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Abstract

Sepsis is a leading cause of death in Intensive
Care Units (ICU). Early detection of sepsis
is crucial to patient survival. Existing works
in the clinical domain focus mainly on di-
rectly predicting a ground truth label that is
the outcome of a medical syndrome or condi-
tion such as sepsis. In this work, we primarily
focus on clinical time series forecasting as a
means to solve downstream predictive tasks in-
termediately. We base our work on a strong
monomodal baseline and propose multimodal
transformers using set functions via fusing both
physiological features and texts in electronic
health record (EHR) data. Furthermore, we
propose hierarchical transformers to effectively
represent clinical document time series via at-
tention mechanism and continuous time encod-
ing. Our multimodal models significantly out-
perform baseline on MIMIC-III data by no-
table gaps. Our ablation analysis show that
our atomic approaches to multimodal fusion
and hierarchical transformers for document se-
ries embedding are effective in forecasting. We
further fine-tune the forecasting models with
labelled data and found some of the multimodal
models consistently outperforming baseline on
downstream sepsis prediction task.

1 Introduction

Sepsis is a serious complication of an infection,
accounting for approximately 19.7% of all global
deaths (Rudd et al., 2020). In 2017, World Health
Organization declared that improving the preven-
tion, recognition, and treatment of sepsis as a global
health priority (WHO, 2020). Seymour et al. (2017)
and Liu et al. (2017) suggest an increase in the
adjusted mortality of septic patients with delayed
antibiotic administration. With patients suffering
from septic shock, Kumar et al. (2006) found an
3.6–9.9% hourly increase in mortality when treat-
ment is delayed. Early Detection of Sepsis is criti-
cal to improve patient outcome.

With the emerging abundance of clinical elec-
tronic health record (EHR) data, multimodal pa-
tient data present both challenges and opportuni-
ties to forecasting and predictive tasks in the clin-
ical domain. On the one hand, multimodal repre-
sentation learning is a complex problem that re-
quires proper handling of information from multi-
ple sources (Tsai et al., 2018). On the other hand,
data from various sources enrich information avail-
able to models, which enables more robust pre-
diction (Baltrušaitis et al., 2018). Fusing multiple
modalities such as laboratory measurements, clini-
cal texts, medications, and procedures have shown
improved performance on predicting inpatient mor-
tality, length of stay, and 30-day readmission (Ra-
jkomar et al., 2018).

A further challenge in learning from clinical
EHR datasets lies with data missingness and ir-
regularity. The available observations for each pa-
tient may vary based on patient’s condition, i.e.
the set of observed clinical variables for each pa-
tient can differ from one another. Additionally,
clinical measurements are often not taken at reg-
ular time intervals - the measurements may occur
sporadically in time depending on the underlying
conditions of the patient. Previous works such
as Wang et al. (2022) simply aggregate data into
hourly bins to circumvent data missingness, irreg-
ularity and sporadicity. However, this introduces
noises and suppresses information to indicate pa-
tient condition through the actual availability of
clinical measurements. To tackle the issue, Tipir-
neni and Reddy (2022) implements “Triplet Em-
bedding" based on Set Functions proposed in Horn
et al. (2020) to represent each clinical observation
for each patient at each time discretely to avoid
data imputation/aggregation of any form. While
Tipirneni and Reddy (2022) achieves excellent per-
formance on prediction tasks against several strong
baselines, it disregards information potentially con-
tained in clinical notes associated with each patient
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Paper Multi-modal Set Function Time Encoding Forecasting
Horn et al. (2020) ✗ ✓ Sinusoidal Encoding ✗
Wang et al. (2022) ✓ ✗ ✗ ✗
Lyu et al. (2022) ✓ ✗ Sinusoidal Encoding ✗
Tipirneni and Reddy (2022) ✗ ✓ Learnable Embedding ✓
Lee et al. (2023) ✓ ✓ Linear Projection ✗
Proposed Models ✓ ✓ Leanrable Embedding ✓

Table 1: Tabular comparison of proposed models and related works closely referred to.

record in EHR data.
With majority existing works in the clinical do-

main approach predictive tasks directly by predict-
ing a ground truth label as the outcome of observed
patient conditions (Lee et al., 2023; Tipirneni and
Reddy, 2022; Wang et al., 2022; Lyu et al., 2022),
Xu et al. (2023) proposed to focus on forecasting,
and implemented a rule-based sepsis check for Sep-
sis prediction that depends on model forecasts. We
follow this practice and primarily seek to build
models for time series forecasting (cause predic-
tion), as an intermediate means to eventually pre-
dict sepsis and potentially other medical syndrome
instead of predicting an outcome directly.

