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Abstract

Accurately synthesizing climate evidence into
concise statements is crucial for policy mak-
ing and fostering public trust in climate sci-
ence. Recent advancements in Large Language
Models (LLMs), particularly the emergence
of reasoning-optimized variants, which excel
at mathematical and logical tasks, present a
promising yet untested opportunity for scien-
tific evidence synthesis. We evaluate state-
of-the-art reasoning LLMs on two key tasks:
(1) contextual confidence classification, assign-
ing appropriate confidence levels to climate
statements based on evidence, and (2) fac-
tual summarization of climate evidence, gen-
erating concise summaries evaluated for co-
herence, faithfulness, and similarity to expert-
written versions. Using a novel dataset of
612 structured examples constructed from the
Sixth Assessment Report (AR6) of the Intergov-
ernmental Panel on Climate Change (IPCC),
we find reasoning LLMs outperform general-
purpose models in confidence classification by
8 percentage points in accuracy and macro-
F1 scores. However, for summarization tasks,
performance differences between model types
are mixed. Our findings demonstrate that rea-
soning LLMs show promise as auxiliary tools
for confidence assessment in climate evidence
synthesis, while highlighting significant lim-
itations in their direct application to climate
evidence summarization. This work estab-
lishes a foundation for future research on the
targeted integration of LLMs into scientific
assessment workflows. Code and data are
publicly available at https://github.com/
YuchenglLu-NYU/LLMClimateSynthesis.

1 Introduction

Climate science involves complex systems, intri-
cate modeling approaches, and specialized termi-
nology that create significant barriers to public un-
derstanding (Sterman, 2011; Somerville and Has-
sol, 2011; Bernauer and McGrath, 2016). De-
spite overwhelming scientific consensus on climate

change, this complexity hinders widespread aware-
ness and informed decision-making, even among
policymakers responsible for addressing this global
challenge (Pidgeon and Fischhoff, 2011). The ex-
tensive body of scientific evidence, while providing
nuanced understanding of the systems and causal
mechanisms driving climate change, simultane-
ously complicates efforts to communicate clear,
actionable information—a fundamental challenge
at the intersection of science, policy, and public
engagement (van Eck, 2023). Large Language
Models (LLMs) offer promising capabilities for
addressing this communication gap. With their
ability to process and synthesize vast amounts of
text data, LLMs could potentially serve as power-
ful tools for distilling complex climate science into
accessible formats (To et al., 2024; Bulian et al.,
2024a). However, the nuanced nature of scien-
tific evidence in climate research, with its inher-
ent uncertainties and complex causal relationships,
presents challenges that may exceed the capabili-
ties of general-purpose LLMs (Bulian et al., 2024b).
Recent developments in Al have produced special-
ized reasoning-optimized LL.Ms, which are explic-
itly designed to perform multi-step logical anal-
ysis and incorporate chain-of-thought processes
that mirror analytical reasoning. These models are
trained using reinforcement learning techniques to
improve their ability to handle complex logical and
mathematical problems (Cheng et al., 2025). In this
study, we evaluate two state-of-the-art (SOTA) rea-
soning LLMs: DeepSeek-R1 (DeepSeek-Al et al.,
2025) and OpenAI’s 03-mini (OpenAl, 2025)." As
a baseline, we also perform the same two tasks on

'We selected 03-mini over OpenAlI’s flagship reasoning
model ol-pro and ol due to availability and cost considera-
tions. At the time of writing, o1-pro is not available as an API,
whereas o1 costs $60.00 per million output tokens, including
reasoning tokens, compared to 03-mini’s $4.40 and DeepSeek-
R1’s regular price of $2.19 (discount price $0.55). These cost
differences have significant implications for practical applica-
tions in research and deployment settings.
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GPT-40, one of the most widely used and capa-
ble general-purpose LLMs available. Our research
makes three key contributions:

* We develop a focused dataset of 612 struc-
tured examples derived from the IPCC ARG,
specifically designed for evaluating climate
science evidence synthesis. Though modest in
size, this curated resource offers high-quality
pairs of scientific evidence bases with expert-
written summaries and standardized confi-
dence levels, providing a specialized bench-
mark for both classification and generative
tasks in climate communication.

* To our knowledge, we conduct the first evalu-
ation of reasoning LLMs for climate evidence
synthesis, assessing their ability to assign ap-
propriate confidence levels to climate state-
ments based on presented evidence. More-
over, we show that the strong performance
of LL.Ms is not the result of pure memoriza-
tion by benchmarking against “no evidence”
prompts, where we provide reference to spe-
cific sections in IPCC ARG6 but withhold ac-
tual evidences in context.

* We evaluate these models’ summarization
abilities on complex climate evidence, reveal-
ing important insights about the distinct skills
required for effective scientific communica-
tion versus classification tasks. This analysis
highlights the specific capabilities needed for
translating scientific evidence into accessible
formats for policymakers and the public.

These contributions collectively advance our under-
standing of how Al systems might address the criti-
cal challenge of communicating climate science
more effectively, potentially facilitating greater
public understanding and more informed policy-
making in this crucial domain.

2 Related Work

Climate Science and NLP The application of
NLP techniques to climate science has gained in-
creasing popularity in recent years (Stammbach
et al., 2024). Incorporating artificial intelligence
in the assessment and communication of climate
statements is among the most important research
directions within the Climate NLP research pro-
gram. Costa et al. (2024) introduced ClimateQ&A,

a dataset and LL.M-based assistant that answers cli-
mate and biodiversity-related questions grounded
in scientific reports from the IPCC and IPBES,
which builds upon previous related works (Morio
and Manning, 2023; De-Gol et al., 2023; Muccione
et al., 2024; Schimanski et al., 2024; Mullappilly
et al., 2023).

