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Abstract 

The voluminous, highly unstructured, and 

intersectoral nature of climate policy data resulted 

in increased calls for automated methods to 

retrieve information relevant to climate change 

adaptation. Collecting such information is crucial 

to establish a large-scale evidence base to monitor 

and evaluate current adaptation practices. Using a 

novel, hand-labelled dataset, we explored the 

potential of state-of-the-art Natural Language 

Processing methods and compared the 

performance of various Transformer-based 

solutions to classify text based on adaptation-

relevance in both zero-shot and fine-tuned 

settings. We find that fine-tuned, encoder-only 

models, particularly those pre-trained on data from 

a related domain, are best suited to the task, 

outscoring zero-shot and rule-based approaches. 

Furthermore, our results show that text granularity 

played a crucial role in performance, with shorter 

text splits leading to decreased performance. 

Finally, we find that excluding records with 

below-moderate annotator confidence enhances 

model performance. These findings reveal key 

methodological considerations for automating and 

upscaling text classification in the climate change 

(adaptation) policy domain. 

1 Introduction 

The urgent need for climate change adaptation 

(referred to as ‘adaptation’ hereafter) has driven 

governments to formulate and implement 

ambitious policies and actions (Orlove, 2022). A 

comprehensive understanding of global adaptation 

progress, however, has remained absent. Despite 

conceptual proposals, no consistent, large-scale 

framework for tracking progress has been 

implemented to date (Magnan & Chalastani, 2019). 

A key factor in this challenge is the abundance 

and unstructured nature of the relevant evidence, 

with adaptation information often being embedded 

in long climate policy documents. This hinders 

accessibility of relevant information to inform 

monitoring and evaluation, making identification 

of adaptation-relevant text essential for a tracking 

framework. The sheer volume of the text available, 

however, makes manual analysis infeasible, thus 

requiring an automated text classification 

approach. The field of Natural Language 

Processing (NLP) has shown great promise to 

contribute to adaptation tracking (Ford et al., 2016; 

Sietsma et al., 2024), but the multitude of 

approaches, setups, and data strategies that can 

potentially influence performance makes selecting 

the most suitable method challenging. 

Rule-based approaches (e.g., keyword search) 

are most transparent and may achieve satisfactory 

results for non-complex topics, but their statistics-

based successors are typically more accurate and 

stable (Li et al., 2022). For classification of short 

texts, early Deep Learning-based approaches 

continued this rising trend in accuracy, albeit with 

small margins – particularly when the dataset gets 

more imbalanced – and at the cost of computational 

efficiency (Shyrokykh et al., 2023). 

More recently, the NLP field has shifted to the 

use of pre-trained models based on the Transformer 

architecture (Fields et al., 2024; Vaswani et al., 

2017), of which encoder-only language models 

(ELMs) like BERT (Devlin et al., 2019) and large 

language models (LLMs) like GPT (Radford et al., 

2019) are examples. For text classification tasks, 

state-of-the-art (SOTA) models have shown 

potential through three main approaches: (1) 

supervised fine-tuning of an ELM on a labelled 

dataset; (2) using an existing ELM fine-tuned on 

Natural Language Inference (NLI) for zero-shot 

classification, and; (3) prompting an advanced, 

general-purpose LLM to classify in a zero- or few-

shot setting. 
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The choice of approach and model, and their 

performance relative to more traditional NLP 

approaches, depends on numerous aspects. Prior 

research has shown that fine-tuned ELMs tend to 

outperform general-purpose LLMs on 

classification tasks when sufficient training data is 

available (Bucher & Martini, 2024), when the 

model is pre-trained on domain-relevant data 

(Dimitar et al., 2023), or when the task is of limited 

complexity (Yu et al., 2023). However, when 

training data is scarce or the text complexity 

requires advanced language understanding, LLMs 

may outperform fine-tuned ELMs (Yu et al., 2023), 

as well as traditional and NLI-based models (Z. 

Wang et al., 2023). 

