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Abstract

Personal Carbon Footprint (PCF) Estimation
is crucial for raising individual environmental
awareness by linking daily activities to their
environmental impact. However, existing tools
are limited by fragmented scenarios and labor-
intensive manual data entry. We present PCCT,
an LLM-powered system that combines conver-
sational understanding with emission knowl-
edge grounding for PCF Estimation. We ad-
dress two key challenges: (1) resolving incom-
plete activity information across turns through
knowledge-guided and context-aware tracking,
and (2) accurately mapping emission factors
using multi-step LLM inference and vector-
based similarity search. The system dynam-
ically combines knowledge-guided activity ex-
traction, and context-aware memory manage-
ment, generating accurate carbon footprint es-
timates. We validate the effectiveness with
the CarbonDialog-1K benchmark, comprising
1,028 annotated user activity narratives. Experi-
mental results demonstrate that our method out-
performs baseline systems in accuracy, while
subjective evaluations show superior appropri-
ateness, usability, efficiency, and naturalness.

1 Introduction

Personal Carbon Footprint (PCF) estimation plays
a pivotal role in fostering individual environmen-
tal awareness by translating daily activities into
environmental impacts (Mancini et al., 2016; Lan-
nelongue et al., 2021). Current tools, though ef-
fective in narrow domains like transportation track-
ing, face systemic limitations: (1) they rely on
fragmented scenario definitions that hinder cross-
domain analysis and (2) demand laborious manual
data entry, which prevents long-term user engage-
ment (Scrucca et al., 2021; Dreijerink and Paradies,
2020; Chen et al., 2016).

Recently, large language models (LLMs) have
demonstrated impressive semantic understanding
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and reasoning capabilities (Radford et al., 2019;
Mann et al., 2020; Bi et al., 2024). These advance-
ments offer a promising path toward passive carbon
footprint estimation through conversational inter-
faces. We inquire how to accurately calculate the
PCF from the casual conversations by leveraging
the LLM’s capabilities?

In order to calculate the PCF, we need two parts:
the user’s activity parameters and the emission fac-
tor accordingly (Mariette et al., 2022). The first
challenge arises from the progressive nature of con-
versational data. Users tend to describe their activi-
ties across multiple conversation turns with varying
levels of detail and precision. For example, a user
might initially mention "driving to work" and later
specify "in an electric car for 15 kilometers." This
requires the system to reason over the conversation
history and Emission Factor database and infer the
missing information or ask the user for clarification
when necessary (Tu et al., 2024). Even with com-
plete parameters, matching activities to emission
factors (EFs) (Solazzo et al., 2021) is a challenging
task (Balaji et al., 2023; Wood et al., 2017; Oehlert
et al., 2022). Traditional practitioners either rely
on manually curated mappings from millions of
entries of EF database, which are time-consuming
and prone to errors or use coarse-grained rule-based
systems that are not scalable and accurate (Scrucca
et al., 2021). This demands precise integration of
domain knowledge and context-aware reasoning
(Deng et al., 2023).

In this work, we propose a Progressive Contex-
tual Carbon Tracking (PCCT) framework. Fig-
ure 2 presents our framework architecture. The
PCCT framework consists of three components
that work together to process multi-turn conversa-
tions about daily activities: (1) Knowledge-Guided
Progressive Activity Extraction, which identifies
user activities while leveraging emission factor
knowledge to guide the extraction process; (2)
Context-Aware Memory Management, which main-
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tains structured representations of activities and pa-
rameters across conversation turns; and (3) Carbon
Footprint Calculation. To validate performance, we
construct the CarbonDialog-1K benchmark con-
taining 1,028 annotated user activity narratives with
ground-truth emission values. Experimental com-
parisons against a rule-based expert system demon-
strate our method’s superior accuracy across all
metrics. Complementary user studies reveal 30%
higher engagement rates compared to conventional
carbon tracking tools.
Our contributions are as follows:

* We propose a Progressive Contextual Carbon
Tracking (PCCT) framework that calculates
carbon footprint progressively in dialogues
guided by knowledge. To our knowledge, this
work represents the first use of LLMs for PCF
estimation from conversations.

* We introduce CarbonDialog-1K to facilitate
the research on carbon footprint estimation
from natural language.