However, research specifically focusing on cli-
mate evidence synthesis and assessment remains
nascent. Joe et al. (2024) conducted a prelimi-
nary evaluation of GPT-40’s capabilities for climate
change evidence synthesis and systematic assess-
ments, but primarily focused on information ex-
traction rather than comprehensive evidence evalu-
ation. Similarly, Li et al. (2024b) extracted climate
change statements in IPCC reports to understand
patterns of confidence levels and evidence types,
while Lacombe et al. (2023) developed CLIMA-
TEX, which assessed statements from IPCC AR6
reports without their supporting evidence bases.
These works emphasized information retrieval ca-
pabilities of general-purpose LL.Ms rather than evi-
dence synthesis or confidence attribution.

Our work differs significantly by evaluating mod-
els’ abilities to not only extract climate knowledge
but to synthesize evidence and assign appropri-
ate confidence levels—tasks more directly aligned
with scientific communication needs. Further-
more, we specifically examine reasoning-optimized
LLMs, which have not previously been evaluated
for climate evidence synthesis tasks.

Reasoning LLMs Recent advancements in
LLMs have led to specialized variants designed
specifically for reasoning tasks. These models in-
corporate architectural innovations and targeted
training methodologies to enhance their logical and
multi-step reasoning capabilities. DeepSeek-R1
and OpenAl’s 03-mini represent SOTA examples
in this class of models, balancing exceptional per-
formance with computational efficiency.

The broader landscape of reasoning in LLMs
has been extensively studied. Huang and Chang
(2023) provides a comprehensive survey of reason-
ing capabilities in LLMs, identifying key method-
ologies that enable more sophisticated logical anal-
ysis. Notably, Wei et al. (2022) demonstrated that
chain-of-thought prompting significantly enhances
reasoning performance across various benchmarks.
Both DeepSeek-R1 and OpenAI’s 03-mini incor-
porates explicit chain-of-thought in their reason-
ing. Additionally, Sun et al. (2024) categorizes
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various reasoning frameworks in foundation mod-
els, emphasizing the unique strengths of models
optimized for reasoning tasks. Xu et al. (2025)
surveyed the application of reinforcement learning
(RL) in improving LLMs’ reasoning capacity, a
training technique employed by both DeepSeek-R1
and o03-mini.

Despite these advances, the application of rea-
soning LLMs to scientific evidence synthesis re-
mains relatively unexplored, particularly in do-
mains like climate science where uncertainty quan-
tification and nuanced interpretation are essential
for effective communication and policy guidance.

Evidence Synthesis with LLMs The task of syn-
thesizing scientific evidence and assigning appro-
priate confidence levels has traditionally been per-
formed by human experts following established
protocols (IPCC, 2010; Mastrandrea et al., 2011).
Recent work by (Van Veen et al., 2023; Peng et al.,
2023; Delgado-Chaves et al., 2025) explored the
use of LLMs for evidence synthesis in medical
contexts, finding promising capabilities while ac-
knowledging significant challenges remain, espe-
cially regarding trust and robustness. However,
evidence synthesis in the climate domain remains
largely unexplored. Reasoning LLMs, with their
enhanced capabilities for logical analysis, represent
a particularly promising approach for addressing
the unique challenges of climate evidence synthe-
sis, where nuanced interpretation of evidence is
essential for effective science communication and
policy guidance.

3 Dataset

The Intergovernmental Panel on Climate
Change (IPCC) Sixth Assessment Report (AR6)
IPCC ARG represents the most comprehensive syn-
thesis of climate science to date, compiled by hun-
dreds of leading scientists and approved by 195
member governments. Published between 2021
and 2023, ARG consists of contributions from
three Working Groups covering the physical sci-
ence basis (IPCC AR6 WGI Masson-Delmotte
et al. (2021)), impacts and adaptation (IPCC AR6
WGII Portner et al. (2022)), and mitigation of
climate change (IPCC AR6 WGIII Shukla et al.
(2022)), along with a Synthesis Report that in-
tegrates findings across all components. A dis-
tinguishing feature of the IPCC ARG is its rigor-
ously structured format that follows a systematic
evidence-to-conclusion framework. Each section

presents detailed evidence bases drawn from peer-
reviewed literature, followed by carefully crafted
summary statements with explicitly assigned confi-
dence levels. These confidence assessments follow
a standardized methodology (Mastrandrea et al.,
2011) that combines scientific agreement and evi-
dence quality, producing calibrated language that
expresses varying degrees of certainty (see Figure
5 in Appendix B for details). This structured ap-
proach makes ARG an ideal source for systematic
extraction of evidence-conclusion pairs with asso-
ciated confidence assessments. Figure 1 illustrates

m an anthropogenic influence on the frequency or other
aspects of 55Ws has not yet been robustly detected. Thera is.fa_w
confidance in the ability of modals to simulate any such trends aver
the historical period because of large natural interannual variability

and also due to substantial common biases in the simulated mean
state affecting the simulated frequency of S5Ws,

Figure 1: Example conclusion from IPCC AR6 WGI

a sample conclusion from the the Sudden Strato-
spheric Warming Activity subsection from Chapter
3 Human Influence on the Climate System from
IPCC AR6 WGI Masson-Delmotte et al. (2021).
Figure 7 in the Appendix shows the subsection,
which includes section header, evidence bases, and
conclusion in its original layout.

