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Abstract

The rapid growth of climate science liter-
ature necessitates advanced information ex-
traction (IE) systems to structure knowledge
for researchers and policymakers. We intro-
duce ClimatelE, a novel framework combin-
ing taxonomy-guided large language model
(LLM) annotation with expert validation to
address three core tasks: climate-specific
named entity recognition, relationship extrac-
tion, and entity linking. Our contributions
include: (1) the ClimateIE-Corpus—500
climate publications annotated via a hybrid
human-AlI pipeline with mappings to the ex-
tended GCMD+ taxonomy; (2) systematic eval-
uation showing L1ama-3. 3-70B achieves state-
of-the-art performance (strict F;: 0.378 NER,
0.367 EL), outperforming larger commercial
models (GPT-40) and domain-adapted base-
lines (ClimateGPT) by 11-58%; and (3) anal-
ysis revealing critical challenges in technical
relationship extraction (MountedOn: 0.000 F;)
and emerging concept linking (26.4% unlink-
able entities). Upon acceptance, we will release
the corpus, toolkit, and guidelines to advance
climate informatics, establishing benchmarks
for NLP in Earth system science and underscor-
ing the need for dynamic taxonomy governance
and implicit relationship modeling. The Cli-
matelE dataset, including expert annotations
and taxonomy-aligned outputs, is available at:
https://github.com/Jo-Pan/ClimatelE.

1 Introduction

Climate science literature has grown exponen-
tially, with over 1.3M publications indexed in
the Google Scholar since 2020, which is already
11% more than previous decade. This deluge of
knowledge, while critical for addressing plane-
tary crises, overwhelms researchers and policy-
makers who must manually reconcile unstructured
findings across disciplines. For instance, link-
ing CMIP6 climate projections (e.g., Temperature
changes under ssp2.45) to policy-relevant targets
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like the Paris Agreement’s 1.5°C threshold requires
labor-intensive cross-document synthesis. Simi-
larly, tracking emerging geoengineering proposals
(e.g., stratospheric aerosol injection) or validating
observational datasets (e.g., CRU, ERA INTERIM)
against model projections becomes intractable with-
out structured representations. Information extrac-
tion (IE) systems could automate these tasks, en-
abling systematic reviews, model intercomparisons,
and Sustainable Development Goal (SDG) moni-
toring. Yet, current solutions remain ill-equipped
to handle climate science’s technical complexity.

We formalize ClimatelE, a unified framework for
structuring climate literature through three interde-
pendent tasks. 1. Climate-Specific NER: Disam-
biguating domain entities (e.g., “AR6” as an IPCC
report vs. its gene notation counterpart). 2. Rela-
tionship Extraction: Identifying causal and pro-
cedural links (e.g., “CMIP6 prescribes SSP2-4.5
emissions Scenarios”). 3. Taxonomy-Anchored
Entity Linking: Mapping entities to an expanded
climate ontology (e.g., “Pacific Decadal Oscilla-
tion” — Ocean Circulation/Teleconnections). Un-
like generic IE tasks that focus on commonsense
entities, ClimatelE targets modeling-critical con-
structs—experimental protocols, variables, and in-
tercomparison projects—whose precise interpreta-
tion requires domain expertise.

Three critical barriers hinder progress in climate
information extraction. First, existing controlled
vocabularies such as NASA’s GCMD show limita-
tions for named entity recognition, missing approx-
imately 43% of relevant terms such as “blue
carbon governance” and “attribution-aware model-
ing”— as revealed by our analysis of 100 recent
climate-related papers. Compounding this issue
are prohibitive annotation costs: manual curation
of climate entities requires 1 hour per document,
as observed in our pilot study, a rate unsustainable
against the field’s output of 1,500+ publications
monthly. Even when annotations exist, model gen-
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eralization remains problematic: state-of-the-art
systems like GLINER (Zaratiana et al., 2024) suffer
a 29% performance drop (0.339 vs. 0.478 F) on
climate texts, faltering on domain-specific terminol-
ogy (e.g., “paleoclimate proxies”) and contextual
ambiguity—such as disambiguating “mitigation”
in carbon sequestration versus flood control con-
texts. These limitations obstruct scalable, accurate
knowledge extraction from climate literature.

To overcome these challenges, we introduce the
ClimatelE Corpus—a domain-specific resource
combining three synergistic components. First, our
GCMD+ Taxonomy extends NASA’s framework
with novel categories (e.g., experiments, climate
variables) and 2,520 entity aliases from CMIP6CV
and domain repositories, addressing coverage gaps
for emerging concepts. Second, we propose a Hy-
brid Human-AI Pipeline that enables scalable
annotation through LLM-based weak supervision
(Llama-3.3 on 500 papers), followed by expert vali-
dation with a three-stage protocol (NER — Linking
— RE) applied to 25 papers. Third, our Evaluation
Framework systematically benchmarks 7 state-of-
the-art models, exposing critical failure modes like
semantic drift in LLM-generated labels and catas-
trophic performance cliffs (e.g., 0.04 F; on “Plat-
form” entities). This triad of innovations balances
domain specificity with practical scalability.

Our work delivers three principal contributions:

* First Comprehensive Climate IE Corpus:

Open-access resource supporting NER (12 en-
tity types), relationship extraction (9 relation-
ship types), and entity linking, with unique
coverage of climate modeling workflows.
Taxonomy-Guided Methodology: Hybrid
approach combining LLM scalability with
expert precision, reducing annotation costs
while preserving domain semantics.
LLM Failure Mode Analysis: Systematic
evaluation reveals critical gaps in state-of-the-
art models, including poor handling of im-
plicit relationships (“ValidatedBy”: 0.02 Fy)
and domain entities extraction (0.08 F; on
“ocean circulation”).

ClimatelE bridges the gap between unstructured
climate literature and computable knowledge repre-
sentations, enabling systematic organization of do-
main insights. By resolving semantic inconsisten-
cies while maintaining scalability, this resource es-
tablishes a foundation for climate knowledge graph
construction, evidence synthesis, and downstream
decision-support systems.
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2 Related Work

2.1 Climate Science IE Datasets

Existing structured resources for climate knowl-
edge predominantly target policy analysis and im-
pact documentation. The CPo-CD Dataset (Singh
et al.,, 2024) exemplifies this trend, annotating
13,728 short text segments (2-250 words) with
policy elements such as Target, Action, Policy,
and Plan. Similarly, CLIMATELI (Zhou et al.,
2024), the first manually annotated dataset for cli-
mate entity linking, maps 3,087 entity spans to
Wikipedia across genres like IPCC reports and
news articles, though its scope remains constrained
to broadly recognized concepts. Efforts to system-
atize climate impacts (Li et al., 2024), who employ
LLMs to extract 300 records of extreme events
(e.g., Event, Location, Deaths) from Wikipedia and
Artemis, prioritizing societal consequences over
scientific processes. In the corporate sustainability
domain, Usmanova and Usbeck (Usmanova and
Usbeck, 2024) transform 124 reports into a knowl-
edge graph with ontology classes like Organiza-
tion and Risks, alongside relations such as hasDe-
scription, while Garigliotti (Garigliotti, 2024) com-
bines LLMs with retrieval-augmented generation
(RAG) to classify sustainability targets in 33 re-
ports. Though these resources advance policy track-
ing and corporate disclosures, they overlook techni-
cal climate science entities fundamental to climate
moodeling workflows—experiments, observational
variables, and weather events. Our work bridges
this gap by centering on computational research
artifacts and cross-document entity linking tailored
to climate modeling interoperability.

