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Abstract

Healthcare community question-answering
(CQA) forums provide multi-perspective in-
sights into patient experiences and medical ad-
vice. Summarizations of these threads must ac-
count for these perspectives, rather than relying
on a single “best” answer. This paper presents
the participation of the WisPerMed team in
the PerAnsSumm shared task 2025, which
consists of two sub-tasks: (A) span identifi-
cation and classification, and (B) perspective-
based summarization. For Task A, encoder
models, decoder-based LLMs, and reasoning-
focused models are evaluated under fine-
tuning, instruction-tuning, and prompt-based
paradigms. The experimental evaluations em-
ploying automatic metrics demonstrate that
DeepSeek-R1 attains a high proportional re-
call (0.738) and F1-Score (0.676) in zero-shot
settings, though strict boundary alignment re-
mains challenging (F1-Score: 0.196). For
Task B, filtering answers by labeling them
with perspectives prior to summarization with
Mistral-7B-v0.3 enhances summarization. This
approach ensures that the model is trained ex-
clusively on relevant data, while discarding
non-essential information, leading to enhanced
relevance (ROUGE-1: 0.452) and balanced fac-
tuality (SummaC: 0.296). The analysis uncov-
ers two key limitations: data imbalance and
hallucinations of decoder-based LLMs, with
underrepresented perspectives exhibiting sub-
optimal performance. The WisPerMed team’s
approach secured the highest overall ranking in
the shared task.

1 Introduction

Healthcare community question-answering (CQA)
forums have become a vital resource for individu-
als seeking medical advice and shared experiences
(Rueger et al., 2021). Unlike traditional clinical
consultations, these online platforms allow users
to post health-related questions and receive a wide

*These authors contributed equally to this work.

range of answers from peers or experienced com-
munity members. Such forums often present di-
verse content that can address multiple aspects of a
medical query. Some answers focus on personal ex-
periences, whereas others might center on medical
information or offer direct suggestions. Moreover,
responses may highlight causes for a condition or
pose follow-up questions to the original poster.

Despite this wealth of information, most sum-
marization approaches for healthcare CQA threads
relied on a single best-voted answer (Chowdhury
and Chakraborty, 2019), which overlooks the multi-
perspective nature of the discussion. A single
“best” answer cannot fully encapsulate such a vari-
ety of viewpoints, highlighting the need for more
perspective-aware summarization, where different
types of information are distinguished rather than
merged into one overarching summary.

Building on this motivation, the PerAnsSumm
shared task (Agarwal et al., 2025), aims to foster
research in perspective-aware healthcare answer
summarization and comprises two sub-tasks:

(A) Span Identification and Classification:
Given a question and user answers the task is
to label spans in the answers that correspond
to one of the five perspectives: cause, sugges-
tion, experience, question, or information.

(B) Perspective-Based Summarization: For
each perspective category, the task is to gen-
erate a concise summary that represents the
content found across all answers in the thread.

This paper describes the approaches of team Wis-
PerMed to tackle both sub-tasks. The following
sections provide an overview of related work (Sec-
tion 2) and describe the dataset in detail (Section 3).
Then, the approaches for both tasks (Section 4) and
the corresponding evaluation procedure (Section 5)
are presented and their results are discussed (Sec-
tion 6). Finally, the conclusion (Section 7) offers a
summary of the findings.
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2 Related Work

Datasets derived from healthcare CQA forums pro-
vide insights into patient experiences (Rueger et al.,
2021) and informal medical language (Chaturvedi
et al., 2024). Specialized datasets (Naik et al., 2024;
Chaturvedi et al., 2024; Savery et al., 2020) have
been created to capture this type of content, fa-
cilitating research in patient-centered healthcare
natural language processing (NLP).

Large Language Models (LLMs) demonstrate re-
markable capabilities in various domains, including
healthcare (Thirunavukarasu et al., 2023). BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) and its variants
have formed the landscape of NLP in medicine
(Thirunavukarasu et al., 2023). As encoder mod-
els, they process entire input sequences at once,
leveraging attention mechanisms to build contex-
tual representations. This ability makes them partic-
ularly well-suited for extracting structured informa-
tion. Decoder-only LLMs, such as GPT (Genera-
tive Pre-trained Transformer) (Brown et al., 2020a)
models, have shown impressive performance in
various NLP tasks. These models process text
sequentially, predicting the next token based on
previous tokens. Research has explored adapting
decoder-only LLMs for span labeling tasks (Dagde-
len et al., 2024), leveraging their strong semantic
understanding capabilities. While decoder-only
LLMs excel at generating text, they face challenges
in producing structured outputs. One major is-
sue is “hallucination” (Sun et al., 2024), where
models generate plausible but incorrect informa-
tion. Recent advancements in LLMs have led to
improved reasoning capabilities through enhanced
training strategies (Pan et al., 2024) and chain-of-
thought prompting (Wei et al., 2022). Models like
DeepSeek-R1 (DeepSeek-AI et al., 2025) exhibit
strong reasoning abilities, which are particularly
valuable in healthcare applications where nuanced
understanding and logical inference are crucial.