The report’s consistent organization enables reli-
able parsing of the relationship between supporting
evidence and resulting conclusions. Each finding
is traceable to its underlying evidence base 2, with
transparent reasoning that connects specific climate
observations, model outputs, and scientific theories
to summary statements. This evidence-conclusion
structure, combined with standardized confidence
metrics, provides a gold-standard dataset for evalu-
ating how effectively LLMs can process complex
scientific information, determine appropriate confi-
dence levels, and generate accurate summaries that
preserve key scientific content while maintaining
appropriate expressions of certainty.

Data Extraction Process We follow a three-
step procedure to extract evidence-conclusion data
pairs.

*Note that evidences presented in these subsections are
already summaries with interpretations produced by climate
experts, much like the exposition of literature in the related
work or literature review sections of any scientific publication.
That being said, for future research, one might be interested
in retrieving the original, source research articles and having
LLMs synthesizing from ground up.
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1. Document Preprocessing: We converted
PDF files to Markdown format using MinerU
(Wang et al., 2024), a SOTA open-source PDF
information extraction tool.> Given the ex-
tensive length of ARG reports, we segmented
them into manageable chunks based on the
reports’ table of contents. We incorporated
one-page overlaps between segments to pre-
vent information loss at section boundaries,
as often one section begins on the same page
where the previous section ends.

2. Argument Identification: We parsed each
Markdown file using header tags (#) to iden-
tify distinct sections. To ensure the extrac-
tion of genuine evidence-conclusion pairs, we
applied filtering criteria to identify argumen-
tative sections. A section was classified as
containing an argument if it: (1) consisted of
three or more paragraphs, and (2) concluded
with a paragraph containing one of the follow-
ing concluding phrases: “in summary”, “to
summarize”, “in conclusion”, “overall,”*, “to
conclude”, “in short”, or “to sum up”. While
this approach may have excluded some valid
evidence-conclusion pairs, it prioritized data
quality over quantity.

3. Confidence Level Extraction: We identi-
fied and extracted the confidence levels as-
sociated with each conclusion. For conclu-
sions containing multiple assessments with
distinct confidence levels, we segmented the
conclusion paragraph into individual state-
ments. For example, the statement “To con-
clude, atmospheric aerosols sampled by ice
cores, influenced by northern mid-latitude
emissions, show positive trends from 1700 un-
til the last quarter of the 20th century and de-
creases thereafter (high confidence), but there
is low confidence in observations of system-
atic changes in other parts of the world in
these periods” was divided into two separate
conclusions with their respective confidence
levels. Since there are too few “very low” and
“very high” confidence conclusions at the end
of the process, we keep only conclusions with

*MinerU allows the extraction of pictures. However, we
choose to disregard these pictures for the sake of fairness in
comparison. While GPT-4o allows pictures as inputs, reason-
ing LLM APIs do not currently take pictures as input.

*The > comma after overall is important to reduce false
positives.

LR N3

“low”, “medium”, or “high” confidence.

We deliberately employed a rule-based parsing
strategy rather than relying on LLMs for data ex-
traction to avoid potential issues of content hallu-
cination or misrepresentation. Previous research
by (Huang et al., 2023; Mohamed et al., 2025) has
demonstrated that LLMs can inadvertently intro-
duce factual distortions or fabricate content when
processing scientific text, which could compromise
dataset integrity. Our rule-based approach ensures
reproducibility and maintains the original scientific
meaning of the extracted evidence-conclusion pairs.
After all, part of the purpose this paper is to evalu-
ate LLMs’s capacity to digest scientific text. Below
is an example evidence excerpt extracted from this
process (from WGI 3.3.3.4 Sudden Stratospheric
Warming Activity, excerpt in support of the conclu-
sion shown in Figure 1):

Sudden stratospheric warmings (SSWs)
are stratospheric weather events associ-
ated with anomalously high temperatures
at high latitudes persisting from days to
weeks .....

Seviour et al. (2016) found that
stratosphere-resolving CMIP5 models,
on average, reproduce the observed fre-
quency of vortex splits (one form of
SSWs) but with a wide range of model-
specific biases ......

Some studies find an increase in the fre-
quency of SSWs under increasing green-
house gases ......

Dataset Characteristics Our extraction process
yielded a compact dataset of 612 distinct “argu-
ments” (evidence-conclusion pairs) from the IPCC
ARG reports. Each data point in our dataset con-
tains the following features: (1) source information
(Working Group report identifier and subsection
header), (2) evidence bases (the supporting sci-
entific content preceding the conclusion), (3) full
conclusion paragraph, (4) individual conclusion
statements (when a conclusion paragraph contains
multiple assessments), and (5) the confidence level
explicitly assigned to each individual conclusion
statement (ranging from “low” to “high”). For the
confidence classification task, we additionally cre-
ated a field called "masked conclusion" where the
original confidence level expressions were replaced
with <MASKED>, allowing for evaluation of models’
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ability to assign appropriate confidence levels with-
out worrying about the potential bias paraphrasing
introduces.

Distribution of Confidence Levels

87

high medium low
Confidence Level

Figure 2: Confidence Level Distribution

Figure 2 shows that most conclusions have con-
fidence, reflecting the scientific rigor of IPCC re-
ports and the growing consensus in climate science
(Cook et al., 2016). The distribution of confidence
levels in our dataset is in line with what Lacombe
et al. (2023); Li et al. (2024b) have observed in
their climate statements datasets.

