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Abstract
The extraction of emissions-related information
from annual reports has become increasingly
important due to the Corporate Sustainability
Reporting Directive (CSRD), which mandates
greater transparency in sustainability reporting.
As a result, information extraction (IE) meth-
ods must be robust, ensuring accurate retrieval
while minimizing false values. While large lan-
guage models (LLMs) offer potential for this
task, their black-box nature and lack of spe-
cialization in table structures limit their robust-
ness – an essential requirement in risk-averse
domains. In this work, we present a two-step
hybrid approach which optimizes both accuracy
and robustness. More precisely, we combine
a rule-based step for table IE with a regular-
ized LLM-based step, both leveraging tempo-
ral prior knowledge. Our tests demonstrate the
advantages of combining structured rules with
LLMs. Furthermore, the modular design of our
method allows for flexible adaptation to vari-
ous IE tasks, making it a practical solution for
industry applications while also serving as a
scalable assistive tool for information extrac-
tion.

1 Introduction

Environmental, social, and governance (ESG) con-
siderations have rapidly become central to corpo-
rate accountability and risk assessment. In the Eu-
ropean Union, the Corporate Sustainability Report-
ing Directive (CSRD)1 mandates that organizations
disclose a variety of sustainability metrics in their
annual or sustainability reports. While large public
companies’ data points are often available from
data vendors, this is usually not the case for small
and medium-sized enterprises (SMEs), whose re-
ports frequently vary in format, presentation, and
structure. At the same time, financial institutions,
insurance companies, and other stakeholders in-
creasingly require precise and reliable data, such

1https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX:32022L2464

as carbon emissions and other key indicators, to
feed into quantitative risk models, in line with di-
rectives from bodies such as the European Banking
Authority (EBA)2.

Despite the growing volume of reported ESG
data, extracting the relevant numerical values from
heterogeneous documents remains a challenging
task. In this work, we focus on the most common
requirement of extracting numerical values from
tabular structures. Many reports feature tables with
inconsistent layouts, unstructured text, and vary-
ing terminologies, making standard IE methods
prone to errors or heavy manual intervention. Fur-
thermore, any inaccuracies in extracting emissions
data or related metrics can lead to flawed risk as-
sessments and regulatory non-compliance, under-
scoring the need for a highly robust, automated
extraction pipeline.

To address these challenges, we propose a mod-
ular hybrid approach that regularizes LLM-based
table IE by integrating domain expertise with tem-
poral prior information. We demonstrate that com-
bining rule-based techniques with machine learn-
ing models yields high accuracy, robustness, and
scalability. Our table IE approach consists of two
steps: A rule-based step that generates a candidate
set containing the true information with high confi-
dence and an LLM-based step that assists the user
in selecting the most relevant element from this set.
Our approach effectively addresses challenges such
as mislabeled table headers, inconsistent data for-
mats, and variations in corporate reporting styles.
Most importantly, it reliably detects cases where
the desired data point cannot be determined with
confidence, ensuring transparency and trustworthi-
ness in the extracted information. To the best of our
knowledge, this is the first work to develop a table
IE algorithm specifically tailored to the regulatory

2https://www.eba.europa.eu/publications-and-m
edia/press-releases/eba-publishes-its-final-gui
delines-management-esg-risks
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requirements of financial institutions.
The remainder of this paper is organized as fol-

lows. Section 2 provides an overview of existing
research related to table IE. Section 3 presents the
proposed methodology. Section 4 describes our ex-
perimental setup and the datasets used to evaluate
performance. Section 5 summarizes our empirical
results and discusses the practical implications for
stakeholders. Finally, Section 6 concludes the pa-
per by highlighting the method’s potential benefits
and directions for future research. All our data is
available on Github3.

2 Related Work

The analysis of annual reports for climate-related
information is an active area of research. We-
bersinke et al. (2022) introduce ClimateBert, a deep
learning model based on BERT. In Bingler et al.
(2024), it is applied to detect climate-related cheap
talk in annual reports. In Schimanski et al. (2023),
it is used to detect corporate, national, and regional
net zero and reduction targets. The OS-Climate
initiative, hosted by The Linux Foundation, recog-
nized the need to extract key emission data from
annual reports to facilitate climate-aligned finan-
cial decision-making. To address this, their Data
Commons project (OS-Climate, 2025) offers an
NLP toolkit for table data extraction. Mishra et al.
(2024) explores table IE of ESG metrics. Their
methodology translates tables into structured text
using sequence-to-sequence transformer models.
LLMs are also being explored for extracting finan-
cial data from tables in corporate reports. Balsiger
et al. (2024) evaluates ChatGPT-4 and BARD for
extracting key financial figures, such as balance
sheets and income statements, from PDF-based an-
nual reports. Their study highlights the potential
and limitations of LLMs in processing complex
financial tables. Wang et al. (2023) and Lamott
et al. (2024) demonstrate that enriching prompts
with OCR-derived layout information improves
LLM document understanding; however, neither
approach explicitly targets robustness in table ex-
traction. Looking at the more technical research
about table IE, the study by Lu et al. (2024) gives
an overview of current research about table related
tasks for transformer-based language models. Be-
fore the advent of large-scale LLMs (i.e., models
with fewer than one billion parameters), researchers

