it is considered completed and flushed from
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Who do the Gems love
Tenure 1 7 1 2 8

(a)

Step Parse Action
1 CP is conjectured
2 CP expands to C’
3 C’ expands to do and TP
4 TP expands to T’
5 T’ expands to T and vP
6 vP expands to DP and v’
7 v’ expands to v and VP
8 VP expands to love and who
9 who is found

10 do is found
11 DP expands to the and Gems
12 the is found
13 Gems is found
14 T is found
15 v is found
16 love is found

(b)

Figure 1: In (a): Example of an MG derivation tree for Who do the Gems love? with annotated parse steps as
index/outdex at each node. Below it, Tenure values for pronounced lexical items computed for a node i as Outdex(i)
− Index(i). Boxed nodes are those with Tenure >2. Unary branches indicate movement landing sites. In (b): Actions
of a string-driven recursive descent parser for Who do the Gems love? as exemplified by the derivation tree in (a).

In this sense, offline SRC/ORC asymmetries have
been extensively probed with the MG Model, with
MAXT deriving the empirically reported subject
advantage across languages and syntactic analyses
(Graf et al., 2017; De Santo, 2021a,b; Del Valle and
De Santo, 2023; Fiorini et al., 2023). Subject/Object
asymmetries in RCs are then a natural venue to
investigate whether structure-based complexity
metrics like Tenure offer quantitative insights into
online patterns of effort during sentence processing.

Thus, we use as target behavioral data the reading
times (RT) for the SRC/ORC items in the Syntactic
Ambiguity Processing Benchmark (SAP; Huang
et al., 2024).2 The SAP benchmark is a recent
dataset of self-paced RTs from 2000 participants,
covering a wide-range of complex syntactic phe-
nomena in English. This large scale dataset has been
explicitly designed in order to provide a quantitative
benchmark for the evaluation of theories of sentence
processing over a variety of well-studied phenom-
ena. We focus here on the RC items in the dataset.
The benchmark offers word-by-word RTs for 24
RC sets, comprising of lexically matched SRCs and
ORCs taken from a classic study in the literature
(Staub, 2010). Relevantly, the SAP data have already

2https://osf.io/b6rqh/

been used to probe the limited ability of expectation-
based metrics (e.g., surprisal) to account for the
relative difficulty of ORCs over SRCs in English.

3.2 Word-by-Word Tenure

We compute word-by-word Tenure values from
derivations built for each one of the RC sentences
in the benchmark. For each item, gold-standard
MG derivations are built following standard
generative assumptions for the main clause of
each sentence, and a wh-movement analysis for
the structure of RCs (Chomsky, 1977, see Figure
2). Then, derivations are annotated via Graf et al.
(2017)’s implementation of Stabler (2013)’s MG
parser.3 As discussed above, Tenure is computed as
Outdex (i)− Index (i) for each pronounced node
i in a tree (Figure 1a).

4 Model Fitting and Results

As a reminder, we want to probe whether word-by-
word Tenure improves model fit to the self-paced
RT data made available for English SRCs/ORCs in
the SAP (Huang et al., 2024) benchmark, beyond es-
tablished expectation-based predictors. Following
Huang et al. (2024), in this paper we present analy-

3https://github.com/CompLab-StonyBrook/mgproc
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Figure 2: Annotated derivation trees for one of the subject (a) and an object (b) RCs in the dataset, modeled according
to a wh-movement analysis of RCs.

ses using raw RTs, avoiding the logarithmic trans-
formation common in the self-paced reading litera-
ture.4 As Huang et al. (2024) argue, while this trans-
formation reduces the right skew of RTs collected
through self-paced reading, it does so by violating
some theoretical assumptions about the relationship
between RTs and prediction-based complexity met-
rics (e.g., surprisal, but also possibly Tenure).5

First, we fit a baseline frequentist linear mixed-
effects model to the RTs, with several (scaled)
lexical control predictors as computed by Huang
et al. (2024):

RT ∼WordPosition(i)

+logfreq(i)∗length(i)
+logfreq(i−1)∗length(i−1)

+logfreq(i−1)∗length(i−2)

+(1|participant)+(1|item)

4R scripts and data available at https://osf.io/8amqp/
5Analyses using log-transformed RTs are nonetheless

available in our analyses scripts.