Figure 3 plots the distribution of the length of ev-
idence texts, measured in tokens using the c1100k
base tokenizer, where the average length is 1654
tokens. In contrast, the average length of individ-
ual conclusion statements is only 62 tokens. This
substantial difference (approximately 27:1 ratio)
highlights the condensation of information required
when synthesizing evidence into concise conclu-
sions, making this a challenging task for LLMs.

Distribution of Evidence Lengths

3000
Number of Tokens

Figure 3: Evidence Length Distribution

4 Methods

Contextual confidence classification To rigor-
ously evaluate the performance differences be-
tween reasoning-optimized LLMs and general-
purpose LLMs, while also controlling for potential
memorization effects, we developed three distinct
prompting strategies:

1. Zeroshot Contextual: Models are provided
with evidence bases and conclusion state-
ments (with confidence levels masked), then
asked to classify the appropriate confidence
level according to IPCC standards without any
examples.

2. Fewshot Contextual: Similar to the zero-shot
approach, but with three randomly selected ex-
amples demonstrating low, medium, and high
confidence classifications to provide models
with context on the task.

3. Reference Only: Models are given only the
conclusion statements, source metadata (i.e.,
the working group report and subsection), and
standard definitions of the confidence levels-
without any supporting evidence or examples.
This setup serves as a control condition to test
whether models are relying on memorization
of the IPCC reports rather than reasoning over
evidence.’

For all prompting strategies, we instructed mod-
els to select from three confidence levels ("low,"
"medium," or "high") based on the IPCC’s stan-
dardized confidence assessment framework (Mas-
trandrea et al., 2011). Details about prompts are
found in Appendix A.

Factual Summarization In the summarization
task, models were given evidence bases and one
example evidence-conclusion pair and then asked
to generate concise summary statements that faith-
fully reflect the evidence while assigning appropri-
ate confidence levels. Summaries are compared
against the full conclusion, not the individual con-
clusions. This task evaluates models’ ability to
both synthesize complex scientific information and
accurately represent uncertainty—two critical com-
ponents of scientific communication.

Evaluation Metrics For the confidence clas-
sification task, we used accuracy and macro-
averaged F1 score as our primary metrics. Macro-
F1 is the primay metric to look at since confidence
levels are somewhat imbalanced in our dataset (as
shown in Figure 2).

5In the absence of a custom-trained LLM explicitly ex-
cluding IPCC AR6 materials, we concede that we cannot
definitively rule out memorization. Our evaluation design
instead aims to approximate this distinction by comparing per-
formance across content-based and reference-only conditions
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For factual summarization task, we adopt three
commonly used metrics: ©

1. ROUGE (Lin, 2004). ROUGE computes the
overlap of n-grams between model-generated
summaries and expert-written conclusions
from the IPCC, providing a basic measure
of content coverage.We report ROUGE-1
(unigram overlap) and ROUGE-L (longest
common subsequence), using the F1 variant,
which is the harmonic mean of precision (how
much of the candidate matches the reference)
and recall (how much of the reference is cov-
ered by the candidate).

2. BERTScore (Zhang et al., 2020). BERTScore
improves upon ROGUE by measuring se-
mantic similarity between generated and
expert-written conclusions beyond exact word
matches, using contextual embeddings from
pretrained language models. We use the ver-
sion based on RoBERTa-Large (Liu et al.,
2019) and report the F1 score, which is stan-
dard practice in BERTScore evaluations.

3. G-Eval (Liu et al., 2023). with GPT-40. G-
Eval leverages LLLMs with structured prompts
and promises to provide human-like assess-
ment of summary quality. We use a cus-
tomized prompt tailored to our scientific ev-
idence synthesis context to focus on rele-
vance, faithfulness, and appropriateness of
confidence levels of LLM-generated conclu-
sions.

Unlike the evaluation of classification tasks, which
benefits from clear-cut ground truth, reliable eval-
uation of summarization task remains an ongoing
area of research (Zhang et al., 2025). We choose
our evaluation metrics to balance surface-level cov-
erage (ROUGE), semantic similarity (BERTScore),
and more human-aligned quality judgments (G-
Eval), given the lack of climate-specific summariza-
tion evaluation metrics. While it would be valuable

®We included FACTCC (Kryscinski et al., 2020) in ear-
lier versions but removed it in the final version for two rea-
sons. First, FACTCC was trained on news-style summariza-
tion datasets and may not generalize well to scientific domains
like climate synthesis, where factual consistency involves nu-
anced reasoning and domain-specific terminology. Second, we
observed potential implementation issues where FACTCC re-
turned nearly identical scores across model outputs (up to the
4th decimal point), whereas other evaluation metrics, though
close, showed more meaningful variance. This suggests that
FACTCC was not a reliable discriminator in our setting.

to adapt existing metrics, such as BERTScore or
FACTCC, using domain-specific models like Cli-
mateBERT (Webersinke et al., 2022), we leave this
to future work.

5 Classification Results

Table 1 presents the performance of both reasoning-
optimized LLMs (DeepSeek-R1 and 03-mini) and a
general-purpose LLM (GPT-40) on the confidence
classification task across different prompting strate-
gies. For context, random guessing on this three-
class problem would yield an expected accuracy of
33.3%, while majority class guessing (predicting
"high" confidence for all examples, which consti-
tutes approximately 55% of our dataset) would
result in an accuracy of 55% with a macro-F1 score
of 0.24.