Summarization has emerged as a highly stud-
ied application of NLP in healthcare. Vari-
ous approaches have been developed, including
extraction- and abstraction-based techniques using
LLMs (Xu et al., 2024). Perspective or aspect-
based summarization (Chaturvedi et al., 2024) rep-
resents an evolving area in NLP, aiming to summa-
rize different viewpoints or aspects within a text.
This is valuable when dealing with diverse experi-
ences and opinions expressed in online forums.

3 Dataset

The dataset used is derived from the L6 Yahoo!
Answers CQA repository1, filtered to only include
health-related content. It contains 3,245 question
threads with a maximum of 10 answers, totaling
10,288 individual answers. The final dataset is
split into 2,236 training threads, 959 validation
threads, and 50 test threads. Table 1 shows span
counts, along with the number of corresponding
perspective-based summaries in the training and
validation sets. The raw dataset consists of a uid,
user question, context to the question provided by
the user, answers from other users, and raw_text
which combines all information into a single string.

Perspective Train Val

Information 4,388 / 1,742 1,805 / 733
Cause 579 / 305 266 / 138
Suggestion 3,613 / 1,363 1,635 / 595
Question 284 / 213 131 / 101
Experience 1,245 / 745 565 / 315

Table 1: Perspective-based dataset statistics. Each cell
shows the number of spans / the number of summaries.

The annotation of this dataset follows the schema
described by Naik et al. (2024).

Perspective and Span Annotation. Each answer
is manually reviewed to detect text spans corre-
sponding to five perspectives: cause, suggestion,
experience, question, and information. Annotators
label these spans at the character level, conveying
any of the aforementioned perspectives. As a re-
sult, a single answer can contain multiple types of
perspectives. The level of granularity allows for
the annotation of whitespaces and sub-words.

Perspective-Based Summarization. For each
thread, a concise summary is written for every
perspective observed in the answers. These sum-
maries aim to capture the core content associated
with that perspective across all answers in the
thread.

4 Methods

As the sub-tasks are distinct, it is necessary to im-
plement different approaches for each. The follow-
ing sections detail the approaches employed.

1https://webscope.sandbox.yahoo.com/catalog.
php?datatype=l&did=11, Last Accessed: 19. February
2025.
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4.1 Task A: Span Identification and
Classification

The experiments carried out for Task A used a
variety of models and tuning techniques.

Models. DeBERTa-v3-large (He et al., 2021a),
developed by Microsoft, builds upon the encoder
model DeBERTa (He et al., 2021b). It comprises 24
layers with a hidden size of 1024, totaling approx-
imately 418 million parameters, and is designed
to enhance natural language understanding tasks.
Llama-3.1-8B-Instruct was developed by Meta AI
as part of the Llama series (Dubey et al., 2024) of
LLMs. It contains 8 billion parameters, offering a
balance between performance and computational
efficiency. Llama-3.3-70B-Instruct is a 70-billion-
parameter model from a newer variant of the Llama
series. Both Llama models are fine-tuned with
instruction-based data, enhancing their capability
to follow complex directives and generate contextu-
ally relevant outputs. DeepSeek-R1 (DeepSeek-AI
et al., 2025) is developed for reasoning tasks across
domains such as mathematics, programming, and
language. It employs a Mixture of Experts (Jacobs
et al., 1991) architecture, comprising a total of 671
billion parameters. DeepSeek-R1-Distill-Llama-
70B (DeepSeek-AI et al., 2025) involves distill-
ing the DeepSeek-R1 model into a more compact
form based on the Llama-3.3-70B-Instruct archi-
tecture. This involves training the smaller model
(the student) to replicate the behavior of the larger
DeepSeek-R1 model (the teacher) by learning from
its outputs.