These include the position of a word in a sentence,
its length and unigram frequency, and the inter-
action between the two. Predictors for the two
preceding words are also included to account for
spill-over effects common in self-paced reading
(Mitchell, 2018; Vasishth, 2006).

We use surprisal as our expectation-based metric
(Hale, 2006; Levy, 2008; Wilcox et al., 2023). We fit
two models adding to the baseline model specified
above surprisal values computed with an LSTM (Gu-
lordava, 2018) and with GPT-2 small (Radford et al.,
2019). Again, surprisal predictors are included both
at the current word and at the two preceding words.
We also include a random slope for surprisal by par-
ticipant. Finally, we fit two models adding word-by-
word Tenure (for the current word and the two pre-
ceding words) to the two surprisal models, including
additional random slopes for Tenure by participant.

We select the best fitting models using AIC
and BIC criteria (Akaike, 1973; Schwarz, 1978;
Chakrabarti and Ghosh, 2011). Consistently with
previous results, surprisal models improve fit over
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Figure 3: Estimates of coefficients for the best fitting
model (GTP Surprisal + Tenure).

the baseline model (Table 1), with the GPT-2
surprisal model performs better than the LSTM
model. Adding Tenure to the surprisal-only models
further improves fit for both the LSTM and GPT
models, showing the modeling advantage of taking
memory into account explicilty. The overall best
performing model was the GPT-surprisal + Tenure
model (Table 1), consistently with GPT-2 surprisal
providing a better fit than LSTM surprisal and with
the structural advantage provided by Tenure. In
particular, we found that Tenure of both the current
word and the preceding two words is associated
with significantly slower RTs independently of
surprisal (Table 2 and Figure 3).

df AIC BIC
Baseline 14 977122.5 977250.8
LSTM Surprisal 19 976309.1 976483.1
GPT Surprisal 19 976301.9 976475.9
LSTM Surprisal + Tenure 23 974174.8 974385.5
GPT Surprisal + Tenure 24 974106.3 974326.2

Table 1: Model Comparison.

5 Discussion

By combining a Minimalist grammar parser with a
cognitively grounded complexity metric, the model
adopted in this paper implements algorithmically
theories of sentence comprehension that explicitly
link comprehension difficulty to how building com-
plex hierarchical structure affects memory usage.
As discussed earlier in the paper, this approach has

been successful in capturing qualitative contrasts in
offline comprehension for an encouraging array of
sentence processing phenomena cross-linguistically.
Here, by leveraging the existing definition of Tenure,
we were able to extend the evaluation of this mod-
eling approach to quantitative word-by-word
measures, providing an explicit link to the processes
involved in online sentence comprehension.
Importantly, Tenure does not simply measure the
“raw” number of parse actions to estimate difficulty
(cf. Brennan et al., 2016; Stanojević et al., 2023). It
related effort to a notion of memory usage directly
related to how the mismatch between the structure
of the tree and the surface form of the string is
navigated by the parser. By taking derivational
steps seriously, Tenure ties effort to parse objects
that have to be maintained “active” during the parse
(e.g., partially hypothesized phrases/projections).

Our results show that predictors linking structure-
building operations to memory usage improve our
ability to model word-by-word RTs, beyond the
contribution of expectation-based surprisal mea-
sures — adding support to the cognitive relevance
of transparent structure-building measures. In par-
ticular, we found a significant positive correlation
between Tenure at the current word and RTs, as
well as strong effects of Tenure at the previous two
words. Lingering effects of Tenure at the preceding
words are compatible with known delays in RTs
measured via self-paced reading. Future work could
probe the plausibility of this hypothesis, and a more
subtle understanding of the link between Tenure
and online effort, by evaluating Tenure for similar
constructions over different kinds of behavioral
data (Schotter and Dillon, 2025; Boyce et al., 2020).

The recent development of broad coverage MG
parsers (Torr et al., 2019) might also allow for a
more fine-grained approach to the evaluation of
this model’s ability to capture the magnitude of
the effects under study. In particular, the two-steps
Bayesian approach to magnitude estimation
suggested by Van Schijndel and Linzen (2021)
and Huang et al. (2024) could help us leverage the
modeling advantages provided by a broad coverage
parser, while also retaining MGs’ granular view
into specific syntactic choices/details.

