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Abstract

Misinformation about climate science is a
serious challenge for our society. This pa-
per introduces CPIQA (Climate Paper Image
Question-Answering), a new question-answer
dataset featuring 4,551 full-text open-source
academic papers in the area of climate science
with 54,612 GPT-40 generated question-answer
pairs. CPIQA contains four question types
(numeric, figure-based, non-figure-based, rea-
soning), each generated using three user roles
(expert, non-expert, climate sceptic). CPIQA
is multimodal, incorporating information from
figures and graphs with GPT-40 descriptive an-
notations. We describe Context-RAG, a novel
method for RAG prompt decomposition and
augmentation involving extracting distinct con-
texts for the question. Evaluation results for
Context-RAG on the benchmark SPIQA dataset
outperforms the previous best state of the art
model in two out of three test cases. For our
CPIQA dataset, Context-RAG outperforms our
standard RAG baseline on all five base LLMs
we tested, showing our novel contextual decom-
position method can generalize to any LLM
architecture. Expert evaluation of our best per-
forming model (GPT-40 with Context-RAG) by
climate science experts highlights strengths in
precision and provenance tracking, particularly
for figure-based and reasoning questions.

1 Introduction

Misinformation about climate science continues to
pose a challenge for our society. This poses a seri-
ous challenge for public understanding, policymak-
ing and even experts (Lewandowsky, 2020). At the
same time, large language models (LLMs) have be-
come powerful tools for information retrieval and
evidence synthesis, but they are also highly prone
to hallucination—generating incorrect or fabricated

facts, references, and claims (Huang et al., 2025).
Given the high stakes of climate communication,
there is a pressing need for a reliable question-
answering (QA) system that grounds responses in
authoritative scientific sources.

In this work, we introduce CPIQA, a new dataset
for climate science QA that incorporates both text
and visual data from academic papers. CPIQA con-
sists of 4,551 papers from twelve sources set out
in appendix C, with extracted figures and their de-
scriptions used as additional evidence in question-
answering. The dataset supports three role varia-
tions and four question categories designed to re-
flect different types of real-world climate questions.

Building on CPIQA, we develop a retrieval-
augmented generation (RAG)-based chatbot for
climate QA. Our system follows a two-stage re-
trieval process: it first retrieves full papers based on
the user’s query, then extracts relevant text chunks
from the most relevant papers. This approach im-
proves both chunk similarity and cross-relevance
of chunks. Further, we introduce Context-RAG, a
novel prompting method that enhances retrieval by
decomposing a given question into distinct contex-
tual variations before searching for relevant doc-
uments. Rather than relying on a single query,
our method anticipates different ways the ques-
tion might be framed—such as a scientific expla-
nation, a policy-related perspective, or a public
concern—allowing for more diverse and targeted
retrieval. This ensures that retrieved documents
are not biased toward a single interpretation of the
question.

To evaluate the effectiveness of our method, we
test it on SPIQA, a dataset for scientific QA in the
computer science domain, in addition to CPIQA.
This allows us to assess how well our QA pipeline
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generalizes beyond climate science. Finally, we
validate the system’s outputs through qualitative
climate scientist expert evaluation, ensuring that re-
sponses are accurate, relevant, concise and aligned
with scientific consensus.

By combining structured retrieval with expert-
informed question generation, this work con-
tributes a robust, transparent approach to cli-
mate QA, helping to bridge the gap between Al-
generated answers and reliable scientific communi-
cation.

More specifically, our contributions in this work
include the following:

¢ A new multimodal QA dataset resource
(CPIQA dataset) for the NLP community
based on 4,551 academic climate research
paper documents. This dataset is large,
annotated with 54,612 question-answer
pairs generated by GPT-40 and includes
text summaries of all images, graphs and
figures within the full text documents.
Questions are broken down into figure-
based, numeric-based, non-numeric, and
reasoning-based types to allow for a finer-
grained evaluation of QA performance
than most existing QA datasets allow. Our
code and dataset is open source and avail-
able at github.com/RudraMutalik/CPIQA,
doi.org/10.5281/zenodo.15374870 and
doi.org/10.57967/hf/5386 respectively.

* Description of a novel context-based query
expansion method for RAG, comprehensively
evaluated on both the benchmark SPIQA
dataset and our new CPIQA dataset. Context-
based query expansion provides a 7.2% im-
provement in BERTscore-F1 over baseline
RAG methods across various question types
and roles. We include a detailed breakdown of
performance across different question types
which future researchers can benchmark their
models against.