Fine-Tuning of Encoder Models. For the en-
coder approach, a DeBERTa-v3-large model was
fine-tuned. The five perspective category spans
were cast as NER labels in a BIO scheme
(Ramshaw and Marcus, 1995; Tjong Kim Sang,
2002). During training, a maximum sequence
length of 512 was set, a batch size of 16 was
used, and a warmup ratio of 0.1. Model check-
points were saved at each epoch, and the best state
was chosen based on F1-Scores from the valida-
tion set. Early stopping was only applied to the
DeBERTareconstr.-early model. For inference, the
raw_text style representation was available for the
training and validation data only, but not for the
test set. Therefore, two inference approaches were
explored. DeBERTa: Each individual answer was
provided to the model as a separate input, and the
resulting token-level predictions were stored on a

per-answer basis. DeBERTareconstr.: Each test sam-
ple was reconstructed into a single sequence by in-
serting the same markers (uri: <ID>, question:
<text>, and answer_0: <text>) to obtain a for-
mat that is consistent with the training data. The
entire thread was then passed to the model at once,
enabling it to capture cross-answer context. Af-
ter token-level predictions were generated for both
approaches, a chunk-merging step was applied to
merge consecutive tokens that shared the same per-
spective class. Single-word spans were removed
to improve precision. The final labeled segments
were then saved in the submission format.

Instruction-Tuning of Llama-3.1-8B-Instruct.
In order to optimize Llama-3.1-8B-Instruct for
perspective-aware span extraction, the train split of
the dataset was structured into a format suitable for
instruction-tuning (Wei et al., 2021). Instruction-
tuning refers to the process of training LLMs on
data formatted as instructions. Input and output
are transformed in a conversation-style format con-
taining a system and user prompt as well as the
structured assistant output. In this work the sys-
tem prompt outlines the task, classification guide-
lines, and output format. To ensure the consistency
and successful parsing of outputs, the model is
instructed to return its response as a TypeScript
object. The user prompt contains the answers
from forum users and the assistant output contains
the spans structured as a TypeScript object. All
prompts can be found in the Appendix A.5.1.

To maintain computational efficiency Parameter-
Efficient Fine-Tuning (PEFT) (Ding et al., 2023)
via LoRA (Low-Rank Adaptation) (Hu et al., 2022)
was employed. More details on the implementation
can be found in the Appendix A.2.

During inference, the instruction-tuned model
utilizes the same prompts as in training. The infer-
ence parameter are available in Appendix A.3.1.

Prompt-Based Techniques. To complement
fine- and instruction-tuning, zero-shot and few-shot
prompting strategies (Brown et al., 2020b) were
employed. These methods instruct LLMs to extract
relevant spans and classify them into the correct
perspective category without the need for parame-
ter updates.

In the zero-shot setting, the model is directly
prompted using the system prompt that outlines
the task, classification guidelines, and output for-
mat, combined with the user prompt that contains
the answers from forum users. This method tests
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the model’s ability to generalize its understanding
of text span classification based solely on its pre-
trained knowledge.

To enhance performance, few-shot learning was
introduced by showing the model examples of
gold-standard output in a conversational style.
These examples demonstrate how the spans should
be extracted and categorized, helping the model
learn through analogy. Two variations of few-
shot prompting were explored: Standard few-shot
prompting, where gold-standard examples were
provided as part of the same interaction and few-
shot prompting with system message resets, where
each example was treated as an independent in-
stance with repeated system prompts to reinforce
adherence to the task and the output format.

In both few-shot and zero-shot settings the same
system and user prompts are used as for instruction-
tuning (see Appendix A.5.1).

4.2 Task B: Perspective-Based Summarization

Early experiments on the validation set indicated
that fine-tuning models solely with span data for
the summarization task led to suboptimal results.
Relying solely on span annotations failed to cap-
ture the broader contextual and query-specific nu-
ances necessary for generating high-quality sum-
maries. Furthermore, when using spans as input,
performance on Task B is dependent on Task A
performance. Consequently, a more comprehen-
sive instruct-tuning strategy was adopted that lever-
ages all available information, including the con-
text, question, and answers. In this revised ap-
proach, models are exposed to a richer set of inputs
during the training process, enabling improved un-
derstanding and synthesis of relevant information
for summarization. The instruct-tuning was tested
on the following four models. The prompts for the
instruction-tuning can be seen in Appendix A.5.2.

Models. Mistral-Small-24B-Instruct2 is a pre-
trained, instruction-tuned model that achieves
performance comparable to larger models such
as Llama 3.3 70B while offering faster infer-
ence. Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).
BioMistral-7B-DARE (Labrak et al., 2024) adapts
Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) for the
biomedical domain through additional pre-training
on PubMed Central, achieving strong results on
medical question-answering benchmarks and ef-

2https://mistral.ai/news/mistral-small-3, Last
Accessed: 23. February 2025.