2.2 Resources of Scientific Text Annotated
with NER

The broader scientific NLP community has made
substantial progress in structuring domain-specific
texts through annotated corpora, though climate
science remains underrepresented. Recent ef-
forts span disciplines such as biomedicine (Med-
NER (Ullah Miah et al., 2023) for disease men-
tions), computer science (SciDMT (Pan et al.,
2024), DMDD (Pan et al., 2023) and SciER (Zhang
et al., 2024) for dataset and method entities), and
clinical text (Bose et al., 2021). Despite this di-
versity, existing corpora systematically exclude
climate-specific constructs critical for modeling
workflows—experimental protocols (e.g., CMIP6
emmission scenarios), observational variables (e.g.,



aerosol optical depth), and teleconnection pat-
terns such as PDO. This omission persists even
in domain-agnostic benchmarks, which prioritize
generic entities (e.g., datasets, locations) over cli-
mate science’s technical lexicon.

2.3 LLMs for Information Extraction

LLMs excel at scientific information extraction
on tasks like chemical entity recognition (Viviane
et al., 2024) and biomedical relation extraction
(Gabriel et al., 2024). Their ability to generalize
across diverse syntactic structures makes them par-
ticularly promising for processing scientific dis-
course, where entity semantics often depend on
implicit domain knowledge (e.g., “CMIP6” im-
plies a modeling framework rather than a generic
acronym). However, three critical limitations hin-
der their application to climate science. First, hal-
lucination—the generation of factually inconsis-
tent outputs—is exacerbated in climate contexts
where precise terminology is paramount. For in-
stance, models may conflate distinct concepts like
“RCP8.5” with “SSP5-8.5”. Techniques like con-
trastive decoding (Derong et al., 2024) mitigate
this by suppressing implausible token sequences,
but they struggle with climate science’s long-tail
concepts absent from general pretraining corpora.
Second, domain mismatch persists even in adapted
models like SciLitLLM (Sihang et al., 2024), which
focuses on broad scientific literature rather than
climate-specific discourse. This results in categor-
ical errors, such as misclassifying observational
platforms (e.g., “Argo floats™ as geographic loca-
tions) or mislinking abbreviations (e.g., “ENSO”
to entertainment entities). Third, limited grounding
in climate taxonomies undermines entity linking
consistency across studies. While RAG partially
addresses this (Garigliotti, 2024), current imple-
mentations prioritize policy targets over technical
modeling artifacts. ClimatelE addresses these gaps
via structured annotations and hybrid human-LLM
curation pipeline, enabling robust grounding of cli-
mate entities while minimizing hallucination risks.

3 GCMD+ Taxonomy Development

The ClimatelE framework (Figure 1) builds
a domain-specific semantic backbone via the
GCMD+ taxonomy, constructed through multi-
source aggregation and cross-domain linking. This
structured vocabulary resolves entity ambiguities
across heterogeneous climate literature while main-
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Figure 1: Climate Knowledge Extraction Pipeline

taining interoperability with legacy systems.

3.1 Multi-Source Taxonomy Aggregation

GCMD+ extends NASA’s Global Change Mas-
ter Directory (GCMD v4/2024) (Nagendra et al.,
2001)—a foundational resource with 13,840 enti-
ties across 14 categories like Earth Science and
Projects—through systematic integration of three
specialized climate resources. First, CMIP6 Con-
trolled Vocabularies (Taylor et al., 2018) contribute
standardized modeling terms for experiments, vari-
ables, and grids, such as the “HighResMIP” pro-
tocol. Second, 0obs4MIPs Observational Datasets
(Waliser et al., 2020) provide instrument-specific
metadata from field campaigns like NASA’s SMAP
mission. Third, the CMIP Publication Hub' sup-
plies peer-reviewed terms for model intercompar-
ison protocols, including emerging concepts like
“attribution-aware ensemble design.”

New climate-specific categories (e.g., Experi-
ments, Realms) were introduced while harmoniz-
ing overlaps through consensus alignment—for in-
stance, mapping CMIP6’s “activities” to GCMD’s
“Projects” hierarchy. Lexical duplicates like
SSP5-8.5 versus ScenarioMIP-SSP5-8.5 were
resolved via expert-guided reconciliation, preserv-
ing source taxonomies’ hierarchical integrity. The
aggregated taxonomy contains 16,360 entities (18%
more than the base GCMD). Each entity has a
unique hierarchical path and identifier.

"https://cmip-publications.1lnl.gov
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3.2 Cross-Domain Linking via Wikidata

To bridge climate science with open knowledge
ecosystems, GCMD+ establishes bidirectional
mappings to Wikidata through a two-phase pro-
tocol. First, entity matching leverages Wikidata’s
search API to generate 10 candidate matches per
GCMD+ entity, filtered by fuzzy string similarity
(Levenshtein distance < 30%) and manual vali-
dation, yielding 5,098 high-confidence mappings
from 10,623 initial candidates. Second, metadata
integration enriches matched entities with Wiki-
data QIDs (e.g., Q18046802 for CMIP) and crowd-
sourced definitions while preserving GCMD+’s hi-
erarchical structure. This process enhanced 31%
of GCMD+ entities with cross-domain relation-
ships like located in water body and funded by,
enabling federated queries across climate-specific
and general knowledge graphs without compromis-
ing backward compatibility.

3.3 Specialization Over Generality

While general-purpose taxonomies like Wiki-
data offer broad coverage, they prove inadequate
for climate science due to three inherent ten-
sions. Excessive granularity fragments related con-
cepts—distinguishing Cyclone-1920 from Cyclone-
1930 adds no scientific value—while irrelevant cat-
egories (e.g., musical genres) dilute conceptual co-
hesion. More critically, they lack mechanisms for
expert-driven validation, often omitting niche es-
sentials like CMIP6 diagnostic variables or mis-
representing hierarchical relationships (e.g., con-
flating aerosol optical depth with generic atmo-
spheric metrics). GCMD+ circumvents these is-
sues through climate-specific curation: prioritizing
domain-critical constructs like El Nifio—Southern
Oscillation (ENSO) and dynamically integrating
emerging concepts (e.g., Arctic amplification) via
structured community feedback. This specializa-
tion ensures semantic precision where general tax-
onomies propagate errors, making GCMD+ indis-
pensable for constructing actionable climate knowl-
edge graphs with terminological accuracy.

4 Corpus Construction

We constructed the ClimatelE corpus from
the Semantic Scholar Open Research Corpus
(S20RC) (Lo et al., 2020), initially retrieving 2.5
million papers through using the search terms “en-
vironment” and “climate”. To ensure scholarly
impact and methodological rigor, we applied dual
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filters: a citation threshold retaining only publica-
tions with >10 citations, and open access require-
ments mandating machine-readable PDF availabil-
ity. This yielded 17,423 climate-focused docu-
ments with complete metadata (DOIs, authorship
chains) and full-text accessibility. PDFs were pro-
cessed using the SciPDF Parser?, which extracts
structured text while preserving section hierarchies.

From the processed corpus, we sampled 500
papers for weak supervision via LLM-assisted an-
notation (Section 5). A gold-standard subset of
25 papers underwent expert validation (Section 6),
establishing a gold-standard benchmark for climate
information extraction tasks.

5 Taxonomy-Guided LLLM Annotation

Unconstrained LLM deployment for scientific
annotation risks semantic drift and hallucina-
tion—for instance, generating fictitious model vari-
ants like “CMIP7 EC-Earth4 model” or misclas-
sifying CMIP6 scenarios as generic SSP experi-
ments. Our methodology counteracts these issues
through taxonomy-anchored generation, enforcing
consistency with climate domain semantics while
preserving contextual nuance.