3https://github.com/hendrikweichel/hybrid_2_s
tep_table_information_extraction

sought to enhance table understanding through ar-
chitectural modifications, improved encoding meth-
ods, and model fine-tuning (Herzig et al., 2020;
Iida et al., 2021; Deng et al.). With the emergence
of LLMs, two strategies became dominant: fine-
tuning and prompt engineering. The inputs typ-
ically include metadata along with the full table
contents and a task-specific instruction. A more
recent advancement in LLM-driven table extrac-
tion involves agent-based methods, which utilize
LLMs’ reasoning capabilities. Techniques such
as Chain-of-Thought (CoT) prompting (Wei et al.,
2023) and ReAct prompting (Yao et al., 2023) en-
able iterative extraction, refining the data retrieval
process through step-by-step reasoning.

Despite these promising developments, a re-
search gap remains in ensuring the robustness of
these methods in risk-averse application domains.
Purely LLM-based approaches inherently lack this
robustness: On the one hand, their statistical nature
limits reliability, and on the other, their inherently
one-dimensional input representations conflict with
the two-dimensional structure of tables. At the
same time, academic literature highlights a discon-
nect between industry and academia. Chiticariu
et al. (2013) state that “while rule-based IE domi-
nates the commercial world, it is widely regarded
as dead-end technology by academia.” They ob-
serve, however, that rule-based methods remain
essential in the industry. Unlike purely statistical
machine learning approaches, rule-based systems
leverage expert knowledge to define explicit pat-
terns (e.g., regular expressions, ontology schemas,
or grammar rules) that target relevant information.
Rule-based table IE has been explored more ex-
tensively in other domains. For example, Potvin
et al. (2016) propose a position-based rule-based
method that utilizes the spatial arrangement of text
elements to infer relationships.

3 Methodology

Let R denote a finite set of company annual and
sustainability reports. Suppose we aim to extract a
numerical value yt ∈ R, where t represents the year
of the report. An example of such a value, which
will serve as our running example, is “Scope 3
emissions in 2023 (in tonnes CO2 equivalents)”
from the report r2023. An IE algorithm provides
a function f : R → R, where f(rt) represents the
best estimate of the true value yt contained in the
report rt. Our approach integrates both domain ex-
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pertise and temporal prior information, leveraging
validated data from previous reports of the same
company, i.e., rt−1, . . . , rt−n. Including such prior
information into the IE pipeline can be interpreted
as a regularization method, cf. Appendix A.
Henceforth, the objective is to develop a reliable
IE algorithm such that

f(rt|rt−1, . . . , rt−n) = yt ∀rt ∈ R̃ ⊂ R

where we use the notation f(·|rt−1, . . . , rt−n) to
indicate the dependency of the function f on the
parameters rt−1, . . . , rt−n, with |R̃| as large as pos-
sible, while ensuring that

f(rt|rt−1, . . . , rt−n) =∞ ∀rt ∈ R \ R̃

to indicate cases where the function cannot reliably
determine yt. We base our approach on two key
empirical observations made by domain experts
analyzing sustainability reports:

(i) Emission data is almost always presented in
tabular form.

(ii) Historical data provides a valuable prior for
validating extracted values.

Thus, we assume that all emission values in R
are stored in tables and define T (rt) = {T|T ∈
(R ∪ Σ)n×m;m,n ∈ N}, where Σ represents tex-
tual values and R represents numerical values, as
the set of all tables within report rt. Our proposed
IE function f is provided by a recursive approach,
assuming that the relevant information has been
successfully extracted and persisted in the previ-
ous years. In practice, the initial year is labeled
manually. We follow a three-step pipeline:

1. Table Extraction: Given input rt, extract the
set of all tables T (rt) using a table extraction
method.

2. Information Retrieval (IR): Given the in-
put rt, ..., rt−n (as well as the relevant tables
and values extracted by the table extraction
method in the previous years, see (iii) below),
identify a table T̂(rt) ∈ T (rt) that contains
yt (as well as yt−1 or even a longer history).

3. Information Extraction (IE): To extract the
target value yt, we apply a mapping

T̂(rt)× · · · × T̂(rt−n)×
yt−1 × · · · × yt−n 7→ yt.

T̂(rt−1), ..., T̂(rt−n) denotes the tables containing
yt−1, ..., yt−n as extracted by the table extraction
method in the previous years.