» Extensive experimental results demonstrate
our system’s superior performance in accuracy
and usage effectiveness.

2 Related work

2.1 Carbon Footprint Calculation

Carbon footprint calculation has been a corner-
stone of environmental research (Wiedmann and
Minx, 2008), focusing on quantifying the green-
house gas emissions associated with various activi-
ties, products, and organizations. Early methodolo-
gies, such as life cycle assessment (LCA), provided
frameworks for calculating emissions across sup-
ply chains and industrial processes (Agyei Boakye
et al., 2023; Chen et al., 2021). These approaches
were later adapted to assess the environmental im-
pact of individual actions, giving rise to the concept
of Personal Carbon Footprint (PCF). The calcula-
tion of PCF involves translating daily activities,
such as transportation, energy consumption, and
dietary habits, into measurable emissions. Tradi-
tional methods rely on structured data inputs, often
requiring users to manually provide detailed in-
formation such as vehicle type, fuel consumption,
and travel distance (Scrucca et al., 2021). Some
work is proposed to facilitate this process, enabling
emissions tracking in specific domains such as com-
muting and household energy use (Dreijerink and

Paradies, 2020; Balaji et al., 2023). However, these
approaches are limited by their fragmented nature,
as they often fail to account for cross-domain ac-
tivities or incomplete user inputs. Recent advance-
ments have attempted to address these limitations
by integrating automated data collection methods,
such as GPS tracking for transportation emissions
(Chen et al., 2016; Gately et al., 2017) and smart
meter integration for energy usage (Miao et al.,
2024). Despite these improvements, existing tools
remain labor-intensive and lack the flexibility to
handle diverse and complex user activities, leading
to low user engagement and long-term abandon-
ment.

2.2 NLP Techniques for Carbon Footprint
Estimation

The application of Natural Language Processing
(NLP) techniques to estimate carbon footprints has
gained significant attention in recent years, driven
by the need for scalable and automated solutions
to address the challenges of environmental impact
assessment (Murphy, 1998). Traditional methods
rely on manual annotation or supervised classifica-
tion approaches (Sousa and Wallace, 2006), which
require large labeled datasets. Recent works have
explored to automate the estimation process. For in-
stance, term frequency-inverse document frequency
(TF-IDF) features are employed to classify compa-
nies into American Industry Classification System
(NAICS) codes based on web-scraped text data
(Wood et al., 2017; Oehlert et al., 2022). While ef-
fective, these methods are limited by their reliance
on large labeled datasets and their inability to gener-
alize to unseen or zero-shot scenarios. CaML auto-
mates the Economic Input-Output based Life Cycle
Assessment (EIO-LCA) (Hendrickson et al., 1998)
process by using semantic text similarity match-
ing with the pre-trained model SBERT (Reimers
and Gurevych, 2019) to screen and rank product
and industry sector matches (Balaji et al., 2023).
However, despite the progress made, current NLP-
based approaches still struggle to perform accurate
carbon emission calculations due to their inade-
quate context-aware reasoning capabilities, which
fail to fully capture the complex relationships in
environmental data.

3 Dataset Construction

To enable research on carbon footprint estimation
through natural conversations, we construct a com-
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prehensive dataset containing 1,028 multi-turn di-
alogues (CarbonDialog-1K) through a two-stage
process: (1) building a daily activity emission fac-
tor database and (2) generating natural multi-turn
dialogues. Rather than collecting real-world con-
versations and manually annotating them, we adopt
a reverse engineering approach (Wang et al., 2015)
to ensure comprehensive coverage and calculation
accuracy.

3.1 Activity-EF Database Construction

The first stage focuses on building a comprehen-
sive database of emission factors (EFs) for daily
activities. We first collect a diverse set of daily
activities that potentially contribute to personal car-
bon footprints. To ensure comprehensive coverage,
we leverage large language models to generate a
wide range of activities in 6 categories: transporta-
tion, energy consumption, food and beverages, con-
sumer goods, services, and entertainment. For each
activity, we query the Climatiq API' to obtain stan-
dardized emission factors.

Given the significant regional variations in emis-
sion factors due to differences in energy mix, infras-
tructure, and economic development, we focus on
activities with well-documented emission factors in
selected regions (New Zealand, United Kingdom,
and Germany, China, and United States).

