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Abstract

Existing discourse corpora annotated under dif-
ferent frameworks adopt distinct but somewhat
related taxonomies of relations. How to inte-
grate discourse frameworks has been an open
research question. Previous studies on this
topic are mainly theoretical, although such re-
search is typically performed with the hope of
benefiting computational applications. In this
paper, we show how the proposal by Sanders
et al. (2018) based on the Cognitive approach
to Coherence Relations (CCR) (Sanders et al.,
1992, 1993) can be used effectively to facili-
tate cross-framework discourse relation (DR)
classification. To address the challenges of us-
ing predicted UDims for DR classification, we
adopt the Bayesian learning framework based
on Monte Carlo dropout (Gal and Ghahramani,
2016) to obtain more robust predictions. Data
augmentation enabled by our proposed method
yields strong performance (55.75 for RST and
55.01 for PDTB implicit DR classification in
macro-averaged F1). We compare four model
designs and analyze the experimental results
from different perspectives. Our study shows
an effective and cross-framework generalizable
approach for DR classification, filling a gap in
existing studies.1

1 Introduction

Discourse coherence relates to the way that a mono-
logue or dialogue is organized so that it is a co-
herent entity, instead of a random collection of
clauses or sentences. As such, coherence repre-
sents an important aspect of text quality (Web-
ber and Joshi, 2012). Various studies have shown
the benefits of incorporating discourse-level infor-
mation or coherence-related training objectives in
NLP tasks, such as text generation (Bosselut et al.,
2018), language modelling (Iter et al., 2020; Lee
et al., 2020; Stevens-Guille et al., 2022), and sum-
marization (Xu et al., 2020).

1Code will be released here.

Discourse-level analysis is typically concerned
with discourse relations (Rutherford and Xue,
2015). These relations describe the links with
which two segments are associated with each
other and they form an integral part of discourse
theories including the Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) and D-
LTAG (Webber, 2004), which is the theoretical
foundation for the PDTB framework, named af-
ter the Penn Discourse Treebank (PDTB) (Prasad
et al., 2008; Webber et al., 2019). As discourse
annotation is a demanding task and different dis-
course theories provide distinctive but often not
incompatible perspectives of discourse modelling,
the integration of different discourse theories has
been a topic of interest for a long time (Hovy and
Maier, 1992; Bunt and Prasad, 2016; Benamara
and Taboada, 2015; Sanders et al., 2018; Chiarcos,
2014).

The UniDim proposal (Sanders et al., 2018),
which originates from the Cognitive approach to
Coherence Relations (CCR) (Sanders et al., 1992,
1993), is shown to be relatively successful in map-
ping PDTB and RST relations (Demberg et al.,
2019). With this approach, a set of unifying dimen-
sions (henceforth UDims) serve as interlingua, and
relations under different frameworks can be decom-
posed and compared through the intermediary of
it. For example, the RST relation Contrast can be
decomposed as negative (at the polarity dimension,
henceforth pol), additive (at the basic operation di-
mension, henceforth bop), not applicable (NA) (at
the implication order dimension, henceforth imp),
objective/subjective (at the source of coherence
dimension, henceforth soc), and under-specified
(at the temporality dimension, henceforth temp),
while Contrast in PDTB is represented by negative
(pol), additive (bop), NA (imp), objective (soc), and
under-specified (temp). It is clear that the two rela-
tions are quite similar but the RST Contrast relation
may include subjective cases (we refer those inter-
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ested to Appendix A for the meaning of UDims,
and Appendix B and Appendix C for a better un-
derstanding of how the relations in RST and PDTB
are analyzed in terms of the UDims).

Previous studies (Roze et al., 2019; Fu, 2023;
Varghese et al., 2023) demonstrate the possibility
of incorporating these dimensions in discourse rela-
tion (henceforth DR) classification tasks. Varghese
et al. (2023) use UDims as features for implicit
DR classification, with a focus on leveraging la-
bel similarities to improve the performance of a
classifier on this task. Roze et al. (2019) adopt a
pipeline approach, where separate classifiers are
trained for the UDims and the predicted UDims
are mapped to the sense hierarchy of PDTB 2.0.
As the performance on UDim classification is low,
when the predicted UDims are used together to
identify a sense label, the accuracy is much lower
than training a classifier for DRs directly, without
involving UDims. Meanwhile, the mappings are
not unambiguous even between gold UDims and
sense labels. The same combination of UDims can
be mapped to different sense labels and the same
sense labels can have different UDim representa-
tions.2 The third challenge is that the distributions
of UDims and DRs are generally imbalanced.

The study by Roze et al. (2019) shows an ex-
ample of leveraging UDims in analyzing chal-
lenges of DR classification, but with their approach,
UDims cannot be used effectively for DR classi-
fication tasks due to reasons discussed above. In
contrast, Fu (2023) demonstrates that high perfor-
mance can be achieved when gold UDims are em-
ployed for DR classification across different dis-
course frameworks, but the performance gains rely
on availability of gold UDims, which is not feasible
in realistic settings. In this study, we explore sev-
eral ways of applying UDims in DR classification,
and the results suggest that simply incorporating
objectives of UDim classification can improve the
performance on DR classification, which may be
considered as empirical evidence for the correla-

2For example, the pattern pos (positive in polarity), cau
(causal in basic operation), NS (under-specified in implication
order), obj (objective in source of coherence), NS (under-
specified in temporality), non-specificity (encoded by “-”),
non-alternative (“-”), non-conditional (“-”) and non-goal-
oriented (“-”) has two sense labels Cause and Explanation
in the training set of RST, and the RST Evaluation relation
has four patterns of UDim combinations: pos, NS, NS, sub
NS,+, -, -, - (580 instances); pos, add, NA, sub, NS, +, -, -, -
(272 instances); pos, cau, bas, sub, NS, +, -, -, - (8 instances);
and pos, cau, non-b, sub, NS, +, -, -, - (2 instances) (see Ap-
pendix D for a full list of unique mapping patterns between
UDims and DRs for RST and Appendix E for PDTB 3.0).

tion between UDims and DRs. However, we also
notice that model performance is not a simple re-
flection of the relationship between UDims and
DRs, for instance, a temporal relation does not nec-
essarily have the lowest recognition accuracy when
the temporal dimension is not considered in the
training process, which is consistent with the find-
ings shown in Fu (2023). In addition, we conduct
experiments on using RST and PDTB data together,
and the results reveal that PDTB explicit relation
data is useful for data augmentation for both RST
and PDTB implicit DR classification tasks.

Our contributions can be summarized as follows:

• We propose a method based on Monte Carlo
(MC) dropout (Gal and Ghahramani, 2016) to
enable UDims to be applied to DR classifica-
tion tasks under different frameworks, which
fills a gap in existing studies (Roze et al., 2019;
Fu, 2023).

• We show how UDims can be used to bridge
DR classification tasks under different dis-
course frameworks.

• We conduct analysis of different model de-
signs and model performance on specific rela-
tions.

2 Related Work

2.1 Cross-Framework DR Classification
Discourse connective prediction is considered a
potentially effective auxiliary task for both RST
DR classification (Yu et al., 2022; Yung et al., 2019)
and PDTB DR classification (Qin et al., 2017; Shi
and Demberg, 2019; Jiang et al., 2021; Liu and
Strube, 2023). Motivated by the high performance
on PDTB explicit DR classification, researchers
try to convert PDTB implicit DR classification into
explicit DR classification by predicting discourse
connectives first. As RST does not make a clear
distinction between implicit and explicit DRs in
annotation, this approach is less frequently utilized
for RST.

To address the challenge of limited training data
for RST parsing, Braud et al. (2016) utilize multi-
task learning to benefit from supervision of related
tasks such as PDTB DR classification. As RST
elementary discourse units (EDUs) and PDTB ar-
guments are determined based on different crite-
ria, they have to make adjustments to PDTB data
and use sentences rather than manually annotated
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arguments in their experiments and ignore intra-
sentential PDTB relations. Multi-task learning is
also adopted in Liu et al. (2016) for PDTB implicit
DR classification, where RST DR classification is
treated as an auxiliary task. It shows that RST DR
classification improves performance on the classifi-
cation of some of PDTB Level-1 implicit DRs.

2.2 The UniDim Proposal

Under the TextLink Action, which aims at unify-
ing existing linguistic resources on discourse struc-
ture, Sanders et al. (2018) propose a set of unifying
dimensions (UDims) as an interface for different
discourse frameworks to be related with each other.
The UDims originate from four cognitive primi-
tives—basic operation, source of coherence, order
of segments (called implication order in Sanders
et al. (2018)) and polarity, which are used to define
coherence relations in Sanders et al. (1992), where
a different approach towards representing discourse
relations is taken, namely, the Cognitive approach
to Coherence Relations (CCR). Compared with
RST and PDTB, the CCR approach treats discourse
relations as cognitive entities that can be analyzed
from different dimensions, and a relation is thus
described from four dimensions, such as causal,
objective, basic order, positive, rather than with a
single label, such as Cause in RST. Each of these
dimensions functions as an attribute that has a num-
ber of possible values, for example, the polarity
dimension allows for distinction between positive,
negative or under-specified.

To make the taxonomy more expressive, addi-
tional dimensions are added, including temporality,
and specificity, lists and alternatives for additive re-
lations, and conditionals and goal-orientedness for
causal relations. Recall that additive and causal are
values under the source of coherence dimension.
With these UDims, DRs from different discourse
frameworks can be decomposed and compared sys-
tematically.

Demberg et al. (2019) try to validate existing
proposals for mapping DRs of different discourse
frameworks, and the results of their data-driven
investigation exhibit higher consistency with the
results obtained with the UniDim proposal, com-
pared with the OLiA reference model (Chiarcos,
2014) and the ISO standard proposal (Bunt and
Prasad, 2016).

3 Our Method

We focus on RST DR classification and PDTB
implicit DR classification in this study. However,
the method is generalizable, not limited to the two
discourse frameworks.

3.1 UDim Extraction

Since existing discourse corpora, such as the RST
Discourse Treebank (RST-DT) (Carlson et al.,
2001) and PDTB, do not contain annotations of
UDims, we adopt the rule-based method in Fu
(2023) to obtain gold UDim values for each of
the relation instances first. For RST-DT, with anno-
tations of end labels (the original 78 relations) and
nuclearity information, the mapping rules shown
in Appendix B allow us to obtain UDim values.
For PDTB, as the actual linear order of arguments
in the original text is needed to determine values
of implication order while the assignment of argu-
ments does not simply follow the linear order, we
first write a script to determine the linear order of
arguments, and with the annotation of end labels,
the mapping rules shown in Appendix C can be
used to derive UDim values for each instance.

3.2 Cascaded Classifier

Given that UDims are originally intended to be
used as a platform-agnostic interlingua of DRs, a
natural approach is to combine all the data and
train classifiers for UDims and map the predicted
UDims to DRs of different discourse frameworks,
based on knowledge of how UDim combinations
are mapped to DRs (Appendix B and Appendix C),
which is analogous to training a “universal classi-
fier” of DRs. This approach is adopted by Roze
et al. (2019), but only on PDTB 2.0, and the results
are much lower than training a simple classifier
for DRs directly. Moreover, Fu (2023) shows that
combining PDTB and RST data does not improve
the performance over using PDTB data alone for
UDim classification. Therefore, instead of only
using the predicted UDims for identifying DRs
with a rule-based method, we deem it necessary to
add DR classification as a training objective, thus
forming a cascaded classifier. While this step may
compromise the “universality” of the intended use
of UDims, it is a necessary procedure to obtain
better performance on DR classification. Figure 1
illustrates the model design.
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Figure 1: Cascaded classifier for DR classification. The
losses in orange boxes are to be minimized. The green
bars represent embedding layers. As is shown here, the
input is not used for DR classification directly, which
distinguishes this approach from the methods discussed
in section 3.3.