Similarly, building on previous offline MG
results, here we only focused on the SRC/ORC
asymmetry. A better understanding of the relevance
of this model to theories of sentence comprehension
will naturally come from evaluations over different
constructions and different languages. In fact, cross-

29



RT
Predictors Estimate Std. Error df t value Pr(>|t|)
(Intercept) 404.178 5.359 45.273 75.423 <2e-16 ***
Tenure 2.920 1.327 3758.499 2.200 0.027899 *
Tenure i−1 10.907 1.507 3223.985 7.236 5.75e-13 ***
Tenure i−2 4.553 1.018 62441.736 4.475 7.65e-06 ***
Surprisal 13.675 1.924 9708.665 7.108 1.26e-12 ***
Surprisal i−1 12.603 1.762 10126.632 7.154 9.03e-13 ***
Surprisal i−2 2.656 1.861 59141.060 1.427 0.153489
Word Position -4.682 1.058 60334.657 -4.426 9.60e-06 ***
logfreq -1.782 2.102 37139.995 -0.848 0.396547
length 17.195 2.266 22649.688 7.588 3.38e-14 ***
logfreq i−1 -4.337 2.149 24284.605 -2.018 0.043568 *
length i−1 9.626 2.487 14971.417 3.871 0.000109 ***
logfreq i−2 -0.909 2.136 46859.397 -0.425 0.670483
length i−2 6.207 2.073 32905.438 2.994 0.002757 **
logfreq:length -2.488 1.470 52063.647 -1.693 0.090503 .
logfreq i−1:length i−1 -10.378 1.871 41785.471 -5.545 2.95e-08 ***
logfreq i−2:length i−2 -3.642 1.620 46877.483 -2.249 0.024533 *
∗∗∗p<0.001; ∗∗p<0.01; ∗p<0.05

Table 2: Lmer summary for the best fitting model (GTP Surprisal + Tenure).

linguistic comparison is central to the evaluation
of both structure-based and expectation-based
complexity metrics in cognitive modeling (Wilcox
et al., 2023; Kajikawa et al., 2024). As mentioned,
previous MG parsing work has proved successful
in capturing the subject advantage in RCs for
languages varying across several interesting
structural dimensions (e.g., head-directionality,
pre-nominal vs. post-nominal RCs, etc; Graf et al.,
2017; De Santo, 2020b; Fiorini et al., 2023, a.o.). An
investigation of this preference on cross-linguistic
RT dataset would thus be a promising next step for
the application of the MG model to online data.

For English specifically, the SAP benchmark of-
fers self-paced reading data for a variety of phe-
nomena beyond SRC/ORC contrasts (e.g., RC at-
tachment ambiguities). Most of these phenomena
involve ambiguity resolution strategies which have
been used to argue in favor of single-stage, predic-
tion based approaches — of which surprisal is one in-
stantiation (Hale, 2001; Levy, 2013; Hale, 2016). As
for the SRC advantage discussed in this paper how-
ever, surprisal has been shown unable to fully cap-
ture the magnitude of these effects within and across
constructions (Van Schijndel and Linzen, 2021;
Huang et al., 2024). Interesting, while this paper’s
model assumes a deterministic oracle and thus does
not factor in ambiguity resolution explicitly, it has

been shown to predict RC attachment preferences
purely based on structural complexity (Lee, 2018;
Lee and De Santo, 2022). More crucially, without
discarding the importance of expectation/prediction
in sentence comprehension, the explicit structure-
building mechanisms of the MG model give us a
way to implement alternative theories of ambiguity
resolution — for instance two-stage approaches that
consider the effort involved in structural reanalysis
(Frazier and Fodor, 1978; Gorrell et al., 1995; Sturt,
1997; Pritchett, 1988; Ozaki et al., 2024).

Relatedly, the linking theory implemented by
Tenure is distinct from proposals that argue for
expectation-based metrics modulated/informed
by syntactic structure (Demberg and Keller, 2008;
Roark et al., 2009; Oh et al., 2022; Arehalli et al.,
2022). As discussed, the framework described in
this paper does not just argue for the relevance
of syntactic structure, but for a notion of effort
grounded in the direct interaction of structure
building operations and memory. With this in mind,
the grammar formalism adopted here is compatible
with multiple ways to condition probability
distributions over structural representations (Hunter
and Dyer, 2013; Torr et al., 2019). Because of this,
the MG approach is also flexible enough to allow for
the exploration of potentially complex interactions
of memory, structure, and expectation beyond the
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simple computation of structure-informed metrics
like surprisal (Futrell et al., 2020; Brennan et al.,
2020; Chen and Hale, 2021).