Reasoning LLMs Outperform General-Purpose
Models Both reasoning-optimized LLMs con-
sistently outperform GPT-40 across all prompt-
ing strategies. In the zero-shot contextual set-
ting, DeepSeek-R1 and 03-mini achieve macro-F1
scores of 65% and 63% respectively, compared to
57% for GPT-40, representing a performance gap
of 8 percentage points between DeepSeek-R1 and
GPT-40. This advantage persists in the few-shot
contextual setting, where reasoning models main-
tain a 7 percentage point lead. The accuracy scores
follow a similar pattern.

Interestingly, the few-shot approach did not con-
sistently improve performance over zero-shot for
any of the models. While 03-mini increased its F1
score from 63% to 68%, DeepSeek-R1 decreased
from 65% to 63%. One potential explanation is con-
text length limitations. Including three complete
evidence-conclusion pairs in addition to the task
instructions may have caused information overload,
making it difficult for the models to effectively pro-
cess the lengthy context.

Memorization Is Not the Primary Driver of Per-
formance Given that the IPCC AR6 was pub-
lished in 2023, and the knowledge cutoff dates for
all tested models extend beyond this date, a natural
concern is whether models are simply retrieving
memorized content rather than performing genuine
reasoning. The reference-only condition allows us
to investigate this possibility by providing models
with only the conclusion statement and retrieval-
relevant information (working group and section
reference) without the actual text of supporting evi-
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dence.

The results reveal several important patterns.
First, all models experience a performance drop
in the reference-only condition compared to the
contextual conditions, with GPT-40 showing the
steepest decline (17 percentage points from zero-
shot to reference-only). This suggests that access to
evidence is indeed crucial for the task for all mod-
els. Second, even in the reference-only condition,
reasoning models maintain accuracies of 57-58%,
substantially above both random and majority-class
baselines, while GPT-40’s performance drops to
41%, only marginally better than a random classi-
fier and below the majority class baseline.

The relatively strong performance of reasoning
models even without evidence suggests they may
be better at leveraging minimal contextual cues to
retrieve information or perhaps applying general
reasoning principles to scientific uncertainty assess-
ment. However, the significant performance gap
between contextual and reference-only conditions
across all models indicates that genuine evidence
evaluation, rather than pure memorization, drives
the superior performance observed in the contex-
tual settings.

Performance Inference Cost Trade-off While
reasoning LLMs demonstrate superior perfor-
mance, this advantage comes with significant com-
putational costs. DeepSeek-R1 and 03-mini con-
sume substantially more tokens during inference
compared to GPT-4o0, as shown in Figure 4. This
difference stems from reasoning models’ explicit
chain-of-thought inference-time scaling processes,
where they generate extensive internal reasoning
before producing a final answer.” In contrast,
GPT-40 produces just 2 tokens: the prediction

"Interestingly, performance appears to correlate with to-
kens consumed during inference. In fewshot settings, models
actually spend fewer tokens on reasoning, as if the additional
input tokens from demonstrations crowded out the model’s
chain-of-thoughts.

Token Usage Comparison Across Models and Tasks
1090

GPT-40
929 03-mini
DS-R1

988

Average Token Usage

2 2 2
zeroshot fewshot reference_only
Task Type

Figure 4: Token Cost Comparison

Note: The bars for GPT-40 are barely visible as it uses
only 2 tokens per classification.

token and the EOS token. In practice, however,
the more pressing concern is latency. Inference
on DeepSeek-R1 took significantly longer than
any other model, requiring over 12 hours to com-
plete 612 requests sent asynchronously. While
this largely reflects DeepSeek server’s capacity and
load constraints, the pattern holds even among Ope-
nAl models. 03-mini required approximately four
times longer to complete identical tasks compared
to GPT-4o.

6 Summarization Results

DeepSeek-R1 seems to have a slight edge but rea-
soning LLMs in general do not. As shown in
Table 2, DeepSeek-R1 slightly outperforms other
models on lexical and semantic similarity met-
rics, achieving higher scores on ROUGE-1 (0.22),
ROUGE-L (0.19), and BERTScore (0.84) com-
pared to 03-mini and GPT4o. Similarly, the differ-
ences in G-Eval are minimal. Notably, the other
reasoning LLM o03-mini, while clearly outperform-
ing GPT-4o in classification tasks, shows negligible
differences in summarization performance. We are
inclined to believe that reasoning LLMs may not
hold a general advantage in summarization tasks,
and DeepSeek-R1’s better performance may be
idiosyncratic. One possible explanation for this
phenomenon is that reasoning LLMs are primarily

Model Zeroshot Contextual Fewshot Contextual Reference Only
ACC F1 ACC F1 ACC F1
DS-R1  0.66 0.65 0.65 0.63 0.57 0.54
03-mini  0.65 0.63 0.63 0.68 0.58 0.60
GPT-40 0.58 0.57 0.57 0.56 0.41 0.41

Table 1: Classification Results. The table shows accuracy (ACC) and macro-averaged F1 (F1) scores for DeepSeek-
R1, 03-mini, and GPT-40 in Zeroshot Contextual, Fewshot Contextual, and Reference only prompting settings.
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Model ROGUE-1 ROGUE-L BERTScore G-Eval G-Eval G-Eval
F1 F1 F1 F1 Faithfulness Relevance Confidence
DS-R1 0.22 0.19 0.84 4.80 4.90 4.94
03-mini 0.14 0.12 0.82 4.74 4.86 4.98
GPT-4o 0.14 0.13 0.82 4.76 4.88 4.87

Table 2: Performance comparison of models on climate evidence summarization tasks. ROGUE-1 and ROUGE-L
measures lexical overlap, BERTScore captures semantic similarity, and G-Eval metrics assess human-aligned quality
dimensions including faithfulness, relevance, and appropriateness of confidence assessment. Higher scores indicate
better performance across all metrics. Detailed evaluation prompts are provided in Appendix A.

trained to solve mathematical and logical tasks, not
for open-ended, generative tasks like summariza-
tion.