To address various limitations with existing
works, we build upon a strong monomodal base-
line model (Tipirneni and Reddy, 2022) and pro-
pose multimodal transformers primarily for clinical
time series forecasting that 1) incorporates infor-
mation from both physiological time series data
and clinical notes via effective multimodal fusion
2) utilizes set functions to avoid data aggregation
and imputation. The forecasting models produce
predictions of the clinical variable values in a two-
hour forecasting window following corresponding
observation windows of varying lengths, to sup-
port ruled-based implementations (e.g. Xu et al.,
2023) that rely on predicted values of specific clin-
ical variables. Meanwhile, the forecasting models
are fine-tunable with labelled data for downstream
prediction tasks such as sepsis prediction. We addi-
tionally propose a hierarchical transformer to effec-
tively represent clinical notes that naturally form
document time series within observation windows
by integrating time embeddings of note records,
and accounting for the interactions between notes
in time order via attention mechanism. We con-
duct comprehensive experiments and ablation anal-
ysis to showcase that our proposed models and
the atomic modules are effectively robust, improv-
ing forecasting performance from baseline signifi-
cantly.

We summarise the main contributions of our

work as follows:

• We propose a multimodal learning frame-
work for patient data in EHR datasets that ef-
fectively incorporates information from both
physiological features and associated clinical
notes.

• We propose a specialized hierarchical trans-
former to effectively represent clinical docu-
ment time series that accounts for the inter-
actions between individual clinical notes via
attention and brings cross-modal time aware-
ness to the entire model through consistent
time encoding.

• Our clinical time series forecasting models
approach predictive tasks in the clinical do-
main from a cause-prediction perspective. It
provides flexibility in two dimensions: 1) the
forecast values can be used for prediction of
multiple medical syndromes and conditions
with rule-based implementations (e.g. sepsis
check based on Sepsis-3 definition (Reyna
et al., 2020; Seymour et al., 2016; Singer
et al., 2016)) 2) the forecasting models can
be fine-tuned for arbitrary downstream predic-
tion tasks with correspondingly labelled data
in a fully data-driven setup. Additionally, the
intermediate results produced by forecasting
models are also directly interpretable by clin-
ical practitioners as pointed out in previous
work.

We release our code at github.com/JINHXu/
clinical-multimodal-transformers.

2 Related Work

Clinical time series data are inherently sequen-
tial, making common sequence modelling meth-
ods (RNNs, transformers, etc.) suitable. Early
works use classic models such as Gaussian Process
(GP) (Liu et al., 2013, 2017; Lu et al., 2008; Li
and Marlin, 2016) and linear dynamical systems
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Data Non-septic patients Septic patients Non-septic ICU stays Septic ICU stays
Train 26452 2124 33191 3360
Valid 6594 551 8358 904
Test 8296 635 10445 1024

Table 2: Number of septic/non-septic patients/ICU stays in train/validation/test data.

(LDS) (Liu and Hauskrecht, 2015) to model irreg-
ular clinical time series. Later works then employ
RNN-based models given the sequential nature of
time series data. Baytas et al. (2017), for instance,
modified LSTM to fit hidden cell states to irregu-
lar time slots (T-LSTM). Che et al. (2018), on the
other hand, modified the GRU cell which decays
inputs to global means and hidden states through
unobserved time intervals (GRU-D). The problem
with classic models such as Gaussian Process are
their sensitivity to choice of covariance and mean
functions, while RNNs process long sequences (re-
sulted by irregularity) sequentially with inability to
parallel computation thus leading to long runtime.

More recent works employ transformer-based
methods for clinical time series modeling. Wang
et al. (2022), for instance, passes multivariate time
series embeddings first through a block of trans-
former encoders to capture contextual information
of the sequences, then followed by a dense inter-
polation layer to obtain a concise representation of
transformer outputs. Tipirneni and Reddy (2022)
also uses multi-head attention to obtain contextual
embeddings through transformer, it then passes
these embeddings to a self-attention layer to cap-
ture the context within each observation. Horn et al.
(2020) uses attention-based aggregation to compute
embeddings of set elements independently from
other elements in order to reduce runtime complex-
ity to linear from the original transformer (Vaswani
et al., 2017), which accounts for dependency be-
tween such elements leading runtime and space
complexity of O(N2). It is worth noting that, in
this case, Horn et al. (2020) compromises on ac-
curacy by disregarding such dependency for lower
space and runtime demand, while Tipirneni and
Reddy (2022) uses a transformer block similar to
Vaswani et al. (2017) to guarantee model perfor-
mance with the expense of computing power and
time.

