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Abstract

This paper uses autoregressive large language
models to explore at which points in a given
input sentence the semantic information is de-
codable. Using representational similarity anal-
ysis and probing, the results show that autore-
gressive models are capable of extracting the
semantic relation information from a dataset
of noun-noun compounds. When considering
the effect of processing the head and modifier
nouns in context, the extracted representations
show greater correlation after processing both
constituent nouns in the same sentence. The
linguistic properties of the head nouns may in-
fluence the ability of LLMs to extract relation
information when the head and modifier words
are processed separately. Probing suggests that
Phi-1 and LLaMA-3.2 are exposed to relation
information during training, as they are able
to predict the relation vectors for compounds
from separate word representations to a simi-
lar degree as using compositional compound
representations. However, the difference in pro-
cessing condition for GPT-2 and DeepSeek-R1
indicates that these models are actively process-
ing the contextual semantic relation informa-
tion of the compound.

1 Introduction

The popularity of transformer-based large language
models (LLMs) has skyrocketed since the success
of Vaswani (2017) with the attention mechanism
and the conception of Bidirectional Encoders from
Transformers (BERT) (Devlin et al., 2019). The
attention-based architecture of LLMs allows them
to carry out a wide variety of natural language pro-
cessing (NLP) tasks, such as classification, senti-
ment analysis, translation and text generation.

Despite the positive reception and widespread
implementation of LLMs, the internal processes of
these complex models remain a key question within
the fields of interpretable and explainable AI. In
particular, the notion that state-of-the-art (SoTA)

LLMs can process and understand word meaning
in a similar way to natural language understanding
remains an ongoing discussion (Bender and Koller,
2020; Piantadosi and Hill, 2022). This has inspired
research into the syntactic and semantic capabilities
of language models in an attempt to unify compu-
tational processes and human language processing.

The objective of this paper is to expand on
the work of Ormerod et al. (2024) to investigate
whether SoTA autoregressive models are capable
of representing the semantic relation information
of noun-noun compounds, and where in an input
sequence the semantic information is decodable.
The original framework uses representational sim-
ilarity analysis (RSA) to compare the extracted
token representations with two datasets of English
noun-noun compounds. The token representations
considered are suited for the bidrectional masked
language models, however, autoregressive LLMs
are unidirectional, meaning that they only rely on
the previous inputs. Therefore, the experiments
are adapted to incorporate a continuation word,
taking the final head word and modifier token rep-
resentations, and the token representation of the
continuation word.

The models in this paper include RoBERTa (Liu
et al., 2019), BERT-Japanese, GPT-2 (Radford
et al., 2019), Phi-1 (Gunasekar et al., 2023),
LLaMA-3.2 (Dubey et al., 2024), and DeepSeek-
R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025).
BERT-Japanese acts as a control subject because
it is not trained on English and therefore should
not be able to decode the English semantic rela-
tion. RoBERTa is included as the top performing
encoder model.

The results show that autoregressive models are
capable of decoding the semantic relation informa-
tion, with strongest correlation occurring from the
final word token representations. The final head
noun token also holds relation information, which
may be accounted for by the level of concreteness
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of the head noun. However, the modifier word
representations still contain some level of relation
information, potentially reflecting frequency of re-
lational information associated with specific modi-
fier nouns in the training data. The models decode
semantic information from the contextual repre-
sentations, although Phi and LLaMA may learn
information about coexisting compound relations
during training as these models can predict relation
information from individual word representations.

2 Background

The first transformer-based model, designed for a
text translation task, consisted of six encoders and
six decoders which were able to convert input se-
quences into output sequences. In the transformer,
encoders are responsible for generating word em-
beddings which capture the content of an input, and
positional encodings which provide information on
the position of each token in the sequence. The
multi-headed self-attention mechanism is a key part
of the architecture which enables each encoder to
focus on different parts of the input as it processes
each token. Attention involves calculating the dot
product of the query and key vectors, which indi-
cates the level of emphasis that each word should
place on other words. The attention weights are
then passed through a softmax layer which gives a
probability distribution that informs the model how
much of each value representation to carry through
to the next layer.