Evaluation Biases Another possible explanation
for our results lies in evaluation biases. Unlike
classification tasks where evaluation is straightfor-
ward, in summarization tasks, apart from using
ROGUE, we rely on pretrained language models
themselves as evaluators. Recent studies such as Li
et al. (2024a) and Gu et al. (2025) highlight several
concerns with the use of LLMs as judges, including
various forms of bias. For example, BERTScore is
implemented with general-purpose pretrained lan-
guage models, which are likely affected by domain
shift in our climate science setting. Similarly, re-
cent work (Panickssery et al., 2024) suggests that
LLM-based evaluators may favor outputs gener-
ated by architectures similar to their own. This
could partly explain why more advanced reasoning
LLMs do not show clear advantages under G-Eval,
especially since the evaluator used is GPT-4o itself.
That said, it is noteworthy that DeepSeek-R1,
despite likely having less architectural similarity
to GPT-40 than 03-mini, achieves the best overall
G-Eval scores. While this complicates the interpre-
tation, it also suggests that other factors, such as
training data or output style, may influence evalua-
tion outcomes. Addressing all of these issues is be-
yond the scope of this paper, and we welcome fur-
ther work to develop more robust, domain-sensitive
evaluation frameworks for summarization tasks.

7 Conclusion

Our evaluation of reasoning-optimized LLMs for
climate evidence synthesis reveals both promis-
ing capabilities and important limitations. These
models demonstrate significant advantages in con-
textual confidence classification, outperforming
general-purpose LLMs by 8 percentage points in
accuracy and macro-F1 scores when assigning con-

fidence levels to climate statements. This suggests
potential utility as auxiliary tools for confidence
assessment in scientific workflows.

However, in factual summarization tasks, reason-
ing LLLMs show minimal and inconsistent advan-
tages over general-purpose models. Despite their
enhanced logical capabilities, they struggle with the
nuanced requirements of scientific summarization
when evaluated on relevance, faithfulness, confi-
dence level assignment, which fares much worse
than expert-written summaries.

These findings indicate that current reasoning
LLMs can potentially contribute to specific aspects
of climate evidence synthesis while highlighting
the continued necessity of human expertise for sum-
marization tasks. Future work should focus on de-
veloping specialized models for scientific synthesis
and exploring human-AlI collaborative frameworks
that leverage the complementary strengths of both.
Ultimately, a targeted approach to integrating these
technologies into scientific assessment will be es-
sential to maintain rigor while enhancing efficiency.

8 Limitations

We acknowledge that our research faces several
limitations.

First, our evidence base excludes visual data
such as graphs, charts, and images, which often
contain critical climate information in IPCC reports.
This omission potentially limits the comprehensive-
ness of our evaluation, as multi-modal reasoning
capabilities would be necessary for complete as-
sessment of climate evidence.

Second, we rely on prompt-based approaches
without domain-specific adaptation or fine-tuning.
While this allows for assessment of off-the-shelf
model capabilities, it likely underestimates the po-
tential performance of models specifically adapted
to climate science terminology and reasoning pat-
terns.
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Third, our evaluation metrics for summarization
tasks, despite careful design, may be susceptible to
"LLM-as-judge" biases. Models evaluating other
models’ outputs could share fundamental limita-
tions or biases, potentially inflating quality assess-
ments of machine-generated summaries compared
to expert evaluation.

Finally, our study represents a point-in-time as-
sessment of rapidly evolving technologies. The
performance gaps and capabilities identified may
change significantly as reasoning LL.Ms continue
to develop. Future work should address these lim-
itations through multi-modal evidence inclusion,
domain adaptation techniques, and more robust
human-in-the-loop evaluation frameworks.

9 Ethical Considerations

This research evaluates LLMs on existing IPCC
assessment data without involving human subjects
or generating new climate recommendations. We
acknowledge that Al tools for scientific synthe-
sis raise important considerations regarding trans-
parency, accountability, and potential automation
bias. While our work demonstrates potential utility
in specific tasks, we emphasize that these technolo-
gies should supplement rather than replace expert
judgment in climate assessment.
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A Appendix: Prompt Details

Following DeepSeek’s recommendation for
data cleaning and general analysis tasks,® we
set temperate at 1 for DeepSeek-R1 (and also
GPT-40). For 03-mini, we set reasoning effort to
be “medium”.

Reference Only Prompt is adapted from Lacombe
et al. (2023). Contextual prompts (zeroshot and
fewshot) and summarization prompt are produced
with the help of meta-prompts by OpenAL°® G4
Eval Prompt is adapted from Liu et al. (2023) and
OpenAl'?

Reference Only Prompt

You are a knowledgeable climate science as-
sistant trained to assess the confidence level
associated with various statements about cli-
mate change. You will be presented with
a statement about climate science, climate
impacts, or climate change mitigation re-
trieved from the IPCC AR6 WGI, WGII, or
WGIII assessment reports.

You will be given the subsection header
from where the statement is from. Climate
scientists have evaluated that statement as
low confidence, medium confidence, or
high confidence, based on evidence (type,
amount, quantity, consistency) and agree-
ment among their peers.