The framework employs three core mechanisms:
1) Task Specification restricts extraction to 12 en-
tity types and 9 relationship classes, suppressing
off-taxonomy predictions through constrained de-
coding; 2) Terminology Grounding aligns entity
definitions with GCMD+ semantics; 3) Few-Shot
Demonstration provides 10 domain-annotated ex-
amples covering all entity and relation types.

We implement this approach using Llama-3-70B-
Instruct with a 600-token sliding window (100-
token stride). This chunking strategy, adapted from
GraphRAG (Edge et al., 2024), preserves local doc-
ument structure while minimizing boundary arti-
facts. Full prompt architecture is detailed in Ap-
pendix A.1. Due to the high computational cost
and inefficiency of fine-tuning large models like
Llama-3.3-70B for domain-specific tasks, we opt
for few-shot in-context learning instead, achieving
competitive performance with far fewer resources.

Entity linking proceeds through a three-phase
pipeline: First, we embed both extracted entities
(with contextual descriptions) and GCMD+ taxon-
omy nodes into a 4096-dimensional space using
NVIDIA NV-Embed-v2 (Lee et al., 2024)—the
top-performing model on MTEB'’s retrieval bench-
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mark (Muennighoff et al., 2022). Second, pair-
wise cosine similarity identifies candidate map-
pings. Finally, a similarity threshold of 0.6 (val-
idated through ROC analysis on manual annota-
tions) achieves optimal precision-recall tradeoff.
The taxonomy-constrained pipeline processed
500 climate science publications, extracting
133,709 entities and 95,309 relationships. Of these,
46,848 entities (35%) and 23,246 relations (24%)
were successfully mapped to GCMD+ taxonomies,
yielding two critical resources: 1) a curated set of
validated entities and relations for expert refine-
ment (Section 6), and 2) weakly labeled training
data for future domain-specific model fine-tuning.

6 Expert-Driven Annotation Protocol

Our 3-stage annotation process systematically iden-
tifies, links, and validates climate domain entities
and their relationships, prioritizing domain fidelity.
Four climate science experts iteratively annotated
25 publications using a cascade approach where
outputs from each stage informed subsequent re-
finements, balancing efficiency with precision. Pre-
annotations from Llama-3.3 predictions were man-
ually corrected to resolve omissions and errors,
ensuring alignment with GCMD+ taxonomy. To
maintain consistency, annotators followed a clear
guideline document (Appendix A.3) and partici-
pated in regular meetings to address concerns, clar-
ify ambiguities, and ensure a comprehensive under-
standing of the annotation process.

6.1 Three-stage annotation process

Stage 1: Named Entity Recognition Annotators
validated and refined Llama-3.3’s entity predictions
against 12 categories (Appendix A.l), guided by
GCMD+ definitions. Key actions included remov-
ing spurious predictions (e.g., misclassified geo-
graphic terms as climate models), adding omitted
entities (e.g., boreal spring predictability barrier),
and resolving boundary disputes (e.g., distinguish-
ing SSP5-8.5 from standalone SSP). The stage
achieved moderate inter-annotator agreement (Co-
hen’ k = 0.77), reflecting challenges in classifying
nuanced constructs like orbital period (variable)
and RCP scenarios (experiment).

Stage 2: Entity Linking Recognized entities
were mapped to GCMD+ identifiers, leveraging
pre-linked suggestions for efficiency. Key tasks
included correcting alignment errors (e.g., linking
Argo floats to platform nodes rather than instrument
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classes), flagging ambiguities such as ENSO < El
Nifio—Southern Oscillation versus regional impacts,
and retaining 14.3% of unlinked entities for tax-
onomy expansion. High agreement (x = 0.89)
underscored the taxonomy’s disambiguation utility.

Stage 3: Relationship Extraction Annotators
categorized relationships between validated entities
according to nine expert-defined types (e.g., Mea-
suredAt, ComparedTo), verifying contextual plau-
sibility and taxonomic consistency. Taking a sen-
tence like "GFDL model over estimates mean pre-
cipitation across India" as an example, annotators at
this stage must first detect the entities "GFDL" and
"Precipitation" and the relationship between them
which is Target location. Annotators must identify
entities that have not been pre-annotators, anno-
tate and the link them to GCMD. The moderate
inter-annotator agreement (x = 0.82) highlighted
persistent challenges in relationship extraction.

6.2 Annotation Statistics

The 25-paper corpus contains 13,773 entity men-
tions (877 unique), with 10,174 (73.8%) success-
fully linked to GCMD-+. Relationship extraction
yielded 3,618 validated pairs. Figure 1 visual-
izes the annotations, excluding linked entities for
clarity. Dominant entity types include Variables
(3,953 mentions, e.g., sea surface salinity), Loca-
tions (2,767 mentions, e.g., Arctic amplification re-
gions), and Models (1,500 mentions, e.g., CESM2-
WACCM), with distributions detailed in Table 2.

6.3 Challenges and Lessons Learned

Key challenges included entity disambiguation,
such as differentiating variables (e.g., aerosol op-
tical depth) from weather events (e.g., thunder-
storms) in dense methodological text. Another is-
sue was relationship contextualization for under-
specified interactions (e.g., Access Model, Usedln,
CESM Model) lacking sentence-level grounding.
Additionally, 14.3% of entities remained unlinked
to GCMD+ due to emerging concepts like Al-
driven parameterizations. Iterative dual annota-
tion cut error propagation by 41% compared to
single-stage methods, with annotation guidelines
codifying these insights for reproducibility.

7 Experiments

We evaluate model performance across three core
climate IE tasks: Named Entity Recognition (NER),



Relationship Extraction, and Taxonomy-Based En-
tity Linking, employing metrics that balance tech-
nical rigor with domain-specific consistency.

7.1 Evaluation Protocol

NER Evaluation adopts dual criteria: 1) Strict
evaluation requiring exact matches of both entity
spans and types (e.g., Model: “CESM2” vs. misclas-
sified Platform: “CESM2” counts as incorrect), and
2) Relaxed evaluation permitting type-agnostic sub-
string overlaps while prioritizing the longest non-
overlapping spans (e.g., keeping “CMIP6 Scenari-
oMIP SSP5-8.5” and removing “SSP5-8.5” within
the same context ). This dual approach accomo-
dates scientific writing variations.

Relationship Extraction is assessed through two
paradigms: strict triplet alignment requiring exact
matches of source entity, target entity, and relation
type (e.g., (CESM2, Outputs, SSP5-8)), and re-
laxed directional pair matching that ignores relation
types (e.g., (CESM2, -, SSP5-8.5)).

Entity Linking precision is measured by check-
ing if the system’s predicted GCMD+ identifiers
(e.g., GCMD+-CMIP6:ScenarioMIP.SSP5-8.5) ex-
actly match human annotations. Manual adjudica-
tion addresses synonym conflicts (e.g., “AMOC”
vs. “Atlantic Meridional Overturning Circulation”).
Performance metrics—precision (P), recall (R),
and F;—are reported at two levels: fotal aggre-
gates correctness across all test samples to mea-
sure global capability, while per-paper averages as-
sess cross-document consistency. We also provide
prediction counts (#PD) and ground truth counts
(#GT). Total metrics are default unless specified.

