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Abstract

Reforestation and revegetation projects can
help mitigate climate change because plant
growth removes CO2 from the air. However,
the use of non-native species and monocul-
tures in these projects may negatively affect
biodiversity. Here, we describe a data pipeline
to extract information about species that are
planted or managed in over 1,000 afforesta-
tion/reforestation/revegetation and improved
forest management projects, based on detailed
project documentation. The pipeline lever-
ages a large-context LLM and results in a
macro-averaged recall of 79% and a macro-
averaged precision of 89% across all projects
and species.

1 Introduction

Reforestation and revegetation projects can help
mitigate climate change because plant growth re-
moves CO2 from the air. The voluntary carbon mar-
ket (VCM) includes carbon credits from both "af-
forestation/reforestation/revegetation" (ARR) and
"improved forest management" (IFM) projects.
The major VCM registries have issued more than
300 million credits (tons of CO2 equivalent, tCO2e)
to date for ARR and IFM projects (∼14% of the
total volume) (Haya et al., 2025).

However, the use of non-native species and
monocultures in these projects may negatively af-
fect biodiversity (Cunningham et al., 2015), (An-
dres et al., 2022), (Moyano et al., 2024). ARR and
IFM projects may plant or manage one or more na-
tive species, use a mixture of native and non-native
species, or use entirely non-native species due to
faster growth rates that reduce the cost per tCO2e
mitigated (Busch et al., 2024).

Unfortunately, comprehensive metrics to track
planted and managed ("p/m") species in ARR and
IFM projects are not readily available. Manual ex-
amination of project documents is difficult because
there are more than 1,000 ARR and IFM projects

in major VCM registries (Haya et al., 2025). A
single project’s documentation may have tens to
hundreds of pages across multiple documents with
no common format. Species may be named in the
text by botanical (Latin) or common names, and/or
be misspelled. A species may be mentioned to in-
dicate it will be planted, it will not be planted, it
will be reduced/suppressed, or without clear im-
plications. Given these complexities, advanced
natural-language-processing methods are needed.

Here we describe a data pipeline that uses large-
context large language models (LLM) to extract
information about p/m species in ARR and IFM
projects from project documentation. We apply
the pipeline to > 1,000 ARR and IFM projects and
compare our results to expert human annotation of
a subsample. Our pipeline performs well, although
validation against expert-annotated "ground truth"
data is challenging. Optimizing across two differ-
ent LLMs, our pipeline results in a macro-averaged
recall of 79% and a macro-averaged precision of
89%. We present an analysis of our system’s per-
formance using the better-performing model, an
error analysis, and a comparison between the two
LLMs.

2 Background

There are two main approaches for LLM-based
information extraction from long documents.
Retrieval-augmented generation (RAG) uses vector
similarity between an input prompt and a docu-
ment database to identify relevant documents, then
sends the result to an LLM for response genera-
tion. The emergence of large-context (LC) LLMs
has led to an alternative approach in which an LC
LLM is directly prompted with tasks, with the en-
tire document appended as context. The relative
strengths of these two approaches continue to be de-
bated (Xu et al., 2024)(Li et al., 2024). LLMs have
been used in biology and ecology for information
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extraction, including the use of GPT-4 to extract
information about pests from scientific abstracts
(Scheepens et al., 2024); the use of GPT-3.5, GPT-
4, and LLaMA-2-70B to extract species distribution
data from news articles and research papers (Cas-
tro et al., 2024); and the use of text-bison-001 to
extract information about plant pathogens from sci-
entific reports (Gougherty and Clipp, 2024). While
curated test datasets are needed for evaluating LLM
performance, human annotation is known to pro-
duce errors in domains ranging from medicine (Sy-
lolypavan et al., 2023) to online search (Peters
et al., 2023); careful annotation guidelines and pro-
cedures can partially mitigate this problem.

3 Methodology

Dataset Creation

We identified all ARR and IFM carbon credit
projects listed on three major VCM registries
(Verra, CAR and ACR) resulting in a total of
339 ARR and 750 IFM projects. We automati-
cally downloaded all existing project documents
for these projects and selected all PDFs for further
processing. The resulting dataset contains 4196
PDFs with a total of 148,778 pages. Projects in our
dataset contain up to 72 PDFs each, with an aver-
age of 10 documents per project. PDFs contain up
to 870 pages. The maximum number of document
pages in a project is 2502. Once downloaded, we
converted PDFs to plain text using LangChain’s
PyPDFLoader and concatenated the text, resulting
in one single, large document per project.