Other influential factors include text splitting 

strategy and inclusion threshold. Longer texts 

preserve context but pose challenges for SOTA 

models, as: (1) these are typically pre-trained on 

shorter texts (Fiok et al., 2021); (2) the models have 

difficulties with identifying information when text 

becomes more sparse (D’Cruz et al., 2024), and; 

(3) computation of Transformers scales 

quadratically with input length (Beltagy et al., 

2020), making it challenging to determine the right 

text granularity and splitting strategy. Inclusion 

threshold refers to the extent to which a given text 

block must align with a label to belong to that class, 

potentially affecting model adaptability, and, 

therefore, performance. For zero-shot 

classification, setup choices like labels, task type 

(e.g., binary or multi-class), and prompt design (for 

LLMs) may also impact results. 

To address the uncertainties discussed above, 

SOTA and traditional, automated text classification 

approaches are benchmarked against manually 

labelled climate policy texts. In addition, the 

impact of text granularity and inclusion thresholds 

is assessed. The aim is to identify the best method 

– i.e., the combination of approach, setup, and 

dataset variant (see Appendix A.  for the 

nomenclature) getting closest to human-labelled, 

‘ground truth’ examples – for extracting 

adaptation-relevant information from climate 

policy texts. By doing so, this work supports the 

creation of a global evidence base of adaptation 

progress. 

 
1 The data was retrieved from the database in June 2024. 

Documents added after this data are, therefore, not included 

in the dataset. 

2 Data 

The main dataset comprises text extracted from 

national policy documents in the Climate Policy 

Radar (CPR) database1 (Climate Policy Radar, 

n.d.), filtered to include only documents pre-

labelled as adaptation-relevant and UNFCCC 

submissions, excluding mitigation-focused NIRs. 

A sample of 14 countries2 (243 documents) was 

carefully selected to represent variety in climatic 

zones (WorldAtlas, 2023), developmental levels, 

number of available documents, and administrative 

language. All text was parsed from publicly 

available PDFs, transformed into Markdown 

format based on PDF layout, and non-English texts 

were translated via the Google Translate API using 

the default API settings (Han, n.d.). Subsets were 

created to evaluate the effects of text splitting and 

data cleaning strategies, as detailed in the following 

sections. 

2.1 Chunking strategy 

For assessing the effect of text granularity and 

context, three subsets of the main dataset were 

created. Each subset, referred to as ‘dataset’, uses a 

different strategy for splitting the texts into smaller 

blocks (i.e., chunking), as introduced below. 

Dataset 1: Full chunks 

First, the documents were split into text chunks of, 

on average, 3,186 characters and 10 paragraphs, 

using a Markdown-aware semantic splitter 

(Semantic Text Splitter (API Documentation), 

n.d.). The chunks were sampled by document type, 

resulting in a set of 3,159 chunks, which were 

manually labelled by trained, graduate-level 

students and the authors of this paper. 24% of the 

dataset was labelled as relevant to adaptation. The 

inter-annotator agreement is 83%, which is 

considered acceptable. For the cases of 

disagreement between two annotators, the label 

with the highest confidence score was taken as the 

ground truth label. These confidence scores are 

further explained in section 2.2.  

Dataset 2: Sub-chunks  

To facilitate experimenting with variation in text 

splitting strategies, the text of dataset 1 was further 

split into sub-chunks of 500 to 800 characters so 

2 Australia, Azerbaijan, Canada, Cyprus, Ecuador, Finland, 

Haiti, Iceland, Mexico, Nigeria, Sierra Leone, United 

Kingdom, Vanuatu, and Vietnam 
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that the chunks average approximately one 

paragraph and stay within the common NLP model 

limit of 512 tokens. For the full chunks previously 

labelled as ‘not adaptation’, the corresponding sub-

chunks, totalling 13,132 items, were automatically 

assigned the same label. The remaining 5,356 

‘adaptation’ sub-chunks were re-labelled. 

To address missing context caused by unclear 

coreferences, the sub-chunk experiments are 

conducted in two settings: one using the original 

sub-chunks without preprocessing (dataset 2a), and 

another applying coreference resolution (Elango, 

2005) to replace unclear noun phrases (e.g., ‘the 

country’) with their parent entity (e.g., ‘Vietnam’) 

from outside the sub-chunk (dataset 2b). 71% of 

the sub-chunks retrieved from the relevant full 

chunks were re-labelled as adaptation-relevant, 

representing 20% of the full sample of 18,488 sub-

chunks. 