Most works in clinical machine learning focus
on predictive tasks. Tipirneni and Reddy (2022)
proposes an encoder-only transformer model for
direct mortality prediction as the target task, while

its intermedial proxy model could be used for time
series forecasting. Staniek et al. (2024) proposes
encoder-decoder long-term clinical time series fore-
casting models to predict outcome via predicting
the cause of syndromes intermediately. These fore-
casting models, however, are monomodal models
that learn from data of single modality, disregard-
ing potential information delivered through associ-
ated clinical notes in EHR datasets.

Multimodal learning is a common practice to
address various tasks in the clinical doamin due
to the various modalities of data in EHR datasets.
Wang et al. (2022) uses concatenation to integrate
multimodal patient data on physiological features
and clinical texts. Later works in the clinical do-
main such as (Lyu et al., 2022) additionally ap-
plies a multimodal fusion encoder after concatena-
tion of two modalities, in order to map them into
a universal space before feeding the embeddings
into a transformer. More recent works in the clini-
cal domain employ attention-based fusion methods
to represent multimodal patient data. (Lee et al.,
2023), for instance, modified attention bottlenecks
(Nagrani et al., 2021) from an audio-vision task
to learn multi-modal EHR data (EHR time-series,
EHR texts, EHR images) for mortality, vasopressor
need, and intubation need prediction tasks.

Table 1 presents a tabular review of related works
we closely refer to in this work. We seek to tackle
the limitations in previous works, and define our
primary task as time series forecasting on multi-
modal patient data. In the following sections, we
further lay out the implementation specifics of our
models and methods to overcome limitations in
existing works.

3 Data

3.1 MIMIC-III

MIMIC-III (Medical Information Mart for Inten-
sive Care 3) is a large database consisting of ICU
(Critical Care Unit) patient records at the Beth Is-
rael Deaconess Medical Center between 2001 and
2012 (Johnson et al., 2016). The entire MIMIC-
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Figure 1: Multimodal STraTS-Q-M - ClinicalBERT

III database stores 61,532 ICU stays among 58,
976 hospital admissions from 46,520 patients. The
database is composed of 26 tables including clinical
notes, chartevents, admissions and microbiology
events and etc.

3.2 Our Data

We use annotated data with septic patients labelled
based on 23 ICD-9 codes and the Sepsis-3 defi-
nitions (Reyna et al., 2020; Seymour et al., 2016;
Singer et al., 2016). Patients admitted with sep-
sis were excluded from experiment data as they
may mislead model in fine-tuning stage for sepsis
prediction. From MIMIC-III dataset, we built our
data from 5288 septic patients (9.2%) and 51994
non-septic patients. We split data into train, val-
idation, test by 64: 16: 20 at patient level. We
extract 133 physiological features (record time, fea-
ture value) and two demographic features (age and
gender) for each admission from MIMIC-III, and
include 1,407,430 clinical notes associated with
patient records.

3.3 Clinical Note Preprocessing

Prior practices (Wang et al., 2022) conduct stop
word and special character removal, case normali-
sation on clinical notes as text cleaning steps before
feeding to a language model such as ClinicalBERT
(Alsentzer et al., 2019). We argue that for a con-

textual language model pretrained on clinical notes
without the above mentioned text preprocessing
steps, the above cleaning procedures are unneces-
sary and potentially harmful. As pointed out in
Khattak et al. (2019), case normalisation can intro-
duce noise to clinical texts. For instance, by lower-
casing the medical condition term ADD (attention
deficit disorder), it converts to a verb “add" that
leads to ambiguity. Thus we reserve the original
clinical notes for ClinicalBERT-based text embed-
ding modules in our models to generate document-
level embeddings. With the GloVe-based models,
we remove special characters and stop words to
reduce noise and improve training efficiency, as
necessary text cleaning steps.