Test Set Annotation

We randomly selected 53 ARR and 21 IFM projects
for validation. These were distributed among 3
internal subject matter experts (SMEs), who an-
notated each one with a list of p/m species and
an indication of where the information was found
in the documentation. SMEs used keyword search
and visual scanning to find species information. On
average, the annotators spent 15 to 20 minutes per
project. Due to resource constraints, only a single
SME annotated each document. In a second step,
we automatically extracted p/m species informa-
tion from the documents using each of our LLMs
(see below) and manually validated the extracted
output. The final list of annotations combines the
SME annotations with corrections/additions from
the manually validated outputs of the LLMs.

Extracting Species Information

To extract species information from project descrip-
tions, we worked with gemini-1.5-flash-002 (writ-
ten gemini-1.5 in the following) and gemini-2.0-
flash-001 (gemini-2.0 in the following) through the
VertexAI platform. We chose to combine multiple
questions into a single prompt to minimize costs.
The prompt was as follows:

The context below describes a nature-based car-
bon credit project. Based on the context given,
answer the following questions:

* Which native plant species will be planted or
managed (if any)? Only list the native plants that
will be planted or actively managed, do not list
other native plants.

* Which non-native or invasive plant species will
be planted or managed (if any)? Only list the non-
native or invasive plants that will be planted or
actively managed, do not list other non-native or
invasive plants.

* Will native plant species be planted and/or
managed (true/false)?

* Will non-native or invasive plant species be
planted and/or managed (true/false)?

For each of the answers, provide an explana-
tion based on the context. Think in steps. If the
information is not in the text, simply say "I don’t
know".

We instructed the model to generate structured
output by providing VertexAI with a json structure.
If the generated response was not in valid json for-
mat, we retried the query once, and skipped the
project if that was also invalid. We also skipped
projects where the extracted text exceeded the
LLM’s (large) context window.

Post-Processing

LLM responses were cleaned by replacing "[I don’t
know]" and "[species]" with empty lists. The
prompt asked the LLM to distinguish between na-
tive and non-native plant species. Since in this pa-
per, we focus on analysing the complete list of all
p/m species, we discarded the answers to the final
two questions and aggregated the native and non-
native species lists to one final list, which we de-
duplicated, first automatically, then manually. Man-
ual de-duplication consisted of unifying species
that were mentioned with both their botanical and
common names, as well as de-duplicating species
that were clearly the same with minor spelling vari-
ations.
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Figure 1: Number of correctly identified vs true number
of species for gemini-1.5-flash (red circles) and human
expert annotators (blue squares) for all test set projects.

Output Validation

We manually validated the output by comparing the
list of species produced by the SME annotators and
the LLM. The validation was performed manually
since many species were mentioned in the docu-
ments using both botanical and common names;
both the SMEs and the LLM would sometimes
choose one and sometimes the other. Manual vali-
dation allowed us to accept a predicted species as
correct regardless of whether the botanical or com-
mon name was used. Species were also deemed cor-
rect if they were captured with minor misspellings.
These variations were typically the consequence
of a species being mentioned multiple times with
different spelling in the document. In some cases
the LLM output a higher-level taxonomic grouping
(e.g. the family or genus) rather than a species, for
example conifers or oaks instead of red cedar or
white oak. This was not counted as correct.

4 Results and Discussion

We successfully extracted data for 1006 out of the
1089 projects, with the remaining failing either be-
cause the documents were too long for the LLM’s
context window or the LLM repeatedly failed to
create a valid json response. Given the prompt
above, gemini-1.5 performed better on our test set
than gemini-2.0. In the following we discuss the
results obtained with gemini-1.5 in detail, followed
by a short comparison with the results obtained
by gemini-2.0 and a qualitative discussion of the
differences.

Recall

In total, the 74 test set documents contained refer-
ences to 1241 p/m species. Of these, the human

SME annotators found 1147 and the LLM found
628, leading to a micro-averaged recall of 92%
for the human experts and 51% for the LLM. The
much lower micro-averaged recall of the LLM is
mainly caused by the LLM’s failure to correctly de-
tect the majority of p/m species for a small number
of projects with a large number of species. Fig. 1
shows the number of correctly identified species
by both the LLM and the human expert annotators
as a function of the true number of p/m species in
the project documentation for all test set projects.
The LLM performs very well for projects with rel-
atively few species, finding all p/m species for all
test set projects with up to six p/m species. How-
ever, the LLM’s recall drops as the number of p/m
species in a project increases. In contrast, human
expert annotators tend to miss relatively few p/m
species and do so independently of the true number
of species in a project.