7.2 State-of-the-Art Model Comparison

Our evaluation framework examines four critical
dimensions of modern language models through
systematic comparisons. First, we quantify scal-
ing effects by contrasting L1ama-3. 3-8B with its
70B-parameter counterpart (Grattafiori et al., 2024),
isolating performance gains attributable to model
size. Second, we establish accuracy ceilings using
proprietary APIs GPT-40 (OpenAl et al., 2024) and
DeepSeek-V3 (DeepSeek-Al et al., 2024), reveal-
ing tradeoffs between commercial systems’ capabil-
ities and operational costs. Third, we assess domain
specialization through ClimateGPT (Thulke et al.,
2024)—a Llama-2 derivative fine-tuned on 4.2B
climate tokens—testing whether targeted adapta-
tion outperforms general architectures. Finally, we
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benchmark against generalist NER systems GLiNER
(Zaratiana et al., 2024) and NuNER (Bogdanov et al.,
2024), which rely solely on textual patterns and
entity type lexicons. All open-source models were
evaluated on dual NVIDIA A100 80GB GPUs us-
ing 16-bit precision, ensuring consistent hardware
baselines across experiments.

8 Results

Our evaluation of modern language models re-
veals three principal findings for climate infor-
mation extraction across Named Entity Recog-
nition, Relationship Extraction, and Taxonomy-
Based Entity Linking tasks. As summarized in Ta-
ble 1, L1ama-3.3-70B demonstrates superior over-
all performance compared to both larger commer-
cial systems (GPT-40, DeepSeek-V3) and domain-
specialized alternatives (ClimateGPT), achieving
the highest aggregated scores while maintaining
computational efficiency. Critically, this advan-
tage holds across both total-level metrics (full cor-
pus evaluation) and per-paper averages, indicating
consistent performance whether processing indi-
vidual documents or cross-study corpora. These
results position L1ama-3.3-70B as the most effec-
tive general-purpose architecture for climate IE
tasks, balancing scale with domain-aware process-
ing without requiring proprietary infrastructure.

8.1 Named Entity Recognition Results

As detailed in Table 1, L1ama-3.3-70B establishes
state-of-the-art performance for climate NER with
strict F1=0.378 and relaxed F;=0.501, surpassing
both commercial models (DeepSeek-V3: 0.331
strict F1) and specialized systems (GLiNER: 0.461
relaxed F;). Three critical patterns emerge from
the analysis. First, model scaling proves deci-
sive—the 70B variant outperforms its 8B counter-
part by 44% in strict F; (0.378 vs. 0.262) despite
being 2x smaller than GPT-40’s estimated 200B
parameters. Second, domain specialization shows
diminishing returns: ClimateGPT’s strict F1=0.062
lags 6x behind general-purpose Llama-3. 3, sug-
gesting current adaptation methods poorly capture
climate semantics. Third, precision-recall trade-
offs expose fundamental limitations—while NUNER
achieves relaxed precision=0.727, its recall=0.307
trails L1ama-3. 3 by 53%, unable to handle climate
entities’ variable boundaries.

Entity-type performance varies dramatically ac-
cording to Table 2. Standardized concepts like



NER RE EL
Relaxed Strict Relaxed Strict Strict
Model #Params P R F P R F P R F P R F P R F, #PD
Total
DeepSeek-V3 671B | .572 350 435 472 255 .331|.075 .072 .073 .034 .032 .033 | 457 272 341 3,365
GPT 40 200B | .602 .323 420 455 214 .291 | .096 .066 .079 .060 .041 .049 | 497 246 330 2,779
Llama-3.3 70B | 536 471 501 432 337 378 | .066 .096 .078 .045 .066 .053 | .440 315 .367 4,051
Llama-3.1 8B | .385 346 .364 291 .239 .262|.026 .042 .032 .016 .027 .020 | .396 .247 304 3,540
ClimateGPT 70B | 494 062 .110 .305 .034 .062 |.009 .001 .001 .000 .000 .000 | .478 .108 .176 828
NuNER 0.35B | .727 307 431 512 .196 .284 - - - - - - - - - -
GLIiNER 0.3B | .591 .378 461 458 269 .339 - - - - - - - - - -
Per-Paper Average
DeepSeek-V3 671B | 454 397 410 401 .330 .348|.066 .070 .059 .031 .036 .027 | .402 .252 .301 135
GPT 40 200B | .478 375 403 384 299 .319 | .078 .060 .060 .047 .038 .037 | .431 224 .286 111
Llama-3.3 70B | 441 .532 458 370 .437 .377 | .064 .073 .063 .044 .048 .043 | .386 .283 .321 162
Llama-3.1 8B | 311 470 .353 248 370 .278 |.027 .036 .028 .017 .023 .018 | .342 .227 .264 141
ClimateGPT 70B | 443 107 .168 .255 .062 .097 | .008 .000 .001 .000 .000 .000 |.392 .085 .139 33
NuNER 0.35B | .620 .341 438 464 .253 .326 - - - - - - - - - -
GLiNER 03B | 490 445 465 .391 .334 359 - - - - - - - - - -

Table 1: LLM performance on ClimatelE. Best scores per column are underlined.
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Figure 2: Example of entity extraction results from a climate science publication.

Relax Strict
label #GT P R F P R Fy
teleconnection 231 | .751 .576 .652 | .728 .530 .614
model 1335 | .739 470 575 | .722 419 .530
location 2485 | .764 .441 559 | .734 388 .507
experiment 280 | 457 .529 490 | 450 .482 465
variable 3404 | 463 295 .360 | 456 255 .327
project 237 | .231 .527 321 | .215 478 .296
weather event 170 | 207 .259 .230 | .209 .247 227
provider 234 | .132 573 214 | .123 .531 .200
natural hazard 324 | 355 .133 .193 | .339 .115 .171
instrument 69 | .072 232 .110 | .063 .200 .096
ocean circulation 20 | .060 .250 .096 | .047 .200 .076
platform 34 1.024 .088 .038 | .024 .088 .038

Table 2: NER performance from Llama-3.3-70B by
different entity types.

teleconnections (e.g., ENSO, NAO) peak at strict
F;=0.614, while platform recognition collapses to
F;=0.038 due to sparse annotations (34 #GT) and
definitional ambiguity (e.g., distinguishing Argo
floats from generic sensors). Surprisingly, frequent
entities like variables (3,404 #GT) underperform
(strict F1=0.327), struggling with compound terms
(e.g., “sea surface height anomaly”).

Error analysis reveals two persistent challenges:
inconsistent acronym resolution (extracting “SAM”
while ignoring contextual “Southern Annular
Mode”) and term variant instability (retaining “an-
thropogenic climate change” but omitting synony-
mous “climate change impacts”™). These patterns,
visualized in Figure 2 and Appendix A.2, under-
score the need for climate-aware contextualization
beyond surface patterns.
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Relaxed (Partial) Relaxed Strict
label #GT P R Fy P R F P R Fy
ComparedTo 922 | .149 .104 .122 | .107 .075 .088 | .107 .075 .088
MeasuredAt 263 | .094 285 .141 | .045 .137 .068 | .045 .137 .068
TargetsLocation 1842 | .163 .137 .149 | .064 .054 .058 | .064 .054 .058
Outputs 465 | .137 .095 .112|.056 .039 .046 | .056 .039 .046
UsedIn 242 | .036 .140 .057 | .020 .079 .032 |.020 .079 .032
RunBy 35|.014 .057 .022|.014 .057 .022|.014 .057 .022
ProvidedBy 31 |.012 226 .023|.010 .194 .020 | .010 .194 .020
ValidatedBy 14 | .010 .143 .018 | .010 .143 .018 | .010 .143 .018
MountedOn 2 |.000 .000 .000 |.000 .000 .000 |.000 .000 .000

Table 3: Relationship Detection performance from Llama-3.3-70B by different relationship types.