This paper focuses on step 3 of the pipeline,
extracting information from tables, which is abbre-
viated as table IE in the following. While LLMs
could, in principle, learn the complex mapping for
table IE, T̂(rt) 7→ yt, there is one limiting factor
making them unreliable for precise data extraction
in regulatory settings: They are prone to hallucina-
tions. This is further complicated by their inability
to perceive the two-dimensional structure of tabular
data due to their one-dimensional input format. To
solve this problem, we present two distinct contri-
butions:

1. A rule-based table information extraction
approach to systematically extract yt from
T̂(rt−1). It exploits the historical knowledge
about previous extractions and selects a candi-
date set of l possible solutions

{ŷ(1)t , . . . , ŷ
(l)
t } ∈ T̂(rt)

that has a high probability of uniquely contain-
ing yt and a low probability of only returning
candidates different from yt. Applications that
do not allow the use of LLMs, can apply this
rule-based table IE like so:

f(rt|rt−1, . . . , rt−n) =

{
ŷ(1), l = 1

None, else

2. A hybrid two-step table information extrac-
tion approach expands the rule-based table
IE by leveraging the candidate set to regular-
ize table IE with LLMs. We demonstrate in
Section 3.2 below that the mapping

T̂(rt)× {ŷ(1)t , . . . , ŷ
(l)
t } × yt−1 7→ yt

can be implemented through LLMs, both op-
timizing the robustness and accuracy of stan-
dard table IE through LLMs. We show that
the rule-based pre-processing serves as a reg-
ularization mechanism for the LLM’s table
IE task. Still, given their black-box character,
such a hybrid approach should assist in man-
ual extraction rather than a fully automated
solution in domains that require maximum
robustness.

Note that our IE process is both recursive and
highly modular, enhancing its flexibility and re-
liability. We extensively leverage this modularity
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Hybrid Two-Step Table IE

Rule-Based Table IE

2025 2025
EU World

Scope 1 2 t 3 t
Scope 2 13 t 15 t
Scope 3 20 t 23 t

20 t 23 t

y = 23 tLLM

yt−1

Figure 1: Illustration of our two contributions: (1) a
rule-based table IE approach, and (2) a hybrid table IE
method that builds upon (1) by leveraging its output.

to optimize our method for robustness, ensuring
a low probability of incorrect outputs. Instead of
returning erroneous results, the system is designed
to return None when confidence is insufficient.

3.1 Rule-Based Table IE
Purely LLM-based table IE methods fail to utilize
the two-dimensional nature of tables, cf. (Lu et al.,
2024), and as a result, they overlook the implicit
knowledge embedded within the matrix structure
of tables T̂(rt) ∈ (R∪Σ)n×m. Our approach takes
into account this knowledge by individually scor-
ing all columns and rows based on their alignment
with the target extraction. The different scoring
methodologies tested in this work are presented
in Section 3.1.1 below. Ultimately, cells that in-
tersect in both the highest-scoring columns and
rows are selected as the candidate set of values
{ŷ(1), . . . , ŷ(l)} ⊂ {T̂(rt)i,j | i ∈ {1, . . . , n}, j ∈
{1, . . . ,m}}. To ensure that the candidate set con-
tains yt with high confidence, we gather a set
of constraints {C1, . . . , Cq} that apply to all the
columns and rows that contain yt. Such as, e.g., yt
always lies in a column which is annotated with
the year t.

Algorithm 1 outlines the process of generating
the candidate set, which is further illustrated in
Figure 2. Based on the constraints, the algorithm
assigns a score to each cell T̂(rt)i,j expressed in
the score matrix O ∈ Rn×m. Each constraint Ck,
k ∈ {1, . . . , q}, is formalized as a triplet

C(k) = (Q(k), S(k)(c,Q), d(k)),

where Q(k) is the query, e.g., the year of the
searched emissions; S(k)(c,Q) is a similarity met-
ric, that calculates the similarity score between a
cell c and the respective query Q(k); and d(k) spec-
ifies the application orientation of Q(k) and S(k),

Algorithm 1 Computation of scores for table cells
Require: M,O ∈ Rn×m

1: for k in 1, . . . , q do
2: for T̂(rt)i,j ∈ T̂(rt) do
3: Mi,j ← S(k)(Q(k), T̂(rt)i,j)
4: end for
5: v← max(M, dim = d(k))
6: Mselect ← tile(v, shape = M(rt).shape)
7: Mmax ←M.where(Mi,j = max (M))
8: O← O+Mselect −Mmax

9: end for

indicating whether they are applied across rows or
columns. These constraints encapsulate all prior
knowledge about the target extraction that can be
derived from T̂(rt−1)× · · · × T̂(rt−n).

Besides the constraints for rows and columns,
we apply additional constraints on the individual
cell level. If the cell T̂(rt)i,j does not match the
format of our target extraction, we set the corre-
sponding score Oi,j to zero. In our example, where
the goal is to retrieve numerical emission values,
we exclude all cells that do not contain numbers or
that include financial figures and percentages, as
indicated by their corresponding units (C, $, £, %).