Dataset 3: Summarized chunks 

To balance the advantages of shorter text but 

retaining crucial context, a third experimental 

dataset was created, in which the full chunks were 

summarized to single paragraphs using bart-

large-cnn, a Transformer-based summarization 

model (Lewis et al., 2020). The automatically 

generated summaries were not evaluated at scale 

and thus may contain errors or inaccurate 

information. They are, therefore, solely used for the 

classification stage and not as actual adaptation 

evidence: the predicted labels are connected to the 

original, full chunks. 

2.2 Data cleaning strategy 

Besides the datasets resulting from applying the 

different chunking strategies, more dataset variants 

were created to assess differences in performance 

when applying different data cleaning strategies. 

Below, these strategies, each resulting in additional 

dataset variants*, are introduced. 

Confidence score threshold 

A distinctive step was added in the annotation 

process. While labelling the chunks, the annotators 

specified a confidence score, indicating how sure 

they were about the assigned label (i.e., 

‘adaptation’ or ‘not adaptation’) on a 0-100 scale. 

 
3 Decision and Plan, Regulation, Vision, Roadmap, 

Constitution, Act, Long-Term Low-Emission Development 

Strategy, and Biennial Update Report 

This score is used during evaluation to allow for 

assessing to what extent exclusion of chunks below 

a certain confidence score threshold (CST) affects 

performance. Figure 1 shows the distribution of the 

scores across the text chunks, indicating that for the 

majority of the chunks (i.e., >80%), the annotators 

were very confident (i.e., 80-100% certain).  

 

Document type filter 

When training classifiers, imbalanced data (i.e., 

uneven distribution of the classes) can cause 

difficulties for these models to correctly predict the 

right label, particularly for the under-represented 

class (Padurariu & Breaban, 2019). Since the 

document types of the full documents retrieved 

from CPR are known, an analysis of the class 

distribution per document type, based on the labels 

of dataset 2, revealed that there were multiple 

document types with a sub-chunk relevance ratio 

of 4% or lower3. Removing all chunks of these low-

relevance document types would increase the 

initial (i.e., with no CST applied) ratio of 

adaptation-relevant chunks from 24% to 29% 

(dataset 1 and 3) and from 20% to 28% (dataset 2). 

The size of the datasets reduces from 3,159 to 2,572 

(dataset 1 and 3) and from 18,488 to 13,948 

(dataset 2) when applying this document type filter. 

To assess whether this increased balance, despite 

the decreased size of the training data, leads to 

improved performance that compensates for 

potentially missed relevant data, both strategies are 

applied and evaluated in combination with all 

datasets introduced in section 2.1. The resulting 

* See Appendix A. for the nomenclature 

 

Figure 1: Distribution of confidence scores among 

3,159 hand-labelled text chunks. The darker bars 

show the ratio of chunks labelled as ‘adaptation’.  
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dataset variants are referred to as unfiltered (i.e., all 

document types included) and filtered (i.e., low-

relevance document types removed). 

3 Methodology 

Four main approaches are benchmarked against the 

dataset variants presented in section 2. Each 

approach and the corresponding sub-methods (i.e., 

models, queries, tasks, and/or prompts) are 

introduced in below sections. The confidence 

scores of the labels and the two filtering strategies 

(see section 2.2) are used to prepare ten variants of 

each dataset, each corresponding to a CST value of 

0 (i.e., original labels maintained), 50, 60, 70, or 80 

combined with filtered or unfiltered as the data 

cleaning strategy. For each CST iteratively, the 

items with label ‘adaptation’ but a score lower than 

the CST are excluded from the dataset. For each 

dataset variant, random splits are created, where 

15% is used for evaluation, and, where applicable, 

70% for training and 15% for validation. 

Performance is evaluated by computing precision, 

recall, and F1-score compared to the human-coded 

labels. Additional criteria, such as computational 

cost, are also noted during the final evaluation. 

3.1 Rule-based classification (RBC) 

The rule-based pattern matching technique is 

arguably the simplest approach evaluated, querying 

for (sets of) keywords to classify the chunks. Three 

different queries are applied. The first is a baseline 

query, focusing on the text sequence ‘adapt’ only. 

The second is theory-based, following the concept 

of adaptation (Orlove, 2022). The third query is 

data-driven, following the prominent topics in the 

data labelled as relevant, determined by applying a 

topic model. The queried topics were additionally 

filtered to exclude the topics that occurred in more 

than 200 of the chunks that were labelled as ‘not 

adaptation’ (e.g., ‘Paris Agreement’). The resulting 

queries can be found in table 1. 