2 Related Work

2.1 Scientific QA Datasets

Table 1 sets out notable QA datasets that have been
designed to support scientific domains such as cli-
mate science.

A significant number of existing QA datasets
come from the biomedical and computer science

domains, reflecting the heavy use of document-
based QA in these fields. While these datasets
offer strong benchmarks for scientific QA, they
are typically unimodal, focusing exclusively on
textual information. Multimodal datasets—those
incorporating both text and figures—are far less
common, with SPIQA (Pramanick et al., 2024)
being the most comprehensive multimodal dataset
designed for scientific applications.

Among multimodal datasets, FigureQA (Ka-
hou et al., 2017) is a notable example, containing
question-answer pairs for synthetic graphs, figures,
and tables. However, it lacks contextual informa-
tion from accompanying text, making it unsuitable
for tasks that require a deeper understanding of
scientific literature.

Compared to biomedical and computer science
domains, climate science QA datasets are less com-
mon. One of the most relevant efforts is ClimaQA
(Manivannan et al., 2024), which includes both
a 502 question "gold" dataset curated by experts
and a larger LLM-generated 3000 question “sil-
ver” dataset. ClimaQA is unique in that it supports
three types of questions: multiple-choice, cloze-
style, and free-form, allowing for a broader range
of QA applications. Our CIPQA is significantly
larger with 54,612 questions, and unlike ClimaQA
which relies on textbook sources our dataset relies
on academic paper sources making it suitable for
research-driven climate QA.

2.2 Climate Science LLMs

Recent efforts have been made to fine-tune LLMs
specifically for climate-related tasks such as fact-
grounded QA, ambiguous policy analysis, and mis-
information debunking. One such example is Cli-
mateBERT (Webersinke et al., 2022), a model
trained on climate-focused text sources to improve
NLP performance in this domain. ChatClimate
(Vaghefi et al., 2023) grounds GPT-4 responses in
IPCC ARG reports, showing that retrieval signifi-
cantly improves accuracy. Hallucinations are iden-
tified, however, when queries extend beyond the
IPCC’s coverage. ChatNetZero (Hsu et al., 2024)
applies a similar approach to net-zero policies, re-
trieving structured data on corporate and govern-
mental pledges. While this helps ground responses,
the model struggles with policy ambiguity.
Beyond policy analysis, LLMs are being ex-
plored for misinformation debunking. Generative
Debunking of Climate Misinformation (Zanartu
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Question basis

Dataset Questi?n Num. QA Num Paper Source Domain Full - Figs &
generation pairs documents text  tabs

FigureQA Schema based 1.8M 140k Synthetic General N Y
BioAsq Human experts 3.2K - PubMed Biomedical N N
PubMedQA Human experts 1K 120K abstracts PubMed Biomedical Y N
BioASQ-QA Human experts 4.7K - PubMed Biomedical N N
ArgSciChat Human experts 41 dialogues 20 papers arXiv NLP Y N
ScienceQA Human experts 21K - School curriculum General Y Y
QASPER Human experts 5K 1.5K papers S20RC NLP N N
QASA Human experts 1.8K 112 papers S20RC AI/ML Y N
SPIQA Huriirllvlei;e - 270K 25.5K papers arXiv Computer Sci. | Y Y
ClimaQA-Gold Human Experts 502 23 Textbooks Climate Sci. Y N
ClimaQA-Silver LLMs 3000 23 Textbooks Climate Sci. Y N
CPIQA (ours) LLMs 54.6k 4551 papers core.ac.uk Climate Sci. Y Y

Table 1: Comparison of relevant QA datasets over scientific literature: (Kahou et al., 2017), (Tsatsaronis et al.,
2015), (Jin et al., 2019), (Krithara et al., 2023), (Ruggeri et al., 2023), (Lu et al., 2022), (Dasigi et al., 2021), (Lee

et al., 2023), (Manivannan et al., 2024) (2)

et al., 2024) introduces claim classification and fal-
lacy detection, structuring responses using a fact-
myth-fallacy-fact framework. While this improves
coherence, LLMs sometimes fail to select the most
relevant counterarguments, leading to misdirected
rebuttals.

My Climate Advisor (Nguyen et al., 2024) tar-
gets the specific domain climate adaptation in agri-
culture, retrieving information from peer-reviewed
research, grey literature, and climate projection
data. It tailors responses to regional climate risks,
offering actionable insights for farmers. A key con-
tribution is its expert-driven evaluation framework,
which assesses responses across seven domain-
specific criteria. Initial results highlight gaps in
retrieval precision and the difficulty of adapting to
evolving climate knowledge.