As a final step, the cells of the table T̂(rt) with
the highest scores in O are selected as the candidate
set:

{ŷ(1), . . . , ŷ(l)} = {T̂(rt)i,j |Oi,j = max (O)}

In production practice, an additional layer for
identifying implausible results could be imple-
mented by leveraging the time series of target val-
ues yt, . . . , yt−n. Candidate values ŷ(·) with a
high deviation from the previous value yt−1 can
be flagged as implausible. In practical terms, this
involves calculating the difference between each
candidate ŷ(·) and yt−1, then flagging all candidates
where |ŷ(·) − yt−1| exceeds a predefined threshold.

The proposed modular and recursive design en-
ables robust IE. More precisely, leveraging this
modularity is essential for selecting robust simi-
larity metrics and comprehensive constraint sets
to accurately identify the row and column contain-
ing the target value yt. As demonstrated in 4.2.1,
where we conduct a cross-validation, this approach
ultimately increases the likelihood of retrieving yt
as a candidate value.
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Get Scope 3 emission in 2025
2025 2024

Scope 1 2 t 3 t
Scope 2 13 t 15 t
Scope 3 20 t 23 t

C(2) Find the row by Scope 3
2025 2024

Scope 1 2 t 3 t
Scope 2 13 t 15 t
Scope 3 20 t 23 t
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2025 2024

Scope 1 2 t 3 t
Scope 2 13 t 15 t
Scope 3 20 t 23 t

0 1 0

0 1 0

0 1 0

0 1 0







M(1)

0 0 0

0 0 0

0 0 0

1 1 1







M(2)

0 0 0

0 1 0

0 1 0

0 2 1







O

2025 2024
Scope 1 2 t 3 t
Scope 2 13 t 15 t
Scope 3 20 t 23 t

Figure 2: Flow chart of Algorithm 1.

3.1.1 Similarity Metrics
The similarity metrics take a query and a cell as
input and assign a score between 0 and 1, reflecting
the degree to which the cell matches the query, i.e.,

S(c,Q) −→ [0, 1]

We perform cross-validation across several differ-
ent metrics to determine the best-performing met-
rics for each query type; a comprehensive definition
of all similarity metrics is given in Appendix B.

Regular expressions represent the simplest sim-
ilarity metrics, applied either as exact string match-
ing (“is Q in c?”) or in combination with pre-
processing methods: We examine pre-processing
through only selecting the numerical sub-strings
of the query and the cell, and then carry out the
string matching. Furthermore, one can tokenize
the query into subqueries and compute the share
of subqueries that are contained in the cell. This
leaves more degrees of freedom for the structure
of the cell strings and enables the use of continu-
ous scores between 0 and 1. For the same reason,
we examine the set-based Jaccard similarity and
the Levenshtein distance. Both, in theory, accept
minor dissimilarities between cell and query and
could lead to a higher precision.

Additionally, we evaluate semantic vector-
based matching. Techniques such as Word2Vec
(Mikolov et al., 2013) and transformer-based word
embedding models4 have demonstrated strong per-
formance in measuring similarity. These models as-
sign vectors to sentences, enabling similarity mea-
surement based on the comparison of their vector
embeddings. A drawback of these machine learn-
ing models is their black-box nature and higher

4We use the models from Song et al. (2020) and Wang
et al. (2020), with fine-tuning in https://huggingface.
co/sentence-transformers/all-mpnet-base-v2 and
https://huggingface.co/sentence-transformers/al
l-MiniLM-L6-v2, respectively.

computational cost compared to the previously dis-
cussed methods.

Numerical metrics can be used to compare cells
and queries containing numerical content. To do so,
both the cell and the query are converted to floats.
We test both, a numerical metric that returns the
percent-wise deviation from the cell value to the
query value and one binary numerical metric that
returns 1 if the absolute difference is smaller than
a given threshold and 0 else.

In Section 4, we perform cross-validation to de-
termine which similarity metric fits best for which
type of query. Appendix B formally defines all the
queries we tested.

3.2 Hybrid Two-Step Table IE
If the rule-based table IE does not return a unique
candidate, its candidate set can be used to assist ta-
ble IE with LLMs. A straightforward table IE task
would instruct the LLM to return the target value
yt, given the table T̂(rt). We shift this question
and answer task to a regularized binary classifica-
tion task: Given the table T̂(rt) and the previous
year’s emission yt−1 (if contained in T̂(rt)), we
instruct the LLM to select yt from {ŷ(1), . . . , ŷ(l)}.
Note that this approach offers a two-fold regular-
ization of the problem: first, by incorporating prior
information (cf. Appendix A), and second, by con-
straining the solution space. This enhances the
robustness of table IE using LLMs. Our instruction
prompt is structured as follows:

Table IE by Selection Prompt

Context: T̂(rt)
Instruction: Choose the element from the list of can-
didate lists that contains the total Scope 3 emissions
in the year t given in the table T̂(rt) in JSON format.
The previous year’s emissions were yt−1, and it is
likely that this year’s emissions do not deviate signif-
icantly from yt−1.
Candidate list: {ŷ(1), . . . , ŷ(l)}
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4 Experiments

This section presents our experiments on testing
the table extraction approach using our running
example of extracting Scope 3 emissions from fi-
nancial institutions’ annual reports. In these exper-
iments, we used the following queries: (1) Filter
the columns by the emission year t; (2) Filter rows
by the emission type “Scope 3”; (3) Filter rows
by the previous year’s emission yt−1; (4) Given
the fact that the table structure frequently remains
unchanged, with consistent row and column de-
scriptions, we leverage this stability and use the
name of the row in T̂(rt−1) that contains yt−1 as
a query to filter the rows in T̂(rt). In some cases,
the first column can be None; we then take the first
cell in the row that contains a textual value.