3.2 Dialogue Generation

We then adopt the Activity-EF Database to generate
dialogues through a reverse engineering approach.
We first construct the ground truth activities and
their carbon footprints, then generate dialogues that
would lead to these calculations. The process con-
sists of three main phases: (1) activity set construc-
tion, (2) narrative and parameter generation, and
(3) progressive dialogue synthesis. Algorithm 1
formalizes this process.

For each dialogue, we first sample 3-5 activi-
ties from the database that are compatible both
logically (e.g., avoiding conflicting transportation
modes) and regionally (sharing the same region for
consistent emission factors). Each activity is then
assigned temporal context and enriched with nec-
essary parameters required by its emission factor
calculation:

"https://www.climatiq.io, Climatiq maintains a
database of emission factors from authoritative sources such as
government environmental agencies and research institutions.

Algorithm 1 Dialogue Generation

1: Input: Activity-EF database £, Sample size N
2: Qutput: Dialogue dataset D
3: fort =1to N do

4: Select region r randomly

5: n < RandActivityNum()

6 A, + SampleActivities(n, &, r)

7 for each activity a € A, do

8 Assign temporal context to a
9: D, <+ GenerateDescription(a)
10: P, < GenerateParameter(a)

11: C, + CalculateCarbonFootprint(a)
12: end for

13: C, < SumCarbonFootprint({C, })

14: A, < GroupActivities(A,)

15: T <+ ToDialogue(A,, {Dg, Pa, Cy}, C)
16: D+ DU{T,C,}

17: end for

18: return D

n
COe = P x EF, (D)
i=1
where P; represents the activity parameter (e.g.,
distance traveled, fuel consumed) and E'F; is the
corresponding emission factor from our database.
The selected activities are then transformed into
natural narratives using LLMs, with parameters
strategically distributed across multiple dialogue
turns. Then, we break an activity’s description into
multiple turns. This design mirrors typical human
conversation patterns, where users often begin with
basic activity descriptions before gradually adding
specific details. Table 1 shows an example dialogue
constructed through this process.

3.3 Quality Control

We implement a comprehensive quality control
pipeline integrating automated filtering, manual
review, and LL.M-assisted validation. Initially, au-
tomatic filters exclude anomalous data by remov-
ing: 1) activities with emission factors beyond three
standard deviations from category means, indica-
tive of industrial rather than personal behavior; 2)
parameter outliers exceeding typical personal us-
age scenarios (e.g., flights over 20,000 km, meals
exceeding $500); and 3) activities incompatible
with personal carbon footprints (e.g., industrial pro-
duction, commercial shipping).

Subsequently, we validate remaining activities
via a hybrid approach, combining manual verifi-
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User: Hi, I'd like to track my carbon footprint for today.
System: Hello! I'll help you track your carbon footprint. Please tell me about your activities

for today.

User: I swung by a cafe on my way to work and picked up a coffee and pastry for $5. Then I took

a taxi to the city centre. That's all.

System: Thank you. I've recorded the cafe purchase. For the taxi ride, I'll need to know the
distance traveled. Could you tell me how long was your taxi ride?

User: The taxi ride was about 5km.

System: Thank you. Here's your carbon footprint breakdown:
1. Cafe purchase: $5 x 1.1224 kg/NZD = 5.612 kg COe

2. Taxi ride: 5km x 0.018894 kg/km =
Total Carbon Footprint: 5.71 kg COe

0.09447 kg COe

Would you like to add any other activities?

Table 1: Example dialogue from our dataset showing users tend to describe their activities progressively across
multiple turns and the system ask for missing information incrementally and calculate the carbon footprint when all

information is provided.

Metric Value
Total Dialogues 1,028
Unique Activities 196
Avg. Turns / Dialogue 6.96 (£3.47)
Avg. Activities / Dialogue 2.64 (£0.82)

Avg. COe / Dialogue 16.65 (£13.82) kg

Table 2: Main statistics of the dataset

cation (20% of the dataset) with LLLM-based val-
idation (80%), examining activity compatibility,
parameter reasonableness, and calculation accu-
racy. The LLM-based validation achieves 89%
consistency with human evaluators on a test set
of 50 dialogues. Overall, our process filters out ap-
proximately 10% of initial dialogues, significantly
enhancing dataset quality.