3.3 Input+UDim for DR Classification
We investigate another set of methods, where the
input is used for both UDim classification and
DR classification. The intuition is that predicted
UDims are not robust enough to be used as the only
signal for DR classification, and they are better
treated as attributes. Section 3.3.2 shows different
model designs with this approach.

3.3.1 UDim Classification
For an input sequence Xi in a dataset with size N ,
i.e., {Xi}Ni=1, Xi is formed by a pair of arguments
of lengths m and n, respectively, i.e., Xi = A

(1)
1 ...

A
(1)
m , A(2)

1 ... A
(2)
n . We use a pre-trained language

model as the input encoder fenc. Special tokens are
to be inserted based on the requirements of the cho-
sen encoder, and Xi is typically padded to a fixed
length. In our experiments, the two arguments are
padded separately at the ends. The representation
h of the preprocessed input sequence, denoted as
X̃i, can be obtained from the encoder:

h = fenc(X̃i) (1)

A three-layer feed-forward network g, compris-
ing a fully connected layer, a LeakyReLU activa-

tion function, followed by a dropout layer, is ap-
plied to transform h to a lower dimensional space
before it is passed for UDim classification:

hUDim = g(h) (2)

UDims are not independent. For example, the
implication order dimension is only applicable to
causal relations, which are a category under the
basic operation dimension. Therefore, the basic
operation dimension functions as a parent of the
implication order dimension. This parenthood rela-
tionship between UDims can be understood from
the description of UDims in Appendix A.

Inspired by the method proposed by Gerych et al.
(2021), which leverages class dependencies and
conditions the prediction of child classes on the
prediction of their parents, we exploit knowledge
about the relationship between UDims to improve
the performance on UDim classification. For in-
stance, the embedding vector of the predicted basic
operation dimension E(ŷbop) will be passed as fea-
tures to the classification head of the implication
order dimension, fimpl:

ỹimpl = softmax (fimpl(hUDim ⊕ E(ŷbop))) (3)

Equation 3 shows how the prediction of the im-
plication order dimension can be obtained, where
⊕ denotes concatenation operation.

An argmax function is required to obtain a dis-
crete value from the predicted probability distri-
bution, so that E(ŷUDim) can be obtained from
embedding layers and passed as features for the
classification of another related UDim or DR. How-
ever, this operation is non-differentiable and the
training signal of one UDim cannot backpropagate
to the training of the related UDims or from DRs to
UDims. Therefore, we adopt the Gumbel-Softmax
function (Jang et al., 2016), which is a differen-
tiable approximation to the argmax function:

yi =
exp((log(pi) + gi)/τ)∑k
j=1 exp((log(pj) + gj)/τ)

(4)

where pi represents a class probability for a cate-
gorical variable with k possible outcomes. gi...gk
are i.i.d samples drawn from a Gumbel(0, 1) dis-
tribution, which can be sampled by drawing µ ∼
Uniform(0, 1) and g = −log(−log(µ)).

3.3.2 DR Classification
Similar to UDim classification, a three-layer feed-
forward network ϕ is applied to h before it is passed
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for DR classification:

hDR = ϕ(h) (5)

We experiment with four ways of leveraging
UDims in the DR classification task:

1. TrainonGoldTestonPred: During training,
gold UDims are used and their embeddings
are concatenated with hDR for DR classifica-
tion, so that the model learns the relationship
between the input and the UDims and the tar-
get DR labels. During inference time, the
embeddings of the predicted UDims are used.
This is where we differ from Fu (2023), where
gold UDims are still used during inference
time.

2. InputDimCat: During both training and test-
ing, the embeddings of predicted UDims are
used, which are concatenated with hDR.

3. InputDimAtt: During both training and test-
ing, the embeddings of predicted UDims are
combined with hDR via an attention mecha-
nism based on scaled dot product (Vaswani
et al., 2017).

4. InputForRelCls: The hypothesis is that due
to the close relationship between UDims and
DRs, if the model is trained on UDim classifi-
cation tasks, the performance on DR classifi-
cation may be improved, even without using
the predicted UDims as features, forming a
scenario of multi-task learning.

Figure 2 shows the model design for InputFor-
RelCls, which is also employed in the experiments
on data augmentation, thus illustrated here to facil-
itate understanding.

Preliminary experiments show that directly using
predicted UDims as features yields mixed results.
This could be attributed to the utilization of pre-
dicted UDims, where the classification errors of
these UDims might introduce noise, and combined
use of these predicted UDims exacerbates uncer-
tainty in the DR classification task. To address this
challenge, the MC dropout method is employed.

3.3.3 MC Dropout
Due to the property of learning a distribution over
model parameters, Bayesian networks represent a
natural choice for uncertainty estimation. How-
ever, traditional Bayesian methods typically come

Figure 2: Model design for InputForRelCls. The losses
in orange boxes are to be minimized.

with large computational costs, and for transformer-
based models, the computational costs can be pro-
hibitive. Gal and Ghahramani (2016) introduce the
MC dropout method to tackle the challenge of un-
certainty estimation in deep neural networks. Dif-
ferent from the standard dropout method, dropout
is activated during inference time. The MC dropout
method represents a lightweight Bayesian approxi-
mation.

For an input representation from the previous
layer hi−1, the output representation hi of the ith
layer is determined with:

hi = σ(hi−1,Wi,Mi) (6)

where Wi denotes weights of the ith layer, and Mi

is a masking matrix, with its entries being sampled
from a Bernoulli distribution, and the probability of
being zero is the dropout probability p. σ denotes
the activation function of this layer.

For a model with l layers, the model weights
ω can be expressed as a set of weight matrices
for each layer: ω = {Wi}li=1. With MC dropout,
during inference, one can sample T sets of ω for T
stochastic forward passes and the mean predicted
distribution is obtained by averaging over the T
passes:

p(y′|x,X,Y) =
1

N

T∑

t=1

p(y′|x, [Wt
i,M

t
i],

..., [Wt
l ,M

t
l ])

(7)

The variance can be used as an indicator of
model uncertainty. As indicated by Shelmanov
et al. (2021), applying MC dropout to all the
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dropout layers of a transformer model yields bet-
ter performance for uncertainty estimation. Even
though our focus is not uncertainty estimation, the
MC dropout method can be used conveniently to
approximate the results of an ensemble model and
we can use mean predictive distribution over multi-
ple runs for UDim and DR classification.

3.4 Data Augmentation

Although RST and PDTB adopt different criteria
for determining discourse units/arguments of DRs,
data from both frameworks can be used together
for UDim classification. For example, for RST
DR classification, PDTB data (explicit, implicit, or
both) can be used for training the model on UDim
classification. Increased data amount and more di-
versified training data might increase model robust-
ness in UDim classification, which may improve
model performance on DR classification. Fig 3
shows a diagram of the data augmentation method.

3.5 Training

Cross-entropy loss is used for model training.
Model losses for UDim classification and DR clas-
sification are added:

Ltotal = LUDims + 2.0 ∗ LDR (8)

Note that there are multiple UDims involved in
the experiments, even though the loss term shows
them collectively as LUDims. In order to guide
the model training towards DR classification, we
increase the weight for DR classification loss.

4 Experiments

4.1 Data Preprocessing

The experiments on RST are carried out on RST-
DT and the experiments on PDTB are performed on
PDTB 3.0. As we follow the mainstream practice
of preprocessing on the two corpora, the details are
shown in Appendix F.

Since PDTB 3.0 contains a much larger number
of articles, data amount differences between RST
and PDTB may have a confounding effect in our
experiments on data augmentation, because if the
master task has a smaller data amount, the model
may be trained to be biased towards the data of
auxiliary tasks and the performance may decrease
when evaluation is performed on the test set of
the master task. Therefore, we try to increase the
data amount for RST by back-translating data of

the training set (English→French→English, trans-
lated by Google Translate), thus doubling the train-
ing data amount for RST and narrowing the data
amount differences between RST, PDTB explicit
relations and PDTB implicit relations. In addition,
we exclude the UDim list, following Fu (2023),
and merge sub-categories under specificity, making
specificity a binary attribute, similar to alternative,
conditional and goal-orientedness, which is also
the approach adopted in Roze et al. (2019).

UDims (abb.) Values Parent
polarity(pol) NS, positive, negative -
basic opera-
tion(bop)

NS, additive, causal -

source of coher-
ence(soc)

NS, objective, subjective -

implication or-
der(imp)

NS, NA, basic, non-basic bop

temporality(temp) NS, anti-chronological,
chronological, synchronous -

specificity(spec) specificity, non-specificity bop
alternative(alt) alternative, non-alternative bop
conditional(con) conditional, non-conditional bop
goal-
orientedness(goal)

goal-oriented, non-goal-
oriented

bop

Table 1: UDims used in the experiments. Their abbre-
viations used in the paper are shown in the brackets in
italics. “-” in the last column suggests that no parent
passing is performed for the classification of this UDim.

Table 1 shows all the UDims used in the ex-
periments, their abbreviations, and possible val-
ues. The parents of UDims, which are used in the
method described by equation 3, are included in
the last column. Appendix G shows statistics of
UDims in the training sets of RST and PDTB im-
plicit and explicit relation data, and Appendix H
shows label frequency of the training sets for refer-
ence.

4.2 Implementation Details

We use the pre-trained RoBERTaBASE model (Liu
et al., 2019) from the Transformers library (Wolf
et al., 2020) as the input encoder. The embeddings
of the UDims are derived from embedding layers,
which are configured with learnable parameters,
and the embedding vectors are initialized from uni-
form distributions. Hyper-parameter settings are
attached in Appendix I.

Baseline The baseline is thus DR classification
based on the input, involving no utilization of
UDims. To ensure fair comparison, we also ap-
ply MC dropout to the baseline models, i.e., the
pre-trained RoBERTaBASE model, and run the same
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Figure 3: Data augmentation with PDTB data and the final task is RST DR classification. As we explore different
ways of leveraging predicted UDims, the embeddings of the UDims are not necessarily fed as features to the
DR classification task, hence represented with dashed arrow lines. The losses shown in orange boxes are to be
minimized through model training for all the four methods.

number of passes to obtain the mean predictive dis-
tribution.

5 Results

We select models based on their performance mea-
sured by F1 in DR classification, and thus, they do
not necessarily perform the best in terms of accu-
racy or in UDim classification. The Stuart-Maxwell
test (Stuart, 1955; Maxwell, 1970) is used, and all
the results are statistically significant (Appendix J).

5.1 DR Classification
Table 2 shows the results for RST DR classifica-
tion. The best performance is achieved with Train-
onGoldTestonPred, followed by InputForRelCls.
In both cases, the predicted UDims are not used
as features for DR classification during training.
Compared with the baseline method, the models
are trained for UDim classification. The results
support our hypothesis that because of the associa-
tion between UDims and DRs, training the model
on UDim classification tasks can improve perfor-
mance on DR classification.