An alternative to the traditional BERT archi-
tecture, autoregressive decoder-based LLMs are
unidirectional, which means that they rely on the
previous input to predict the next token in the se-
quence. They are causal language models, con-
sisting of stacks of decoder layers which take an
input sequence and predict the next most likely
term. These autoregressive models are often used
for text generation and chatbots which are available
to the public, thus it is crucial that their internal
processes are investigated.

2.1 Probing LLMs

Probing is a technique commonly used within NLP
interpretability to investigate whether the represen-
tations are able to capture certain information (He-
witt and Manning, 2019). Due to the complexity of
blackbox models, probing methods are often extrin-
sic, post-hoc approaches. Classifiers are used to de-
termine whether a model can successfully decode

an abstract concept, although they do not provide
causal information. For transformer models, prob-
ing often includes investigating the attention heads
within the self-attention mechanism, embeddings,
and token representations. Ju et al. (2024) used
layer-wise probing to investigate how LLMs en-
code context, highlighting the emphasis that LLMs
place on context knowledge in upper layers. This
is supported by the work of Jawahar et al. (2019),
using sentence-level probing to explore BERT’s
phrasal representations. They concluded that BERT
encodes linguistic information including syntactic
features in its middle layers and semantic features
in the upper layers. Other probing studies have
investigated function word comprehension, long-
distance agreement, and other syntactic phenom-
ena (Kim et al., 2019; Linzen and Baroni, 2021;
Vulić et al., 2020). Probing proves to be a well-
established method for exploring how LLMs are
able to encode and decode semantic and syntactical
information.

2.2 Conceptual combination
A major field of research that aims to bridge the gap
between human language understanding and NLP
focuses on the compositionality of words to form
larger, meaningful phrases and sentences, a process
known as conceptual combination. This process
can be linked to concepts that are intersective, such
as adjective-noun phrases that are overlaps of their
constituent words, as well as noun-noun phrases
which consist of a head noun and a modifier. A
subset of noun-noun phrases can be considered lex-
ical compounds, where they are highly idiomatised
within language such that the combined meaning
is not apparent from the meanings of the individual
nouns themselves.

Early theories of intersective combination take
inspiration from mathematical principles, propos-
ing a fuzzy logic model that relies on a degree of
overlap between two concepts. This early model
led to the Selective Modification (Smith and Os-
herson, 1984; Smith et al., 1988) and Concept
Specialisation models (Cohen and Murphy, 1984)
which can be described as schema-based, where
the head noun is represented by a set of empty slots
and fillers, and its specialisation is determined by
a modifier filling one or more of its slots. The
dual-process model proposes a similar framework,
however this model suggests three approaches to
conceptual combination: relation-based, property-
based, and a hybridisation of two concepts (Wis-
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niewski, 1997). In this instance, relations are rep-
resented as slots within the schema of a head noun
and when a modifier fills a slot, an appropriate re-
lation is chosen. Building on the reasoning that re-
lations drive conception, the Competition Among
Relations in Nominals (CARIN) theory implies
that the modifier representation contains knowl-
edge of certain relations that are frequently used
with the given modifier during conceptual combi-
nation, known as the relational distribution (Gagné,
2001).

2.3 Semantic properties of LLMs
Research into conceptual combination from a lin-
guistic standpoint is far from complete, however
early theories provide a starting point for probing
LLMs to discern whether SoTA models extract
meaningful representations about syntactic and se-
mantic properties of language. In particular, in-
sights into how LLMs handle complex linguistic
structures can shed light on the internal mecha-
nisms and how they relate to or deviate from human
cognitive processes.