3.4 Dataset Statistics

Table 2 presents the key statistics of our dataset.
The final dataset comprises 1,028 multi-turn con-
versations distributed across seven regions (New
Zealand, United Kingdom, Germany, France,
United States, China, and Global). Figure 1 shows
the distribution of activities across six major cat-
egories. Food & Beverages represents the largest
category with 784 activities, followed by Consumer
Goods (598) and Transportation (528). For aver-
age emissions, Energy and Services categories con-
tribute the highest average emissions.

The comprehensive annotation and diverse ac-
tivity coverage make this dataset valuable for ad-
vancing research in conversational carbon footprint
estimation. The dataset will be made publicly avail-
able to support further research in this important

Number of Activities
-8 Avg. COse
12,87 12.85

Number of Activities
IS
Average COze Emissions (kg)

0
Food & Beverages  Consumer Goods  Transportation Energy Services Entertainment

Figure 1: Category-wise distribution of activities and
their carbon footprint. The bars (blue) show the number
of activities in each category, while the line (red) shows
the average CO-e emissions per activity.

area2 .

4 Method

Our approach addresses the challenges of carbon
footprint calculation through natural conversations
by introducing a Progressive Contextual Carbon
Tracking (PCCT) framework. Figure 2 presents
our framework architecture.

The PCCT framework consists of three compo-
nents that work together to process multi-turn con-
versations about daily activities: (1) Knowledge-
Guided Progressive Activity Extraction, which
identifies user activities while leveraging emission
factor knowledge to guide the extraction process;
(2) Context-Aware Memory Management, which
maintains structured representations of activities
and parameters across conversation turns; and (3)

Dataset available at: https://github.com/shuginlee/
Chat2CarbonFootprint.git
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Turn 1: After work, I treated myself
to a delicious chocolate snack.

'

Carbon

Activit p
Great choice! What's the weight ’ ExtractiZn Footprint
of that chocolate? — v Calculation
[Tur‘n 2: It's around 200g. } ‘
i Memory Al Finished - Response
The emission for chocolate is o Updating Generation
4.3 co2e kg/kg x 0.2kg = 0.86 kg
[ o J id: 0 id: 0
s Activity:  eat chocolate
Activity:  eat chocolate T e
N Matched term: chocolate ) i
Turn n: That's all for today P e > Param:  (weight: 0.2
(User marked Finished) EF: 4.3co2e kg/kg EF:
id: 1 w4 @ Used LLMs

User Dialogue o -
- Used Activity-EF

Turn 1's Memory Turn 2's Memory Database

Figure 2: Overview of our Progressive Contextual Carbon Tracking (PCCT) framework. The system processes user
inputs through three main components: (1) Activity Extraction, which identifies activities and parameters guided by
Activity-EF Database, (2) Memory Updating, which maintains a context memory of previously extracted activities
and their parameters, enabling incremental updates and refinements as new information becomes available, (3)

Carbon Footprint Calculation.

Carbon Footprint Calculation

4.1 Knowledge-Guided Progressive Activity
Extraction

A key challenge in conversational carbon footprint
calculation is that users tend to describe their ac-
tivities progressively across multiple turns, often
with varying levels of detail and precision. For
example, a user might initially mention "driving
to work" and later specify "in an electric car for
15 kilometers." This natural communication pat-
tern creates the challenge of correctly identifying
and updating activities with their parameters across
multiple turns. Our knowledge-Guided approach
addresses these challenges through a bidirectional
interaction between LLMs and activity-emission
factor database.

We develop a progressive extraction process
where emission factor knowledge guides param-
eter identification (Figure 3). The system first uses
LLMs to recognize activity descriptions from user
utterances. These descriptions are then matched
against our emission factor database, which identi-
fies the most relevant emission factors along with
their required parameters. For example, if a user
mentions "driving to work," the system identifies
potential emission factors that might require param-
eters such as distance and passengers.