2.3 Retrieval-Augmented Generation

Effective retrieval-augmented generation (RAG)
depends on retrieval quality, query formulation, and
model alignment with retrieved knowledge. Tradi-
tional RAG pipelines perform a single retrieval step,
which can fail when initial queries are too vague
or incomplete (He et al., 2024). Recent research
has explored iterative retrieval, query reformula-
tion, and domain-specific adaptations to improve
response accuracy.

CoRAG (Chain-of-Retrieval Augmented Gen-
eration) (Wang et al., 2025) introduces stepwise
retrieval reasoning, allowing the model to dynam-
ically reformulate queries based on retrieved evi-
dence, significantly improving multi-hop QA. Simi-
larly, RICHES (Retrieval Interlaced with Sequence

Generation) (Jain et al., 2024) integrates retrieval
within the decoding process, eliminating the need
for a separate retriever module. This improves re-
sponse fluency but can introduce hallucinations if
retrieval is inconsistent.

Ensuring alignment between retrieved knowl-
edge and generated responses is another key chal-
lenge. CoV-RAG (Chain-of-Verification RAG) (He
etal., 2024) introduces a verification step that evalu-
ates and refines retrieved documents before answer
generation, reducing retrieval errors and halluci-
nations. RAGAR (RAG-Augmented Reasoning)
(Khaliq et al., 2024) extends this further with hier-
archical retrieval techniques (CoRAG and ToRAG -
Tree-of-RAG) that decompose complex claims into
sub-questions, retrieving evidence iteratively for
fact-checking in multimodal political discourse.

Beyond reasoning techniques, RAG-Studio
(Mao et al., 2024) focuses on domain-specific adap-
tation, addressing a major limitation of general-
purpose RAG models. It introduces a self-
alignment framework, where the retriever and gen-
erator co-train on synthetic domain-specific data,
improving retrieval precision and factual grounding
without requiring manually labeled examples. This
approach outperforms traditional RAG fine-tuning
in specialized domains such as law, finance, and
biomedicine.

Our Context-RAG approach is motivated by pre-
vious work on multi-step query reformulation, but
extending it to novelly focus on extracting distinct
contexts in which the question can be re-framed
to provide more diverse and user role-targeted re-
trieval.
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3 Methods

3.1 CPIQA Dataset

To develop CPIQA, we curated a dataset of climate-
related academic papers, integrating both textual
and visual information for the RAG QA task.

We sourced papers from relevant open source cli-
mate science journals, identified by climate science
expert recommendations. Using CrossRef, we re-
trieved the DOIs of all available articles from these
journals published between 2020 and 2024. We
sourced full-text PDFs from CORE.ac.uk (Knoth
etal., 2023), an open-access repository of academic
publications.

For each document, we extracted full text using
pymupdf4llm, introducing a filter for documents
with significant chunks of missing text. Figures and
captions were extracted using pdffigures 2.0 (Clark
and Divvala, 2016), aligning with the CPIQA ap-
proach. We use GPT-40 (OpenAl et al., 2024) to
generate detailed figure retrieval-friendly descrip-
tions based on the extracted figure type, caption
and raw image file. This allows for text-only em-
beddings to be used in a RAG setting, although
image-caption pairs are included in the release.

We generated question-answer pairs by present-
ing GPT-40 with the full text and figure descrip-
tions. We utilise role-based prompting, generat-
ing questions for the general public, climate ex-
perts and climate sceptics. Additionally, we gen-
erate multiple question types to encourage a wide
breadth of questions. Full prompt variations can be
found in appendix B.

3.2 Question-Answering Architecture

Our baseline two-stage RAG pipeline follows a
standard retrieval approach, designed for compara-
bility with SPIQA and evaluation of source attri-
bution. The retriever embeds the user query, and
retrieves relevant full text documents. These are
used as a filter for the second stage, where the same
query is used to retrieve chunks and figures from
the filtered documents, maintaining continuity be-
tween chunks if required. Retrieved chunks and
figure descriptions are inserted into a prompt tem-
plate alongside the question, from which the LLM
generates the answer.