Table 3 shows the results for PDTB implicit DR
classification. A performance drop compared with
the baseline is visible with the approach Trainon-
GoldTestonPred. As shown in Sanders et al. (2018,

Model F1 Acc
Baseline 53.72 65.56
TrainonGoldTestonPred 55.21 66.27
InputDimCat 54.49 66.16
InputDimAtt 54.65 66.27
InputForRelCls 54.89 66.32

Table 2: Results for RST DR classification (The best-
performing system, HITS, in DISRPT 2023 (Braud
et al., 2023) achieves 50.96 in macro-averaged F1 on
this corpus. As data augmentation is performed in our
experiments and the preprocessing steps are different,
the results are not directly comparable but shown here
for reference.)

Model F1 Acc
Baseline 52.36 60.47
TrainonGoldTestonPred 51.80 59.09
InputDimCat 52.82 61.43
InputDimAtt 52.93 60.67
InputForRelCls 53.44 60.26

Table 3: Results for PDTB implicit DR classification.
Previous results on this task include 54.92 in macro-
averaged F1 reported in Liu and Strube (2023), 57.62
in Long and Webber (2022) and 52.16 in Wu et al.
(2023).
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Model F1 Acc
InputForRelCls 54.89 66.32
InputForRelCls+PDTBExpl 55.28 65.72
InputForRelCls+PDTBTotal 55.75 65.61
InputForRelCls+PDTBImpl 54.57 65.02

Table 4: Results for RST DR classification with data
augmentation. Baseline refers to the approach without
using UDims in training and testing in Table 2. PDTB-
Expl, PDTBImpl and PDTBTotal denote PDTB explicit
relation data, implicit relation data and the combination
of both parts, respectively.

p.52, section 5.3), implicit relations pose a chal-
lenge for the UniDim proposal, and it is likely that
model performance on UDim classification is not
high, when the model is trained on PDTB implicit
relation data, causing a large discrepancy between
training and inference time, which may result in
a performance drop with TrainonGoldTestonPred
here.

5.2 Data Augmentation
Based on the results for DR classification, we fo-
cus on the InputForRelCls method in this set of
experiments.

Table 4 shows the results for RST DR classi-
fication under augmentation with different types
of PDTB data. As is shown, data augmentation
improves F1 score, but an increase in F1 does not
necessarily lead to higher accuracy, which is not
rare for classification on imbalanced data, suggest-
ing that the model is trained to distinguish smaller
classes. Data augmentation with total PDTB data
yields the highest performance, which is expected.
However, it is noticeable that adding PDTB im-
plicit relation data causes a performance drop. This
might be attributed to the high ambiguity in rep-
resenting implicit relations with UDims discussed
in Sanders et al. (2018).

Table 5 shows the results for PDTB implicit
DR classification under augmentation with differ-
ent types of data. Our method does not outper-
form the hierarchical sense classification method
used in Long and Webber (2022) but the perfor-
mance is slightly higher than that shown in Liu and
Strube (2023), the best-performing method with
the connective-insertion approach for converting
PDTB implicit DR classification into explicit DR
classification, and Wu et al. (2023), which is the
SOTA performance with prompt learning.

As is shown in Table 5, adding PDTB explicit
DR data is the most helpful form of data augmenta-
tion for both InputForRelCls and InputDimAtt, but
adding RST data causes performance drops, possi-

Model F1 Acc
InputForRelCls 53.44 60.26
InputForRelCls+RST 52.12 61.02
InputForRelCls+PDTBExpl 55.01 61.22
InputForRelCls+PDTBExpl&RST 53.05 61.70

Table 5: Results for PDTB implicit DR classification
with data augmentation from RST data (+RST), from
PDTB explicit relation data (+PDTBExpl) and from
both (+PDTBExpl&RST).

Figure 4: Correlation between DR classification loss
and UDim classification losses for RST and PDTB. The
abbreviations of the UDims have been explained in Ta-
ble 1, and the scales represent the Pearson correlation
coefficient scores. Note that the areas of different mod-
els cannot be compared between RST and PDTB, since
the scales on the two plots are arranged in different ways
to suit the range of the real data.

bly due to the high dissimilarity between RST data
and PDTB implicit relation data.

5.3 Results on Cascaded Classifier
This approach does not perform well on DR clas-
sification, but it represents a possible direction for
exploration with UDims. Therefore, preliminary
results are attached in Appendix K for comparison.

6 Analysis
6.1 Analysis of Different Model Designs
We examine the four approaches discussed in sec-
tion 3.3.2. Losses at each training step are collected,
and Pearson correlation coefficients are computed
between the DR classification loss and the UDim
classification losses for each model. The results are
shown in Figure 4. The full results on UDim clas-
sification are shown in Appendix L for reference.

As is clear from Figure 4, for RST DR clas-
sification, the models show high correlation be-
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tween DR classification and the classification of
five major UDims, including pol, bop, imp, soc
and temp, while correlation with the other UDims
is not prominent. The pattern with InputDimAtt
is different, where correlation with the UDims is
basically evenly distributed, except for the smaller
value at spec, which might be attributed to impor-
tance weighting with the attention mechanism.

For PDTB implicit DR classification, differ-
ent models show divergence in their correlation
strengths with different UDims. In the case of the
best performing model InputForRelCls, the corre-
lation with pol is low but the correlation with spec
is high. We find that the performance of the model
on the classification of pol is relatively low, and
this could be a reason why the model learns to rely
less on this UDim. Similar to the patterns for RST,
apart from the five major UDims, the other UDims
do not show high correlation with the target DR
classification task, but in TrainonGoldTestonPred
and InputDimAtt, relatively high correlation with
con and alt in particular, is observable. The perfor-
mance with TrainonGoldTestonPred is lower than
the baseline and we can see that the total area of
correlation for this model is the smallest. With In-
putDimAtt, the association area is also small, which
may suggest that the attention mechanism gives
more weight to hDR than the predicted UDims.

6.2 Ablation Studies

Ablation studies are performed on InputForRel-
Cls. Table 6 shows the UDims that, when removed,
cause the lowest F1 for each DR. The full results
are shown in Appendix M (RST) and Appendix N
(PDTB).

RST DR UDim
Background temp
Cause bop
Comparison spec
Condition spec
Contrast pol
Elaboration goal
Enablement alt
Evaluation bop
Explanation temp
Joint spec
Manner-Means imp
Summary alt
Temporal alt
Textual-Organization alt
Topic-Change goal
Topic-Comment goal

PDTB DR UDim
Asynchronous con
Cause alt
Cause+Belief alt
Concession goal
Condition goal
Conjunction soc
Contrast goal
Equivalence bop
Instantiation pol
Level-of-Detail goal
Manner temp
Purpose pol
Substitution alt
Synchronous temp

Table 6: UDims that cause the lowest F1 for each
relation. Cause+Belief forms a special case, where
removing the UDim yields the highest performance,
while removing the remaining UDims results in 0.00 for
this relation.

It can be seen that the performance on some re-
lations is consistent with the assumption about the
relationship between DRs and UDims. For exam-
ple, for RST, the correlation betwen Background
and the temp dimension is expected. Similarly,
Cause is indeed closely related to the bop dimen-
sion, which primarily distinguishes between addi-
tive and causal relations. For PDTB, the correlation
between UDims and DRs is reflected in the results
on Substitution and Synchronous. However, there
are multiple cases when a discourse relation is not
affected the most by the UDim that is supposed to
be significant for it, such as RST Condition, which
is not strongly related to con, but to spec, and Elab-
oration, which is not affected by spec the most, but
by goal. Similar to what is shown in Fu (2023),
model performance is not a simple reflection of
the association between DRs and UDims, and it is
influenced by data distributions, especially when
distributions of DR and UDims are heavily imbal-
anced.

7 Conclusion
We propose a cross-framework generalizable ap-
proach for DR classification based on the Uni-
Dim proposal, which allows cross-framework data
augmentation. With data augmentation, we ob-
tain strong performance in macro-averaged F1 for
DR classification (55.75 for RST and 55.01 for
PDTB implicit DR classification). Our experiments
suggest that training the model with objectives of
UDim classification helps the model in DR clas-
sification, and adding PDTB explicit DR data is
helpful for both RST and PDTB implicit DR classi-
fication. Our analysis shows that most of the model
designs rely on five UDims, including pol, bop,
imp, soc and temp, although differences between
models are also observable. Furthermore, model
performance is not a simple reflection of the ex-
pected correlation between UDims and DRs, and it
is likely to be influenced by varied amounts of data
for different classes. Although the present study
does not involve other frameworks, such as SDRT,
the proposed approach is not specific to any frame-
work, as long as the original sense labels and rules
of converting them to UDims are known.

8 Limitations
With our approach, multiple runs have to be per-
formed during inference time, even though the num-
ber of model parameters is not increased. On the
other hand, this fact justifies the choice of using
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results obtained from a seemingly single run of
the models, which actually involves multiple runs
based on the the principle of MC dropout.

Another limitation is that in the experiments on
using UDims for DR classification (without data
augmentation), the improvement over the baseline
is not large. However, we believe this is understand-
able, as more tasks are involved in the experiments
(classification of nine UDims), but the data amount
remains the same as the baseline, which only in-
volves DR classification.

Compared with the upper limit of using gold
UDims in DR classification, there is still a large gap.
Although the UDims may be easier to understand
for human annotators than the relation taxonomies
employed in RST and PDTB, the performance with
automatic means to predict UDims still has a large
room for improvement. It remains to be tested if
the difficulty in predicting these UDims forms the
underlying cause for the challenges of DR classifi-
cation.

We have to stress that it is beyond our scope to
elaborate on the meaning of UDims and how DRs
are decomposed into the combination of UDims,
which falls under the CCR framework for discourse
analysis. Moreover, comparison with other propos-
als for integrating discourse relations of different
frameworks, such as the OLiA reference model and
the ISO standard proposal, will be a beneficial com-
plement to the current research. However, it is con-
ceivable that different proposals would require dif-
ferent algorithmic designs to achieve good results.
The current research is built on existing studies,
and comparing with other proposals in computa-
tional experiments requires much more effort than
the current submission can cover, and therefore, we
leave it to future work.

Lastly, we are aware that discourse parsing is
more than DR classification, but discourse structure
is not considered in the proposed approach, similar
to the focus of the work by Braud et al. (2024).

9 Ethics Statement

We do not foresee any ethical concerns with this
study.

References
Farah Benamara and Maite Taboada. 2015. Mapping

different rhetorical relation annotations: A proposal.
In Proceedings of the Fourth Joint Conference on Lex-
ical and Computational Semantics, pages 147–152,

Denver, Colorado. Association for Computational
Linguistics.

Antoine Bosselut, Asli Celikyilmaz, Xiaodong He, Jian-
feng Gao, Po-Sen Huang, and Yejin Choi. 2018.
Discourse-aware neural rewards for coherent text gen-
eration. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 173–184,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Chloé Braud, Yang Janet Liu, Eleni Metheniti, Philippe
Muller, Laura Rivière, Attapol Rutherford, and Amir
Zeldes. 2023. The DISRPT 2023 shared task on
elementary discourse unit segmentation, connective
detection, and relation classification. In Proceedings
of the 3rd Shared Task on Discourse Relation Pars-
ing and Treebanking (DISRPT 2023), pages 1–21,
Toronto, Canada. The Association for Computational
Linguistics.