What is their confidence level? Respond
*only* with one of the following words:
’low’, "'medium’, "high’.

Reference: {WG}, {header}
Statement: {conclusion_statement}
Output:

8https://api—docs.deepseek.com/quick_start/
parameter_settings

*https://platform.openai.com/docs/guides/
prompt-generation

10https://cookbook.openai.com/examples/
evaluation/how_to_eval_abstractive_summarization

Contextual Prompt

Analyze the provided scientific text *evi-
dence excerpt* and predict the <MASKED>
confidence level of the *conclusion state-
ment* based on contextual evidence.
Avoid external knowledge. Rely only on
the provided text. Base your evaluation
on the type, quantity, consistency, and
agreement of presented evidences.
Respond *only* with one of the following
words: ’low’, 'medium’, "high’.

Example One
Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement}
Output:
{true_confidence}

Example Two
Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement }
Output:
{true_confidence}

Example Three
Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement }
Output:
{true_confidence}

Input:

Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement}
Output:
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Summarization Prompt

You are a scientific analyst summarizing
key findings from scientific literature.
Given a passage of scientific evidence,
synthesize the information concisely while
preserving quantitative details, uncertainty
assessments, and key conclusions.

Guidelines:

1. Focus on the core scientific claims,
ensuring clarity and accuracy.

2. Include key findings with numerical data
and confidence levels when appropriate.

3. Be concise, your answer should not be
longer than one paragraph.

4. Avoid speculation. Use only the provided
information; exclude external knowledge.
5. Use precise and neutral language.

Example Input: {evidence_excerpt}

Example Output: {conclusion}

Input: {evidence_excerpt}

Output:

G4 Eval Prompt

Scientific Conclusion Evaluation You are
an expert evaluator assessing the quality
of LLM-generated scientific conclusions.
Your task is to evaluate how well a model
has synthesized scientific literature accord-
ing to specific criteria. For each submission,
you will be provided with:

1. The original scientific passage

2. The LLM-generated conclusion

3. The expected guidelines for the conclu-
sion

Evaluation Criteria (Score each on a scale
of 1-5):

{criteria}

Evaluation Process: {steps}

Now evaluate: Original Passage: {passage}
LLM-Generated Conclusion: {conclusion}
{guideline_section }

Your evaluation must follow this exact for-
mat: Evaluation:

-Relevance: Score: X/5

-Faithfulness: Score: X/5

-Confidence Level Appropriateness: Score:
X/5

G4 Eval Prompt - Relevance

Relevance

* 5: Perfectly captures the core scientific
findings and key quantitative details

* 4. Identifies most important findings but
misses minor details

* 3: Captures some key findings but omits
several important elements

* 2: Focuses primarily on peripheral infor-
mation rather than central findings

* 1: Fails to identify the main scientific find-
ings
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High agreement High a
Limited evidence Medium

Medium agrsemsnr Medium ag'reemenr
Limited evidence Medium evidence

Agreement

Low agreement Low agreement
Limited evidence | Medium evidence

Low agreement
Robust evidence

Confidence
Scale

Evidence (type, amount, quality, consistency) s

Figure 5: Confidence Evaluation Matrix from (Mastrandrea et al., 2011)

G4 Eval Prompt - Faithfulness

Faithfulness

* 5: Completely faithful to the original text
with no misrepresentations or distortions

* 4. Largely faithful with only minor inac-
curacies that don’t affect the core meaning
* 3: Generally faithful but contains some
misrepresentations of moderate importance
*2: Contains significant misrepresentations
or fabricated information

* 1: Fundamentally misrepresents the sci-
entific content or contradicts the original
text

\

G4 Eval Prompt - Confidence Level Ap-
propriateness

Confidence Level Appropriateness

* 5: All confidence levels expressed in con-
clusion statement strictly follow from scien-
tific text

* 4: Contain confidence level statements
with minor inaccuracies or somewhat dubi-
ous nature

* 3: Preserves some uncertainty statements
but omits or misrepresents others

*2: Significantly understates or overstates
confidence in findings

* 1: Completely misrepresents or omits crit-
ical uncertainty statements and confidence
levels

. J

B Appendix: Figures from IPCC AR6
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Confidence Scale

Evidence >

Chapter 3

human influence on histarical blocking activity. The fow confidence
statemeants are due to the limited number of studies available. The
shift of the Southem Hemisphere jet is comrelated with modulations
of tha SAM (Section 3.7.2). There is medium confidence in modal
performance regarding the simulation of the extratropical jets, storm
track and blocking activity, with increased resolution somatimes
corresponding to better performance, but important shortcomings
remain, particularly for the Eurc-Atlantic sector of the Northem
Hemisphere. Nonetheless, synthesizing across Sections 3.3.3.1-
3.3.3.3, there is high confidence that CMIP& modals capture the
general characteristics of the tropospheric large-scale drculation.
3.3.34  Sudden Sratospheric Warming Activity

Sudden stratospheric warmings (55Ws) are stratospheric weather
avents associated with anomalously high temperatures at high
latitudes persisting from days to weeks, Saction 2.3.1.4.5 discusses
the definition and observational aspects of 55Ws. 55Ws are oftan
associatad with anomalous weather conditions, for exampla, wintar
cold spells, in the lower atmosphere (e.g., Butler et al., 2015; Baldwin
atal, 2021).