We use NovaSearch/stella_en_1.5B_v5 (Zhang
et al., 2024) as our embedding model due to it be-
ing the highest ranked on the MTEB (Massive Text
Embedding Benchmark) (Muennighoff et al., 2022)
for the retrieval task with a minimum tokens of at

least 100k+, which is a requirement for embed-
ding the majority of documents in CPIQA. In cases
where the document is longer than the max-tokens,
we chunk the document, maximising token count.

3.3 Context-Based Query Expansion

Context-RAG first seeks to understand the context
and intent behind the question. Instead of simply
asking, "What do we need to know to answer this
question?", our approach reframes it as, "What is
the context of this question?" or "Why is this ques-
tion being asked?". This decomposition enables
retrieval that is broader, more targeted, and better
aligned with the underlying information need.

The LLM breaks the input question into three
distinct contextual perspectives, each represented
as a descriptive paragraph, ensuring that retrieval
is not biased toward a single interpretation. These
are used as part of stage one - retrieval of full text
documents. Further, we use the same LLM to break
down each context into a set of domain-specific key
terms that are up to a sentence in length. This gives
finer granularity in the second stage of retrieval.

By shifting retrieval focus from the question it-
self to its underlying context, we hypothesize that
Context-RAG improves recall, diversity, and fac-
tual grounding, ensuring that responses draw from
a broader and more relevant evidence base. Further,
this prompt structure can be applied prior to any
other prompt decomposition or expansion method
so should be seen as a complimentary method.

4 Results

We evaluate our proposed Context-RAG method
against the standard two-step RAG approach across
two datasets: SPIQA, a benchmark for scientific
paper image question answering, and CPIQA, our
newly introduced dataset for climate science. Per-
formance is measured using BERTScore-F1 across
multiple test cases and language models.

4.1 Context-RAG

Table 2 demonstrates the two-step RAG approach
has a 7% lower BERTScore-F1 compared to the
best open source models tested, and our Context-
RAG a 3% lower score. Given our change in
SPIQA problem formulation, from a one-step QA
task where the relevant source paper is provided to
a two step QA task where the source paper must be
retrieved, this lower performance was expected. In
the SPIQA dataset test-A contains LLM-generated
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Best open-weight baseline™

Test Case (Pramanick et al., 2024) 2 step RAG  Context-RAG
test-A 61.61 57.54 63.28
test-B 47.21 53.22 53.32
test-C 48.45 32.27 34.20
Overall 54.57 47.85 51.31

Table 2: Comparison of our standard two-step RAG

Llama-3.3-70B-Instruct, compared to baseline results:

and Context-RAG methods on the SPIQA dataset, using
LLaVA-1.5-7B (Liu et al., 2023) for test-A, test-B and

InstructBLIP-7B (Dai et al., 2023) for test-C. bert-base-uncased is used as the evaluation model for BERT-score

(Zhang* et al.,
retrieves from the entire dataset.

QAs whilst test-B and test-C have human-written
QAs. For two-step RAG we see a 6% improvement
for test-B. With Context-RAG, we see an improve-
ment of 4% over two-step RAG, outpeforming the
best open source models in test-A by 2% and test-B
by 6% showing the potential for our Context-RAG

2020). *Baseline results experimental setup provides correct source paper, whereas our setup

method.

4.2 Climate Question-Answering

A summary of our CPIQA dataset can be found in
table 3. We define a train/test/validation split to
improve comparability to future work that may use
this data.
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Split Paper count

Question count

Figure count

Train 4255
Validation 99
Test 197

51060 38325
1188 903
2364 1816

Table 3: Summary of CPIQA dataset size incl. number of documents, questions and figures

LLM 2 step RAG  Context-RAG
GPT-40 67.18 69.10
Gemini 2.0-flash 62.22 64.21
Llama-3.3-70B-Instruct 64.38 65.35
DeepSeek-R1-Distill-Qwen-32B 64.79 65.47
Gemma-2-27b-it 62.32 62.05

Table 4: Comparison of our standard two-step RAG and Context-RAG methods on our CPIQA dataset. Evaluated
using BERT-score F1 using the model microsoft/deberta-xlarge-mnli (He et al., 2021)

On CPIQA (table 4), we compare both RAG
methods across five LLMs. GPT-40 achieves the
highest overall performance, with Context-RAG
(69.10) slightly surpassing the two-step approach
(67.18). Gemini 2.0-flash follows closely, show-
ing a similar pattern, where retrieval based on
generated contexts consistently improves results.
Other models, such as Llama-3.3-70B-Instruct and
DeepSeek-R1-Distill-Qwen-32B, show a smaller
gap between the two approaches, suggesting that
context informed retrieval benefits higher-capacity
models more significantly.