Conceptual combination in the context of NLP
has primarily focused on using features to classify
the relations between a head noun and a modifier
word. Ó Séaghdha and Copestake (2008) adopted
distributional kernels for three types of semantic
classification, including the interpretation of com-
pound nouns. For transformer-based language mod-
els, word embeddings have become an area of in-
terest for probing the semantic capabilities. Peters
et al. (2018) concluded that the complex architec-
ture of transformers are capable of learning a hi-
erarchy of linguistic features. Shwartz and Dagan
(2019) evaluated both static and contextualised em-
beddings, concluding that contextualising improves
performance, especially for recognising meaning
shifts. Ettinger (2020) extracted word embeddings
to assess phrasal similarity across layers of trans-
former models for two-word phrases, concluding
that although models are able to represent individ-
ual word content, they struggle at representing the
full compositional phrase meaning. Derby et al.
(2021) investigated how the intermediate layer of
long short-term memory (LSTM) models and trans-
formers capture semantic knowledge, showing that
transformers outperform LSTMs although both are
able to retain semantic information after the target
concept has been provided to the model.

Most recently, Coil and Shwartz (2023) inves-
tigated the interpretation and conceptualisation of

noun-noun compounds on a supervised seq2seq
model and GPT-3, an autoregressive LLM. They
found that GPT-3 outperformed the seq2seq model
when interpreting known compounds, however the
LLM struggled to generalise to unseen, novel com-
pounds. They suggested that GPT-3 relied heavily
on memorisation to interpret previously seen com-
pounds, leading to hallucinations when interpreting
new compounds. Ormerod et al. (2024) focused
on six encoder-based LLMs, including a multilin-
gual model and a non-English monolingual model,
to investigate whether LLMs are capable of repre-
senting the thematic relation shared between two
constituent nouns within a compound. Their work
highlighted the ability of BERT and RoBERTa to
encode the thematic relation between the head and
modifier, although they did not consider autore-
gressive models. Rambelli et al. (2024) also in-
vestigated the semantic relationships shared across
compounds, using prompting and the Surprisal met-
ric on a dataset of noun-noun compounds annotated
with both semantic relations and concreteness rat-
ings. Their results indicated that models identified
semantic relations to varying degrees, influenced by
the concreteness of a given compound. However,
similar to Coil and Shwartz (2023), they found that
LLMs were limited in their ability to generalise to
novel compounds.

As an extension to Ormerod et al. (2024), this pa-
per provides further support to the conclusions that
autoregressive LLMs are able to extract implicit
relation information after processing the full com-
pound. Probing uses fine-grained relation informa-
tion to explore the semantic information extracted
from compounds at a higher level of granularity.

3 Data

Two datasets are used to explore the thematic rela-
tions of noun-noun compounds. The first dataset
includes 300 English noun-noun compounds that
are categorised into groups of 5 compounds (Gagné,
2001). Each group consists of a target compound,
a compound with the same head noun and the same
relation, a compound with the same head noun
but a different relation, a compound with the same
modifier word and the same relation, and a com-
pound with the same modifier and a different rela-
tion. 60 groups of five compounds are constructed
and a ground-truth representational dissimilarity
matrix (RDM) is constructed to reflect whether or
not pairs of compounds share the same thematic re-
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lation. Within each group of five compounds, there
is one target compound, followed by four others
that comply with the experimental conditions given
in Table 1.

M H Experimental Condition
gas lamp Target
battery lamp Same H, same relation
cabin lamp Same H, different relation
gas car Same M, same relation
gas hose Same M, different relation

Table 1: Experimental conditions for each group of five
noun-noun compounds used in the relation category
RSA experiments, with the modifier (M) and the head
noun (H).

The second dataset consists of 60 noun-noun
compounds, where 34 participants were tasked with
ranking the appropriateness of 18 possible relations
for each compound (Devereux and Costello, 2005).
This results in a dataset of 18-dimensional relation
vectors. Compounds which are semantically linked,
i.e. share the same thematic relation, tend to have
similar relation vectors. This dataset provides a
fine-grained representation of the semantic infor-
mation for each compound, useful for probing the
semantic capabilities of the LLMs.
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Figure 1: Sample relation vectors for three of the 60
compounds in the 60 compound dataset. Compounds
GAS LAMP and PROPANE STOVE share similar relation
vectors, when compared with RAIN DROPS (Devereux
and Costello, 2005).