4.1.1 Efficient Emission Factor Retrieval

A critical support component for our knowledge-
guided approach is an efficient retrieval system that

Activity-Emission
- Factor Database

Vector-Based
Activit Paramerter
"y Extraction
Matching

) & )

Figure 3: Knowledge-Guided Progressive activity ex-
traction process. The system maintains awareness of
previously extracted activities and their parameters, en-
abling it to identify both new activities and updates to
existing ones.

Activity
Recognition

can quickly match described activities with appro-
priate emission factors. Matching activities with
emission factors from large databases is typically
time-consuming and requires professional exper-
tise(Balaji et al., 2023). To address this challenge,
we implement a vector-based retrieval system using
FAISS library (Douze et al., 2024).

The retrieval system operates in two stages.
Firstly, we construct offline index by pre-
computing dense vector representations for all
emission factors in our database, incorporating both
activity descriptions and their associated parame-
ters. Next, during conversation, extracted activi-
ties are encoded into the same vector space and
matched against the pre-built indices. This enables
sub-second retrieval of relevant emission factors,
even from databases containing thousands of en-
tries which guides the subsequent parameter extrac-
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tion stage.

4.2 Context-Aware Memory Management

To maintain a structured representation of all ex-
tracted information across turns, our memory mod-
ule maintains two interconnected components: 1)
Activity Registry maintains all identified activities
with their emission factor mappings, tracking the
state of each activity (complete or partially spec-
ified); 2) Parameter Registry tracks all extracted
parameters for each activity and maintains all miss-
ing information. This including their values, units,
extraction confidence, and source turn information.

In each turn, the activity extraction module iden-
tifies incremental activity information and updates
the memory rather than creating duplicates. It pro-
vides a complete view of missing parameters, en-
abling targeted follow-up questions; and it main-
tains extraction confidence scores that help priori-
tize which missing information is most critical to
obtain.

4.3 Carbon Footprint Calculation

The final component of our framework transforms
the structured activity and parameter information
into accurate carbon footprint calculations. Once
the system has collected sufficient information
about the user’s activities, it applies the appropriate
emission factors to calculate the carbon footprint.
For each activity, the system applies the appro-
priate emission factor to the validated parameters,
calculating the carbon footprint using the formula:
COze = Y71 | P; x EF; where P; represents the
activity parameter (e.g., distance traveled) and E'F;
is the corresponding emission factor.

After the calculation for each activity, the system
generates detailed explanations of the calculation
process, breaking down the contribution of each ac-
tivity to the total carbon footprint and gives advice.

5 Objective Experiments

We conduct objective experiments to evaluate the
effectiveness of our PCCT framework against base-
line approaches. Our evaluation focuses on three
key aspects: activity recognition accuracy, parame-
ter extraction completeness, and carbon footprint
calculation accuracy.

5.1 Experimental Setup

Dataset. We evaluate all systems using our
CarbonDialog-1K dataset. For testing, we use a

randomly selected subset of 560 dialogues, ensur-
ing balanced coverage across activity categories
and regions. The remaining dialogues are used for
system development and parameter tuning.

Metrics. We assess system performance using
several key metrics. For activity recognition, we
measure the F1-score for correctly identifying activ-
ities from user descriptions. Parameter extraction
performance is evaluated using both the F1-score
for parameter identification and the Missing Crit-
ical Parameter Rate (MCPR) for missing critical
parameters. Finally, to assess emission calculation
accuracy, we compute the Mean Absolute Error
(MAE) in kg COge and Mean Absolute Percentage
Error (MAPE).

Baseline System. Our goal is to estimate per-
sonal carbon footprint (PCF) from open-ended,
multi-domain text-based dialogues. To evaluate
this, we compare PCCT with a rule-based calcula-
tor (RBC) that uses keyword matching and fixed
templates to compute emissions from structured in-
puts. This reflects conventional carbon tools based
on forms or explicit prompts. GPS-based track-
ers focus mainly on transport, require continuous
sensing and device integration, and cover a limited
range of activities. As they are not comparable to
general-purpose, text-based dialogue systems, we
exclude them from our evaluation.

Implementation Details. Our PCCT implemen-
tation uses a combination of LLMs and vector sim-
ilarity search. For the LLM component, we employ
the DeepSeek-V3 model (Liu et al., 2024) for ac-
tivity extraction and parameter identification. The
vector similarity search uses FAISS (Douze et al.,
2024) with 768-dimensional embeddings from sen-
tence transformer (Reimers and Gurevych, 2019)
for emission factor retrieval.