Saviour et al. (2016) found that stratosphere-resolving CMIPS
modals, on average, reproduce the observed frequency of vortex
splits {one form of $5Ws) but with a wide range of modekspecific
biases. Models that produce a better mean stata of the polar vortex
also tend to produce a more realistic S5W frequency (Seviour
ot al, 2016). The mean sea loval pressure anomalies occurring in
CMIPS model simulations when an 55W is underway, however,
differ substantially from those in reanalyses (Seviour et al,
2016). Unlike stratosphere-resolving models, models with limited
stratospheric resalution, which make up more than half of the
CMIPS ensemble, underestimate the frequency of S5Ws (Osprey
at al, 2013; ). Kim et al, 2017). Taguchi (2017) found a general
underestimation in CMIPS models of the frequency of ‘major’ 55Ws
{which are associated with a break-up of the polar vortex), an
aspect of an under-representation in those models of dynamical
wvariability in the stratosphera. Wu and Reichler (2020) found that
finer vertical resolution in the stratosphere and a model top above
the stratopausa tend to be associated with a maore realistic S5W
frequency in CMIPS and CMIPE models.

Some studies find an increase in the frequency of 55Ws under
increasing greenhouse gases (e.g., Schimanke et al, 2013; Young
ot al, 2013; L Kim et al, 2017). However, this behaviour is not
robust across ensambles of chemistry-climate models (Mitchell et al,,
2012; Ayarzagiena et al, 2018; Rao and Garfinkel 2021). There is
an absence of studies specifically focusing on simulated trends in
55Ws during recent dacades, and the short record and substantial
decadal variability yields few confidance in any observed tends in
tha occumence of SW events in the Northemn Hemisphere wintar
{Saction 2.3.1.4.5). Such an absence of a rend and large variability
would also be consistent with a recent reconstruction of SSWs
axtending back to 1850, based on sea level pressure obsarvations
{Domeisen, 2019), although this time series has limitations as itis not
based on direct observations of S5Ws.

Likelihood Scale

7 A 7 % high virtually certain —100%
I |l
g //?r///é///%% E‘idium 3ﬁﬁﬁzljilikely as not 33:222//;
V0020 Vo |ttt ity oo

Figure 6: Confidence and likelihood scales for communicating degree of certainty in key findings of the IPCC ARS,
adapted from (Mastrandrea et al., 2011)

Human Influence on the Climate System

In summary, an anthropogenic influence on the fraquency or other
aspects of S5Ws has not yet been robustly detectad. Thara is.fo_w
confidence in the ability of modals to simulate any such trends awver
the histarical pariod becausz of large natural interannual variability
and also due to substantial common biases in the simulated mean
state affecting the simulated frequency of S5Ws.

34 Human Influence on the Cryosphere
3.4 Sea lce
3410 Arctic Sea lce

Tha ARS conduded that "anthropogenic forcings are very likely to have
contributed to Anctic sea ioe loss since 1979 (Bindoff et al,, 2013), based
onstudies showing that models can reproduce the observed decline only
when induding anthropoganic forcings, and formal attribution studies,
Since the beginning of the modem satellite era in 1979, Northam
Hemisphere sea ice extant has exhibited significant dedines in all
maonths with tha lamgest reduction in September (see Saction 2.32.1.1,
and Figures 3.20 and 3.21 for more details on observed changes). The
racont Arctic sea ice loss during summer is unprecedanted sinca 1850
high confidenca), but as in AR5 and SROCC thera remaire only meaium
confidence that tha recant reduction is unigue during at laast the past
1000 years dua to sparse ahsarvations (Sections 2.3.2.1.1 and 9.3.1.1).
CMIPS madels also simulate Morthem Hamisphere sea ice loss aver the
satollite ara but with large differances amaong models (e.g., Massonnet
etal, 2012; Stroeve et al,, 2012). The ervielope of simulated ice loss
acmss model simulations encompasses the observed change, atthough
chservations fall near the low end of the CMIPS and CMIPE distributions
of trends (Figure 3.20), CMIP& models on average better capture the
observed Arctic sea ice decline, albeitwith large intermodel spread. Motz
et al (2020) found that CMIPE modek better reproduce the sensitivity
of Arctic sea ice area to CO; emissions and global warmming than earlier
CMIP models although the modals” underastimation of this sensitivity
remains. Dawy and Outten (2020) also found that CMIPE models can
simulate the seasonal cycle of Arctic sea ice extent and volume better
than CMIPS modeks. For the assessment of physical processes associatad
with changes in Arctic sea ice, see Section 9.3.1.1,

Since ARS, there have been several new detection and attribution
studies on Arctic sea ica, While tha attributian literature has mostly used
sea ice extent (SIE), it is closely proportional to sea ice area (514 Notz,
2014), which is assessad in Chapters 2 and 9 and shown in Figures 3.20
and 3.21. Kirchmaier-Young et al. (2017) compared the obsarved time
saries of the September SIE over the period 13782012 with those from
different large ensemble simulations which provide a robust sampling
of intemal climate variability (CanESM2, CESM1, and CMIPS) using an
optimal fingerprinting tachnique. They detacted anthropogenic signals
which wara saparabla from tha response to natural fordng due to solar
imadiance variations and volcanic asrosol, supporting pravious findings
{Figure 3.21; Min et al,, 2008h; Kay et al, 2011; Notz and Marotzke,
2012; Notz and Stroowve, 2016). Using selected CMIPS madels and
three independently derived sets of ohsarvations, Mueller et al. (2018)
detected fingerprints from greenhousa gases, natural and other
anthropegenic forcings simultaneously in the September Arctic SIE over

Figure 7: Example Section from [IPCC AR6
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