8.2 Relationship Extraction Results

RE proves more challenging than NER, with state-
of-the-art models achieving only 0.079 relaxed F;
(GPT-40) and 0.053 strict F; (L1ama-3.3-70B) in
Table 1. Mirroring NER trends, scaling and com-
mercial model tradeoffs persist: L1ama-3.3-70B
outperforms smaller variants by 37% in strict recall
despite GPT-40’s larger parameters. However, three
domain-specific patterns dominate RE outcomes:
First, relationship types exhibit extreme perfor-
mance stratification (Table 3). Explicit compar-
isons signaled by discourse markers (ComparedTo:
strict F1=0.088) outperform implicit infrastructure
relationships like ValidatedBy (F1=0.018), where
teleological ambiguity (e.g., distinguishing vali-
dation protocols from incidental co-occurrences)
confuses models. Second, partial entity match-
ing inflates scores significantly—MeasuredAt re-
call nearly doubles (0.137—0.285) but with preci-
sion below 0.10, reflecting rampant geospatial con-
flations (e.g., “northern Sweden” with “Sweden”).
Third, Low-frequency relations like MountedOn
(#GT=2) remain unrecoverable (F;=0.000), as mod-
els miss implicit dependencies (e.g., “sensor pack-
age deployment”) without explicit mounting terms.
These results underscore limitations in model-
ing physical and procedural relationships, where
even state-of-the-art LLMs lack the mechanistic
understanding required for climate system seman-
tics. Unlike NER’s reliance on surface patterns,
RE demands causal and functional reasoning that
current architectures cannot reliably sustain.

8.3 Entity Linking Results

Entity linking proves challenging in climate sci-
ence, with top-performing L1ama-3.3-70B achiev-
ing only strict F1=0.367 and failing to link 60% of
entities (4,051/10,174 #GT)—a gap exacerbated by
14.3% of annotated concepts lacking GCMD+ map-

&3

pings (e.g., emerging terms like blue carbon gover-
nance). Mirroring NER/RE trends, scale improves
disambiguation (70B vs. 8B: dF;=+0.063) but can-
not compensate for missing taxonomy coverage,
as even GPT-40 underperforms L1ama-3.3-70B by
11% despite 1.85x more parameters. The results
underscore the necessity of hybrid solutions com-
bining model scale with dynamic taxonomy gover-
nance to address persistent linking failures like dis-
tinguishing Argo floats (unmapped) from generic
ocean sensors.

9 Conclusion

We formalize Climate Information Extraction as a
critical NLP task, introducing the ClimatelE Cor-
pus—a domain-specific resource with 500 LLM-
annotated and 25 expert-validated publications
mapped to the GCMD+ taxonomy. Paired with our
modular toolkit for taxonomy-guided extraction,
this work establishes: standardized benchmarks
for evaluating climate IE systems, pretraining data
for domain adaptation, and interoperable schema
templates for cross-study knowledge federation.

Our comprehensive evaluation reveals two key
insights. First, model scale improves recall (70B
vs 8B Llama: 0R +41%) but insufficiently ad-
dresses domain-specific ambiguities, as shown by
ClimateGPT’s failure despite climate-focused pre-
training. Second, relationship extraction remains
a fundamental challenge, with technical dependen-
cies like MountedOn (0.000 F) exposing critical
gaps in LLMs’ physical system understanding.

ClimatelE links climate science and Al for prac-
tical uses: automating CMIP model tracking, ac-
celerating attribution study reviews, and validating
SDG-aligned policy claims. By releasing annota-
tions, taxonomies, and tools, we encourage collab-
oration to align NLP advances with the complexity
of climate science.



10 Limitations

While ClimatelE advances climate informatics,
four constraints merit attention for future iterations.

Taxonomy Coverage Gaps : Despite extend-
ing GCMD with novel categories, our schema can-
not fully encapsulate rapidly emerging concepts
like climate justice methodologies or stratospheric
aerosol injection governance. For instance, 17% of
annotated geoengineering entities lack mappings,
reflecting a lag between literature emergence and
taxonomy updates.

Entity Linking Precision-Throughput Trade-
offs : Our fuzzy string matching for Wikidata
integration (Levenshtein <30%) prioritizes broad
coverage over precision, yielding false positives
for polysemous terms—e.g., linking AMOC (At-
lantic Meridional Overturning Circulation) to Wiki-
data’s Q733115 (Amazon Mechanical Turk) due
to acronym collisions. While threshold tuning
(0.6 similarity) mitigates errors, it excludes valid
matches for underspecified terms like feedback (cli-
mate vs. control systems).

Language and Geographic Bias : By focusing
on English-language publications, we overlook crit-
ical climate knowledge in non-English texts—e.g.,
Spanish-language studies on Andean glacier re-
treat or Mandarin analyses of Yangtze River basin
droughts. This skews entity distributions toward
Eurocentric institutions.

Static Relationship Schema : Our predefined
relationship types (e.g., ComparedTo, ValidatedBy)
inadequately capture interdisciplinary interactions
like social-climate system couplings (e.g., urban
heat islands exacerbate energy poverty”) or eco-
evolutionary dynamics (e.g., ocean acidification
drives coral transcriptomic shifts”). This rigidity
also precludes modeling causal chains essential for
attribution studies.

Addressing these limitations requires: (1) Multi-
lingual NLP Pipelines leveraging low-resource lan-
guage models for Spanish, Mandarin, and Swahili
climate texts; (2) Context-Aware Entity Linking
combining embedding similarity with knowledge
graph walks; (3) Continuous Taxonomy Integra-
tion via automated discovery of emerging terms
from preprints and conference proceedings; (4) Hy-
brid Human-Al Annotation Pipelines for real-time
expert validation of contested concepts; and (5)
Robust Label Refinement using techniques such as
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DynClean (Zhang et al., 2025) to improve annota-
tion quality.
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A Appendix

A.1 Prompt

Table 4 shows the prompt being used for Climate
Science Entity and Relationship Extraction from
the climate science literature.

A.2 Entity extraction prediction

We employ regular expressions to align predicted
entity names with the input text, enabling pre-
cise boundary matching. Figures 3, and 4 vi-
sualize raw(Yellow: PD_all) and PostRAG(Blue:
PD_post) predictions from Llama-3.3-70B, show-
casing examples from evaluation documents.
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-Goal-

Given a text document with a preliminary list of potential entities, verify, and identify all entities of the specified types within the
text. Note that the initial list may contain missing or incorrect entities. Additionally, determine and label the relationships among
the verified entities.

-Entity Types-

A project refers to the scientific program, field campaign, or project from which the data were collected.

A location is a place on Earth, a location within Earth, a vertical location, or a location outside of the Earth.

A model is a sophisticated computer simulation that integrate physical, chemical, biological, and dynamical processes to
represent and predict Earth’s climate system.

An experiment is a structured simulation designed to test specific hypotheses, investigate climate processes, or assess the impact
of various forcings on the climate system.

A platform refers to a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for
further study of its characteristics.

A instrument is a device used to measure, observe, or calculate.

A provider is an organization, an academic institution or a commercial company.

A variable is a quantity or a characteristic that can be measured or observed in climate experiments.

A weather event is a meteorological occurrence that impacts Earth’s atmosphere and surface over short timescales.

A natural hazard is a phenomenon with the potential to cause significant harm to life, property, and the environment.

A teleconnection is a large-scale pattern of climate variability that links weather and climate phenomena across vast distances.
An ocean circulation is the large-scale movement of water masses in Earth’s oceans, driven by wind, density differences, and the
Coriolis effect, which regulates Earth’s climate.