4 Experiments

The experimentation consists of two separate exper-
iments, firstly using RSA to assess whether the to-
ken representations extracted layer-by-layer reflect
the semantic relation information shared across the
head and modifier of noun-noun compounds, and

secondly using a linear probing classifier to dis-
cern whether the LLMs can successfully decode
the thematic relation.

Experiment 1, also known as the relation cate-
gory experiment, is designed to determine whether
the relation between nouns influences the model’s
ability to distinguish between noun-noun com-
pounds when presented in pairs. RSA, a technique
commonly used in computational neuroscience, is
useful for comparing disparate data sources by cre-
ating similarity matrices and analysing any shared
structure, or lack of, by calculating the Pearson r
correlation between the two matrices (Kriegeskorte
et al., 2008). Experimental RDMs are constructed
by calculating the cosine similarity of the extracted
token representations, to compare with ground-
truth RDMs which reflect whether two compounds
share the same thematic relation (similar) or not
(dissimilar), see Figure 2. The correlation indicates
how strongly the extracted representations reflects
the relation information represented by the ground-
truth RDM, i.e. the category of relation for each
compound.

mo
un
tai
n b
ree
ze

kit
che

n b
ree
ze

sto
rm
 br
ee
ze

mo
un
tai
n c
ab
in

mo
un
tai
n m

ag
azi
ne

mountain breeze

kitchen breeze

storm breeze

mountain cabin

mountain magazine
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Di
ss
im

ila
rit
y

Figure 2: Ground-truth RDM, representing whether two
compounds share the same thematic relation. The com-
pounds that do not share either the same relation, head
or modifier is not included in the Pearson r calcula-
tions (Ormerod et al., 2024).

This experiment also investigates the effect of
considering the head and modifier in the same sen-
tence, as opposed to considering each word sep-
arately. Higher correlation when the compound
is processed together in the same sentence would
indicate that the semantic relation information is
represented by the models across the compound.

The second experiment, known as the compo-
sitional probe, applies a linear classifier to probe
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whether context is required in order to decode fine-
grained relation information. The original frame-
work set out by Mitchell and Lapata (2008) has
been adapted for this probe experiment, where
the 2-vs-2 testing framework is used to determine
whether the extracted representations of pairs of
compounds align more with ground-truth or with
each other. Using the fine-grained 60-compound
dataset, for each possible pair of compounds (out
of a possible 1770), a linear regression model is
trained on the mean-pooled representations for
RoBERTa and BERT-Japanese, and the final word
token representations of the remaining compounds
for the autoregressive models to predict the 18-
dimension relation vectors.

The regression model generates predictions Y ĩ

and Y j̃ from Y i and Y j . A test is considered suc-
cessful if it satisfies

dist(Y ĩ, Y i) + dist(Y j̃ , Y j) <

dist(Y ĩ, Y j) + dist(Y j̃ , Y i),
(1)

where the distances are calculated as mean
squared errors. Therefore, if the predicted vectors
for i and j are closer to the true relation vectors
for i and j, rather than the other way around, the
test is marked as successful. The probing experi-
ment considers two processing conditions, where
the head and modifier word are processed together
in context and where they are processed separately
before being averaged. If the proportion of suc-
cessful tests is high for the contextual processing
condition, this would suggest that the models are
actively processing the contextual composition of
each compound, rather than relying on previously
learned association information.

Four publicly available autoregressive models
are used, including GPT-2-Small, Phi-1, LLaMA-
3.2-3B, and DeepSeek-R1-Distill-Qwen-1.5B. All
four models adopt different tokenisers to break
down the input sequences into sub-units (tokens).
DeepSeek is of particular interest as it adopts Mix-
ture of Experts (MoE) approach, allowing it to pre-
dict multiple potential outputs simultaneously. For
RoBERTa and BERT-Japanese, the input sequences
are taken as the Gloss sentences from the dataset,
e.g. “It is a MOUNTAIN STREAM.” However, as
the autoregressive models read from left to right,
the input sequences include an additional continu-
ation word so that the token representation can be
extracted from the final word, e.g. “It is a MOUN-
TAIN STREAM [and/but/that]”, where the average

of applying each word is taken. When taking the
processing condition into account, two separate sen-
tences are used, each employing the head noun and
modifier word, e.g. “It is a MOUNTAIN.” and “It is
a STREAM.” Once again, for GPT, Phi, DeepSeek
and LLaMA, the sentences include a continuation
word.