 

3.2 Natural Language Inference (NLI) 

Four NLI-based zero-shot classifiers are evaluated 

for identifying adaptation-relevant text: deberta-

small-long-nli (Sileo, 2024), bart-large-

mnli (Facebook, 2024), deberta-v3-large-

zero-shot-v2.0 (Laurer et al., 2024), and nli-

MiniLM2-L6-H768 (W. Wang et al., 2021). NLI 

models leverage their understanding of language 

obtained through pre-training to determine whether 

a hypothesis (label) is true given a premise (text) 

(Laurer et al., 2024). The model selection is based 

on compatibility with longer texts, model 

transparency, and reported performance in prior 

work. For each model, different tasks were 

evaluated, adding variety in used labels and task 

type (i.e., binary versus multi-class). An overview 

of the different tasks can be found in Appendix B. . 

For the ‘multi-class’ task type, where the model is 

asked to assign scores to multiple labels rather than 

a binary judgment about only the presence of an 

adaptation-related label, the additional label (i.e., 

‘mitigation’) was ignored during evaluation, and 

the experiments were repeated with different 

thresholds for the adaptation label. 

3.3 Fine-tuned encoder-only models (FEM) 

Four models were selected to be fine-tuned for the 

classification task. They were chosen to include 

both general-purpose and domain-specific models, 

taking into account important criteria such as 

context length compatibility, pre-training data 

characteristics, and model parameters. The first one 

is the general-purpose model distilroberta-

Table 1: Overview of search queries 

Title Simplified expression 

Baseline query adapt[a-z]* 

Theory-based 

query 

adapt[a-z]* OR ((decreas[a-z]+ OR reduc[a-z]+ OR mitigat[a-z]+ OR avoid[a-z]*) NEAR  

(impact OR vulnerab[a-z]+ OR hazard OR exposure OR risk)) OR ((increas[a-z]+ OR 

improv[a-z]+ OR enhanc[a-z]+ OR build) NEAR resilien[a-z]+) 

Data-driven 

query 

((climat[a-z]+)? (change)? adapt[a-z]+) OR ((natural)? disaster NEAR (prevent[a-z]* OR 

control OR respons[a-z]+)) OR (risk NEAR (reduc[a-z]+ OR manag[a-z]+)) OR 

((negative)? climat[a-z]+ NEAR impacts?) OR (climat[a-z]+ NEAR respons[a-z]+) OR 

((sea level) NEAR rise) OR (capacit[a-z]+ NEAR build[a-z]*) OR ((climat[a-z]+ OR (fast 

start)) NEAR financ[a-z]+) OR ((early) warning NEAR system) OR (environment[a-z]* 

NEAR protect[a-z]*) OR (natural NEAR resource[a-z]+ NEAR manag[a-z]+) 
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base (Sanh et al., 2019). The second is a climate 

domain-specific model from the ClimateBERT 

family, namely distilroberta-base-

climate-f (Webersinke et al., 2022). The third 

model evaluated is legal-bert-small-uncased 

(Chalkidis et al., 2020), a model tuned to the legal 

domain, and the final one involves a model trained 

for understanding of environmental texts, namely 

EnvironmentalBERT-base (Schimanski et al., 

2024). 

All listed models are iteratively fine-tuned on the 

different dataset variants to assess the performance 

of the models themselves, as well as the impact of 

tuning the training data on the results. 

3.4 Large Language Models (LLMs) 

State-of-the-art LLMs are prompted to assign a 

binary label (i.e., ‘adaptation’ or ‘not adaptation’) 

to the text chunks they are provided with. Here, the 

experiments are conducted with OpenAI’s GPT-4o 

(OpenAI et al., 2024) and the 8 billion parameter 

version of Llama 3.1 (Touvron et al., 2023). Table 

2 provides an overview of the two prompts used. 

Given the length of the chunks combined with the 

abundance of the dataset, only zero-shot prompting 

techniques were included in the experiments: 

providing examples in the prompt (i.e., few-shot 

learning) would require excessive computational 

resources (Sahoo et al., 2025). Two prompt 

variations were applied, were the first one  (P1) 

only provides the task to the model, and the second 

(P2) elaborates further on the label definitions.  