We test the purely rule-based table IE in two
steps: First, we cross-validate several similarity
metrics for each of the used query types to iden-
tify the robust metrics. Second, we choose the
robust similarity metrics and combine them to test
the creation of a candidate set. Here, we aim to
validate that yt is identified with high probability
within the candidate set. We evaluate both the rule-
based table IE and the hybrid two-step table IE
approach against a benchmark – a straightforward
LLM-based extraction.

4.1 Dataset

We test our approach by extracting Scope 3 green-
house gas emissions from tables in the annual
reports of Europe’s largest banks. This repre-
sents a particularly relevant real-world scenario,
as Scope 3 emissions constitute the most signif-
icant emission category for financial institutions,
given that they encompass financed emissions. At
the same time, Scope 3 emissions are notoriously
difficult to quantify, often resulting in frequent re-
statements from year to year, thus providing an
ideal testbed for our table IE approach. Note that
this table IE methodology should, in a subsequent
step, be integrated into a full IE pipeline, as out-
lined in Section 3. Since step two of this pipeline,
Information Retrieval, ensures that the retrieved
tables contain the emission, our dataset consists
exclusively of reports including tables that contain
the Scope 3 emissions.

For calibration and testing, we retrieved the 52
largest European banks by market capitalization
and examined their annual reports between 2018
and 2023. The Scope 3 emissions were initially

extracted manually from each report and tagged
with their corresponding page numbers. These val-
ues represent the extraction target yt. Using an
AWS-based OCR system (see (EdenAI, 2025)), we
extracted a set of candidate tables from the page
that contains yt. We then automatically selected
only the table T̂(rt) that contains yt. Subsequently,
we ensured that the structured tables accurately
preserved the original formatting and structure as
presented in the PDF versions of the annual reports.
Any deviations from the original table structure
were corrected manually, because the final pipeline
must preserve layout fidelity while discarding only
those tables that lack the target value yt. Automatic
detection of deviations will be explored in future
work as part of the Information Retrieval step. The
rule set was calibrated on a separate dataset drawn
from a distinct group of banks.

4.2 Rule-Based Table IE
To evaluate the rule-based table IE, we adapt the
notion of a binary classification that classifies each
cell in the table y ∈ T̂(rt) into one of two classes:

1. positive: y ∈ T̂(rt) is a candidate for yt due
to the structure of T̂(rt), these are all the can-
didates {ŷ(1)t , . . . , ŷ

(l)
t }.

2. negative: y ∈ T̂(rt) is not a candidate for
yt due to the structure of T̂(rt), these are all
the elements in the complement set {y| y ∈
T̂(rt)} \ {ŷ(1)t , . . . , ŷ

(l)
t }.

That is, the predicted positives are the candidates,
and the predicted negatives are all other elements
in T̂(rt). The true value is the extraction target yt,
and the false values are all other elements. This
type of table IE is considered robust if it consis-
tently includes yt in the candidate set. Naturally,
this may come at the cost of retrieving more false
positives, resulting in a larger candidate set. In
terms of the classification problem, our goal is to
minimize false negatives and optimize recall. For
example, if the candidate set contains the only ele-
ment for yt, the recall is 100.00%. Naturally, this
introduces a recall-precision trade-off: including
all elements {y| y ∈ T̂(rt)} in the candidate set
would result in a recall of 100% but a significantly
lower precision score. A precision of 100.00%
would occur, for instance, if the sole candidate ŷ(1)

is yt. We additionally use the notion of false posi-
tives only (FPO), which describes the share of ex-
tractions where only false positives were returned.
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Find column that contains Find row that contains
yt with query t yt with query yt−1

recall prec. FPO recall prec. FPO

Regex
Complete 97.62 78.97 0.00 38.10 38.10 0.00
Numerical 100.00 78.97 0.00 38.10 38.10 0.00
Word Wise 97.62 78.97 0.00 45.24 40.66 0.00

Numerical Metrics
Binary 80.95 71.03 0.00 40.48 40.48 0.00
Continuous 88.10 79.76 11.90 64.29 64.29 35.71
Step 95.24 76.97 4.76 71.43 53.97 28.57

Table 1: Test performance of numerical similarity met-
rics for the numerical queries to find the required rows
and columns (cf. Section 4.2.1).

Given one particular table, FPO is 1, if a nonempty
candidate set disjoint from {yt} is returned, and 0
otherwise. Recall, precision, and FPO report the
average values across all extractions in the dataset.