Table 5 provides insights into the retrieval effec-
tiveness of two-step RAG vs. Context-RAG when
retrieving the specific source paper for GPT-4o.
Interestingly, two-step RAG achieves a higher cor-
rect retrieval rate (60%) than Context-RAG (39%).
However, despite retrieving the correct document
less frequently, Context-RAG still yields a higher
F1 score (70.96 vs. 68.71) which suggests the
enhanced retrieved diversity of Context-RAG is
allowing it to generate better overall answers.

4.2.1 Expert Evaluation

We asked academic climate science experts to eval-
uate our best performing model, GPT-40, accord-
ing to the qualitative citeria and scoring guidelines
below:

* Answer precision: Degree of errors in the an-
swer (1 - lots of errors, 5 - no errors). Unre-
lated to the question, consider only the answer
independently of the question.

* Answer recall: To what degree does the re-
sponse answer the question? Consider the
relevance to the question (1 - irrelevant to the
question, 5 - fully covers the question)

* Answer provenance: Is the answer using in-
formation from the source document? (1 =
not based on context paper; 5 = fully based on
context paper)

« Answer conciseness: Does the answer contain
waffle or does it go off on a tangent to the
question? (1 = verbose; 5 = concise)

The experts were given the question, generated
answer, and full PDF source document. Due to
expert availability, a random 6% sample of the
test set was evaluated by our experts balanced by
question type. Table 6 presents the expert eval-
uation of GPT-40 with Context-RAG, analyzing
performance across different question audiences
and types. Context-RAG achieves high concise-
ness scores across all audiences (>4.1), indicating
its ability to generate succinct responses. Non-
figure-based and numeric questions exhibit strong
precision and recall, particularly for the climate
expert role, where numeric questions achieve 4.1
precision and 4.7 recall. Questions generated us-
ing the climate expert role had significantly higher
provenance scores, especially for numerical (4.6)
questions, suggesting that the experts found the
answers well-supported by evidence in the source
paper. For the general public and climate scep-
tic roles, Context-RAG achieves moderate per-
formance across all dimensions. Numeric ques-
tions for the climate sceptic role showed 3.7 pre-
cision and 4.1 recall, while figure-based and rea-
soning questions had slightly lower provenance
scores (2.4-2.7), indicating some difficulty in trac-
ing sources. For the general public role, prove-
nance remains lowest for reasoning questions (2.4),
suggesting challenges in aligning broad responses
with domain-expert expectations. Overall, our ex-
pert qualitative evaluation results align with the
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Method Retrieval result  Retrieval rate % BERTscore-F1
Correct 60% 68.71

2 step RAG Incorrect 40% 66.12
Correct 39% 70.96

ContextRAG o rrect 61% 67.97

Table 5: Retrieval rate of the specific source paper for GPT-40, and its corresponding BERTscore-F1 result. Retrieval
result is defined as the retrieved papers containing the one based on which the question is generated. Retrieval rate
is the frequency of how often the source paper is included in the retrieved documents

LLM ngstion Question Precision Recall Proven- Concise-
Audience Type ance ness
Figure-based 3.6 3.7 2.8 4.9
General public Numeric 2.9 3.6 3.0 4.6
Non-fig 4.2 4.3 3.0 4.9
Reasoning 34 3.7 24 4.7
({iTi:g’ Figure-bascd 9 38 33 33
C(%‘gff:ei‘gf Climate sceptic o "6 3.4 33 74 44
apf)roa;:h) R.easomng 4.0 3.6 2.7 4.3
Figure-based 39 3.6 3.7 4.1
Climate expert Numeric 4.1 4.7 4.6 4.8
Non-fig 39 4.3 4.4 4.7
Reasoning 4.0 4.4 4.4 4.4

Table 6: Expert evaluation of our best approach across roles and evaluation types on a scale of 1-5

trends demonstrated in the BERTscore-F1 results
shown in table 7.