Chloé Braud, Barbara Plank, and Anders Søgaard. 2016.
Multi-view and multi-task training of RST discourse
parsers. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 1903–1913, Osaka,
Japan. The COLING 2016 Organizing Committee.

Chloé Braud, Amir Zeldes, Laura Rivière, Yang Janet
Liu, Philippe Muller, Damien Sileo, and Tatsuya
Aoyama. 2024. DISRPT: A multilingual, multi-
domain, cross-framework benchmark for discourse
processing. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 4990–5005, Torino, Italia.
ELRA and ICCL.

Harry Bunt and Rashmi Prasad. 2016. ISO DR-Core
(ISO 24617-8): Core concepts for the annotation of
discourse relations. In Proceedings 12th Joint ACL-
ISO Workshop on Interoperable Semantic Annotation
(ISA-12), pages 45–54.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurovsky. 2001. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure Theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.

Christian Chiarcos. 2014. Towards interoperable dis-
course annotation. discourse features in the ontolo-
gies of linguistic annotation. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 4569–
4577, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Vera Demberg, Merel CJ Scholman, and Fatemeh Torabi
Asr. 2019. How compatible are our discourse an-
notation frameworks? Insights from mapping RST-
DT and PDTB annotations. Dialogue & Discourse,
10(1):87–135.

113



Yingxue Fu. 2023. Discourse relations classification
and cross-framework discourse relation classifica-
tion through the lens of cognitive dimensions: An
empirical investigation. In Proceedings of the 6th
International Conference on Natural Language and
Speech Processing (ICNLSP 2023), pages 21–42, On-
line. Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. In International Conference
on Machine Learning, pages 1050–1059. PMLR.

Walter Gerych, Tom Hartvigsen, Luke Buquicchio, Em-
manuel Agu, and Elke A Rundensteiner. 2021. Recur-
rent bayesian classifier chains for exact multi-label
classification. Advances in Neural Information Pro-
cessing Systems, 34:15981–15992.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

Eduard H Hovy and Elisabeth Maier. 1992. Parsimo-
nious or profligate: how many and which discourse
structure relations? Technical report, UNIVER-
SITY OF SOUTHERN CALIFORNIA MARINA
DEL REY INFORMATION SCIENCES INST.

Dan Iter, Kelvin Guu, Larry Lansing, and Dan Jurafsky.
2020. Pretraining with contrastive sentence objec-
tives improves discourse performance of language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4859–4870, Online. Association for Computa-
tional Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 13–24, Baltimore, Maryland.
Association for Computational Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associa-
tion for Computational Linguistics, 3:329–344.

Congcong Jiang, Tieyun Qian, Zhuang Chen, Kejian
Tang, Shaohui Zhan, and Tao Zhan. 2021. Generat-
ing pseudo connectives with MLMs for implicit dis-
course relation recognition. In PRICAI 2021: Trends
in Artificial Intelligence: 18th Pacific Rim Interna-
tional Conference on Artificial Intelligence, PRICAI
2021, Hanoi, Vietnam, November 8–12, 2021, Pro-
ceedings, Part II 18, pages 113–126. Springer.

Najoung Kim, Song Feng, Chulaka Gunasekara, and
Luis Lastras. 2020. Implicit discourse relation clas-
sification: We need to talk about evaluation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5404–
5414, Online. Association for Computational Lin-
guistics.

Haejun Lee, Drew A. Hudson, Kangwook Lee, and
Christopher D. Manning. 2020. SLM: Learning a
discourse language representation with sentence un-
shuffling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1551–1562, Online. Association for
Computational Linguistics.

Wei Liu and Michael Strube. 2023. Annotation-inspired
implicit discourse relation classification with auxil-
iary discourse connective generation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15696–15712, Toronto, Canada. Association
for Computational Linguistics.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang
Sui. 2016. Implicit discourse relation classification
via multi-task neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Wanqiu Long and Bonnie Webber. 2022. Facilitating
contrastive learning of discourse relational senses by
exploiting the hierarchy of sense relations. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10704–
10716, Abu Dhabi, United Arab Emirates. Associa-
tion for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text, 8(3):243–281.

Albert Ernest Maxwell. 1970. Comparing the classifi-
cation of subjects by two independent judges. The
British Journal of Psychiatry, 116(535):651–655.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, 32.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank 2.0.

114



In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu, and
Eric Xing. 2017. Adversarial connective-exploiting
networks for implicit discourse relation classification.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1006–1017, Vancouver, Canada.
Association for Computational Linguistics.

Charlotte Roze, Chloé Braud, and Philippe Muller. 2019.
Which aspects of discourse relations are hard to
learn? primitive decomposition for discourse rela-
tion classification. In Proceedings of the 20th Annual
SIGdial Meeting on Discourse and Dialogue, pages
432–441, Stockholm, Sweden. Association for Com-
putational Linguistics.

Attapol Rutherford and Nianwen Xue. 2015. Improv-
ing the inference of implicit discourse relations via
classifying explicit discourse connectives. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
799–808, Denver, Colorado. Association for Compu-
tational Linguistics.

Ted JM Sanders, Vera Demberg, Jet Hoek, Merel CJ
Scholman, Fatemeh Torabi Asr, Sandrine Zufferey,
and Jacqueline Evers-Vermeul. 2018. Unifying di-
mensions in coherence relations: How various anno-
tation frameworks are related. Corpus Linguistics
and Linguistic Theory.

Ted JM Sanders, Wilbert PM Spooren, and Leo GM
Noordman. 1992. Toward a taxonomy of coherence
relations. Discourse processes, 15(1):1–35.

Ted JM Sanders, Wilbert PM Spooren, and Leo GM
Noordman. 1993. Coherence relations in a cognitive
theory of discourse representation.

Artem Shelmanov, Evgenii Tsymbalov, Dmitri Puzyrev,
Kirill Fedyanin, Alexander Panchenko, and Maxim
Panov. 2021. How certain is your Transformer? In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1833–1840, Online.
Association for Computational Linguistics.

Wei Shi and Vera Demberg. 2019. Learning to explici-
tate connectives with Seq2Seq network for implicit
discourse relation classification. In Proceedings of
the 13th International Conference on Computational
Semantics - Long Papers, pages 188–199, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Symon Stevens-Guille, Aleksandre Maskharashvili,
Xintong Li, and Michael White. 2022. Generating
discourse connectives with pre-trained language mod-
els: Conditioning on discourse relations helps recon-
struct the PDTB. In Proceedings of the 23rd Annual

Meeting of the Special Interest Group on Discourse
and Dialogue, pages 500–515, Edinburgh, UK. As-
sociation for Computational Linguistics.

Alan Stuart. 1955. A test for homogeneity of the
marginal distributions in a two-way classification.
Biometrika, 42(3/4):412–416.

Nobel Varghese, Frances Yung, Kaveri Anuranjana, and
Vera Demberg. 2023. Exploiting knowledge about
discourse relations for implicit discourse relation
classification. In Proceedings of the 4th Workshop
on Computational Approaches to Discourse (CODI
2023), pages 99–105.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Bonnie Webber. 2004. D-ltag: extending lexicalized tag
to discourse. Cognitive Science, 28(5):751–779.

Bonnie Webber and Aravind Joshi. 2012. Discourse
structure and computation: Past, present and future.
In Proceedings of the ACL-2012 Special Workshop on
Rediscovering 50 Years of Discoveries, pages 42–54,
Jeju Island, Korea. Association for Computational
Linguistics.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The Penn Discourse Treebank 3.0 anno-
tation manual. Philadelphia, University of Pennsyl-
vania.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Hongyi Wu, Hao Zhou, Man Lan, Yuanbin Wu, and
Yadong Zhang. 2023. Connective prediction for im-
plicit discourse relation recognition via knowledge
distillation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5908–5923, Toronto,
Canada. Association for Computational Linguistics.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2020. Discourse-aware neural extractive text sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5021–5031, Online. Association for Computa-
tional Linguistics.

Nan Yu, Meishan Zhang, Guohong Fu, and Min Zhang.
2022. RST discourse parsing with second-stage

115



EDU-level pre-training. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4269–
4280, Dublin, Ireland. Association for Computational
Linguistics.

Frances Yung, Vera Demberg, and Merel Scholman.
2019. Crowdsourcing discourse relation annotations
by a two-step connective insertion task. In Proceed-
ings of the 13th Linguistic Annotation Workshop,
pages 16–25, Florence, Italy. Association for Com-
putational Linguistics.

116



A UDims

Table 7 provides an overview of UDims used in the paper.

UDims (abb.) Possible Values
(abb.)

Explanations Examples

polarity
(pol)

positive(pos) A relation is characterized by a posi-
tive polarity if the propositions P and
Q, expressed by S1 and S2, respec-
tively, have the same logical polarity
and support each other.

[We like the garden]S1 because [it is
pretty.]S2

negative(neg) A relation is of a negative polarity if
the relation involves juxtaposition of
¬P and P or ¬Q and Q in two seg-
ments.

[The university library was closed]S1

although [students wanted more space
for study.]S2

NS - -
basic

operation
(bop)

additive(add) If two segments are just loosely con-
nected and only a conjunction relation
P ∧Q can be inferred, the relation is
additive.

[She is a painter]S1 and [her studio is
a few blocks away.]S2

causal(cau) A causal relation means that two seg-
ments are strongly connected and typi-
cally, an implication relationship P →
Q can be inferred.

[He immigrated to the US,]S1 because
[his natural parents were believed to
live there.]S2

NS - -
source of
coherence

(soc)

objective(obj) A relation is objective if two segments
are connected because of their propo-
sitional content, and the relation holds
because the connection is coherent
based on world knowledge.

[It was dark outside,]S1 so [he lit up a
candle.]S2

subjective(sub) A relation is subjective if the speaker’s
reasoning or the pragmatic effect of the
relation is prominent.

[Smoking is unhealthy]S1 and [we
should limit it.]S2

NS - -

implication
order
(imp)

NA This dimension distinguishes be-
tween non-basic and basic implication
orders for causal relations, and it does
not apply to additive relations, which
are generally symmetric.

-

basic(bas) For a causal relation characterized by
P → Q, if S1 expresses P and S2

expresses Q (S1 and S2 are in linear
order), then this relation is in basic im-
plication order.

Because [he received a warning
message,]S1 [he did not attend the
conference.]S2

non-basic(non-b) In contrast to the case of basic implica-
tion order, if S2 actually expresses P
while S1 expresses Q, this relation is
in non-basic implication order.

[He did not attend the conference,]S1

because [he received a message telling
him not to go.]S2

NS - -

temporality
(temp)

anti-
chronological

(anti)
If the events in two segments are not
in their temporal order of occurrence,
then the relation is anti-chronological.

[He went home in a low mood.]S1 [He
had a fight with a customer and was
fired.]S2

chronological
(chron) If the events described in two segments

happen in temporal order, then the re-
lation is chronological.

[She had been stuck in a traffic jam,]S1

so [she was late for the opening
ceremony.]S2

synchronous
(sync) Synchronous relations are those tempo-

ral relations that feature simultaneous
occurrence of events.