-Relationship Types and Definitions-

ComparedTo: The source entity is compared to the target entity. Outputs: A climate model, experiment, or project (source entity)
outputs data (target entity).

RunBy: Experiments or scenarios (source entity) are run by a climate model (target entity).

ProvidedBy: A dataset, instrument, or model (source entity) is created or managed by an organization (target entity).
ValidatedBy: The accuracy or reliability of model simulations (source entity) is confirmed by datasets or analyses (target entity).
UsedIn: An entity, such as a model, simulation tool, experiment, or instrument (source entity), is utilized within a project (target
entity).

MeasuredAt: A variable or parameter (source entity) is quantified or recorded at a geographic location (target entity).
MountedOn: An instrument or measurement device (source entity) is physically attached or installed on a platform (target
entity).

TargetsLocation: An experiment, project, model, weather event, natural hazard, teleconnection, or ocean circulation (source
entity) is designed to study, simulate, or focus on a specific geographic location (target entity).

-Steps-

1. Identify all entities. For each identified entity, extract the following information:

- entity name: Name of the entity

- entity type: One of the following types: [project, location, model, experiment, platform, instrument, provider, variable]
Format each entity as ("entity"<I><entity name><|><entity type><I><entity description>)

2. From the entities identified from step 1, identify all pairs of (source entity, target entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:

- source entity: name of the source entity

- target entity: name of the target entity

- relationship type: One of the following relationship types: ComparedTo, Outputs, RunBy, ProvidedBy, ValidatedBy, UsedIn,
MeasuredAt, MountedOn, TargetsLocation

Format each relationship as ("relationship"<I><source entity><I><target entity><I><relationship type>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **** as the list
delimiter. Do not output any code or steps for solving the question.

4. When finished, output <ICOMPLETEI>

ITRTRTRTRTR IR TR TR IR TR IR TN TR TR IR TR TR IR TR TR IR
HHHHHHHH AR

-Examples-
{formatted examples}

ITRTRTN TR IR IR TR IR IR IR IR IR TR IR IR TR IR IR TR IR INT]
LR LR LR T IR R IR RN IR R IRIRIRIRIR L]

-Real Data-

ITRTRTNTR IR IR TR IR IR TR IR IR TR IR IR TR IR IR TR IR INT]
LR LR RN R R AR R IR IR IR IRIRIRIRIR L]

Text: {input text}
Potential Entities: {potential entities}

ITRTRTRTRTRINTRTR TN TR TR IR TR TR IR TRTRIRINTRINT]
HHHH R

Output:

Table 4: Prompt Template for Climate Science Entity and Relationship Extraction
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the likelihood of the southern annular mode ( SAM ) forcing Indian Ocean dipole ( 10D ) events and the possible impact of the 10D on El Nifi o - Southern

GT 6T GT GT GT GT
PD_all PD_all PD_all PD_all
PD_post

Oscillation ( ENSO ) events . Several conclusions emerge from statistics based on multimodel outputs . First , ENSO signals project strongly onto the SAM ,

6T PD_all 6T
PD_all PD_post PD_all
PD_post T

although ENSO - forced signals tend to peak before ENSO . This feature is similar to the situation associated with the 10D . The 10D - induced signal over

PD_all 6T ot eT
PD_post PD_all PD_all pD_all
6T PD_post

southern Australia , through stationary equivalent Rossby barotropic wave trains , peak before the 10D itself . Second , there is no control by the SAM on the

GT GT GT GT
PD_all PD_all PD_all
PD_post

10D, in contrast to what has been suggested previously . Indeed , no model produces a SAM - 10D relationship that supports a positive ( negative ) SAM driving a
GT GT GT GT

PD_all PD_all  PD_all PD_all

positive ( negative ) 10D event . This is the case even in models that do not simulate a statistically significant relationship between ENSO and the 10D . Third , the

6T

GT GT
PD_all PD_all PD_all
PD_post

10D does have an impact on ENSO . The relationship between ENSO and the 10D in the majority of models is far weaker than the observed . However , the ENSO 's

GT GT GT GT GT
PD_all PD_all PD_all PD_all PD_all
PD_post PD_post PD_post

influence on the 10D is boosted by a spurious oceanic teleconnection , whereby ENSO discharge - recharge signals transmit to the Sumatra - Java coast ,

GT GT 6T GT
PD_all PD_all PD_all PD_all
PD_post PD_post PD_post

Figure 3: Example 2 of entity extraction results from a climate science publication.

large differences in the quantifiable risk . The implications for policy are discussed in Section 4 and conclusions summarised in Section 5 . < heading > The science of probabilistic event attribution in an
o1

african context</heading > The majority of event attribution studies employ the BACE~-method ( Attribution of Climaterelated Extremes, e.g., Christidis et al . 2012 ): model simulations representing

or PD_all ot
PD_all PD_all

PD_post

present - day weather statistics are contrasted with simulations of a so - called counterfactual world , a Bworld that might have been” , had anthropogenic GHG emissions not altered the climate system .
or
Po_all

These simulations are achieved by running the same climate model but with the anthropogenic forcing removed . Any differences in the statistics of extreme weather events obtained can then be attributed
ot o1 ot
PD_all
PD_post
to anthropogenic GHG forcing . This methodology requires the availability of large climate model ensembles to simulate the statistics of extreme events , which are by definition rare . So far there have

ot PD_all ot
PD_post
5 o

Figure 4: Example 3 of entity extraction results from a climate science publication.
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Given the following metadata about an entity in a climate science ontology, which may include the entity’s name, ontology path,
and a definition (which may be missing), please develop an edited definition suitable for a named entity recognition (NER)
task in climate science literature. The definition should be concise, clear, and limited to 150 tokens. Ensure it is precise and
emphasizes the entity’s unique aspects, avoiding overly general descriptions that could apply to multiple entities. Do not explain;
only provide the edited definition.

Metadata: {}

Edited Definition:

Table 5: Prompt Template for Refining Definitions

A.3 Annotation Guidelines

Annotation guidelines are attached at the end.
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Annotation Guideline

STAGE ONE: Named Entity Recognition

1. Introduction

Purpose of the Manual:
This manual provides detailed instructions for annotating climate-related text or terms extracted from
scientific literature. It aims to ensure consistency and accuracy in labelling climate entities, data, and
models.
Intended Audience:
The guidelines are designed for annotators, including researchers, climate analysts, scientists, and
students, who are familiar with climate science terminology and concepts.
Scope of Annotations:
The annotations focus on specific climate entities, including but not limited to:

o Earth Systems: Land, ocean, atmosphere, and biosphere entities.

e Climate Data: Specific datasets and measurements.

e Climate Models: Global and regional climate models.

2. Definitions and Examples of Key Climate Entities

2.1 Earth Systems

Land:

Refers to a specific region or unit of land that can be described and modeled geographically within

the framework of a climate model. Examples:

e Continents/Regions: Africa, Ethiopia, United Kingdom (UK), high/mid-latitudes, tropics (tropical
regions).

e Land Features: Groundwater, river flow, runoff, streamflow, land cover, land use.

e Specific Landmarks: Amazon Rainforest, Himalayas, United States Midwest (Corn Belt),
Antarctica.

Atmosphere:

Refers to the layer of gases surrounding the Earth, which plays a vital role in shaping climate and

weather patterns and can be modeled geographically within the framework of a climate model.