5 Discussion

5.1 Context-RAG vs two-step RAG: Retrieval
vs Answer Quality

Our results highlight key differences between
Context-RAG and the two-step RAG approach in
terms of retrieval accuracy and answer quality. As
shown in table 5, two-step RAG achieves a higher
retrieval rate for the exact source paper (60% vs.
39%), while Context-RAG has a lower rate of ex-
act source matches but produces slightly higher F1
scores in answer generation. This suggests that
Context-RAG, despite not always retrieving the
original source, provides sufficient and relevant
information for generating high-quality answers.
One possible explanation for this is the nature of
climate science literature, where overlapping fac-
tual content across multiple papers may reduce the
importance of retrieving a specific source. Many
academic papers cite and build upon each other,
meaning that relevant information can often be
found in multiple documents. Context-RAG’s abil-
ity to extract and structure key concepts before
retrieval may allow it to synthesize information
from related sources, even if the exact original pa-
per is not retrieved. This could explain its rela-
tively strong answer quality despite a lower direct

retrieval rate.

This trade-off is further reflected in our broader
evaluation metrics. In our Climate QA setting (ta-
ble 4), Context-RAG yields improved BERT-scores
compared to two-step RAG, particularly for more
complex questions. This indicates that selecting
and structuring context before retrieval may con-
tribute to better alignment with model-generated
responses. However, two-step RAG’s higher re-
trieval rate suggests it may be more reliable when
strict source matching is a priority.

These findings suggest that retrieval rate alone is
not always the best indicator of final answer quality.
While two-step RAG more frequently retrieves the
intended source, Context-RAG appears to generate
answers that are at least as effective, if not more so,
in terms of response accuracy.

5.2 Performance Across Different Models

Our evaluation shows that the performance of
Context-RAG compared to two-step RAG, whilst
generally better, varies across models. Larger
models, such as GPT-40 and Gemini 2.0-flash,
show greater improvements in answer quality with
Context-RAG, suggesting that their enhanced rea-
soning capabilities allow them to make better use
of retrieved context. For smaller models, the im-
provements are less pronounced, indicating that
they may struggle to leverage retrieved information
as effectively.
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Notably, context generation can be done in ad-
dition to any other prompt augmentation or de-
composition technique, though potential impact on
performance is not evaluated in this work.

5.3 SPIQA vs CPIQA: Domain-Specific
Insights

Comparing SPIQA and CPIQA, we observe dis-
tinct trends that highlight domain-specific retrieval
challenges. Context-RAG demonstrates consis-
tent improvements over two-step RAG across both
datasets, but CPIQA remains more challenging due
to domain-specific complexities. Specifically, cli-
mate science papers frequently cite each other and
share overlapping facts, making it harder for re-
trieval models to isolate the most relevant docu-
ment before evidence extraction. This is reflected
in CPIQA’s lower retrieval accuracy despite the
improved context expansion.

The expert evaluation of Context-RAG on
CPIQA suggests that provenance and precision are
particularly important for climate science experts,
as climate-related claims often require precise at-
tribution to datasets, models, or prior research. In
contrast, SPIQA, which focuses on interpreting
structured results in computer science papers, may
place relatively less emphasis on cross-document
attribution and more on model reasoning over struc-
tured information. These differences suggest that
retrieval and reasoning challenges may manifest
differently across domains.

5.4 Breakdown by Question Type and
Audience

Performance varies across different question types
and target audiences, highlighting distinct chal-
lenges in retrieval and answer generation. As
shown in table 7, numeric and figure-based ques-
tions benefit the most from Context-RAG, with con-
sistent improvements across models. This suggests
that retrieving structured, contextually relevant in-
formation before chunk selection is particularly
useful for questions requiring precise data interpre-
tation.

Reasoning-based questions show smaller gains,
indicating that retrieval improvements alone may
not fully address challenges in multi-step inference.
This aligns with previous findings that complex
reasoning tasks often depend more on a model’s
intrinsic capabilities than retrieval alone (Liu et al.,
2024).

Audience-specific performance trends also re-
veal key insights. Questions targeted at climate ex-
perts generally yield the highest scores, suggesting
that expert-level queries align well with retrieved
academic content. In contrast, questions posed
from a sceptic’s perspective score lower, likely due
to misalignment between the retrieved scientific lit-
erature and the framing of the question. This high-
lights the difficulty of addressing sceptical view-
points in a fact-based retrieval system.

6 Conclusion

To support research in climate-focused QA, this
paper introduces CPIQA, a dataset built from over
4,551 climate science papers and 54,612 GPT-4o
generated question-answer pairs, integrating both
text and figure-based question answering. CPIQA
incorporates expert-informed question generation
and multimodal evidence retrieval, making it a valu-
able resource for future work in climate Al.