[The children were playing in the
park]S1 while [their parents were chat-
ting away.]S2

NS non-temporal relations or ambiguous
cases

-
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specificity
(spec)

specificity(+) RST and PDTB contain some rela-
tions that describe the specificity prop-
erty, such as Example, Definition and
Elaboration in RST, and Equivalence,
Instantiation and Level-of-Detail in
PDTB.

[In this light, the comparative advan-
tages of legislative law-making be-
come clear:]S1 [(1) Before it acts, the
legislature typically will hear the views
of representatives of all those affected
by its decision, not just the immedi-
ate parties before the court; and (2) the
legislature can frame “bright line” stan-
dards that create less uncertainty than
the fact-bound decisions of courts.]S2

(wsj_2059)
non-specificity(-) This dimension is only applicable to

additive relations. Therefore, causal
relations and additive relations that
do not have the property of denoting
specificity are assigned the label non-
specificity.

-

alternative
(alt)

alternative(+) This dimension distinguishes relations
that feature two semantically alterna-
tive arguments, such as Disjunction in
RST, and Disjunction and Substitution
in PDTB.

[make their fans cheer again]S1 or [re-
capture the camaraderie of seasons
past]S2 (wsj_0214)

non-alternative(-) This dimension is only applicable to
additive relations. Therefore, causal
relations and additive relations that do
not have the property of denoting al-
ternative propositions are assigned the
label non-alternative.

-

conditional
(con)

conditional(+) Based on Sanders et al. (2018), this
dimension is added to account for con-
ditional relations, such as Condition in
RST and PDTB, which is not possible
based only on CCR dimensions (pol,
bop, soc and imp).

[he will relinquish the govern-
ment’s so-called golden share in
the company]S1 as long as [Jaguar
shareholders agree.]S2 (wsj_0224)

non-conditional(-) This dimension is only applicable to
causal relations. Therefore, additive re-
lations and causal relations that do not
have the property of being conditional
are assigned the label non-conditional.

-

goal-
orientedness

(goal)

goal-oriented(+) Based on Sanders et al. (2018), this
dimension is added to account for rela-
tions that feature intentional and goal-
oriented actions, such as Enablement
and Manner-Means in RST and Pur-
pose and Manner in PDTB.

[to clear the way]S1 so [the
playing field is level between all
contestants.]S2 (wsj_0224)

non-goal-
oriented(-)

This dimension is only applicable to
causal relations. Therefore, additive
relations and causal relations that do
not have the goal-oriented property are
assigned the label non-goal-oriented.

-

Table 7: UDims used in the experiments. Their abbreviations in this study are shown in parentheses in italics. The
explanation and examples are mostly taken from Fu (2023), except for spec, alt, con and goal, which are additional
dimensions deemed necessary in Sanders et al. (2018) to account for some relations in RST, PDTB and SDRT.
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B Mapping Between RST Relations and UDims

Table 8 shows the mapping between RST relations and UDims, which is originally given in Sanders et al.
(2018).

Class End label Nuc. N-S pol bop imp soc temp other
Background Background Mono N-S pos/neg add N.A. obj anti/N.A.

Background Mono S-N pos/neg add N.A. obj chron/N.A.
Circumstance Mono pos/neg add N.A. obj syn/N.A.

Cause Cause Mono N-S pos cau bas obj chron
Cause Mono S-N pos cau non-b obj anti
Cause-result Multi pos cau bas/non-b obj chron/anti
Result Mono N-S pos cau non-b obj anti
Result Mono S-N pos cau bas obj chron
Consequence-n Mono N-S pos cau non-b obj anti
Consequence-n Mono S-N pos cau bas obj chron
Consequence-s Mono N-S pos cau bas obj chron
Consequence-s Mono S-N pos cau non-b obj anti
Consequence Multi pos cau bas/non-b obj chron/anti

Comparison Comparison Both pos add N.A. obj/sub N.A.
Preference Mono neg add N.A. obj/sub N.A.
Analogy Both pos add N.A. sub N.A.
Proportion Multi pos add/cau any obj/sub any

Conditional Condition Mono N-S pos/neg cau non-b obj/sub anti/N.A. conditional
Condition Mono S-N pos/neg cau bas obj/sub chron/N.A. conditional
Hypothetical Mono N-S pos cau non-b sub N.A. conditional
Hypothetical Mono S-N pos cau bas sub N.A. conditional
Contingency Mono N-S pos/neg cau non-b obj anti conditional
Contingency Mono S-N pos/neg cau bas obj chron conditional
Otherwise Mono N-S neg cau bas obj/sub chron/N.A. conditional
Otherwise Multi neg cau bas obj/sub chron/N.A. conditional

Contrast Contrast Multi neg add N.A. obj/sub any
Concession Mono N-S neg cau non-b obj/sub anti/N.A.
Concession Mono S-N neg cau bas obj/sub chron/N.A.
Antithesis Mono neg add/cau any obj/sub any

Elaboration El.-additional Mono pos add N.A. obj/sub N.A.
El.-gen.-spec. Mono pos add N.A. obj/sub N.A. specificity
El.-part-whole Mono pos add N.A. obj N.A. specificity
El.-process-step Mono pos add N.A. obj N.A. specificity
El.-object-attr. Mono pos add N.A. obj N.A. specificity
El.-set-member Mono pos add N.A. obj N.A. spec.-ex.
Example Mono pos add N.A. obj N.A. spec.-ex.
Definition Mono pos add N.A. obj N.A. specificity

Enablement Purpose Mono N-S pos cau bas obj/sub chron/N.A. goal
Purpose Mono S-N pos cau non-b obj/sub anti/N.A. goal
Enablement Mono N-S pos cau non-b obj/sub anti/N.A. goal
Enablement Mono S-N pos cau bas obj/sub chron/N.A. goal

Evaluation Evaluation Both pos add/cau any sub N.A. specificity
Interpretation Both pos add/cau any sub N.A. specificity
Conclusion Mono N-S pos cau bas sub N.A. specificity
Conclusion Mono S-N pos cau non-b sub N.A. specificity
Conclusion Multi pos cau bas/non-b sub N.A. specificity
Comment Mono pos add N.A. sub N.A. specificity

Explanation Evidence Mono N-S pos cau non-b sub anti
Evidence Mono S-N pos cau bas sub chron
Exp.-argument. Mono N-S pos cau non-b obj anti
Exp.-argument. Mono S-N pos cau bas obj chron
Reason Mono N-S pos cau non-b obj anti
Reason Mono S-N pos cau bas obj chron
Reason Multi pos cau bas/non-b obj chron/anti

Joint List Multi pos add N.A. obj/sub syn/chron/N.A. list
Disjunction Multi pos/neg add N.A. obj/sub syn/N.A. alternative

Summary Summary Mono pos add N.A. obj N.A. specificity
Restatement Mono pos add N.A. obj N.A. spec.-equiv.

Temporal Temp.-before Mono N-S pos add N.A. obj chron
Temp.-before Mono S-N pos add N.A. obj anti
Temp.-after Mono N-S pos add N.A. obj anti
Temp.-after Mono S-N pos add N.A. obj chron
Temp.-same-time Both pos add N.A. obj syn
Sequence Multi pos add N.A. obj chron
Inverted-seq. Multi pos add N.A. obj anti

Manner-Means Means Mono N-S pos cau non-b obj anti
Means Mono S-N pos cau bas obj chron goal

Topic-Comment Problem-sol.-n Mono N-S pos cau non-b obj/sub anti/N.A. goal
Problem-sol.-n Mono S-N pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono N-S pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono S-N pos cau non-b obj/sub anti/N.A. goal
Problem-sol. Multi pos cau bas/non-b obj/sub achron/anti/N.A. goal

Table 8: Mapping between RST relations and UDims.
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C Mapping Between PDTB Relations and UDims

Table 9 shows the mapping between relations in PDTB 3.0 and UDims. As the mapping given in Sanders
et al. (2018) is between relations in PDTB 2.0 and UDims, we adopt the mapping table in Fu (2023).

Class_type End label A1-A2 pol bop imp soc temp other
Temporal
Synchronous pos add N.A. obj sync
Asynchronous Precedence A1-A2 pos add N.A. obj chron

Precedence A2-A1 pos add N.A. obj anti
Succession A1-A2 pos add N.A. obj anti
Succession A2-A1 pos add N.A. obj chron

Contingency
Cause Reason A1-A2 pos cau non-b obj anti

Reason A2-A1 pos cau bas obj chron
Result A1-A2 pos cau bas obj chron goal
Result A1-A2 pos cau bas obj chron goal
NegResult neg cau bas obj chron

Cause+Belief Reason+Belief A1-A2 pos cau non-b sub NS
Reason+Belief A2-A1 pos cau bas sub NS
Result+Belief A1-A2 pos cau bas sub NS
Result+Belief A2-A1 pos cau non-b sub NS

Cause
+SpeechAct Reason+SpeechAct A1-A2 pos cau non-b sub NS

Reason+SpeechAct A2-A1 pos cau bas sub NS
Result+SpeechAct A1-A2 pos cau bas sub NS
Result+SpeechAct A2-A1 pos cau non-b sub NS

Purpose arg1-as-goal A1-A2 pos cau non-b obj/sub NS goal
arg1-as-goal A2-A1 pos cau bas obj/sub NS goal
arg2-as-goal A1-A2 pos cau bas sub NS goal

Condition arg1-as-cond A1-A2 pos cau bas obj/sub NS conditional
arg1-as-cond A2-A1 pos cau non-b obj/sub NS conditional
arg2-as-cond A1-A2 pos cau non-b obj/sub NS conditional
arg2-as-cond A2-A1 pos cau bas obj/sub NS conditional

Condition
+SpeechAct pos cau bas sub NS conditional

Negative
-Condition arg1-as-negcond A1-A2 neg cau bas sub NS conditional

arg1-as-negcond A2-A1 neg cau non-b sub NS conditional
arg2-as-negcond A1-A2 neg cau non-b sub NS conditional
arg2-as-negcond A2-A1 neg cau bas sub NS conditional

Negative-
Condition+
SpeechAct

neg cau bas sub NS conditional

Comparison
Concession arg1-as-denier A1-A2 neg cau non-b obj/sub NS

arg1-as-denier A2-A1 neg cau bas obj/sub NS
arg2-as-denier A1-A2 neg cau bas obj/sub NS
arg2-as-denier A2-A1 neg cau non-b obj/sub NS

Concession
+SpeechAct neg cau bas sub NS

Contrast neg add NA obj NS
Similarity pos add NA obj NS
Expansion
Conjunction pos add NA obj/sub NS
Disjunction neg add NA obj/sub NS alternative
Equivalence pos add NA obj/sub NS
Exception arg1-as-excpt neg add NA obj/sub NS

arg2-as-excpt neg add NA obj/sub NS
Instantiation arg1-as-instance pos add NA obj/sub NS specificity

arg2-as-instance pos add NA obj/sub NS specificity
Level-of-detail arg1-as-detail pos add NA obj/sub NS specificity

arg2-as-detail pos add NA obj/sub NS specificity
Manner arg1-as-manner A1-A2 pos add NA obj/sub NS specificity

arg2-as-manner pos add NA obj/sub NS specificity
Substitution arg1-as-subst A1-A2 neg cau bas obj/sub NS

arg1-as-subst A2-A1 neg cau non-b obj/sub NS
arg2-as-subst A1-A2 neg cau non-b obj/sub NS
arg2-as-subst A2-A1 neg cau bas obj/sub NS

Table 9: Mapping of sense labels of PDTB 3.0 to UniDim dimensions.
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D Unique Mapping Between UDims and DRs in RST-DT

Table 10 shows unique patterns in the mapping between UDims and DRs in the training set of RST-DT.
The last column shows the count of a pattern.