4.2.1 Similarity Metrics Cross-Validation

The similarity metrics are used to find those rows or
columns in T̂(rt) that contain the extraction target
yt. In our running example, we use four different
queries to do this. The cross-validation provided
here evaluates a selection of similarity metrics (see
Section 3.1.1 and Appendix B) with respect to their
ability to individually identify the rows or columns
in T̂(rt) that contain yt. Queries are classified into
two categories: numerical and textual. Table 1
presents the results for numerical queries, specifi-
cally the year t and the previous year’s emissions
yt−1; we apply numerical metrics and regular ex-
pressions. Table 2 presents the results for textual
queries, including the emission type and the row
name of the row in T̂(rt−1) that contains yt−1, we
apply several NLP similarity metrics such as simple
regular expressions, Levenshtein distance, Jaccard
similarity, and embedding-based similarities.

Find row that contains yt Find row that contains yt
with emission type with prev. table’s row name

recall prec. FPO recall prec. FPO

Regex
Complete 100.00 89.84 0.00 64.29 60.71 0.00
Word Wise 100.00 77.94 0.00 100.00 80.38 0.00

Levenshtein 57.14 45.36 42.86 83.33 79.76 16.67

Jaccard Similarity
4-grams 71.43 69.05 28.57 88.10 84.52 11.90
5-grams 73.81 73.81 26.19 88.10 84.52 11.90
6-grams 80.95 80.95 19.05 90.48 86.90 9.52
7-grams 85.71 85.71 14.29 88.10 84.52 11.90

Embedding
All MiniLM 59.52 59.52 40.48 85.71 82.14 14.29
MPNet Base 54.76 54.76 45.24 85.71 82.14 14.29
Word2Vec 40.48 40.48 59.52 88.10 84.52 11.90

Table 2: Test performance of textual similarity metrics
for the textual queries (cf. Section 4.2.1).

4.2.2 Test Rule-based Table IE
To evaluate the proposed table IE approaches, we
define the following constraint set, obtained from
the most robust similarity metrics in the cross-
validation, i.e.,

1. (t, Reg. Ex. Numerical, column)

2. (yt−1, Numerical Binary, row),

3. (“Scope 3”, Reg. Ex. Complete Strings, row),

4. (xt−1 row name, Reg. Ex. String-Level, row)

The average recall of the table IE experiments
with this set of constraints was 100%, the average
precision was 89.65% and the extraction uniquely
identified yt as the sole element in the candidate
set in 80.95% of all extractions.

4.3 Hybrid Two-Step Table IE
Testing the full table IE, i.e., retrieving a single
candidate for yt rather than a set of candidates, in-
volves a slightly different notion of false positives
and false negatives than we used for the test of the
rule-based table IE, since the result is no longer
a set of candidates but either a single value for yt
or None. In this context, a true positive extrac-
tion is selecting the correct element yt, selecting
a candidate different from yt is considered a false
positive. A false negative when None was returned
despite T̂(rt) containing yt. Analogously, true neg-
ative occurs when yt is not contained in T̂(rt) and
None is correctly extracted. It is crucial to empha-
size that, unlike the rule-based table IE in the first
step, which focuses on minimizing false negatives
when creating a candidate set, a robust second step
that selects only one element prioritizes minimiz-
ing false positives, thereby optimizing precision.
Table 3 presents benchmark results for a straight-
forward LLM-based table IE.

LLM recall prec.

GPT-4o 95.23 100.00
GPT-4o-mini 93.65 100.00
Deepseek r-1 90.91 95.65
llama 70b 90.48 100.0
llama 8b 86.11 83.78

Table 3: Benchmark for extracting yt from T̂(rt) with
straightforward Table IE by LLMs.

Our methodology yielded the following results on
the same dataset:

• The rule-based table IE achieved a precision
of 100%, meaning that it never extracted an
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incorrect value for yt. It also achieved a re-
call of 80.95%, indicating that in 80.95% of
cases, the correct value yt was extracted di-
rectly, while in the remaining 19.05% of cases,
yt was included in the candidate set.

• Our hybrid two-step table IE approach im-
proved these results by utilizing an LLM to
identify yt within the candidate set gener-
ated by the rule-based method. For all LLMs
listed in Table 3, i.e., GPT-4o, GPT-4o-mini,
Deepseek r-1, llama 70b, and llama 8b, this
approach successfully identified yt, achieving
both precision and recall of 100%.