We describe Context-RAG, a novel retrieval-
augmented generation (RAG) approach that im-
proves answer quality by structuring retrieval
around contextual variations of a question. Unlike
traditional RAG methods that directly retrieve doc-
uments based on the query, Context-RAG first gen-
erates multiple contextual perspectives, retrieves
documents accordingly, and then refines retrieval
using key domain-specific terms. Our evaluation
on CPIQA, a new multimodal climate QA dataset
described in this paper, and SPIQA, a scientific
paper image QA benchmark dataset, demonstrates
that Context-RAG outperforms the standard two-
step RAG approach in answer quality, even when
exact document retrieval rates are lower.

Our results show that Context-RAG improves
performance across various question types and
user audiences, particularly for numeric and figure-
based questions. Larger models, such as GPT-4o,
benefit most from this structured retrieval approach,
leveraging contextually relevant evidence for im-
proved reasoning. Furthermore, our expert evalu-
ation of the best-performing model reinforces the
effectiveness of Context-RAG in real-world climate
science applications.

These findings highlight the importance of
evidence-based QA methods. Future directions
for this work include the exploration of domain-
specific fine-tuning of RAG QA models, a more
complete evaluation of the effectiveness of differ-
ent RAG prompting techniques, and exploring en-
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hancements to Context-RAG that are more explic-
itly tailored to our four different question types.

7 Limitations

Our GPT-40 generated question-answer pairs are
sourced from single source documents, and do not
consider answers that might span multiple docu-
ments. Other documents in our dataset may contra-
dict or deviate from the source document and this
is an exciting area for future work to explore, as we
show with Context-RAG increased performance
even when the specific source document was not
retrieved.

Our CPIQA dataset has GPT-40 generated QA
pairs. Whilst we performed a qualitative climate
scientist expert evaluation for our RAG answers in
terms of precision, provenance and conciseness, it
was not feasible to perform expert analysis of the
generated QA pairs themselves due to the size of
our dataset and availability of our experts.

In this paper, we only use LLaMa-based models
for evaluation on SPIQA due to time constraints.
We expect our RAG results will generalize to any
base LLM on any scientific paper QA task, but
this paper has not explicitly confirmed this and we
leave it as an item for future work. We did test
CIPQA on five LLMs which strongly suggests our
hypothesis for this is correct.

Our RAG experiments were run on eight H100
GPU cards using approximately 60 GPU hours
of compute time. The GPT-40 QA pair genera-
tion took twelve hours and cost $550. We note
that context-RAG is computationally more expen-
sive than the 2-step method it is compared to. Fur-
ther work is required to evaluate the complexity-
performance trade-off.
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A Results breakdown

Table 7 breaks down the results of models on
CPIQA by prompt variation.

B Prompts

B.1 Question-answer generation prompts

The general prompt template is as follows:

Context:

{full_text}

Figure 1 description:
{figure 1 description}

Figure i description:
{figure i description}
Instruction:
{instruction}

B.1.1 Instruction for public QA pair

As a lay member of the public,
generate a single question-answer
pair that are answered by the given
academic document. {gtype} Use
information from the descriptions
of figures. Do not reference any
part of the document directly. Do
not refer to the study or any figure
directly. Keep the question simple.
Assume the user has never seen the
document. Assume the asker knows
little about climate science. The
question could be written by a
child. Answer such that a child will
understand. Include a mix of basic
factual, analytical and inferential
questions. DO NOT MENTION THE
CONTEXT DIRECTLY.
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B.1.2 Instruction for expert QA pair

As an expert of the topic, and
climate science generally, generate
one meaningful question and its
answer based on the context.
gtype Use information from the
descriptions of figures. Do not
reference any part of the document
directly. Do not refer to the study
directly. The question may be asked
with no knowledge of the document
content.

B.1.3 Instruction for skeptic QA pair

Generate a single question-answer
pair about the context as an extreme
climate sceptic. Do not mention
that you are a climate sceptic
directly. qtype Include doubt,
previous beliefs. Use information
from the descriptions of figures.
Do not reference any part of the
document directly. Do not refer to
the study directly. The question
may be asked with no knowledge
of the document content. Do not
blindly agree with the critic’s
question. Demonstrate evidence to
dispel scepticism. Give examples.
Answers should be 1 paragraph or
shorter.

B.1.4 Instruction addition for question types

{qtype}

For figure based question:

The question should be answerable
from the figure descriptions only
but don’t reference the figure or
picture.

For numerical question:

The question should query a useful
numerical value without mentioning
the document or figure directly.