More generally, deeper insights into the contri-
bution of structure-building metrics to models of
sentence comprehension will come from a broader
comparison between Tenure and other memory-
based metrics (Kaplan, 1975; Pulman, 1986;
Kaplan, 2020; Gibson, 1998; Lewis et al., 2006;
Boston, 2012). For instance, an informative next
step in this enterprise would be to conduct an empir-
ical evaluation of the different predictions made by
Tenure and a complexity metric like Node Count,
which counts the number of syntactic operations in a
tree (Brennan et al., 2016; Nelson et al., 2017; Bren-
nan et al., 2020; Li and Hale, 2019; Stanojević et al.,
2023, 2021; Kajikawa et al., 2024). It would also be
fruitful to compare our results to measures of mem-
ory load relying less on rich structural information
(e.g., Dependency Locality Theory; Gibson, 1998).

Similarly, through the use of MGs this work has
committed explicitly to syntactic representations as
hypothesized by modern generative syntax. While
we made the case that the computation of particular
Tenure values is deeply tied to commitments
about the shape of a syntactic derivation and
the timing of how such a derivation is built, its
definition is conceptually independent of specific
representational/algorithmic choices. Therefore,
Tenure could be ideal for a comparison of the
behavioral predictions made by different (often
expressively equivalent) syntactic formalisms such
as, for instance, TAG and CCG (Demberg et al.,
2013; Stanojević et al., 2023, a.o.).

Relatedly, among this approach’s degrees of free-
dom is the tree-traversal strategy adopted by the
parser. This paper has followed the majority of of-
fline MG work in extracting Tenure by evaluating
the stack-usage of a top-down parser. Whether sim-
ilar, or better, modeling results could be derived via
different parsing strategies is thus an open question
(cf. Brennan et al., 2016; Stanojević et al., 2023).
In this sense, left-corner parsing algorithms have
been recently proposed for MGs, and have been
shown to correctly capture some interesting offline
processing contrasts (Hunter, 2019; Hunter et al.,
2019; Liu, 2024). Left-corner parsing’s combina-
tion of top-down prediction and bottom-up “greedy”
integration has also independently been argued to
be more plausible as a description of human com-
prehension processes (Resnik, 1992). Crucially, the
complex status of a parse item in Liu (2024)’s imple-

mentation of Hunter et al. (2019)’s left-corner MG
parser makes adapting a word-by-word definition of
Tenure non-trivial. Working out what the exact com-
putation of online Tenure over the stack items stored
by Hunter et al. (2019)’s parser would thus be the es-
sential next step to perform this type of comparisons.

Finally, the model’s sensitivity to fine-grained
grammatical assumptions implies that analytical
choices have a significant impact on the derived
Tenure values. Conscious of this feature of the
model, in this paper we have committed to one
syntactic analysis for the main construction of inter-
est. However, previous offline work has shown that
alternative analyses of RCs might result in different
behavioral predictions, especially when evaluated
cross-linguistically (Graf et al., 2017; De Santo
and Shafiei, 2019; Lee and De Santo, 2022). In this
sense, the granularity of online data and the clear
linking hypothesis implemented by the MG model
could contribute to psycholinguistic data (and theo-
ries) bringing insights into the evaluation of analyses
in theoretical syntax (Rambow and Joshi, 1994;
Kobele et al., 2013; De Santo and Lee, 2022; Prasad
and Linzen, 2024). Future work could then exploit
online behavioral data to distinguish competing
syntactic proposals based on their psycholinguistic
predictions, thus clarifying how/which aspects of
sentence structure modulate processing difficulty.

6 Conclusion

Extending previous work on offline contrasts,
this paper provides a first evaluation of a parser
for Minimalist grammars and a memory-based
complexity metric over word-by-word behavioral
data. While previous work in this domain evaluated
offline behavior qualitatively, we provide quan-
titative evidence for the success of the approach
by showing that the MG-based metric Tenure
is a strong predictor of SRC/ORC RTs from a
large scale behavioral dataset, independently of
expectation-based surprisal. While many questions
remain open, these results strengthen previous of-
fline work arguing for relevance of the combination
of MGs and Tenure in investigating the interaction
of generative syntax and psycholinguistic results.
Furthermore, they provide additional support to
a growing body of computational modeling work
arguing for the role of structure-building operations
in developing plausible cognitive models of human
sentence comprehension.
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