4.1 Relation category RSA

Three experimental RDMs are constructed for each
layer within the models by calculating the pairwise
cosine similarity for the mean-pooled token rep-
resentations, the head noun representations, and
the modifier word representations for the BERT
models. For the autoregressive models, the final
head, final modifier, and final word representations
are used. The Pearson r correlation between each
experimental RDM and the ground-truth RDM is
then plotted to show how well the extracted rep-
resentations reflect the thematic relation of each
compound, see Figure 3.
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Figure 3: Results for the relation category RSA ex-
periment (Section 4.1). The Pearson r correlation is
calculated between the same thematic relation ground-
truth RDM and experimental RDMs across all layers of
six transformer models.

Figure 3 shows that all models, excluding BERT-
Japanese, are capable of capturing the semantic
relation information. As expected, the non-English
model performs poorly, although the head and
modifier representations produce higher correlation
than the mean-pooled compound representations,
suggesting that the separate representations may
contribute to the thematic relation information.

For the autoregressive models, the final word
representation produces the highest correlation to
ground truth, followed by the final head noun rep-
resentations. The correlation for the modifier word
representation is non-zero, which may reflect statis-
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tical and semantic information about how modifier
words are associated with thematic relations in the
language data that the models have been exposed
to during pre-training. The results for DeepSeek
follow a similar trend to LLaMA, which could be
due to the fact that DeepSeek-R1 is partly based
on the LLaMA model. For all four autoregressive
models, the correlation drops for the final word
representations at the final layer.

4.2 Relation category RSA with processing
condition

This is an extension of the previous experiment
that considers whether context affects how well the
models extract the thematic relation. Two exper-
imental RDMs are constructed by comparing the
cosine similarity of the mean-pooled token repre-
sentations for BERT models, and the final word
token representations for the four autoregressive
models, of the compounds presented in context (the
“Together” condition) and in separate sentences (the
“Separate” condition). The results are presented in
Figure 4.
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Figure 4: Results for the relation category RSA experi-
ment with the processing condition (Section 4.2). The
Pearson r correlation is taken between the same rela-
tion ground-truth RDM and the experimental RDMs
of the mean-pooled and final word representations for
the “Together” and “Separate” processing conditions.
Asterisks reflect p < 0.05, i.e. under a paired t-test, the
difference in correlation across processing conditions is
statistically significant.

The “Together” processing condition consis-
tently produces greater correlations when com-
pared with the “Separate” condition, suggesting
that GPT, Phi, DeepSeek and LLaMA represent the
semantic relation information across the compound.
In particular, after performing a paired t-test, the
results are statistically significant across almost all

layers for LLaMA, with statistically significant dif-
ferences for GPT and DeepSeek across the middle
layers, and Phi towards the later layers.

Processing the head and modifier words sepa-
rately still alludes to some ability for the models
to capture the relation information, which could
be the result of the models taking into account the
frequency of modifiers and head nouns coexisting
with a particular relation during training.

For all models except BERT-Japanese, the gap
between the correlations of each processing con-
dition is most defined through the middle layers,
supporting the results above that semantic informa-
tion shared across the compound is encoded in the
middle layers. Correlation for the “Separate” case
for the autoregressive models falls almost to zero,
implying that the token representations reflect very
little semantic information in the final layers.

4.3 Compositional probe

The 2-vs-2 tests are performed pairwise to investi-
gate whether context is required for decoding fine-
grained semantic information.
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Figure 5: Results for the compositional probe experi-
ment (Section 4.3). Proportion of successful tests out of
1770 tests, i.e. the models decode the thematic relation,
using both the “Together” and “Separate” processing
conditions. Asterisks signify tests for false-discovery,
where p < 0.05, i.e. there is a significant difference be-
tween the number of successes across both processing
conditions.