I agree. Some diseases are a result of vitamin
deficiencies so if you take vitamins that are normally

lacking you could end up with a misdiagnosis.

Some diseases are a result of vitamin deficiencies so if
you take vitamins that are normally lacking you could end

up with a misdiagnosis

: Depends on the doses. It can mask symptoms of deficiency

as well as give false-positives on other test

Seriously, don't do it

Answers

Spans

[INFORMATION]

[SUGGESTION]

[INFORMATION], [SUGGESTION]

[INFORMATION]

Depends on the doses. It can mask symptoms of deficiency
as well as give false-positives on other tests. Seriously,

don't do it.

[INFORMATION]

Figure 1: Workflow Diagram of the Answer Labeling
Pipeline for Task B pre-classification. The process be-
gins by extracting answer boundaries from raw_text.
Next, labeled spans are assigned to their corresponding
answers based on their starting index. Finally, the origi-
nal answer texts are assigned the perspective labels of
contained spans.

fective multilingual generalization. DeepSeek-R1-
Distill-Qwen-32B (DeepSeek-AI et al., 2025) is a
distilled dense model that replicates the reasoning
patterns of the larger DeepSeek-R1 (DeepSeek-AI
et al., 2025) in a compact form.

4.2.1 Pre-classification Methodology
Instead of using all answers to generate a summary
for a given perspective, multi-label perspective clas-
sifiers were trained using DeBERTaV3 and Mistral-
7B-v0.3. To create a labeled answer dataset, an-
swer spans were extracted and the corresponding
answers determined via regular expressions (see
Figure 1). In some instances, a more complex regex
was needed to fix annotation errors; for example,
the second span in Figure 1 mistakenly included a
leading colon and whitespace from raw_text that
were not present in the original answer.

The trained classifiers were then applied to the
test set to label answers and generate summaries, as
illustrated in Figure 2. For model instruct-tuning,
only answers labeled with the same perspective as
the requested summary (e.g., information) were
used. If no answers were labeled with the desired
perspective, the model used all available answers
instead. This strategy ensures that every thread
receives one summary per perspective, regardless
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Train Multilabel
Answer

Classifier Train Summaries

Labeled Answer
Train Dataset

DeBERTa
Mistral-7B-v0.3 

Labeled Answer
Test Dataset

Predict Testset
 Answers

Inference

Mistral-7B-v0.3
DeepS-Qwen-32B

Mistral-Small-3-24B
BioMistral-7B DARE

Results

Figure 2: The labeled answer train dataset was used to
train multi-label classifiers and instruction-tune models
for Task B. The test dataset, with predicted answer per-
spectives, was then used to generate summarizations.

of the distribution of labeled answers. Addition-
ally, an alternative approach involves training five
separate models (Mistral-7B-v0.35x), one for each
perspective.

5 Evaluation

A range of evaluation metrics are used to evalu-
ate different aspects of the results, with scores in
Table 3 and Table 6 provided by the shared task
organizers (Agarwal et al., 2025).

5.1 Task A: Span Identification and
Classification

The evaluation methodology for Task A comprises
assessment of classification performance and span
identification accuracy. The former is measured
using a macro-averaged F1-Score (Macro F1) and
a weighted F1-Score (Weight F1). The latter is
evaluated using Strict and Proportional Matching
(Agarwal et al., 2025). Strict Matching involves the
evaluation of the exact match between predicted
and gold standard spans, with precision (P), recall
(R), and F1-Scores being computed from the num-
ber of exact matches. Proportional Matching al-
lows for partial correctness by evaluating the token-
level overlap between predicted and gold-standard
spans. The number of overlapping tokens in each
predicted span is measured against the most similar
gold span, and the results are then used to compute
precision, recall, and F1-Scores. This approach
makes it more flexible than strict matching.

To evaluate hallucinated spans in LLM-
generated outputs, it is checked whether the out-
put spans appear verbatim in the original answers.
This analysis reports the proportion of correctly
extracted spans, providing a quantitative measure
of the model’s tendency to introduce extraneous
content. This analysis is reported in this work in
addition to the shared task results, and is not used
for ranking.

5.2 Task B: Perspective-Based Summarization

In Task B the evaluation methodology employs
multiple automatic metrics to assess the quality of
generated summaries across the aspects relevance
and factuality.