4 Methods

4.1 Baseline STraTS

We base our work on a strong baseline model
STraTS (Tipirneni and Reddy, 2022), which takes
multivariate clinical variables as its monomodal
input, encoded by a learnable continuous value em-
bedding module and feature map. STraTS uses set
functions to represent clinical time series as triplets
to avoid data imputation and aggregation. The en-
coded triplets are then fed into transformer blocks
and a self-attention module to account for the in-
teractions across data instances and triplets within
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Model Parameters Best Epoch Test Validation
STraTS (baseline) 71,070 71 5.2631 5.2089
STraTS - ClinicalBERTCLS_emb - base 10,230,720 104 5.1771 5.0803
STraTS - ClinicalBERTCLS_emb - large 33,920,820 126 5.2014 5.1226
STraTS-Q - ClinicalBERTCLS_emb 61,140,480 124 5.1742 5.1198
STraTS-Q-M - ClinicalBERTCLS_emb 33,920,820 105 5.1650 5.1152
STraTS-Q-M - ClinicalBERT avg_emb 33,920,820 101 5.2789 5.1950
STraTS - GloV e - base 92,820 86 5.2781 5.1875
STraTS - GloV e - large 112,920 109 5.3695 5.1707
STraTS-Q-M - Hierarchical Transformer - base 11,605,610 110 5.3312 5.2295
STraTS-Q-M - Hierarchical Transformer - large 48,216,860 103 5.2584 5.1836
STraTS-Q-M - Hierarchical Transformer - large1 48,216,860 147 5.1535 5.0038
1 Learning rate reduced to 0.0001 after 80 epochs

Table 3: Masked MSE (mean squared error) on test and validation data for each model. (patience = 15, parameters
refers to trainable parameters)

Model p-value
STraTS - ClinicalBERTCLS_emb - base 0.0
STraTS - ClinicalBERTCLS_emb - large 0.0
STraTS-Q - ClinicalBERTCLS_emb 0.0
STraTS-Q-M - ClinicalBERTCLS_emb 0.0
STraTS-Q-M - Hierarchical Transformer - large 0.69
STraTS-Q-M - Hierarchical Transformer - large1 0.0

Table 4: Randomization test results for proposed models against baseline on forecasting task.

Figure 2: Hierarchical Transformer for Clinical Docu-
ment Time Series

each observation window.

4.2 Multimodal STraTS-Q-M - ClinicalBERT

On the basis of STraTS, we further include associ-
ated clinical notes represented by document-level
embeddings obtained through ClinicalBERT. We
first obtain initial quadruplet embedding instead of

triplets in STraTS as follows:

ei = efi + evi + eti + eTi (1)

where efi , evi , eti are feature, value, time embed-
dings originally to form the triplets, along with the
associated text embedding eTi aligned by observa-
tion windows.

The initial quadruplet embeddings are then
passed to the following transformer blocks and
self-attention module. Eventually, we obtain a
fused multimodal representation via concatenating
with demographic feature embeddings and Clini-
calBERT text embeddings as shown in figure 1.

4.3 Hierarchical Transformer for Clinical
Document Time Series

Instead of simply concatenating document embed-
dings within the same observation window to repre-
sent document time series, we additionally propose
a hierarchical transformer to 1) account for the
interactions between individual clinical notes via
attention 2) achieve cross-modal time awareness by
aligning clinical text embedding with correspond-
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Figure 3: Sepsis prediction performance on MIMIC-III dataset for different percentages of labeled data averaged
over 10 runs.

ing time embedding. As shown in figure 2, we
encode time consistently with the learnable contin-
uous value embedding module, and add it to cor-
responding document-level ClinicalBERT embed-
ding for each clinical note in the observation win-
dows, where the time encoding functions similarly
to positional encoding in Vaswani et al. (2017);
Dai et al. (2022). The time-aware text embeddings
are then passed through transformer blocks and
attention-based fusion module to claim interactions
across individual clinical notes. By this practice,
it brings cross-modal time-awareness to the entire
multimodal learning framework via consistent time
encoding.

5 Results

5.1 Clinical Time Series Forecasting

We train forecasting models with 2-hour forecast-
ing window following each observation window on
unsupervised data. We define observation windows
with varied lengths: {min(0, x − 24), x)|20 ≤
x ≤ 124, x%4 = 0}. We evaluate the models
with masked MSE (mean squared error), where the
binary mask indicates the availability of ground
truth in data. In addition to evaluating Multimodal
STraTS-Q-M - ClinicalBERT against the baseline
model, we conduct ablation studies to individually
remove the quadruplet embedding module (revert
back to monomodal triplet) and the text embedding
module in late fusion concatenation. Furthermore,
for experimental purposes, we also replace Clini-
calBERT with generic GloVe model for text repre-
sentation. Lastly, we replace the ClinicalBERT text
embedding modules with our hierarchical trans-
former to represent clinical document time-series.
We train base and large variations of the model, also
further lower learning rate at pretraining to 0.0001
after 80 epochs from default learning rate (0.0005)
due to the complexity of the model compared to