NS NS NS NS NS - - - - Manner-Means 130
NS NS NS NS NS - - - - Textual-organization 234
NS NS NS NS NS - - - - Topic-Change 322
NS NS NS NS NS - - - - Topic-Comment 112
NS add NA NS NS - + - - Joint 34
NS add NA obj NS - - - - Background 1328
NS cau bas NS NS - - + - Condition 186
NS cau bas obj chron - - + - Condition 14
NS cau non-b NS NS - - + - Condition 150
NS cau non-b obj anti - - + - Condition 26
neg NS NS NS NS - - - - Contrast 556
neg add NA NS NS - - - - Comparison 16
neg add NA NS NS - - - - Contrast 588
neg cau bas NS NS - - + - Condition 26
neg cau bas NS NS - - - - Contrast 294
neg cau non-b NS NS - - - - Contrast 106
pos NS NS sub NS + - - - Evaluation 580
pos add NA NS NS + - - - Elaboration 620
pos add NA NS NS - - - - Comparison 368
pos add NA NS NS - - - - Elaboration 5816
pos add NA NS NS - - - - Joint 2898
pos add NA obj NS + - - - Elaboration 4686
pos add NA obj NS + - - - Summary 300
pos add NA obj anti - - - - Temporal 124
pos add NA obj chron - - - - Temporal 410
pos add NA obj syn - - - - Temporal 220
pos add NA sub NS + - - - Evaluation 272
pos add NA sub NS + - - - Topic-Comment 4
pos add NA sub NS - - - - Comparison 24
pos cau NS NS NS - - - - Topic-Comment 82
pos cau NS obj NS - - - - Cause 136
pos cau NS obj NS - - - - Explanation 10
pos cau bas NS NS - - - + Enablement 814
pos cau bas NS NS - - - + Topic-Comment 14
pos cau bas obj chron - - - + Manner-Means 18
pos cau bas obj chron - - - - Cause 594
pos cau bas obj chron - - - - Explanation 76
pos cau bas sub NS + - - - Evaluation 8
pos cau bas sub NS - - + - Condition 18
pos cau bas sub chron - - - - Explanation 2
pos cau non-b NS NS - - - + Enablement 76
pos cau non-b obj anti - - - - Cause 264
pos cau non-b obj anti - - - - Explanation 1018
pos cau non-b obj anti - - - - Manner-Means 154
pos cau non-b sub NS + - - - Evaluation 2
pos cau non-b sub NS - - + - Condition 54
pos cau non-b sub anti - - - - Explanation 278

Table 10: Unique patterns of the mapping between UDims and DRs in the training set of RST-DT.
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Table 11 shows unique patterns in the mapping between UDims and DRs in the test set of RST-DT.

NS NS NS NS NS - - - - Manner-Means 9
NS NS NS NS NS - - - - Textual-organization 9
NS NS NS NS NS - - - - Topic-Change 13
NS NS NS NS NS - - - - Topic-Comment 15
NS add NA NS NS - + - - Joint 6
NS add NA obj NS - - - - Background 111
NS cau bas NS NS - - + - Condition 24
NS cau bas obj chron - - + - Condition 1
NS cau non-b NS NS - - + - Condition 15
NS cau non-b obj anti - - + - Condition 2
neg NS NS NS NS - - - - Contrast 46
neg add NA NS NS - - - - Comparison 2
neg add NA NS NS - - - - Contrast 64
neg cau bas NS NS - - - - Contrast 28
neg cau non-b NS NS - - - - Contrast 8
pos NS NS NS NS - - - - Comparison 2
pos NS NS sub NS + - - - Evaluation 46
pos add NA NS NS + - - - Elaboration 77
pos add NA NS NS - - - - Comparison 24
pos add NA NS NS - - - - Elaboration 381
pos add NA NS NS - - - - Joint 206
pos add NA obj NS + - - - Elaboration 338
pos add NA obj NS + - - - Summary 32
pos add NA obj anti - - - - Temporal 11
pos add NA obj chron - - - - Temporal 37
pos add NA obj syn - - - - Temporal 25
pos add NA sub NS + - - - Evaluation 34
pos add NA sub NS - - - - Comparison 1
pos cau NS NS NS - - - - Topic-Comment 5
pos cau NS obj NS - - - - Cause 13
pos cau NS obj NS - - - - Explanation 1
pos cau bas NS NS - - - + Enablement 43
pos cau bas NS NS - - - + Topic-Comment 4
pos cau bas obj chron - - - + Manner-Means 2
pos cau bas obj chron - - - - Cause 44
pos cau bas obj chron - - - - Explanation 2
pos cau non-b NS NS - - - + Enablement 3
pos cau non-b obj anti - - - - Cause 25
pos cau non-b obj anti - - - - Explanation 95
pos cau non-b obj anti - - - - Manner-Means 16
pos cau non-b sub NS - - + - Condition 6
pos cau non-b sub anti - - - - Explanation 12

Table 11: Unique patterns of UDims and DRs in the test set of RST-DT.
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E Unique Mapping Between UDims and Implicit DRs in PDTB 3.0

Table 12 shows unique patterns in the mapping between UDims and implicit DRs in the training set of
PDTB 3.0.

pol. bop. imp. soc. temp. spec. alt. con. goal DR frequency
NS NS NS NS NS - - - - Asynchronous 12
NS NS NS NS NS - - - - Cause 220
NS NS NS NS NS - - - - Cause+Belief 21
NS NS NS NS NS - - - - Concession 7
NS NS NS NS NS - - - - Condition 14
NS NS NS NS NS - - - - Level-of-detail 5
NS NS NS NS NS - - - - Manner 3
NS NS NS NS NS - - - - Purpose 453
NS NS NS NS NS - - - - Substitution 3
neg add NA obj NS - - - - Contrast 607
neg cau bas obj/sub NS - - - - Concession 1123
neg cau non-b obj/sub NS - - - - Concession 34
neg cau non-b obj/sub NS - - - - Substitution 275
pos add NA obj anti - - - - Asynchronous 122
pos add NA obj chron - - - - Asynchronous 851
pos add NA obj sync - - - - Synchronous 325
pos add NA obj/sub NS + - - - Instantiation 1117
pos add NA obj/sub NS + - - - Level-of-detail 2488
pos add NA obj/sub NS + - - - Manner 188
pos add NA obj/sub NS - - - - Conjunction 3562
pos add NA obj/sub NS - - - - Equivalence 252
pos cau bas obj chron - - - + Cause 2074
pos cau bas obj chron - - - - Cause 92
pos cau bas obj/sub NS - - + - Condition 29
pos cau bas obj/sub NS - - - + Purpose 1
pos cau bas sub NS - - - + Purpose 647
pos cau bas sub NS - - - - Cause+Belief 54
pos cau non-b obj anti - - - - Cause 2083
pos cau non-b obj/sub NS - - + - Condition 109
pos cau non-b obj/sub NS - - - + Purpose 1
pos cau non-b sub NS - - - - Cause+Belief 82

Table 12: Unique patterns of UDims and implicit DRs in the training set of PDTB 3.0.

Table 13 shows unique patterns in the mapping between UDims and implicit DRs in the test set of
PDTB 3.0.

Table 14 shows unique patterns in the mapping between UDims and DRs in the training set of explicit
data.
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pol. bop. imp. soc. temp. spec. alt. con. goal DR frequency
NS NS NS NS NS - - - - Asynchronous 3
NS NS NS NS NS - - - - Cause 20
NS NS NS NS NS - - - - Cause+Belief 1
NS NS NS NS NS - - - - Concession 1
NS NS NS NS NS - - - - Condition 1
NS NS NS NS NS - - - - Instantiation 1
NS NS NS NS NS - - - - Manner 1
NS NS NS NS NS - - - - Purpose 33
NS NS NS NS NS - - - - Substitution 1
neg add NA obj NS - - - - Contrast 53
neg cau bas obj/sub NS - - - - Concession 88
neg cau non-b obj/sub NS - - - - Concession 9
neg cau non-b obj/sub NS - - - - Substitution 25
pos add NA obj anti - - - - Asynchronous 9
pos add NA obj chron - - - - Asynchronous 93
pos add NA obj sync - - - - Synchronous 35
pos add NA obj/sub NS + - - - Instantiation 123
pos add NA obj/sub NS + - - - Level-of-detail 208
pos add NA obj/sub NS + - - - Manner 16
pos add NA obj/sub NS - - - - Conjunction 236
pos add NA obj/sub NS - - - - Equivalence 30
pos cau bas obj chron - - - + Cause 200
pos cau bas obj chron - - - - Cause 11
pos cau bas obj/sub NS - - + - Condition 4
pos cau bas sub NS - - - + Purpose 56
pos cau bas sub NS - - - - Cause+Belief 8
pos cau non-b obj anti - - - - Cause 175
pos cau non-b obj/sub NS - - + - Condition 10
pos cau non-b sub NS - - - - Cause+Belief 6

Table 13: Unique patterns of UDims and implicit DRs in the test set of PDTB 3.0.

pol. bop. imp. soc. temp. spec. alt. con. goal DR frequency
NS NS NS NS NS - - - - Purpose 4
neg add NA obj NS - - - - Contrast 846
neg add NA obj/sub NS - + - - Disjunction 228
neg cau bas obj/sub NS - - - - Concession 3449
neg cau bas obj/sub NS - - - - Substitution 55
neg cau non-b obj/sub NS - - - - Concession 237
neg cau non-b obj/sub NS - - - - Substitution 123
pos add NA obj anti - - - - Asynchronous 737
pos add NA obj chron - - - - Asynchronous 869
pos add NA obj sync - - - - Synchronous 1492
pos add NA obj/sub NS + - - - Instantiation 241
pos add NA obj/sub NS + - - - Level-of-detail 187
pos add NA obj/sub NS + - - - Manner 227
pos add NA obj/sub NS - - - - Conjunction 6756
pos cau bas obj chron - - - + Cause 374
pos cau bas obj chron - - - - Cause 173
pos cau bas obj/sub NS - - + - Condition 415
pos cau bas obj/sub NS - - - + Purpose 3
pos cau bas sub NS - - - + Purpose 202
pos cau non-b obj anti - - - - Cause 907
pos cau non-b obj/sub NS - - + - Condition 693
pos cau non-b obj/sub NS - - - + Purpose 92

Table 14: Unique patterns of UDims and DRs in the training set of explicit data, shown here as supplementary
material for the experiments on data augmentation.
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F Preprocessing

The experiments on RST are carried out on RST-DT. We follow the gold division of the corpus for training
and test sets and take 20% from the training set for validation. We utilize the preprocessing method by Ji
and Eisenstein (2014) and binarize the RST trees in order to obtain pairs of discourse units linked by
DRs. The 78 relations are mapped to 18 broad classes based on the template in Braud et al. (2016), but as
Same-Unit and Attribution are not covered in Sanders et al. (2018), the two relations are excluded in our
experiments, leaving a set of 16 RST relations.