The prompts were carefully composed to vary in 

conciseness (P1) and specificity (P2), following 

common prompt engineering principles 

(Geroimenko, 2025). This experiment is intended 

to bring insights into how extending the prompt 

with additional context information and elaborated 

 
4 git.wur.nl/bonen003/transforming-adaptation-tracking 

instructions, thereby limiting conciseness, affects 

performance. 

4 Results 

The variations in approaches, setups, and dataset 

variants resulted in 791 different methods*. A 

complete overview of the evaluation scores of each 

method are accessible via the Git repository of this 

paper4. In the following sections, a selection of the 

most noteworthy results is presented. 

4.1 Approaches 

For each approach introduced in section 3, the two 

best methods based on F1 score and the best 

method based on recall are plotted in figure 2. The 

bars show the distribution of true positives (darker 

green), false positives (pastel green), and false 

negatives (orange). In below subsections, the 

results of each approach are discussed. 

Rule-based classification (RBC) 

The results of the RBC experiments reveal, as can 

be obtained from figure 2, that both the theory-

based and data-driven queries outscored the 

baseline query on the recall metric. This indicates 

that these setups* excel at correctly identifying the 

largest ratio of relevant chunks. This increase, 

however, negatively affects precision, as the 

baseline query (i.e., only searching for the word 

‘adaptation’) shows better results at limiting the 

number of irrelevant items being predicted as 

relevant. Overall, the data-driven query mainly 

outperforms the theory-driven one on recall. 

Zero-shot classification (NLI/LLM) 

The results of the two zero-shot approaches (see the 

bars of NLI and LLM in figure 2) show that the 

instructed LLMs provide better scores compared to 

the NLI-based models. Although the BART-large 

* See Appendix A. for the nomenclature 

Table 2: Overview of prompts used for LLM-based classification 

ID Prompt 

P1 
(concise) 

Classify the following climate policy text chunk as "Adaptation" or "Not adaptation". Do not 

include any text other than the label. 

P2 
(specific) 

Your task is to categorize text chunks as "Adaptation" or "Not adaptation". If the text contains any 

information about climate change adaptation policy, categorize it as "Adaptation". If not, for 

example when it only contains information about mitigation, categorize it as "Not adaptation". Do 

not include any text other than the label. 
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model achieves a perfect recall, it incorrectly 

classifies most of the irrelevant items as adaptation-

relevant. Among the two LLMs evaluated, GPT-4o 

outperforms Llama on all occasions, being 

particularly well-capable of identifying relevant 

chunks. For GPT-4o, the specific prompt (P2) 

shows an increase in recall, although at the cost of 

precision. 

Fine-tuned models (FEM) 

The FEM experiment results show that three 

different domain-specific models occur among the 

three top scoring methods (see figure 2). The 

methods using ClimateBERT and Environmental-

BERT achieve the best F1-score, indicating good 

capability of balancing inclusion of relevant items 

and exclusion of irrelevant items, with the 

differences mainly found in the balance between 

recall and precision. The LegalBERT-based 

method excels at recall, predicting 94.1% of the 

adaptation-relevant items as such.  

4.2 Annotator confidence 

For analysis of the effects of applying CSTs on the 

training and evaluation data, the CSTs were 

clustered into low (i.e., all labelled data included), 

medium (i.e., all items labelled with a score of 50% 

or lower excluded), and high (i.e., all items with a 

score of 70% or lower excluded). The bars in figure 

3 show the mean evaluation scores of the best five 

methods per approach based on F1 score. Here, it 

becomes clear that applying a CST affects 

performance for all approaches, as a low CST 

yields the lowest scores in all four cases. For the 

traditional and zero-shot approaches, a higher CST 

positively affects the ratio of items correctly 

identified, whereas it mainly results in increased 

precision (i.e., the ratio of non-relevant items 

incorrectly predicted as relevant) for the fine-tuned 

models. 

 
Figure 2: Selection of results for the four approaches, namely Rule-Based Classification (RBC), Natural 

Language Inference (NLI), Large Language Models (LLM) and Fine-tuned Encoder Models (FEM). For each 

approach, the two top-performing models based on F1 score (F) and the top one according to recall (R) were 

selected. Precision is also reported (P). 
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In the prompt variations used for classification with 

GPT-4o, it is observed that the prompt resulting in 

the best scores depends on what CST is applied. 