5.2.1 Relevance
Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE) (Lin, 2004) measures the F1-
Score of overlap of unigrams (ROUGE-1), bi-
grams (ROUGE-2), and longest common subse-
quences (ROUGE-L) between the generated and
reference summaries. Bilingual Evaluation Un-
derstudy (BLEU) (Papineni et al., 2002) is a met-
ric that evaluates the precision of n-gram overlap.
Metric for Evaluation of Translation with Explicit
ORdering (METEOR) (Banerjee and Lavie, 2005)
considers both synonymy and stemming to provide
a more flexible assessment of lexical similarity. It
also calculates the degree to which the matched
words are ordered in the same way in the summary
as in the reference. BERTScore (Zhang et al., 2020)
leverages contextualized embeddings from BERT
to compute semantic similarity between generated
and reference summaries.

5.2.2 Factuality
The AlignScore (Kryscinski et al., 2020) quanti-
fies the degree of alignment between the facts in
the summary and the reference. SummaC-Conv
(Laban et al., 2022) (SummaC) detects inconsisten-
cies by segmenting documents into sentence-level
pairs and using a convolutional layer to aggregate
entailment scores for the factuality assessment.

6 Results and Discussion

The final rankings of the top five participating
teams in the shared task are summarized in Table 2.
The WisPerMed team achieved the highest overall
ranking (0.457) in the shared task, narrowly outper-
forming the other teams. The ranking is based on
both sub-tasks. In Task A WisPerMed obtained a
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Ovr. Task A Task B

# Team x̄ x̄ Rel. Fact.

1 WisPerMed 0.457 0.598 0.421 0.352
2 YALENLP 0.455 0.604 0.436 0.325
3 yxyx 0.453 0.621 0.365 0.372
4 AICOE 0.45 0.605 0.395 0.348
5 KHU_LDI 0.449 0.589 0.417 0.343

Table 2: Final results of the top five teams in the shared
task. Columns show team rank (#) and average scores
(x̄) for overall (Ovr.) and Task A. Task B scores are
reported separately for relevance (Rel.) and factuality
(Fact.). Bold values indicate the highest score, and
underlined values mark the second-highest.

score of 0.598 using DeepSeek-R1 in the zero-shot
setting (DeepS-R1zs in Table 3). Task B is further
divided into relevance and factuality categories,
where WisPerMed ranked first in both categories
combined using the instruction-tuned Mistral-7B-
v0.3, with the labeled answer test dataset (Mistral-
7B-v0.3pre-class.).

6.1 Task A: Span Identification and
Classification

Table 3 summarizes the performance of various
experimental setups for Task A. Evaluation metrics
include Macro F1-Score, Weighted F1-Score, and
precision (P), recall (R), and F1-Scores under both
Strict and Proportional span matching.

DeepSeek-R1 in the zero-shot setting (DeepS-
R1zs) achieved the best scores in Macro F1-Score
(0.878), Weighted F1-Score (0.921), and several
span matching metrics (Strict Recall (0.229), Strict
F1-Score (0.196), Proportional Recall (0.738), and
Proportional F1-Score (0.676)). Its high recall val-
ues under both matching criteria indicate robust
retrieval capabilities. Moreover, its overall average
score of 0.598 reinforces its superior performance
across the evaluation metrics.

DeBERTa achieves an overall score of 0.539,
yet it does not exhibit any particular advantage in
individual sub-metrics. The DeBERTa-based vari-
ants DeBERTareconstr.-early and DeBERTareconstr. ex-
hibit improved performance. The former attained
the second-best Macro F1-Score (0.875), while
the latter secured the second-best Weighted F1-
Score (0.909) and the highest Proportional Pre-
cision (0.627). This observation indicates that
smaller transformer-based models, specifically opti-
mized for sequence labeling tasks, can demonstrate
comparable performance to larger general-purpose
LLMs in perspective-aware span extraction, despite

their smaller size. Making them a considerable
choice to reduce resource cost (computational and
environmental).

The Llama-based models show a clear depen-
dence on model size and training paradigm. The
instruction-tuned Llama-3.1-8B-Instruct (Llama-
3.1-8Bit) underperforms, with a Macro F1-Score
of 0.602 and a Strict F1-Score of 0.023, indicating
the limitations of smaller decoder-only models for
this task. This performance discrepancy could also
indicate that the instruction-tuning process was not
sufficiently rigorous or tailored for this specific
task. In contrast, the larger Llama-3.3-70B-Instruct
variants show enhanced performance. Llama-3.3-
70Bfs-sys. variant achieved the highest Strict Pre-
cision (0.182) as well as competitive Strict Recall
(0.192) and Strict F1-Score (0.187), suggesting that
repeated system message enhance the model’s abil-
ity to precisely identify spans. Its overall average
performance of 0.580 places Llama-3.3-70Bfs-sys
in second place among WisPerMed’s approaches.