The experiments on PDTB are performed on PDTB 3.0. We follow the data split used in Ji and
Eisenstein (2015), i.e., sections 2-20 for training, sections 0-1 for validation, and sections 21-22 for testing,
and discard DRs with fewer than 100 instances to alleviate data imbalance, as proposed in Kim et al.
(2020), leaving 14 senses from Level-2 (L2) of the sense hierarchy.

G Statistics of UDims

We follow the format of the graph in Roze et al. (2019).
Figure 5 shows statistics of UDims for the training set of RST-DT.

Figure 5: Statistics of UDims for the training set of RST-DT.

Figure 6 shows statistics of UDims for the training set of PDTB implicit relation data.

Figure 6: Statistics of UDims for the training set of PDTB implicit relation data.
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H Label Frequency for Training Sets of RST and PDTB Implicit Relations

Table 15 shows label frequency in the training set of RST.

Label Frequency
Explanation 1384
Manner-Means 302
Summary 300
Elaboration 11122
Contrast 1544
Evaluation 862
Joint 2932
Background 1328
Topic-Comment 212
Enablement 890
Cause 994
Condition 474
Topic-Change 322
Textual-
Organization

234

Temporal 754
Comparison 408

Table 15: Label frequency in the training set of RST.
Table 16 shows label frequency in the training set of PDTB implicit relations.

Label Frequency
Level-of-Detail 2493
Conjunction 3562
Concession 1164
Cause 4469
Instantiation 1117
Equivalence 252
Substitution 278
Asynchronous 985
Synchronous 325
Cause+Belief 157
Purpose 1102
Manner 191
Contrast 607
Condition 152

Table 16: Label frequency in the training set of PDTB implicit relations.
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I Hyper-parameter Settings

The arguments of the input sequences are padded to a fixed length of 250 tokens, and all the model
parameters are initialized with the Xavier uniform initialization (Glorot and Bengio, 2010). The output
sizes of the feed-forward networks g and ϕ described in section 3.3.1 and section 3.3.2 are both set to
128 through manual tuning. The dropout probability is kept at 0.2 for all the experiments. In line with
MC dropout, we keep all the dropout layers active during inference time, and run the model for UDim
classification three times and obtain the average predictive distributions. The UDim embeddings are set
with a dimension size of 100 in all the experiments, except for InputDimCat in section 3.3.2, where the
dimension sizes of the UDim embeddings are set to be 2 * number of values, which we find sufficient
through experimentation. Similarly, we also run the DR classifier three times and obtain the average
predictive distribution. The batch size is set to the largest value that the GPU machine can accommodate.

The model learning rate is set to 1e− 5 and it is trained for a maximum of 30 epochs, with an early-
stopping scheme monitoring performance improvement for DR classification on the validation set with a
threshold of 7 epochs. The AdamW optimizer (Loshchilov and Hutter, 2018) is used and a warmup ratio
of 0.06 is set for the scheduler. A weight decay of 0.1 is applied, and gradients are clipped to a maximum
of 1.0. The implementation is based on the PyTorch machine learning framework (Paszke et al., 2019). A
single A5000 GPU with a capacity of 24GB is used for all the experiments.

J Statistical Significance Test for Model Results

The saved models are used to predict DR sense labels on the test set of RST or PDTB, and different
models are compared pairwise, in line with Stuart-Maxwell test.

Table 17 shows Stuart-Maxwell test of statistical significance of results for RST.

Model A Model B Difference p-value
RST baseline InputForRelCls 31.53487265756919 0.007444391838374066
RST baseline InputDimCat 64.59896992698941 4.0166800266956324e-

08
RST baseline InputDimAtt 107.31845836146087 5.266424736880601e-

16
RST baseline TrainonGoldTestonPred 63.96165551732709 5.19121909560304e-

08
InputForRelCls InputDimCat 43.01215622117389 0.00015676857689742404
InputForRelCls InputDimAtt 134.2049214835401 3.1837974277302182e-

21
InputForRelCls TrainonGoldTestonPred 57.65006061709332 6.363774121513998e-

07
InputDimCat InputDimAtt 178.08228924962432 5.7895617480969986e-

30
InputDimCat TrainonGoldTestonPred 75.50117669436882 4.596013953778202e-

10
InputDimAtt TrainonGoldTestonPred 90.04348995437392 9.735088746634535e-

13

Table 17: Statistical significance test for results of RST models. Compared with the baseline, all the model results
are statistically significant.

Table 18 shows Stuart-Maxwell test of statistical significance of results for PDTB implicit DR classifi-
cation.
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Model A Model B Difference p-value
PDTB impl baseline InputForRelCls 96.37746867104653 8.322748692517058e-

15
PDTB impl baseline InputDimCat 97.67850546549909 4.6673553418486555e-

15
PDTB impl baseline InputDimAtt 35.46139837486632 0.0007189097931712012
PDTB impl baseline TrainonGoldTestonPred 106.07628543197474 1.0923958667709962e-

16
InputForRelCls InputDimCat 98.47524634808387 3.2737145426570587e-

15
InputForRelCls InputDimAtt 154.30765485412508 2.788891357957465e-

26
InputForRelCls TrainonGoldTestonPred

95.28342048662472
1.3526258777197362e-
14

InputDimCat InputDimAtt 108.8129041233804 3.1898108418072124e-
17

InputDimCat TrainonGoldTestonPred 155.30024500712676 1.7579323354258866e-
26

InputDimAtt TrainonGoldTestonPred 136.33343659405318 1.1401098443142066e-
22

Table 18: Statistical significance test for results of PDTB models. As is shown, all the model results are statistically
significant.
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K Detailed Results for Cascaded Classifier

This part involves two experiments. To get an estimate of the upper limit of only using UDims for DR clas-
sification, we experiment with using a single MLP to predict DRs based on gold UDims (MLPGoldUDims),
which represents an upper limit of the approach of universal classifier.

The second experiment simulates the cascaded classifier, where UDim classification is performed first
and predicted UDims are used for DR classification. In this experiment, input is only used for UDim
classification and the predicted UDims are combined via an attention mechanism for DR classification.
The training objective is to minimize losses of DR classification and UDim classification.

Table 19 shows the results, indicating a large gap between using predicted UDims (UDimAtt, i.e. using
attention of embeddings of predicted UDims) and gold UDims (MLPGoldUDims) for DR classification.

F1 Acc.
RST(MLPGoldUDims) 56.55 79.60
RST(UDimAtt) 32.24 55.50
PDTB impl.((MLPGoldUDims) 73.00 85.79
PDTB impl.(UDimAtt) 41.69 56.21

Table 19: Results on cascaded classification of UDims and DRs. UDimAtt denotes combining predicted UDims
with an attention mechanism, which performs better than simple concatenation of predicted UDims here.

Table 20 shows the detailed performance on DR classification for RST, based on the cascaded classifier.

precision recall f1 frequency
Background 44.44 36.04 39.80 111

Cause 36.36 24.39 29.20 82
Comparison 0.00 0.00 0.00 29
Condition 76.09 72.92 74.47 48
Contrast 68.32 75.34 71.66 146

Elaboration 59.42 82.79 69.19 796
Enablement 62.96 73.91 68.00 46
Evaluation 30.14 27.50 28.76 80

Explanation 37.42 55.45 44.69 110
Joint 37.50 1.42 2.73 212

Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 65.96 42.47 51.67 73

Textual-Organization 33.33 11.11 16.67 9
Topic-Change 13.79 30.77 19.05 13

Topic-Comment 0.00 0.00 0.00 24

Table 20: Detailed results of RST DR classification with the cascaded classifier.

Table 21 shows test performance on UDim classification for RST, with the cascaded classifier based on
UDimAtt.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

UDimAtt 74.66 58.44 55.41 63.02 48.16 83.09 83.29 88.85 84.52 88.36 78.56 77.15 74.48 86.89 86.13 99.84 98.91 98.31

Table 21: Results for UDim classification on RST for the cascaded classifier based on UDimAtt

Table 22 shows the detailed performance on DR classification for PDTB implicit relation data, based
on the cascaded classifier.

Table 23 shows test performance on UDim classification for PDTB implicit relation data, with the
cascaded classifier based on UDimAtt.

L Full Results for UDim Classification on RST and PDTB

Table 24 shows test performance on UDim classification for RST.
Table 25 shows test performance on UDim classification for PDTB implicit DRs.
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precision recall f1 frequency
Asynchronous 65.00 74.29 69.33 105

Cause 71.71 63.05 67.10 406
Cause+Belief 00.00 00.00 00.00 15
Concession 59.38 58.16 58.76 98
Condition 77.78 46.67 58.33 15

Conjunction 47.63 68.22 56.10 236
Contrast 55.36 58.49 56.88 53

Equivalence 00.00 00.00 00.00 30
Instantiation 00.00 00.00 00.00 124

Level-of-detail 40.00 58.65 47.56 208
Manner 00.00 00.00 00.00 17
Purpose 79.05 93.26 85.57 89

Substitution 42.11 61.54 50.00 26
Synchronous 66.67 22.86 34.04 35

Table 22: Detailed results of PDTB implicit DR classification with the cascaded classifier.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

UDimAtt 68.62 68.97 66.46 71.28 64.66 82.55 100.00 84.66 80.80 87.51 78.65 76.32 76.87 80.44 87.58 100.00 99.52 89.29

Table 23: Results for UDim classification on PDTB implicit relation data for the cascaded classifier based on
UDimAtt

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

TrainonGold
TestonPred 73.65 57.78 57.06 60.69 47.18 82.50 64.22 87.82 85.16 87.43 78.45 77.53 73.78 88.79 85.91 99.73 98.91 98.37

InputDimCat 75.33 57.72 56.88 62.57 48.43 82.64 79.95 89.30 83.52 88.41 78.13 77.64 74.48 87.49 86.02 99.78 98.97 98.20
InputDimAtt 74.09 59.02 56.32 60.85 45.42 82.72 74.95 88.42 86.15 87.60 77.86 76.71 75.46 87.21 86.40 99.78 98.86 98.48
InputFor
RelCls 73.19 60.34 58.33 61.39 46.41 82.53 83.29 88.36 85.16 87.54 78.84 78.13 75.14 87.00 86.45 99.84 98.91 98.37

Table 24: Results for UDim classification on RST.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

TrainonGold
TestonPred 66.84 66.41 63.50 69.61 58.10 81.42 100.00 84.66 77.10 86.55 75.77 72.82 74.95 76.53 87.17 100.00 99.52 87.17

InputDimCat 68.59 69.71 66.43 72.12 60.72 82.46 100.00 81.68 79.84 87.71 77.97 74.74 76.53 79.75 87.37 100.00 99.45 88.81
InputDimAtt 69.03 68.40 65.66 74.24 59.93 80.16 100.00 77.10 81.08 88.95 77.49 74.19 77.08 77.21 85.86 100.00 99.31 89.09
InputFor
RelCls 66.27 65.25 62.48 70.66 58.76 82.10 100.00 84.66 78.92 86.41 75.77 73.03 75.22 77.97 87.71 100.00 99.52 88.81

Table 25: Results for UDim classification on PDTB implicit relation data.
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M Ablation Studies for RST

Table 26 presents results of ablation studies for RST DR classification.