5.2 Results and Analysis

5.2.1 Opverall Performance

Table 3 presents the overall performance compari-
son between our PCCT system and the rule-based
baseline.

The results demonstrate that PCCT significantly
outperforms the rule-based approach across all
metrics. Our system achieves a substantial im-
provement in activity recognition and parame-
ter extraction. This can be attributed to the
knowledge-augmented activity extraction that ef-
fectively matches user descriptions with standard-
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System Activity F1 (%) Parameter F1 (%) MCPR (%) MAE (kg COze) MAPE (%)
Rule-Based Calculator 30.8 18.5 45.0 9.7 74.3
PCCT (Ours) 74.2 75.5 15.5 4.8 39.6

Table 3: Overall performance comparison of PCCT vs. Rule-based Calculator. Our system outperforms the
rule-based calculator across all metrics. MCPR reveals the missing rate of critical parameter. MAPE reveals relative

error of carbon footprint.

Category MAPE (%)
RBC PCCT
Transportation 55.8 28.5
Food & Beverages  68.5 4.3
Consumer Goods 95.8 45.8
Entertainment 85.5 38.5
Services 115.6 58.6
Energy 95.4 65.4

Table 4: Category-level performance comparison sorted
by MAPE (lower values indicate better performance)

ized emission factors, (2) the context-aware mem-
ory management that maintains coherent informa-
tion across turns, and (3) the progressive parameter-
gathering strategy that ensures the completeness of
critical information.

The improved activity recognition and parame-
ter extraction directly translate to calculation ac-
curacy, with PCCT achieving a 50% lower Mean
Absolute Error (MAE: 4.8 vs 9.7 kg COqe) and a
reduction of 34.7 percentage points in Mean Ab-
solute Percentage Error (MAPE: 39.6% vs 74.3%).
Importantly, while the rule-based system can only
attempt calculations for the small subset of activ-
ities where it successfully extracts all parameters
(18.5% of cases), PCCT maintains high accuracy
while handling a much broader range of activities
and conversation patterns.

5.2.2 Category-level Performance

A detailed analysis of performance across different
activity categories reveals significant variations in
calculation accuracy, as shown in Table 4.

Our analysis reveals several important patterns
that highlight the effectiveness of our knowledge-
augmented approach:

Transportation activities show the highest ac-
curacy for both systems, with PCCT achieving the
lowest MAPE (28.5%). The well-defined parame-
ter requirements (primarily distance) benefit from
our progressive extraction approach, allowing the
system to focus on gathering specific, critical infor-
mation.

Food & Beverages and Consumer Goods show
moderate error rates with PCCT (MAPE: 42-46%).
These categories represent the most frequent activ-
ities in our dataset, they demonstrate the value of
our retrieval system.

Energy and Services present the greatest chal-
lenges for both systems, with the highest error rates
even with PCCT (MAPE: 58-65%). These cate-
gories involve inducing parameters that the users
may not themselves know, and the system may not
have access to. For example, the amount of elec-
tricity consumed by a service may not be known,
therefore this brings in more uncertainty.

The performance gap between PCCT and RBC
is consistent across all categories, with PCCT re-
ducing MAPE by 48-57%. Note that the rule-based
system’s MAPE values are only applicable to the
small subset of activities where it successfully ex-
tracted all critical parameters (Activity F1: 30.8%,
Parameter F1: 18.5%). Therefore, the performance
gap between PCCT and RBC is even larger for
these categories.

These results demonstrate that while certain ac-
tivity types remain challenging for carbon foot-
print calculation, PCCT’s integrated approach of
knowledge-augmented extraction, context-aware
memory, and progressive parameter gathering sig-
nificantly improves accuracy across all categories.

6 Subjective Experiments

To further evaluate the effectiveness of our sys-
tem in comparison to the baseline system carbon
footprint calculation methods, we conducted a con-
trolled subjective experiment.