others.
Table 3 shows the MMSE of the proposed mod-

els against baseline on test and validation data. It
can be seen from the table that both the quadruplet
embedding module and late fusion concatenation
are able to individually improve model forecast-
ing performance from baseline. With both com-
bined, Multimodal STraTS-Q-M - ClinicalBERT
reduces MMSE by 0.0981 from baseline on test
data, achieving MMSE at as low as 5.1650. It is
worth noting that when replacing CLS token em-
bedding with average of all token embeddings as
document-level representation, the same model un-
derperforms baseline on test data and shows no
noteworthy performance improvement at valida-
tion. In the meanwhile, the GloVe-based mod-
els (replacing ClinicalBERT with GloVe for text
embedding in concatenation-based fusion model)
are able to slightly outperform baseline at valida-
tion stage, whereas showing poor generalization
to unseen test data and underperforms baseline
by notable gap. Furthermore, by replacing the
concatenation-based text embedding module with
our hierarchical transformers, the large model with
reduced learning rate is able to achieve the low-
est MMSE on both test (MMSE = 5.1535) and
validation data (MMSE = 5.0038), decreasing
MMSE from baseline by 0.1096. This illustrates
that our hierarchical transformer for clinical docu-
ment time series is an effective approach compared
to the simple concatenation of document-level em-
beddings.

We further run randomization tests on the out-
performing models against baseline. As shown in
table 4, we observe most of the p-values are below
α − level (p < α, α = 0.05) with the exception
to STraTS-Q-M - Hierarchical Transformer - large
(p = 0.69), which is consistent with the marginal
gap in MMSE of the model against baseline. The
significance test results demonstrate that the major-
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ity of the outperforming models are significantly
better than baseline in forecasting stage on test
data.

5.2 24-h Sepsis Prediction with Labelled Data

As discussed in previous sections, our forecasting
models can be used for early sepsis prediction in
two ways: 1) directly fine-tuned on supervised data
to predict sepsis 2) produce forecast on clinical
variables to support rule-based implementations.
In this work, we fine-tune the forecasting models
with labelled sepsis patient data to illustrate the
case of 24-hour sepsis prediction.

Figure 3 shows the ROC-AUC, PR-AUC and
min(Re, Pr) (maximum of minimum of recall
and precision across all thresholds). Multimodal
STraTS-Q-M - ClinicalBERT is able to stably out-
perform baseline across different percentages of
labelled data also on the downstream prediction
task in a fully data-driven setup. While the hierar-
chical transformer model showed best performance
on forecasting, it performs poorly after fine-tuning
with labelled data on sepsis prediction. This obser-
vation is consistent with the arguements in Kaddour
et al. (2022); Liu et al. (2023); Kaddour et al. (2023)
that pretraining loss does not always correlate well
with downstream performance.

6 Conclusion

In this work, we propose a multimodal transformer
to incorporate both physiological time series and
associated clinical notes from EHR data for clin-
ical time series forecasting. We approach predic-
tive tasks in the clinical domain primarily from
a cause-prediction perspective, which allows our
forecasting models to flexibly assist different clini-
cal prediction tasks with rule-based checks in inter-
pretable ways to practitioners in the field. We base
our models on a strong monomodal baseline, and
improved the model via meaningful multimodal fu-
sion through integrating clinical text embedding
modules. We additionally propose hierarchical
transformers to represent clinical document time se-
ries using attention and time encoding. We conduct
comprehensive experiments on MIMIC-III data pri-
marily on forecasting, and observed that our multi-
modal models are able to significantly outperform
baseline by notable gaps in MMSE. Our ablation
studies illustrate that the atomic approaches in our
multimodal fusion method (quadruplet embedding
and late fusion via concatenation) are both able to

individually improve model performance on fore-
casting, and achieve even more superior perfor-
mance with both combined. Via integrating the
hierarchical transformers, the forecasting model is
able to further reduce MMSE with proper training
setup, illustrating the effectiveness of our proposed
hirarchical transformers for clinical document time
series representation. Additionally, we fine-tune
the forecasting models with supervised data for
sepsis prediction, observing that most of the multi-
modal models are able to consistently outperform
baseline on the downstream prediction task in a
fully data-driven setup. While our models are based
on encoder-only architectures, for future work we
intend to explore multimodal encoder-decoder and
decoder-only architectures with longer forecasting
window. Meanwhile, we seek to reduce model pa-
rameters and enhance preprocessing steps in clini-
cal note encoding procedures in future work.

7 Limitations

Despite the significant performance improvements
over the baseline, our models generally have a
higher number of parameters, resulting in increased
computational costs. Additionally, our evaluation
was conducted on a single dataset, assessing perfor-
mance across multiple datasets would provide more
robust and generalizable insights. Furthermore, our
best-performing forecasting model did not consis-
tently outperform the baseline during fine-tuning,
indicating potential aspects for refinement.
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