DR UDim P. R. F1

Background

-pol 44.55 44.14 44.34
-bop 48.28 37.84 42.42
-imp 48.89 39.64 43.78
-soc 44.55 40.54 42.45
-temp 45.65 37.84 41.38
-spec 45.26 38.74 41.75
-alt 43.56 39.64 41.51
-con 41.07 41.44 41.26
-goal 42.86 43.24 43.05

Cause

-pol 42.86 21.95 29.03
-bop 33.33 25.61 28.97
-imp 34.92 26.83 30.34
-soc 32.00 29.27 30.57
-temp 35.82 29.27 32.21
-spec 38.71 29.27 33.33
-alt 34.25 30.49 32.26
-con 36.67 26.83 30.99
-goal 35.29 29.27 32.00

Comparison

-pol 52.00 44.83 48.15
-bop 54.17 44.83 49.06
-imp 51.61 55.17 53.33
-soc 66.67 41.38 51.06
-temp 52.17 41.38 46.15
-spec 47.62 34.48 40.00
-alt 50.00 41.38 45.28
-con 58.33 48.28 52.83
-goal 46.43 44.83 45.61

Condition

-pol 82.50 68.75 75.00
-bop 87.50 72.92 79.55
-imp 80.00 75.00 77.42
-soc 80.43 77.08 78.72
-temp 73.47 75.00 74.23
-spec 77.27 70.83 73.91
-alt 83.72 75.00 79.12
-con 80.95 70.83 75.56
-goal 76.09 72.92 74.47

Contrast

-pol 68.75 67.81 68.28
-bop 75.89 73.29 74.56
-imp 78.57 67.81 72.79
-soc 73.76 71.23 72.47
-temp 73.15 74.66 73.90
-spec 75.19 68.49 71.68
-alt 75.36 71.23 73.24
-con 72.41 71.92 72.16
-goal 78.79 71.23 74.82

Elaboration

-pol 71.61 83.67 77.17
-bop 71.84 83.67 77.31
-imp 72.23 82.04 76.82
-soc 70.75 84.80 77.14
-temp 73.66 81.16 77.23
-spec 73.77 81.28 77.35
-alt 73.36 84.05 78.34
-con 76.74 81.66 79.12
-goal 74.91 78.77 76.79

Enablement

-pol 71.43 76.09 73.68
-bop 77.27 73.91 75.56
-imp 72.00 78.26 75.00
-soc 73.91 73.91 73.91
-temp 68.63 76.09 72.16
-spec 64.41 82.61 72.38
-alt 66.67 78.26 72.00
-con 75.00 78.26 76.60
-goal 74.00 80.43 77.08

Evaluation

-pol 39.68 31.25 34.97
-bop 38.89 26.25 31.34
-imp 41.67 31.25 35.71
-soc 36.62 32.50 34.44
-temp 42.00 26.25 32.31
-spec 36.84 35.00 35.90
-alt 44.90 27.50 34.11
-con 40.58 35.00 37.58
-goal 33.33 35.00 34.15

Explanation

-pol 50.55 41.82 45.77
-bop 46.85 47.27 47.06
-imp 51.16 40.00 44.90
-soc 48.19 36.36 41.45
-temp 43.30 38.18 40.58
-spec 54.00 49.09 51.43
-alt 50.00 44.55 47.12
-con 49.49 44.55 46.89
-goal 38.69 48.18 42.91
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Joint

-pol 67.10 73.11 69.98
-bop 69.12 70.75 69.93
-imp 65.97 74.06 69.78
-soc 70.98 64.62 67.65
-temp 63.60 75.00 68.83
-spec 63.60 71.70 67.41
-alt 70.51 72.17 71.33
-con 64.43 76.89 70.11
-goal 67.26 71.70 69.41

Manner-Means

-pol 75.00 44.44 55.81
-bop 75.00 44.44 55.81
-imp 71.43 37.04 48.78
-soc 68.75 40.74 51.16
-temp 66.67 44.44 53.33
-spec 73.68 51.85 60.87
-alt 65.00 48.15 55.32
-con 57.14 44.44 50.00
-goal 72.22 48.15 57.78

Summary

-pol 65.00 40.62 50.00
-bop 66.67 43.75 52.83
-imp 80.00 50.00 61.54
-soc 80.00 37.50 51.06
-temp 85.71 37.50 52.17
-spec 75.00 46.88 57.69
-alt 61.90 40.62 49.06
-con 68.18 46.88 55.56
-goal 71.43 46.88 56.60

Temporal

-pol 65.22 41.10 50.42
-bop 66.04 47.95 55.56
-imp 54.29 52.05 53.15
-soc 66.67 41.10 50.85
-temp 54.69 47.95 51.09
-spec 68.52 50.68 58.27
-alt 59.18 39.73 47.54
-con 61.22 41.10 49.18
-goal 72.97 36.99 49.09

Textual-Organization

-pol 66.67 88.89 76.19
-bop 63.64 77.78 70.00
-imp 72.73 88.89 80.00
-soc 66.67 88.89 76.19
-temp 72.73 88.89 80.00
-spec 66.67 88.89 76.19
-alt 57.14 88.89 69.57
-con 66.67 88.89 76.19
-goal 66.67 88.89 76.19

Topic-Change

-pol 62.50 38.46 47.62
-bop 46.15 46.15 46.15
-imp 38.46 38.46 38.46
-soc 57.14 30.77 40.00
-temp 45.45 38.46 41.67
-spec 41.67 38.46 40.00
-alt 62.50 38.46 47.62
-con 50.00 38.46 43.48
-goal 36.36 30.77 33.33

Topic-Comment

-pol 45.45 20.83 28.57
-bop 37.50 25.00 30.00
-imp 41.18 29.17 34.15
-soc 46.67 29.17 35.90
-temp 40.00 25.00 30.77
-spec 46.67 29.17 35.90
-alt 52.94 37.50 43.90
-con 40.00 41.67 40.82
-goal 31.58 25.00 27.91

Table 26: Ablation studies for RST, based on InputForRelCls. The lowest F1 scores are shown in blue, although
there are cases when the differences between values are quite small.
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N Ablation Studies for PDTB Implicit DR Classification

Table 27 presents results of ablation studies for PDTB implicit DR classification.

DR UDim P. R. F1

Asynchronous

-pol 63.11 61.90 62.50
-bop 74.73 64.76 69.39
-imp 66.04 66.67 66.35
-soc 56.15 69.52 62.13
-temp 68.09 60.95 64.32
-spec 65.35 62.86 64.08
-alt 63.55 64.76 64.15
-con 59.65 64.76 62.10
-goal 64.15 64.76 64.45

Cause

-pol 66.58 66.26 66.42
-bop 64.99 69.95 67.38
-imp 64.93 67.49 66.18
-soc 64.49 60.84 62.61
-temp 65.30 66.75 66.02
-spec 69.83 59.85 64.46
-alt 69.28 56.65 62.33
-con 65.26 64.78 65.02
-goal 71.64 59.11 64.78

Cause+Belief

-pol 11.11 06.67 08.33
-bop 00.00 00.00 00.00
-imp 00.00 00.00 00.00
-soc 09.09 06.67 07.69
-temp 00.00 00.00 00.00
-spec 00.00 00.00 00.00
-alt 10.71 20.00 13.95
-con 00.00 00.00 00.00
-goal 20.00 06.67 10.00

Concession

-pol 58.54 48.98 53.33
-bop 63.41 53.06 57.78
-imp 58.43 53.06 55.61
-soc 66.22 50.00 56.98
-temp 57.14 53.06 55.03
-spec 50.00 62.24 55.45
-alt 55.45 57.14 56.28
-con 70.77 46.94 56.44
-goal 59.15 42.86 49.70

Condition

-pol 77.78 46.67 58.33
-bop 81.82 60.00 69.23
-imp 80.00 53.33 64.00
-soc 81.82 60.00 69.23
-temp 83.33 66.67 74.07
-spec 77.78 46.67 58.33
-alt 87.50 46.67 60.87
-con 77.78 46.67 58.33
-goal 71.43 33.33 45.45

Conjunction

-pol 56.68 66.53 61.21
-bop 53.31 71.61 61.12
-imp 54.58 63.14 58.55
-soc 50.48 67.37 57.71
-temp 55.16 65.68 59.96
-spec 53.77 69.49 60.63
-alt 50.31 69.49 58.36
-con 51.44 68.22 58.65
-goal 49.46 77.54 60.40

Contrast

-pol 61.11 41.51 49.44
-bop 43.64 45.28 44.44
-imp 48.84 39.62 43.75
-soc 55.56 47.17 51.02
-temp 60.53 43.40 50.55
-spec 52.17 45.28 48.48
-alt 52.50 39.62 45.16
-con 45.83 41.51 43.56
-goal 42.59 43.40 42.99

Equivalence

-pol 29.73 36.67 32.84
-bop 33.33 03.33 06.06
-imp 25.93 23.33 24.56
-soc 18.42 23.33 20.59
-temp 28.00 23.33 25.45
-spec 22.22 13.33 16.67
-alt 40.00 20.00 26.67
-con 18.52 33.33 23.81
-goal 29.73 36.67 32.84

Instantiation

-pol 80.25 52.42 63.41
-bop 71.15 59.68 64.91
-imp 81.61 57.26 67.30
-soc 80.49 53.23 64.08
-temp 74.51 61.29 67.26
-spec 71.03 61.29 65.80
-alt 75.53 57.26 65.14
-con 79.57 59.68 68.20
-goal 64.89 68.55 66.67
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Level-of-Detail

-pol 46.62 59.62 52.32
-bop 51.47 50.48 50.97
-imp 49.79 57.21 53.24
-soc 49.32 51.92 50.59
-temp 49.79 55.77 52.61
-spec 49.43 62.02 55.01
-alt 47.39 56.73 51.64
-con 55.61 54.81 55.21
-goal 52.38 47.60 49.87

Manner

-pol 66.67 47.06 55.17
-bop 69.23 52.94 60.00
-imp 80.00 47.06 59.26
-soc 100.00 47.06 64.00
-temp 63.64 41.18 50.00
-spec 80.00 47.06 59.26
-alt 72.73 47.06 57.14
-con 66.67 47.06 55.17
-goal 68.75 64.71 66.67

Purpose

-pol 86.87 96.63 91.49
-bop 91.40 95.51 93.41
-imp 88.54 95.51 91.89
-soc 90.53 96.63 93.48
-temp 89.47 95.51 92.39
-spec 92.47 96.63 94.51
-alt 87.00 97.75 92.06
-con 93.41 95.51 94.44
-goal 92.39 95.51 93.92

Substitution

-pol 40.74 42.31 41.51
-bop 50.00 50.00 50.00
-imp 45.45 38.46 41.67
-soc 48.00 46.15 47.06
-temp 41.38 46.15 43.64
-spec 47.83 42.31 44.90
-alt 45.00 34.62 39.13
-con 51.85 53.85 52.83
-goal 50.00 53.85 51.85

Synchronous

-pol 46.67 20.00 28.00
-bop 45.00 25.71 32.73
-imp 44.44 22.86 30.19
-soc 47.62 28.57 35.71
-temp 22.22 11.43 15.09
-spec 64.29 25.71 36.73
-alt 30.77 22.86 26.23
-con 43.75 20.00 27.45
-goal 43.75 20.00 27.45

Table 27: Ablation studies for PDTB implicit DR classification, based on InputForRelCls. Similar to RST, lowest
F1 scores are shown in blue, with the exception of Cause+Belief, for which removing the majority of UDims yields
00.00.
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