The enhanced reasoning capabilities in DeepS-
R1 and it’s much larger size might have contributed
to its superior overall performance. The notable im-
proved overall score of the distilled version (DeepS-
Llama-3.3-70Bfs) compared to the original Llama-
3.3-70B-Instruct (Llama-3.3-70Bfs) in the few-shot
setting underscore this hypothesis about the impact
of reasoning on span labeling performance.

All models exhibited lower scores under Strict
span matching, with the highest Strict F1-Score
reaching only 0.196. This consistent difference in-
dicates that precise boundary prediction remains a
difficult aspect of span extraction. This may be at-
tributed to boundary misalignments in span extrac-
tion, where models correctly identify relevant con-
tent but fail to precisely match the annotated span
boundaries. It may also stem from inconsistencies
in the annotated dataset (see Section 4.2.1), where
spans include partial words, trailing or preceding
whitespaces. The DeepS-R1zs model’s superior
performance in Strict metrics confirms its ability to
accurately retrieve relevant spans, even under ex-
acting conditions. Proportional F1-Scores ranged
from 0.420 (Llama-3.1-8Bit) to 0.676 (DeepS-
R1zs). The overall higher scores for proportional
matching suggests that many of the errors in strict
matching are due to minor boundary misalignments
rather than completely incorrect span predictions.
Even with the best approaches among the top five
teams in the shared task, performance remains sub-
optimal, underscoring the inherent complexity and
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Experiment Macro F1 Weight F1 Str. P Str. R Str. F1 Prop. P Prop. R Prop. F1 x̄

DeBERTa 0.855 0.906 0.103 0.126 0.113 0.600 0.593 0.596 0.539
DeBERTareconstr.-early 0.875 0.907 0.170 0.152 0.161 0.619 0.621 0.620 0.563
DeBERTareconstr. 0.871 0.909 0.115 0.116 0.115 0.627 0.584 0.605 0.543
Llama-3.1-8Bit 0.602 0.733 0.028 0.019 0.023 0.319 0.616 0.420 0.392
Llama-3.3-70Bfs 0.828 0.887 0.065 0.048 0.055 0.561 0.604 0.582 0.508
Llama-3.3-70Bfs-sys. 0.866 0.907 0.182 0.192 0.187 0.606 0.689 0.645 0.580
DeepS-Llama-70Bfs 0.839 0.882 0.174 0.162 0.168 0.516 0.647 0.574 0.541
DeepS-R1zs 0.878 0.921 0.171 0.229 0.196 0.623 0.738 0.676 0.598

Table 3: Results for Task A. Columns show Macro F1-Score (Macro F1) and Weighted F1-Score (Weight F1), along
with precision (P), recall (R), and F1-Scores under Strict (Str.) and Proportional (Prop.) span matching for all
experiments. The final column (x̄) represents the overall average score. The best values are highlighted in bold,
while the second-best values are underlined. Abbreviations: it - instruction-tuned, fs - few-shot, fs-sys. - few-shot
with repeated system messages, zs - zero-shot.

Experiment Found Spans (%)

Llama-3.1-8Bit 90.70
Llama-3.3-70Bfs 96.60
Llama-3.3-70Bfs-sys. 97.65
DeepS-Llama-3.3-70Bfs 80.82
DeepS-R1zs 92.02

Table 4: Percentage of generated spans that match ver-
batim spans in the original answers. Abbreviations:
it - instruction-tuned, fs - few-shot, fs-sys. - few-shot
with repeated system messages, zs - zero-shot.

challenges of perspective-based span labeling.
In addition to the shared task evaluation metrics,

an analysis was conducted to quantify hallucinated
content in LLM-generated outputs (see Table 4).
For instance, Llama-3.1-8Bit achieved an overall
percentage of 90.70%, indicating that a notable
fraction of its output spans deviated from the source
text. In contrast, the Llama-3.3-70B variants ex-
hibited a higher match percentage of 96.60% and
97.65%, suggesting improved fidelity to the input
text. However, the DeepSeek-R1-Distill-Llama-
70B variant showed a considerably lower match
percentage (80.82%), underscoring a higher ten-
dency to generate hallucinated or extraneous spans.
The DeepS-R1zs model yielded 92.02%, indicating,
that reasoning may lead to a higher tendency to
introduce extraneous content.

6.2 Task B: Perspective-Based Summarization

Results of Task B are discussed using metrics for
factuality (AlignScore and SummaC) and relevancy
(ROUGE, BERTScore, METEOR, and BLEU).