This pattern can be understood as follows. P/M
species are detailed in project documents in multi-
ple ways, but are mostly listed in large tables. SME
annotators almost always found these, with occa-
sional entries missing or cases where nearly identi-
cal tables exist in the project documents and only
the species in one table are annotated. The LLM
often did not capture all the species mentioned in
these tables, missing more for tables with large
numbers of listed species. Species can also be men-
tioned in the main body of the text. In some cases,
this is the only place in the documentation where
species names occur (there are no tables), and this
may include only a small number of species in to-
tal. SME annotators missed these species more fre-
quently than the species which are listed in tables,
while the LLM was able to identify them. Finally,
in other cases, species are mentioned in graphs and
figures, which were often not parsed correctly us-
ing our current data pipeline, and therefore were
not found by the LLM.

Recall can also be understood at the project level,
or macro-averaged recall, for which each project is
given the same weighting regardless of its number
of p/m species. The macro-averaged recall is 79%
for the LLM and 88% for the SME annotators. The
median recall is 100% for both LLM and SMEs.
The LLM found all p/m species for 62% of the
projects, and the SMEs found all p/m species for
68% of the projects. For the remaining projects, the
recall is uniformly distributed. Note that the given
prompt works better for ARR than IFM projects,
reaching a macro-averaged recall of 87% for ARR
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and 58% for IFM projects.

Precision
Since our test set is a combination of SME-
extracted species and LLM-found/human-verified
species, human recall for our test set is less than
100%. As for precision, since each document was
annotated by a single SME, our test-set creation
methodology does not allow us to identify when hu-
man annotations are incorrect, resulting in a SME-
expert precision of 100%. In contrast, when as-
sessing the precision of the LLM, there are two
separate sources of incorrect predictions. The first
is hallucination, when the LLM outputs species
that do not occur in the project documents. The
second is misinterpretation, when the LLM outputs
species that occur in the project documents, but in
a context that makes it clear they are not planted
or managed as part of project activities. For exam-
ple, in one project the LLM output eucalyptus as
a p/m species, despite it only being mentioned in
the introductory text as a plant that is often used
in reflectivity measurements for monitoring pur-
poses. In another project, the LLM output species
that were mentioned in the project documents as
having previously been present in the project area,
but were later destroyed by fire.

The micro-averaged precision of the LLM across
all projects and species was 87%, and the macro-
averaged precision was 89%. Of all incorrect pre-
dictions, 17% were due to hallucinations, and the
remaining 83% were due to misinterpretation, i.e.,
the LLM output a species present in the text but
only in a context different from being planted or
managed.

Our LLM-assisted annotation procedure (as de-
scribed above) impacts the LLM precision analysis.
Analysing the LLM’s precision taking into account
purely human expert annotations (without correc-
tions identified by the LLM-assisted procedure)
gives a macro-averaged precision of 78%, 11%
lower than the true macro-averaged precision of
89%. The values for the micro-averaged precision
are 80% for the manually-corrected data in compar-
ison to 87% without the correction. This highlights
the usefulness of LLM-assisted annotation proce-
dures.

gemini-2.0-flash vs. gemini-1.5-flash

LLMs are being developed quickly, typically de-
livering better performance each iteration. Having
evaluated our setup in detail using gemini-1.5, we

also tested it with a newer Gemini model, gemini-
2.0. Contrary to our initial expectation, we find
that gemini-2.0 performs worse against our test-set
using the original prompt, with the overall macro-
averaged recall dropping to 60% and the macro-
averaged precision dropping slightly to 88%. How-
ever, splitting the analysis by project type reveals
a more faceted picture. Replacing gemini-1.5 with
gemini-2.0 leaves the macro-averaged recall for
ARR projects roughly unchanged at 87%, but de-
creases the macro-averaged recall for IFM projects
from 58% to 18%. The model frequently outputs
that species are mentioned but no species are ex-
plicitly stated to be planted or managed, which is
true for many documents. Thus gemini-2.0 behaves
as a more literal reviewer than our SMEs, who will
infer that a mentioned species is planted or man-
aged from the overall context of being mentioned
in the project documents. How to prompt gemini-
2.0 to be more permissive for these species whilst
also not extracting species mentioned in other con-
texts will be the focus of further research. Separate
prompts for ARR and IFM projects will be a key
step.