For reasoning based question:
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The question should require
reasoning to answer.

For general questions, no additional prompt is

used.

B.2 Question-answering prompts
B.2.1 QA template with context

’

You are an assistant for climate
research question-answering tasks.
Use the following pieces of
retrieved context to answer the
question. If you don’t know the
answer, say that you don’t know. Use
three sentences maximum and keep
the answer concise.

Retrieved information: {context}
Question: {question}

Answer:

B.2.2 Stage 1 contexts generation template

,

Given a question, describe in
detail 3 contexts or domains in
which it can be asked, explain
the contexts with a paragraph
each. Include titles of academic
documents that could be used in the
context. Give the contexts as 3
paragraphs with no headings.
Question: {question}

Contexts:

B.2.3 Stage 2 keyword generation template

7

Given a question and context
about the question, decompose the
guestion and context into a set of
relevant long-form query sentences
for evidence document retrieval
(RAG) that can answer the question.
Present each sentence on a newline
only with no headings.

Context: {context}

Question: {question}

Decomposed phrases:

C CPIQA paper sources

Table 8 sets out the source venues drawn from to
develop the CPIQA dataset.
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Large language model Question Audience  Question Type 2 Step RAG | Context-RAG
(BERTScore-F1) (BERTScore-F1)
Numeric 73.67 76.65
General public Figure-based 66.40 67.06
Non-fig 64.25 67.10
Reasoning 63.41 63.81
Numeric 64.61 65.55
. . Figure-based 64.36 66.15
OpenAl GPT-40 Climate sceptic Non-fig 64.97 66.32
Reasoning 64.97 66.39
Numeric 78.48 81.34
Climate expert Figure-based 68.62 70.73
Non-fig 67.69 69.92
Reasoning 63.97 66.63
Numeric 64.11 64.93
. Figure-based 61.81 63.70
General public Non-fig 60.64 6275
Reasoning 59.28 61.63
Numeric 60.84 62.35
.. . . Figure-based 60.07 61.97
Google Gemini 2.0-flash Climate sceptic Non-fig 60.35 62.23
Reasoning 60.23 62.35
Numeric 70.02 72.35
Climate expert Figurf;—based 64.66 67.18
Non-fig 64.76 66.01
Reasoning 60.04 62.35
Numeric 63.64 72.11
. Figure-based 64.13 67.48
General public Non-fig 63.00 6481
Reasoning 62.33 62.05
Numeric 63.33 61.22
. . Figure-based 62.93 61.16
Llama-3.3-70B-Instruct Climate sceptic Non-fig 63.28 60.23
Reasoning 63.14 60.04
Numeric 70.26 77.59
Climate expert Figure-based 66.93 66.66
Non-fig 66.90 66.10
Reasoning 63.32 63.89
Numeric 70.40 67.78
. Figure-based 65.05 65.16
General public Non-fig 63.30 66.04
Reasoning 62.25 61.48
Numeric 62.80 63.56
DeepSeek-R1-Distill-Qwen-32B  Climate sceptic Ilj;fllfg_gbased ggig 21%
Reasoning 63.50 64.45
Numeric 73.26 74.40
Climate expert Figure-based 63.75 64.43
Non-fig 64.87 65.74
Reasoning 61.16 63.31
Numeric 68.76 67.25
. Figure-based 64.13 63.99
General public Non-fig 62.43 62.81
Reasoning 58.20 58.94
Numeric 60.82 60.74
. . . Figure-based 59.81 61.22
gemma-2-27b-it Climate sceptic Non-fig 6135 62.24
Reasoning 60.52 62.00
Numeric 71.95 64.65
Climate expert Figure-based 60.60 63.17
Non-fig 62.67 63.18
Reasoning 53.15 54.59

Table 7: Evaluation of models across question types and RAG methods. Questions are divided into numeric, figure
bases, non-figure based and reasoning based
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Electronic ISSN  Title

1432-0894 Climate Dynamics

1573-1480 Climatic Change

1097-0088 International Journal of Climatology
1520-0442 Journal of Climate

1758-6798 Nature Climate Change

1752-0908 Nature Geoscience

1757-7799 WIRES Climate Change

2364-3587 Advances in Statistical Climatology, Meteorology and Oceanography
1814-9332 Climate of the Past

2190-4987 Earth System Dynamics

1866-3516 Earth System Science Data
2569-7110 Geoscience Communication

Table 8: ISSNs and venue titles of sources of drawn on for CPIQA
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