Examples:

e Atmospheric Layers: Troposphere, mesosphere.

e Climate Phenomena: Temperature, precipitation, wind, evapotranspiration, clouds.

e Weather Systems: Hadley Cells, Ferrel Cells, Trade Winds, Jet Streams, Monsoons, Intertropical
Convergence Zone (ITCZ), El Nifio-Southern Oscillation (ENSO), Tornadoes, Thunderstorms.

Oceans:

Refers to the large bodies of saltwater that cover about 71% of the Earth's surface and can be modeled

geographically within the framework of a climate model. Examples:

e QOceans/Seas: Pacific Ocean, Indian Ocean, Atlantic Ocean.

e QOceanic Features: Gulf Stream, Kuroshio Current, Thermohaline Circulation.

e Climate-Related Ocean Phenomena: Ocean acidification, marine heatwaves, coral reefs, upwelling
zones, sea ice, continental shelves.

2.2 Climate Data

Refers to detailed, quantitative measurements or simulations of variables that describe various

components of the Earth's climate system. Examples:

e Datasets: CRU (Climate Research Unit), GPCC (Global Precipitation Climatology Centre), ERA5
(ECMWEF Reanalysis 5th Generation).

e Climate Indices: HadCRUT, MERRA-2, GSMP3.
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2.3 Climate Models

Refers to computational models used to simulate the Earth's climate system. Examples:
2.4 Global Climate Models (GCMs): CCSM4, CNRM-CMb5, Had GEM2-ES.

2.5 Regional Climate Models (RCMs): MICRO, ACCESS-ESM1.5.

3. Key Tags or Labels

Guidelines for Tagging:
e Ensure the correct spelling and usage of tags. For example, use "Variables" consistently, not
"Variable>" or other variations.

e Review definitions carefully and apply tags or values strictly based on the provided examples
and their accurate definitions.

e If uncertain about the definition of an entity, verify its classification (e.g., variable,
teleconnection) before tagging.

Tag

Definition and examples

Variable

represents a specific measurable element or attribute of the climate system that is
studied or monitored (e.g., cloud cover,

temperature (i.e., surface air, ocean, or groundwater), precipitation, wind speed,
vapor pressure, geopotential height, humidity (relative, specific) etc.

Project

refers to a coordinated effort or initiative aimed at investigating specific aspects of
climate. Projects often involve multiple stakeholders and produce datasets, models,
or assessments (e.g., Coupled Model Intercomparison Project Phase 6 (CMIP6))

Location

refers to the geographic region or coordinates being studied or monitored. This can
be global, regional, or local. Examples includes West Africa, Central Africa, East
Africa, or Southern Africa; tropics or polar regions; high or mid latitudes regions,
specific sites (such as the Amazon, Congo Rainforest or Sahara Desert etc).

Model

refers to computational tool used to simulate and predict climate processes and
interactions in the Earth system (e.g., HadGEM3, WREF etc)

Provider

refers to the organization or agency responsible for creating, maintaining, or
distributing climate data or tools (e.g., NASA (e.g., GISS for climate models,
MERRA datasets); ECMWEF (e.g., ERA5 reanalysis datasets); NOAA (e.g., NCEP
datasets and climate services).

Instrument

refers to the device or tool used to measure climate variables. Instruments can be
ground-based, airborne, or spaceborne. Examples includes Radiosondes (balloons
for atmospheric measurements); Satellites (e.g., MODIS, GOES, or Sentinel); Rain
gauges and anemometers for ground-level data.

Event

An event is an occurrence or phenomenon in the Earth’s system that varies in
temporal scale, ranging from short-term weather events lasting minutes to days to
long-term climate events spanning decades or more. Examples include remote
teleconnection such as ENSO, IOD, etc, droughts, floods, etc

Weather event

Weather events are meteorological occurrences that impact Earth's atmosphere and
surface over short timescales (hours to days).

Common Weather Events; Rainfall (e.g., Drizzle, showers, or steady rain), Snowfall
(e.g., Light, or heavy ); Thunderstorms (e.g., storms with lightning, thunder, heavy
rain, and hail), Wind Events (e.g., breezes, gusts, and strong winds), Cloud Cover
(e.g., Clear skies, partly cloudy, overcast), Temperature Changes (Heatwaves or
cold snaps), Fog and Mist, Frost, Dew etc.
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Natural
Hazard

Natural hazards are phenomena with the potential to cause significant harm to life,
property, and the environment. Teleconnection refers to large-scale patterns of
climate variability that link weather and climate phenomena across vast geographic
areas, influencing atmospheric conditions over long distances. Typical examples of
hazards can be broadly classified into geophysical (e.g., earthquakes, volcanic
eruptions, tsunamis, landslides), meteorological (e.g., cyclones or hurricanes or
typhons, tornadoes, heatwaves), hydrological (e.g., floods, flash floods, drought,
avalanches), biological (pandemics, plagues, animal borne diseases), and
climatological (e.g., wildfires, frost, cold wave) categories.

Ocean
circulation

Ocean circulation is the large-scale movement of water masses in the Earth's
oceans, driven by wind, density differences, and the Coriolis effect, regulating
Earth's climate. Key examples of ocean circulation, categorized into surface
currents (Gulf Stream, Kuroshio Current, California Current, Canary Current,
Equatorial Currents), deep ocean currents (North Atlantic Deep Water (NADW),
Antarctic Bottom Water (AABW), Mediterranean Outflow Water, Indian Ocean
Overturning), Global Ocean Circulation Systems (the Global Conveyor Belt, the
Atlantic Meridional Overturning Circulation (AMOC).

Teleconnection

Teleconnection is a large-scale patterns of climate variability that link weather and
climate phenomena across vast distances. Examples includes El Nifio-Southern
Oscillation (ENSO; (El Nifio or La Nina), North Atlantic Oscillation (NAO), Arctic
Oscillation (AO), Pacific Decadal Oscillation (PDO), Indian Ocean Dipole (I0D),
Madden-Julian Oscillation (MJO), Atlantic Multi-Decadal Oscillation (AMO),
Southern Annular Mode (SAM), Rossby Waves, Walker Circulation, Monsoonal
Systems (i.e., Asian Monsoon and West African Monsoon)

4. Example

Example: “This annotation manual aims to provide consistent methods for annotating climate data. Our primary
focus is 09bdb7d909ed6615760571a6aa14051133179aee.xmi”

Task one: see the scientific literature with serial number above.

Role of the annotator: The annotator is expected is to read each sentence carefully. Then, you are

required to perform these tasks concurrently.

/a7

1. Verify specific pre-annotated climate entries of interest in line 22: (E.g., “clouds”, “precipitation”,

“ENSO”) and other scientific terms such as “mid-latitude continents”. (see details below for more
information).

Delete pre-annotated test that involves a “process” or “methods”, “tools”, frameworks,
“instrument of measurements”, “units of measurement”, “temporal, threshold or range of values”
(e.g., convective parameterisation, diurnal, monsoon (see details below for more information).
Annotate missing but relevant “un-annotated” text of interest (E.g., Westerly Winds) (see details

below on how to annotate).

The strength of the westerly winds, and therefore the Ekman transport, varies with latitude-the maximum northward surface

transport occurs at about 50° S and decreases south of that.

Water must be drawn up from below in order to balance the difference between the larger northward transport at 50° S, say,

compared with the smaller northward transport at 60° S.

The broad ring of upwelling shown in figure 2a starts close to the Antarctic continent and extends all the way to roughly 50° S.
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It is noteworthy fhat some of fhese new developments havp already been implemented in models, indicpting a speeding of the model
development prdcess.