In Figure 5, the results for DeepSeek and GPT
suggest that the models capture relation informa-
tion in context, and contextual combination is re-
sponsible for creating representations that reflect
the semantic information. However, there is little
difference between the processing conditions for
Phi and LLaMA, implying that the models are al-
ready aware of particular thematic relations and
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can identify these from the individual words.
In addition to the probing experiment, a false-

discovery procedure is performed in order to ac-
count for statistical dependencies. These occur-
rences are marked as asterisks. The results for
DeepSeek in particular show a large number of
these tests across all layers, despite such a high
proportion of successful tests.

5 Representations across layers

The experiments show that these models are ca-
pable of extracting semantic information, but in
order to identify the points in the input sentences
at which each model is able to decode the relation
information, the correlation is plotted layer-wise
against the input sentence.
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Figure 6: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for GPT.
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Figure 7: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for Phi.

For GPT, Figure 6 shows that positive correlation
begins at the first head token position. This implies
that, once the model has been exposed to the full
modifier word, it is capable of extracting a level
of semantic relation information. The correlation
is strongest in the middle and later layers for the
final word representations, which aligns with the
results from the relation category RSA experiment
(Section 4.1).

Whilst there is a clear distinction between the
modifier and head token correlations for GPT, the
heatmap for Phi in Figure 7 shows that the modifier
tokens do correlate to some extent with ground-
truth, although this is not high at 0.08. Once again,
the correlation is stronger towards the end of the
input sequence, with the greatest correlation pro-
duced by the final word token representations.
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Figure 8: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for DeepSeek.

For DeepSeek, the heatmap in Figure 8 shows
that the modifier tokens may reflect some of the
semantic relation information of the compounds.
The correlation is most pronounced across the mid-
dle layers of the final word representation, before
decreasing.

Similar to GPT, Figure 9 shows that the correla-
tion for LLaMA begins to increase after the model
has been presented with the full modifier. LLaMA
achieves the highest correlation of 0.21 after pro-
cessing the compound.

6 Discussion

The experimental results support the conclusions
that transformer-based LLMs can retrieve the se-
mantic relation information of noun-noun com-
pounds. Intuitively, the averaged token representa-
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Figure 9: Correlation between the final word token
representation RDM and the ground truth RDM across
layers for LLaMA.

tion for the continuation words led to the greater
correlation, which is to be expected as the autore-
gressive models will have processed the full com-
pound. This result contradicts Ettinger (2020), who
concluded that representations of two-word phrase
embeddings do not reflect the semantic phrasal
composition.

The head noun representations also correlate
with the ground truth RDMs, suggesting some ca-
pability for the head nouns to store relational in-
formation. A possible explanation is the intrinsic
semantic properties of the constituent nouns in the
compounds, where head nouns reflect concrete con-
cepts. From the fine-grained 60-compound dataset,
the top mentioned relations include “H FOR M”,
“H MADE OF M”, and “H USES M”. These rela-
tions are more likely to be shared by at least one
concrete noun (BREAKFAST SUGAR, HORSE STA-
BLES, RAIN DROPS), compared with compounds
that share less common relations such as “H DE-
RIVED FROM M” or “M CAUSES H” (JOB ANXI-
ETY, TAX PRESSURE, THERMAL TORTURE). Com-
pounds which share the top mentioned relations
are more likely to be tangible concepts in the real
world, and thus require less context and inference
than abstract themes. Conclusions from Rambelli
et al. (2024) suggest that the linguistic property of
concreteness may be, to some extent, responsible
for the variation in success of LLMs interpreting
compounds. The results here suggest that LLMs
are leveraging the properties of the head nouns in
order to represent relational information. When
taking into account the processing condition of the
head and modifier nouns (Section 4.2), the results

for the “Separate” condition suggest that the con-
stituent nouns may hold some level of relation in-
formation. In conjunction with the results that the
head noun representations produce higher correla-
tions, it is plausible that the properties of the head
nouns contribute to the models’ ability to reflect
semantic information. The modifier token represen-
tations show slightly positive correlations, where
the models are only exposed to the modifier word
instead of the full compound. This result may sup-
port the CARIN model of conceptual combination
which argues that modifiers contain a relational
distribution and therefore more frequent modifiers
can provide relational information. Models may
learn relational distribution information from com-
pounds processed during pre-training.