5 Summary and Conclusions

In this work, we developed a dataset of over
1,000 ARR and IFM projects listed on three ma-
jor VCM registries (Verra, CAR, ACR). We used
a combination of manual annotations and LLM-
derived corrections/additions to create a test set of
planted/managed species in 74 projects. Next we
developed a data pipeline to extract species infor-
mation from project documentation documents by
prompting a large-context LLM with questions re-
garding the species that would be planted and/or
managed as part of project activities, with the full
text of the project documentation appended as con-
text. The LLM achieved a macro-averaged recall of
79% and a macro-averaged precision of 89% whilst
human annotators achieved a macro-averaged re-
call of 88%. Notably, human annotators tended to
miss a small number of planted/managed species
per project, while the LLM missed more species
if more species were mentioned in the text. Our
results demonstrate the possibility of using large-
context LLMs to extract species diversity informa-
tion from lengthy project description documents.
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6 Future Work

In future work we will address several areas. First,
we will explore prompt-engineering to get the
LLM to consistently choose a species’ botani-
cal name over its common name and explore
the use of a second, smaller LLM for automatic
de-duplication. Second, we will further explore
prompt-engineering techniques to better distin-
guish when species are actively planted or managed
vs. simply mentioned in passing. Third, we will
analyze which errors are caused by PDF parsing
errors. Fourth, we will split not only our analysis
but also our prompt engineering by project type
(IFM vs ARR projects). Fifth, we will extend our
approach to look into the contrast between native
and non-native species use. Sixth, we will examine
the performance of the LLM on non-English doc-
uments. Finally, we will explore the use of RAG
instead of large-context LLMs in order to improve
scalability.

Limitations

Labeling Accuracy

Annotating complex datasets is challenging and the
annotations created in this work might not yet be
completely correct. In particular, in IFM projects,
it is sometimes not possible (not even for human
annotators) to correctly label species as being under
active management or merely present in a project
area. Additionally, because of our use of a sin-
gle SME annotator per project, we were unable to
inter-compare manual annotations, a process used
to increase the reliability of a labelling process.
Species that are part of a project might still be miss-
ing, making the reported recall appear higher than
it truly is. In particular, albeit using two different
LLMs, we still used the same LLMs during annota-
tion and testing process, making this scenario more
likely.

PDF Parsing

In the current work, errors in recall are analysed
on a pipeline level, without distinguishing whether
the species information was present in the parsed
text or not (we only know that it was present in
the PDF). Distinguishing errors in recall into errors
caused by parsing issues vs errors caused by the
LLM would give further insights into the maximum
possible performance of the LLM pipeline.

IFM vs ARR Projects

This work treats ARR and IFM projects similarly.
The prompt is generalized, intended to work rea-
sonably well for both types of projects. However,
whilst these project types are similar, they are not
the same. In particular, in IFM projects, it is some-
times not possible (not even for human annotators)
to correctly label species as being under active man-
agement or merely present in a project area. A dis-
tinction between ARR and IFM projects in future
prompts will be helpful. As we demonstrated in
the present paper, this will become increasingly
important with the development of more power-
ful LLMs which are capable of understanding ever
more subtle nuances of human language.

Scalability

The presented approach used large-context LLMs
to extract species information from project docu-
ment descriptions. This approach works well for
most projects, but already reaches its limits for
some. Additionally, registries do not delete docu-
ments, making texts longer over time. Alternative
architectures like RAG could help alleviate this
issue.

Single-Purpose vs Multi-Purpose Prompts

Due to financial constraints, we tried to limit the
number of times we queried the LLM. In particu-
lar, we combined multiple questions into a single
prompt, where several, individual queries might
have achieved better performance. This is a limita-
tion of our set-up not of the LLM’s capability.

Manual De-Duplication

LLM outputs were manually de-duplicated, uni-
fying botanical with common names as well as
correcting spelling errors. In particular, valida-
tion was done manually. This approach does not
scale and makes the current process not suitable
for techniques like automatic prompt-optimization.
An automatic validation setup including prompting
the LLM to always list species with their botani-
cal names will be implemented in the future. This
could be supplemented by using dictionaries map-
ping between common and botanical names.
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