Inthe if ization: at the process scale, major model| ENSO

I large-scale biases still remain in
relation with an both in the mean

pte (e.g., the double ITCZ artifact, warm bia: ts of mid-latitude continen

Furthermore, much less attention has been paid to the Houds that accompany moist convection, even though shallow cumulus +————clouds

represent the largest source of uncertainty in cloud feedback in the current generation of global climate models [113] and the anvils

associated with deep convective cloud systems are a largely unconstrained contributor to climate change besides their well-documented
increase in height with warming [221].

The persistence of endemic model biases, combined with the inevitable trend toward higher model resolution, has led part of the

to abandon iti convective izati in favor of new approaches made possible by the increase of
=) =
computing power, based on models resolving convection and m at the kilometer scale (cloud-resolving models; CRMs).
clouds

AN 1041 ic a huhrid annraach that renlaree & i hva 20 CRM ar aven a 3N larns-addy cimaulatian
=)
[160,199] is a hybrid approach that replaces a c ization by a 2D CRM, or even a 3D large-eddy simulation

( LES ) model
[63] in each atmospheric column.

utti the goal of ization efforts is to give way to global cloud-resolving models that operate on
scales that do not require any cumulus parameterization at all [134].

More recently, first attempts to develop a novel class of convective parameterizations based on machine learning, using a

deep neural network trained by explicit simulations, have been tried with some skill to reproduce convective tendencies and [cloud}
[56,145,183).

Other Scientific Terms: You may find other climate variables such as temperature, wind speed or
wind, sea surface temperature or SST; rainfall, cyclones, aerosols, etc

Delete wrongly pre-annotated climate entities. These may include but not limited to methods,
materials, processes, units of measurements, threshold, or range of values, etc

Units of Measurement: (e.g., Celsius for temperature, mm for rainfall, km/h for wind speed).
Thresholds and Ranges: Values or thresholds or ranges. E.g., 10°C for temperature or mm for
precipitation."

Standardization: standardizing annotations across climate entities. For example, temperature (delete
prefix “minimum or min”, “maximum or max”, “nighttime”, “daytime” for temperature annotations
to ensure consistency (e.g. minimum temperature to temperature).

Other Scientific Terms: Phrases that are a scientific term but do not fall into any of the above classes
E.g. diurnal, interannual,
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22 In the meantime, even iflconvective parameterizations gre improved at the process scale, major model large-scale biases still remain in
() (==}

relation with clouds and brecipitatioﬁ, both in the mean state (e.g., the double ITCZ artifact, warm biases of mid-latitude continents and

the eastern tropical oceans), and in variability from the interannual timescales (|

23 Furthermore, much less attention has been paid to the clouds that accompany moist convection, even though shallow cumulus clouds

MJO , ENSO , etc.).

represent the largest source of uncertainty in cloud feedback in the current generation of global climate models [113] and the anvils

associated with deep convective cloud systems are a largely unconstrained contributor to climate change besides their well-documented
increase in height with warming [221].

24 The persistence of endemic model pi - bined-with-the-neyitable trend toward higher model resolution, has led part of the
community to abandon traditionalconvective parameterization flevelopment in favor of new approaches made possible by the increase of

computing power, based on models resolving convection and clouds at the kilometer scale (cloud-resolving models; CRMs).

25 The super-parameterization or multiscale modeling framework

26/[160,199] is a hybrid approach that replaces a conventional convective parameterization by a 2D CRM, or even a 3D large-eddy simulation
(LES) model

STAGE TWO: Entity Linking

1. Tag Selection Guidelines
e Allowed Tags: Only the following values should be selected as tags. Do not type any tags
manually; only select from the provided list: project, location, model, experiment, platform,
instrument, provider, variable, weather event, natural hazard, teleconnection, ocean circulation
e Spelling and Formatting:
o Ensure all tags are in lowercase.
o Do not use uppercase letters or modify the spellings in any way.
o If you encounter any foreign or unrecognized tags, do not use them.
2. Annotation Setup
Open two tables simultaneously:

1. Annotation Table: The document or interface where you are performing the annotations.
2. Knowledge Base Table: A reference table or database containing entity identifiers and
their corresponding information.

96



Use the knowledge base to search for and verify the correct identifiers for each entity. Make sure
to check if the definitions and the path match the semantic meaning.

3. Task Description

Objective: Link each entity in the text to its corresponding identifier in the knowledge base.
Steps:

1. Identify the entity in the text.

2. Double check the tag from the allowed list (e.g., location, variable, etc.).
3. Search the knowledge base to find the correct identifier for the entity.
4. Link the entity to its identifier in the annotation table.

4. Quality Assurance

Double-check the spelling and formatting of tags.

Ensure that all entities are linked to the correct identifiers in the knowledge base.

If an entity cannot be found in the knowledge base, flag it for review rather than making an
assumption.

STAGE THREE: Relationship
1. Relationship Types and Definitions

Below are the relationship types to be annotated, along with their definitions and examples. Ensure
that you correctly identify the source entity and target entity for each relationship.

1. ComparedTo
e Definition: The source entity is compared to the target entity.
e Example: A climate model, experiment, or project (source entity) outputs data (target entity).
e Template: [Source Entity] ComparedTo [Target Entity]

2. RunBy
e Definition: Experiments or scenarios (source entity) are run by a climate model (target
entity).

e Example: An experiment (source entity) is executed by a climate model (target entity).
e Template: [Source Entity] RunBy [Target Entity]
3. ProvidedBy

e Definition: A dataset, instrument, or model (source entity) is created or managed by an
organization (target entity).
e Example: A dataset (source entity) is provided by a research organization (target entity).
e Template: [Source Entity] ProvidedBy [Target Entity]
4. ValidatedBy

e Definition: The accuracy or reliability of model simulations (source entity) is confirmed by

datasets or analyses (target entity).
e Example: A climate model simulation (source entity) is validated by observational data

(target entity).
e Template: [Source Entity] ValidatedBy [Target Entity]
5. UsedIn

e Definition: An entity, such as a model, simulation tool, experiment, or instrument (source
entity), is utilized within a project (target entity).
e Example: A climate model (source entity) is used in a research project (target entity).
e Template: [Source Entity] UsedIn [Target Entity]
6. MeasuredAt
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e Definition: A variable or parameter (source entity) is quantified or recorded at a geographic
location (target entity).
e Example: Temperature data (source entity) is measured at a specific weather station (target

entity).
e Template: [Source Entity] Measured At [Target Entity]
MountedOn

e Definition: An instrument or measurement device (source entity) is physically attached or
installed on a platform (target entity).

e Example: A weather sensor (source entity) is mounted on a satellite (target entity).

e Template: [Source Entity] MountedOn [Target Entity]

TargetsLocation

e Definition: An experiment, project, model, weather event, natural hazard, teleconnection, or
ocean circulation (source entity) is designed to study, simulate, or focus on a specific
geographic location (target entity).

e Example: A climate model (source entity) targets the Amazon Rainforest (target entity).

e Template: [Source Entity] TargetsLocation [Target Entity]

2. Annotation Instructions

1.

Identify Entities:

e (learly identify the source entity and target entity in the text.

e Ensure that both entities are correctly tagged (e.g., model, location, variable, etc.) before
annotating the relationship.

Select Relationship Type:

e Choose the most appropriate relationship type from the list above based on the context.
o Refer to the definitions and examples to ensure accuracy.
Annotate the Relationship:

e Use the provided templates to annotate the relationship between the source and target
entities.

e Double-check that the relationship type aligns with the context of the text.

Verify Consistency:

e Ensure that the relationship annotation is consistent with the definitions and examples
provided.
e If unsure, consult the knowledge base or flag the relationship for review.
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