The results from Section 4.1 suggest that the four
autoregressive models extract semantic information
towards the middle and later layers, similar to the
results that show BERT models encode the relation
information in the middle layers. The correlation
for LLaMA spikes in the early layers, whilst also
producing peaks around the middle layers. After
probing the layer-wise representations of LLaMA-
2, Liu et al. (2024) found that the lower layers of
the model are responsible for extracting lexical se-
mantic information, and higher layers are better
suited for predictive tasks. This resonates with the
results from the relation category RSA experiment,
where LLaMA produced high correlations for both
the final head token and final word token represen-
tations between layers 6-18.

The decrease in correlation for autoregressive
models in the final layers may be explained by Etha-
yarajh (2019), who concluded that GPT-2, as op-
posed to BERT, does not represent word meanings
in the final layer. The vector space of embeddings
appears to flatten, such that semantics, syntax and
other linguistic properties of language are not re-
flected in the token representations extracted from
the final layer. As a result, further fine-tuning for
specific semantic tasks may be effective when fo-
cused on the middle layers of the transformer mod-
els.

DeepSeek is of particular interest as this model
is a distilled LLM that uses MoE to generate pre-
dictions efficiently. The traditional transformer
architecture is adapted by replacing feedforward
networks (FFNs) with MoE layers (Dai et al., 2024).
Each MoE is similar to a FFN in structure, and a
number of experts are activated in parallel through-
out the transformer when an input is being pro-
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cessed. This complex internal mechanism means
that there may be subnetworks within the model
that each contribute to the model’s overall under-
standing. Contributions from a number of “experts”
may result in the semantic relation information be-
ing decodable at early points in the input sequence,
i.e. from the modifier representations. The distilled
DeepSeek-R1 model is based on both LLaMA and
Qwen, which could explain the similar correlation
patterns for the relation category experiments.

7 Limitations and Future Work

The models included in this paper are all trained on
the same scale of parameters (1-3B). Larger mod-
els may be explored to investigate the effect of the
scale of pre-training, and whether a larger number
of hidden dimension enhances or inhibits the extrac-
tion of meaningful representations. The datasets
are also limited in size, with only 60 possible rela-
tion vectors available for probing. Whilst suitable
for the size of the models being tested in this paper,
investigating LLMs trained on billions of param-
eters and fine-tuned models would require larger
datasets to account for potential noise and model
sensitivity. Additionally, expanding the probing
experiment to consider novel compounds would
explore the generalisability of the findings.

These models were tested using their base config-
urations in order to explore their intrinsic semantic
capabilities. For models such as Phi and LLaMA
where little context required for decoding the re-
lation in the probe experiment, fine-tuning could
reveal contextual composition where the models
can no longer rely on the relation information em-
bedded during training.

Exploring the MoE architecture of DeepSeek
could also reveal whether there are particular “ex-
perts” that are activated to extract semantic infor-
mation, and whether these vary across layers or
vary according to context. Understanding how
DeepSeek dynamically selects experts during the
processing of compounds may lead to further in-
sights on subnetworks that exist within the network,
and how they contribute to the success of the model
interpreting relation information.

8 Conclusion

The main research question concerns whether
autoregressive language models consisting of
decoder-only layers are able to reflect the semantic
relation information of noun-noun compounds, and

which parts of the input sequences make the par-
ticular relation decodable. The RSA and probing
results indicate that the LLMs successfully retrieve
semantic information, with meaningful representa-
tions extracted after the models have been exposed
to the full compound in context. Head noun token
representations also reflect information about the
thematic relation, which may be the result of the
intrinsic concrete properties of the nouns. The mod-
ifier nouns show the potential for embedding rela-
tional information, however this may be explained
by LLMs being exposed to compounds during train-
ing. For GPT and DeepSeek, probing reveals that
they are actively processing the information stored
across the compound in order to accurately predict
the appropriate relation, whereas Phi and LLaMA
appear to predict the relation just as well from the
individual word representations.
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