Although recall increases in all cases, the specific 

prompt (P2) lead to degraded performance when no 

CST was applied (i.e., CST0) or when a high 

threshold was used (i.e., CST80). For this zero-shot 

approach, a medium CST combined with a specific 

prompt (P2) results in the best scores, excelling on 

both recall and precision (see figure 4). 

 

4.3 Chunking strategy 

A comparison of the overall performance of each 

approach on the different datasets (see figure 5) 

shows that the best balance between maximized 

true positives and minimized false positives is 

achieved with the dataset of full-length text chunks 

(dataset 1). The models fine-tuned and/or evaluated 

on this dataset particularly excel on recall. 

Although the margins vary, the summarized dataset 

(dataset 3) resulted in the lowest F1 score for all 

approaches. The methods in non-fine-tuned 

settings do show an increase in precision for this 

dataset compared to the others. 

 
Comparing the two versions of the sub-chunk 

dataset, no major differences in performance 

between the original dataset (2a) and the one with 

resolved coreferences (2b) are observed. For the 

FEM approach, coreference resolution shows a 

slight increase in evaluation scores. However, in 

most other cases, as figure 5 also indicates, the 

models become less capable of identifying relevant 

items, hence a decrease in recall.  

4.4 Data cleaning strategy 

The results plotted in figure 6 reveal that adding a 

document type filter positively affects the F1 score 

for all approaches, except for the fine-tuned 

models. For this FEM approach, the results show 

that the data strategy (i.e. filtered versus unfiltered 

on document type) that outscores the other varies 

per model and CST. This is expected, as applying 

the filter lead to a more balanced dataset, typically 

improving classification performance, but the size 

of the training dataset decreases, meaning the 

model has less examples to learn from. Of all 

experiments conducted overall, both strategies 

occur in the top 20 (sorted by F1 score). The 

absolute numbers of a confusion matrix of the best-

 

Figure 3: Results of applying a low, medium, or high 

confidence score threshold (CST) on the dataset. The 

average performance metrics of the top five methods 

per approach, ranked by F1-score, are plotted. 

 

Figure 4: Results of classification with GPT-4o. The 

bars show F1-score, recall, and precision for each 

confidence score threshold (CST) and compares the 

scores of using a concise versus a specific prompt. 

 

 

Figure 5: Results of evaluating classification with 

four different datasets: dataset 1 (full chunks), dataset 

2a (sub- chunks), dataset 2b (sub-chunks with 

resolved coreferences), and dataset 3 (summarized 

chunks). The average performance metrics of the top 

five sub-methods per approach, ranked by F1-score, 

are plotted. 
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scoring variant of each filtering strategy5 (see 

Appendix C. ) also indicate that there is no clear 

outperforming data strategy*. The most suitable 

choice depends on various design choices, as 

further explored in the following section. 

 

4.5 Overall comparison 

In this research, recall is prioritized over precision, 

meaning that the ‘best’ method is not purely 

determined based on F1 score. Setting a precision 

threshold of 0.66 and sorting the results on recall 

leads to a set of four FEM methods considered 

most suitable to the task, each with its own 

strength. An overview of these methods, including 

their results, is provided in table 3. All models in 

this selection are fine-tuned and applied on/to the 

dataset of full chunks (dataset 1). 

 

 
5 Determined by setting a minimum precision of 0.66, then 

sorting by recall (descending) 

This selection shows that there are multiple 

methods* that lead to satisfactory results. The 

selected methods show comparable performance, 

from where it is obtained that the two models fine-

tuned and evaluated on a filtered dataset variant are 

most computationally efficient (measured by 

duration of the fine-tuning process), the 

EnvironmentalBERT-based method excels on 

precision and F1 score, and the first ClimateBERT 

model achieves the best recall.  