Answer Pre-classification Table 5 presents the
classification performance of trained Mistral-7B-
v0.3 and DeBERTaV3 on the validation set.
Mistral-7B-v0.3 achieves a higher Macro F1-Score

Perspective P R F1 S

Mistral-7B-v0.3

experience 0.735 0.683 0.708 419
suggestion 0.718 0.749 0.733 1,142
cause 0.571 0.124 0.204 193
question 0.851 0.381 0.526 105
information 0.704 0.722 0.713 1,210

Macro 0.716 0.532 0.577 3,069
Weighted 0.710 0.677 0.681 3,069

DeBERTaV3

experience 0.671 0.780 0.722 419
suggestion 0.732 0.762 0.746 1,142
cause 0.300 0.016 0.030 193
question 0.778 0.200 0.318 105
information 0.689 0.786 0.734 1,210

Macro 0.634 0.509 0.510 3,069
Weighted 0.681 0.708 0.679 3,069

Table 5: Comparison of classification performance on
the validation set for Mistral-7B-v0.3 and DeBERTa. In
the overall Macro and Weighted rows, the best score
(between models) for each metric is shown in bold.
Precision (P), recall (R), F1-Score (F1), and Support (S)
are reported.

(0.577) compared to DeBERTaV3 (0.510). Both
models perform well on perspectives with ample
training data, such as experience and suggestion.
However, the cause perspective, which has lim-
ited training examples, shows a very low F1-Score
of 0.030 for DeBERTaV3. This contrast reveals
the impact of training data scarcity on classifi-
cation performance. Overall, while both models
effectively classify well-represented perspectives,
Mistral-7B-v0.3 exhibits a more balanced perfor-
mance across classes, highlighting the challenge of
underrepresentation in certain categories. There-
fore Mistral-7B-v0.3 was chosen to classify the test
dataset answers.
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Experiment R1 R2 RL BERT MET BLEU Rel. Align SC Fact.

BioMistral-7B 0.344 0.151 0.308 0.753 0.286 0.108 0.325 0.449 0.276 0.363
Mistral-7B-v0.3 1E 0.408 0.182 0.371 0.891 0.378 0.091 0.387 0.369 0.260 0.314
Mistral-7B-v0.35x 0.445 0.222 0.406 0.899 0.406 0.127 0.418 0.421 0.306 0.364
Mistral-7B-v0.3pre-class. 1E 0.437 0.211 0.397 0.897 0.397 0.123 0.410 0.441 0.297 0.369
Mistral-7B-v0.3pre-class. 2E 0.452 0.221 0.410 0.899 0.410 0.135 0.421 0.409 0.296 0.352
Mistral-Small-3-24B 0.291 0.088 0.255 0.877 0.251 0.048 0.302 0.393 0.238 0.316
DeepS-Qwen-32B 0.299 0.097 0.264 0.862 0.249 0.067 0.306 0.372 0.241 0.306

Table 6: Results for Task B. This table reports ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L (RL), BERTScore
(BERT), METEOR (MET), BLEU, Relevance average (Rel.), AlignScore (Align), SummaC-Conv (SC), and
Factuality average (Fact.). The best values are highlighted in bold, while the second-best values are underlined.
Abbreviations: pre-class. - pre-classified answers, E - epoch.

Labeled Test Dataset The test dataset consists
of 231 answers in total. Among these, the predicted
perspectives are distributed as follows: 85 answers
were labeled as experience, 112 as suggestion, 15
as cause, 12 as question, and 93 as information.
This distribution mirrors the one in the validation
set. Labels such as suggestion and information are
common, while the cause and question perspec-
tives are notably underrepresented. This suggests
that the prediction of answers is robust and the
proportions of predicted labels are consistent with
expectations. The threshold of the classifier for
each perspective was determined by using the val-
idation set. Detailed information on the classifier
(F1-Score, P, R) can be found in Appendix A.4.