5 Discussion

The cross-validation described in Section 4.2.1 en-
abled selecting the most robust similarity metrics,
cf. Tables 1 and 2. Using regular expressions on
numerical substrings is the most effective approach
for identifying the column containing yt, given the
year t. It always identifies the right column and
has a relatively high precision. We can also ob-
serve that identifying the row containing yt given
yt−1 works robustly using regular expressions and
binary numerical metrics. Specifically, if yt−1 is
present in T̂(rt), our rule-based approach success-
fully detects it; otherwise, it correctly determines
its absence. The fact that the latter case is ob-
served rather frequently is not particularly surpris-
ing, given the fact that in our dataset companies’
yearly Scope 3 emission restatements have a fre-
quency of roughly 60%. However, through the
EU’s efforts to standardize sustainability reporting,
it is likely that the frequency of restatements will
decrease in the future. Table 2 presents the evalu-
ation of textual metrics. The results indicate that
identifying the correct row using textual metrics
is highly robust when employing simple regular
expressions. These methods consistently achieved
a false positive only rate of 0% for both queries.
However, finding the row based on the row name of
yt−1 in the previous table did not achieve a 100%
recall, suggesting that only 64.29% of row names
remained unchanged from year to year. This issue
is effectively addressed by word-level matching,
which improves both precision and recall. The
Levenshtein ratio and Jaccard similarity performed
poorly, primarily because these metrics penalize
differences in query and cell lengths, even when
such variations do not affect the semantic mean-
ing. Similarly, embedding-based similarities strug-

gled because they treat numerically similar terms
(e.g., “Scope 2” vs. “Scope 3”) as nearly iden-
tical, leading to underperformance compared to
simpler rule-based methods. In future work, we
aim to explore how embedding-based similarities
can be better adapted to improve performance. As
a result of the cross-validation, we selected the
four most robust similarity metrics and combined
them to perform the rule-based table IE described
in Section 4.2.2. We see that the recall is 100%,
which means that the candidate set always contains
the extraction target yt. The proportion of extrac-
tions in our tests where the candidate set contained
only yt, i.e., exclusively returning true positives, is
80.95% for the most robust set of constraints. The
average number of candidate values was below 1.5
for all sets of constraints. In summary, these re-
sults demonstrate that a robust IE can be ensured if
the similarity metrics provide a consistently robust
extraction. The tests described in Section 4.3 com-
pared both steps of our table IE approach against
a straightforward LLM-based approach. We ob-
serve that, in a table question-and-answer setting,
only the models GPT-4o, LLaMA 70B, and GPT-
4o-mini achieved a precision of 100%. In con-
trast, our hybrid two-step approach successfully
performed information extraction with both recall
and precision at 100%. These results demonstrate
immense substantial gains in information extrac-
tion, especially for smaller LLMs such as llama 8B,
thus highlighting the effectiveness of our regular-
ization approach. Consequently, our approach en-
ables the utilization of smaller, more cost-effective,
and open-source models, enhancing accessibility
and scalability. This factor is especially critical in
the financial industry, which prefers open-source
on-premise solutions and demands scalability.

6 Conclusion

In this paper, we presented a two-step hybrid table
IE approach with a focus on robustness, making it
well-suited for risk-averse application domains. As
outlined in the problem statement, relying solely
on an LLM is not feasible in such domains – an
essential argument in favor of our approach. Ad-
ditionally, candidate sets generated by our method
include the extraction target with high probabil-
ity, which can be leveraged to support manual data
quality control and validation. We anticipate that
evolving regulations for sustainability reporting
will lead to higher data quality, greater consistency,
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and increased standardization. These trends further
strengthen the effectiveness and applicability of the
methodology presented in this paper.

Limitations

Our approach ensures robustness through cus-
tomize the constraints of the extraction in a highly
modular system. This is an advantage, however,
it is important to exploit this customizability for
other extraction tasks, i.e., it is important to specify
queries and similarity metrics for other applications
and / or other domains. A further limitation is that
we tested the approaches for a rather small dataset
and only used tables in a well-structured format. In
future work, we plan to address these limitations.
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A Including prior information as a
regularization method

Let us demonstrate that for IE purely driven by an
LLM, including temporal prior information may
be interpreted as a regularization method in a strict
mathematical sense. While the method we propose
here is a hybrid method rather than purely driven
by an LLM, this may still serve as a motivation for
including prior knowledge to obtain more robust
methods. Xie et al. (2022) study in-context learn-
ing for LLMs trained on a pretraining distribution
given by a HMMM. They prove that, under this as-
sumption, the LLM implicitely performs Bayesian
inference. We define the sequence of training exam-
ples Sn = (S1, ..., Sn) such as “Scope 1 emissions
in 2021 were ?? t”, “Scope 1 emissions in 2020

were ?? t”, and the test prompt xtest =“Provide the
Scope 1 emissions in the year 2023 in the unit t”.

The first step in in our framework provides an
additional chunk C of text from the text corpus
rt which is appended to the training examples to
obtain

S̃n = (Sn, C).

Therefore, Equation 5 in Xie et al. (2022) becomes

p
(
y | S̃n, xtest

)
∝

∫

θ

∑

h∈H
p
(
y | xtest, h, θ

)

× p
(
S̃n, xtest | θ

)

× p
(
h | S̃n, xtest, θ

)
p(θ) dθ.

In this setting, the prior p(θ) encodes the LLM’s
pretrained distribution. Including Ŝ in addition to
the test prompt updates the model’s posterior by an-
swering the question which parts of the parameter
space and which hidden states h ∈ H are most rel-
evant with regard to the inputs, thus preventing the
model from drifting to irrelevant states or modes.