5 Discussion 

The main objective of this paper was to determine 

the best classification method to identify 

adaptation-relevant text chunks in large and 

unstructured climate policy documents. The results 

reveal that each approach comes with its own 

strengths and weaknesses, but domain-specific 

models fine-tuned on a labelled dataset showed the 

best balance between ratio of correctly identified, 

relevant items and minimized presence of 

irrelevant items among those predicted as being 

relevant. With F1 scores of 0.759, 0.758, 0.752, and 

0.764 respectively, four fine-tuned models (listed 

in table 3), including three different base models 

and multiple dataset variants, have proven their 

potential for identifying relevant  information 

needed to track adaptation globally. These findings 

align with those of Bucher & Martini (2024), i.e., 

that fine-tuned models outperform LLMs when 

sufficient training data is available, and those of 

Dimitar et al. (2023), i.e., that better scores are 

achieved when such models have been pre-trained 

and/or previously fine-tuned on domain-specific 

data. In this research, where the labelled data has 

been created, this supervised FEM approach is 

considered most suitable, as it outperforms the 

benchmarked RBC and NLI approaches by large 

margins and shows small performance 

advancements over the top-scoring zero-shot 

method with GPT-4o. As the differences with the 

latter are relatively minor, however (i.e., an F1 

difference of 0.07), LLM-based zero-shot 

classification has also demonstrated its potential. 

Especially in future cases, when the resources to 

(re-)create a labelled dataset are limited, this 

approach may be a valid alternative. The results 

have shown, however, that the chosen CST and 

* See Appendix A.  for the nomenclature 

 

Figure 6: Results of evaluating classification with two 

different data strategies: with and without an applied 

document type filter. The average performance 

metrics of the top five methods per approach, ranked by 

F1-score, are plotted. 

Table 3: Overview of four selected methods, referring 

to models fine-tuned on specific dataset variants 

Model Var. Prec. Rec. 
Comp. 

Cost 

ClimateBERT 
CST70, 

Filtered 
0.673 0.871 - 

ClimateBERT 
CST60, 

Unfilt. 
0.672 0.869 -/o 

LegalBERT 
CST0, 

Filtered 
0.671 0.855 - 

EnvironBERT 
CST60, 

Unfilt. 
0.694 0.848 o 
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prompt design can majorly affect the performance 

of LLMs as classifiers, making this approach less 

reliable and robust when there is no labelled dataset 

available for validation. 

What specific FEM and dataset variant should 

be selected, however, depends on prioritization of 

trade-offs. First, what CST is applied should be 

taken into account for the final choice of method. A 

low CST means that even chunks that are 

somewhat relevant will be included in the eventual 

dataset, which limits the possibility of missing out 

on potentially relevant information. The 

relatedness of the text in the final dataset, however, 

likely improves when its content is relevant to 

adaptation with high confidence. Using a medium 

CST (i.e., 50-70) is, therefore, preferred, as this 

balances out these (dis)advantages. 

In contrast to prior studies which suggest that 

performance of Transformer-based models 

typically improves when text is relatively short and 

consistent, the results show that for all approaches, 

the best scores were achieved using the full chunk 

dataset. Applying coreference resolution to the 

short text splits did not solve the ‘missing context’ 

problem, showing negligible differences, nor did 

automated summarization overcome the challenge 

of dealing with longer text lengths. This 

emphasizes the importance of context information, 

which likely connects to adaptation’s conceptual 

indistinctness described by Dupuis & Biesbroek 

(2013). Using the full chunks (dataset 1) is, 

therefore, preferred here. Determining whether a 

document type filter should be applied, however, 

turned out a greater challenge. The main advantage 

of filtering the dataset on document type is that it 

limits the size (by more than 20%) of the dataset, 

positively affecting computational cost, and that it 

improves class balance. This, depending on the 

sub-method, results in an increased recall, 

compensating for the small ratio of relevant chunks 

that are missed out on by applying the filter.  

Determining the overall best method requires an 

optimal trade-off between precision and recall. 

Although capturing all relevant information is 

crucial, ensuring sufficient precision to minimize 

the presence of irrelevant information and, with 

that, improve the quality of the evidence base, 

should not be ignored. Therefore,  a precision 

minimum of 0.66 was set, after which the results 

were ranked by recall. In addition, computational 

cost also plays a role in determining the optimal 

method. For establishing the adaptation evidence 

base, therefore, the ClimateBERT model fine-tuned 

on the filtered dataset with a CST of 70 (see table 

3) is considered the most appropriate choice. 

These findings underscore the potential of state-

of-the-art NLP methods to narrow down relevant 

policy information at large scale, which may also 

be interesting to explore in other (policy) domains. 

Other suggested future research directions involve 

successive steps in establishing an NLP-driven 

adaptation tracking framework by, e.g., further 

unpacking and structuring the unstructured climate 

policy texts by identifying and categorizing 

adaptation-specific (policy) elements. 