6.1 Experiment Design

We recruited 20 participants, including environ-
mental enthusiasts, general users, and sustainability
researchers, to calculate their carbon footprint for
10 predefined daily activities of varying complex-
ity. Participants used our system, a conversational
interface that guided them through activity details,
resolved incomplete information, and provided car-
bon footprint estimates with confidence bounds.
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They also used traditional tools like spreadsheets or
online calculators requiring manual data entry. Par-
ticipants rated their experience on a 7-point Likert
scale for usability (Zwakman et al., 2020), appro-
priateness (Torrey et al., 2013; Peng et al., 2019),
efficiency (Siro et al., 2022), and naturalness (CAO
et al., 2023), and provided qualitative feedback
through semi-structured interviews. Task comple-
tion time, result accuracy, and user engagement
metrics (e.g., errors, frustration) were recorded.

6.2 Results

Usability. Our system received higher usability
ratings (mean = 4.6, SD = 0.5) than the baseline
system (mean = 3.2, SD = 0.8). Users praised the
intuitive interface of our syetem, while the baseline
system users found data entry frustrating.

Appropriateness. Both methods scored similarly
(Our system: mean =4.7, SD = 0.4; The baseline
system: mean =4.5, SD = 0.6), though our system’s
context-aware explanations were appreciated.

Efficiency. Our system was more efficient (mean
=4.5, SD = 0.5) than the baseline system (mean =
2.8, SD = 0.9), with task completion times of 12
minutes vs. 28 minutes.

Naturalness. Our system scored higher on nat-
uralness (mean = 4.8, SD = 0.3) compared to the
baseline system (mean = 2.5, SD = 0.7), with its
conversational interface being a key factor.

6.3 Statistical Analysis

A two-way ANOVA confirmed significant differ-
ences between methods (F'(1,236) = 45.3, p <
0.001) and dimensions (F'(3,236) = 12.7, p <
0.001), with an interaction effect (F'(3,236) = 8.2,
p < 0.001). Post-hoc tests showed our system
outperformed the baseline system in usability, ef-
ficiency, and naturalness (p < 0.001), but not in
appropriateness (p > 0.05).

6.4 Qualitative Feedback

Participants praised our system for its intuitive, con-
versational interface and transparency, with one
noting, "It was so easy to use—I didn’t need prior
knowledge of carbon emissions," and another ap-
preciating its guidance and confidence-bound esti-
mates. In contrast, the baseline system users found
data entry and emission factor lookup tedious and
error-prone, with comments like, "I spent more
time looking up emission factors than calculating,"

and frustration over the lack of guidance. Many
wished for explanatory features similar to our sys-
tem. Feedback highlighted our system’s strengths
in usability, transparency, and engagement while
revealing inefficiencies in rule-based system.

7 Conclusion

We introduce PCCT, a novel framework for calcu-
lating personal carbon footprints through natural
conversations. By integrating knowledge-guided
activity extraction, context-aware memory manage-
ment, and progressive parameter gathering, PCCT
bridges the gap between casual dialogue and pre-
cise carbon footprint estimation. Experimental re-
sults demonstrate PCCT’s significant advantages
over traditional approaches, achieving substantial
improvements in both automated understanding
and calculation accuracy. Our subjective experi-
ments further validate PCCT’s practical value, with
users particularly appreciating its intuitive interface
and conversational guidance. Our work establishes
a promising direction for making carbon footprint
estimation more accessible through natural interac-
tions.

Limitations

While PCCT demonstrates promising results in per-
sonal carbon footprint estimation, several limita-
tions should be acknowledged:

First, the accuracy of our system heavily depends
on the quality and coverage of the emission factor
database. For emerging or region-specific activi-
ties, the system may struggle to find appropriate
emission factors, potentially leading to less accu-
rate calculations. This limitation is particularly
evident in service-related activities where standard-
ized emission factors are often lacking. Second,
our evaluation, while comprehensive, is limited to
a curated benchmark dataset and controlled user
studies. Real-world deployment may present ad-
ditional challenges, such as handling extremely
rare activities and adapting to regional variations in
emission factors, and maintaining consistent perfor-
mance across different user demographics. Third,
the PCCT pipeline relies on LLM inference, which
itself incurs a non-negligible carbon cost. Future
work will fine-tune an expert model to a 7 B param-
eter variant, further reducing inference emissions.
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