B Similarity Metrics

Each similarity metric has inputs query and cell
and returns a value between 0 and 1.

B.1 Regular Expression

To evaluate whether a query is contained within
a string, we implemented five complementary ap-
proaches.

B.1.1 Complete Word Matching
The first approach converts both the query and cell
string to lowercase and checks if the query is con-
tained within the cell. It returns 1 for a match and
0 for no match.

B.1.2 Numerical Substring Matching
The second method extracts the numeric characters
from both the query and cell string, then checks if
the query’s numbers appear in the cell. It returns 1
for a match and 0 for no match.

B.1.3 Word-Level Matching
The fourth method splits the query into words, con-
verts them to lowercase, and calculates the frac-
tion of words found in the target string. The re-
sult ranges from 0 (no matches) to 1 (all words
matched).
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B.2 Levenshtein Ratio

This method is based on the Levenshtein distance,
which quantifies the minimum number of single-
character edits – insertions, deletions, or substitu-
tions – required to transform one string into an-
other. To normalize this distance, the Levenshtein
ratio divides it by the maximum possible string
length, yielding a similarity score between 0 and
1, where 1 indicates identical strings and 0 denotes
no similarity. This approach is particularly useful
for handling minor spelling variations, typos, and
fuzzy matching, making it a robust technique for
evaluating approximate string containment.

B.3 Jaccard Similarity

The Jaccard-Coefficient is a statistic used for the
similarity of two sets. In NLP this statistic is used
to yield a similarity score between 0 and 1. During
preprocessing, we create separate both the query
and the cell into the sets A and B of strings with
length n. Then we calculate the Jaccard similarity
as so:

S(A,B) =
|A ∩B|
|A ∪B|

B.4 Numerical Comparison

Here, we preprocess the strings such that we obtain
the quantity and unit. (“20,000 t CO2”→ Quan-
tity: 20000, Unit: “t CO2”). If there is no unit,
we directly compare the two quantities. To create a
similarity score between the two quantities a and b,
we use the following methods.

B.4.1 Binary Comparison
The binary comparison returns the score 1 if the
absolute difference between a and b is smaller than
1. Else it returns 0.

S(a, b) =

{
1, |a− b| < 1

0, else

B.4.2 Continuous Comparison
To allow minor differences between a and b we
use a continuous function. It returns the relative
difference between with respect to a.

S(a, b) = max

( |a− b|
a

, 0

)

B.4.3 Step Function
The step function is an extension of the continuous
function.

S(a, b) =





0, |a− b| < 1

0.9, |a−b|
a < 0.1

0.8, |a−b|
a < 0.2

0.6, |a−b|
a < 0.4

0.4, |a−b|
a < 0.6

0.2, |a−b|
a < 0.8

1.0, else

B.4.4 Word Embeddings and Cosine
Similarity

To calculate the similarities between two words a
and b, we first generate the word embeddings with
the given model ea and eb. Then we define the
similarity of a and b as:

S(a, b) =
ea · eb
∥ea∥∥eb∥

,

where ea · eb denotes the scalar product.

C Measurements for Experiments

These are the formal definitions for the experiments
to test the rule-based approach to create a candidate
set:

Average Precision =
1

N

N∑

i=1

TPi

TPi + FPi

Average Recall =
1

N

N∑

i=1

TPi

TPi + FNi

FPO =
N∑

i=1

1(TPi = 0 ∧ FNi = 0 ∧ FPi > 0),

where N is the total number of test extractions,
and TPi, FPi, FNi correspond to the counts for
extraction i.

These are the formal definitions for the ex-
periments to test the full table IE:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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D Prompting

We used the following prompt for our benchmark
of table IE:

Benchmark Table IE Prompt

System: Help to extract the total Scope 3 emissions
in the year t from a table given below.
Human: Therefore, choose the best answer for the
given context. And fill in the json format: "Scope 3":
<Scope 3 emissions>, where <Scope 3 emissions> is
a string of the Scope 3 emission with unit.
Context: T̂(rt)
Question: What are the total scope 3 emissions in the
year t given in the table?

We used the following prompt for our hybrid two-
step table IE:

Table IE with candidate set

System: Help to extract the total Scope 3 emissions
in the year t from a table given below.
Human: Help to extract the total Scope 3 emissions
in the year t from a table given below from a preselec-
tion of possible answers. The previous year’s emis-
sions were yt−1, and it is likely that this year’s emis-
sions do not deviate significantly from yt−1. There-
fore, choose the best answer for the given context out
of the set of possible answers. And fill in the json
format: {"Scope 3": <Scope 3 Emission>}, where
<Scope 3 Emission> is a string of the Scope 3 Emis-
sion with unit.
Context: T̂(rt)
Question: What are the total Scope 3 emissions in
the year t given in the table?
Select one of these possible answers {ŷ(1), . . . , ŷ(l)}
and make sure that it keeps the JSON format.
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