6 Conclusion 

This work has revealed important methodological 

considerations for classification of adaptation 

policy texts. For an automated framework for 

identifying relevant information, with the aim of 

creating a dataset of adaptation policy and, with 

that, increasing accessibility of information needed 

to track progress, a fine-tuned ClimateBERT model 

has shown optimal performance. This method 

ensures a sufficient balance between correctly 

identified text, minimized missed items, and 

maximization of irrelevant items filtered out. To 

boost performance, label confidence should be 

taken into account during manual labelling. 

Following, items labelled with a confidence score 

of less than 60% should be excluded. Also, 

documents should be filtered to include only those 

that are known to contain adaptation-relevant 

information and should be split based on 

Markdown structure and semantic meaning, with 

an average of 10 paragraphs per splits. The exact 

length is determined by the semantic splitter, 

ideally with a range of 2,000-8,000 characters. 

Limitations 

The discussed work comes with several limitations. 

First, the text chunks were automatically parsed 

from the original PDFs and non-English text was 

machine-translated. The data may, therefore, 

contain parsing and/or translation errors, 

potentially affecting the results. Second, relevance 

labels and confidence scores were assigned by 

human annotators, making them exposed to 

subjectivity. This was also observed in the inter-

annotator agreement, where the annotators 
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disagreed in 17% of the cases. Considering this, 

despite extensive training, the labels and scores 

may not always reflect true certainty, highlighting 

the ambiguity of the classification task and the 

challenge of aligning AI predictions with human 

judgment. Third, the automatically generated 

summaries (dataset 3) were not extensively 

reviewed and no alternative methods or models for 

summarization were explored, limiting 

comprehensive assessment of the potential of this 

approach. Fourth, only two prompt variations were 

evaluated, which were based on prompt 

engineering principles (Geroimenko, 2025) and 

may not reflect the full potential of the zero-shot 

LLM approach.  

Following these limitations, future work should 

enhance validity by, e.g., delving further into 

annotation consistency, evaluating alternative 

summarization models, and full-scale evaluation of 

more than these two prompt variations to assess 

whether the practical results align with prompt 

design theory. 
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Appendices 

Appendix A.  Table of nomenclature 

For a clear overview of the terms used throughout 

the paper, one can refer to table 4. Any combination 

of the different levels (e.g., LLM-based 

classification with GPT-4o on the filtered variant of 

dataset 1) is referred to as a method. Any 

combination of levels 2 up to and including 5, for a 

given approach, is called a sub-method.  

Appendix B.  NLI task types 

 

Appendix C.  Confusion matrix data 

strategy 

 
 

 

Table 5: Overview of tasks included in the NLI-based 

classification experiments 

Labels Task type 

Adaptation Binary 

Adaptation policy Binary 

Climate change adaptation Binary 

Adaptation, Mitigation 

Multi-class (>0.5) 

Multi-class (>0.6) 

Multi-class (>0.7) 

 

Table 6: Confusion matrix of classification results on 

the test set in absolute numbers. Each cell shows the 

results of the filtered (L) versus unfiltered (R) data 

strategy. 
T

ru
e 

la
b

el
 

 Predicted label 

 A NA 

A 83 / 87 11 / 13 

NA 40 / 42 188 / 301 

 

Table 4: Table of nomenclature 

Level Name Example(s) Applies to… 

Method (any combination of the different levels) 

1 Approach RBC, NLI, FEM, LLM n/a 

 Sub-method (any combination of a setup and dataset variant; a method for a given approach) 

  Setup (levels 2 and 3; any combination of a model, query, task (type), and/or prompt) 

  2     Model   BART-large-mnli, ClimateBERT, GPT-4o   NLI, FEM, LLM 

or Query   Baseline query, data-driven query   RBC 

   3       Task (type)     Labels (‘adaptation’, ‘mitigation’), task type (multi-class)     NLI 

   or Prompt     P1 (concise), P2 (specific)     LLM 

     Dataset variant (levels 4 and 5; any combination of a dataset and data strategy) 

     4         Dataset       Dataset 1 (full chunks), dataset 2b (sub-chunks, resolved)       all 

       5           Data strategy         CST0, CST70, filtered, unfiltered         all 

 

277