Summarization Results The results in Table 6
illustrate the performance of various models on
Task B. Notably, Mistral-7B-Instruct-v0.3 with pre-
classification (Mistral-7B-v0.3pre-class.) trained for
two epochs achieved the best overall performance,
with the highest ROUGE-1 (0.452) and ROUGE-L
(0.410) scores, as well as top scores in BERTScore
(0.899), METEOR (0.410), and BLEU (0.135).
This indicates that the approach of pre-classifying
answers prior to instruct-tuning notably enhanced
the quality of the generated summaries by improv-
ing relevance. The five-model approach (Mistral-
7B-v0.35x), where a separate model was trained for
each perspective, also performed very well. It ranks
first in ROUGE-2 (0.222) and SummaC (0.306)
and second in multiple other metrics. In contrast,
Mistral-Small-24B-Instruct (Mistral-Small-3-25B)
and the distilled Qwen model (DeepS-Qwen-32B)
yielded lower scores, while BioMistral-7B per-
formed moderately but did not match the perfor-
mance of the pre-classification approaches. Further-
more, the relevancy and factuality averages provide
additional insight. Higher relevancy scores suggest
that the summaries are closely aligned with the

intended perspectives, and better factuality scores
indicate fewer factual errors. In particular, the pre-
classification approach achieved a robust relevancy
average (0.421) and acceptable factuality (0.352),
underscoring its ability to capture and synthesize
perspective-specific content effectively. Overall,
these findings confirm that integrating an answer
pre-classification step leads to superior summariza-
tion performance, making it the best overall strat-
egy for Task B.

7 Conclusion

In conclusion, the study presents an investigation
into perspective-aware summarization for health-
care CQA forums through two interrelated tasks:
(A) span identification and classification, and (B)
perspective-based summarization. The experimen-
tal results demonstrate that while fine-tuned en-
coder models such as DeBERTaV3 yield compet-
itive performance in precise span extraction, the
integration of enhanced reasoning capabilities, as
seen in DeepSeek-R1, leads to superior overall per-
formance in capturing complex contextual cues.
The analysis of hallucinated content reveals that
model fidelity to the source text remains a critical
challenge, particularly for larger decoder-only mod-
els employing reasoning mechanisms. The findings
from the summarization experiments underscore
the efficacy of an answer pre-classification strat-
egy, which improves both relevancy and factuality
of generated summaries by effectively leveraging
perspective-specific information.

Limitations

This work has several limitations that should be
addressed in future research.

One limitation is the data imbalance inherent
in the dataset. The underrepresentation of certain
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classes in the dataset negatively impacts the clas-
sifier’s performance as well as robustness of the
evaluation. It highlights a broader challenge in ob-
taining balanced annotations in perspective-based
datasets.

Another limitation concerns the generation of
summaries for each perspective regardless of the
presence of corresponding spans. Since there was
no penalty for generating summaries for perspec-
tives without supporting evidence, the system pro-
duced what may be considered “useless” sum-
maries. Future evaluations should consider incorpo-
rating a penalty for such outputs to better reflect the
accuracy and utility of the generated summaries.

Automatic evaluation metrics may not capture
all aspects of healthcare summarization, such as
clinical relevance and interpretability, potentially
leading to an incomplete assessment of model per-
formance.
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A Appendix

The appendix provides additional details on the
frameworks and models used in this work, includ-
ing their licensing terms, the setup for instruction-
tuning, decoding parameters, and the specific
prompting strategies employed in the experiments.

A.1 Licences

The frameworks and models used in this work are
governed by different open-source licenses, as
detailed in Table 7.

Framework/Model License

unsloth3 Apache-2.0

deberta-v3-large4 MIT
Llama-3.1-8B-Instruct5 Llama 3.1 Comm.
Llama-3.3-70B-Instruct6 Llama 3.3 Comm.
DeepSeek-R1-Distill-Llama-70B7 MIT
DeepSeek-R18 MIT

Mistral-7B-Instruct-v0.39 Apache-2.0
Mistral-Small-24B-Instruct-250110 Apache-2.0
BioMistral-7B-DARE11 Apache-2.0
DeepSeek-R1-Distill-Qwen-32B12 MIT

Table 7: Licensing terms for each framework and
model used in this work, including various Apache-2.0
(Apache License 2.0), MIT (Massachusetts Institute of
Technology License), and Comm. (Llama Community
License).

A.2 Training Setup

This section outlines the configurations, including
parameter-efficient tuning, and optimization meth-
ods used for training the models.

A.2.1 Task A: Span Identification and
Classification

For the span identification and classification task,
the Llama-3.1-8B-Instruct model was fine-tuned us-
ing PEFT techniques via LoRA. The unsloth frame-
work was used to optimize training. The training
examples were structured as shown in Figure 3.
The training utilized AdamW 8-bit optimization,
with a learning rate of 2e− 5, batch size of 1, and
gradient accumulation steps of 64. The model was
trained for two epochs.

A.2.2 Task B: Perspective-Based
Summarization

The instruction-tuning parameters can be seen in
Table 8.

The answer classifier based on Mistral-7B-v0.3
was trained for two epochs using FP16, with a
batch size of 1 and gradient accumulation over
4 steps. It employed a learning rate of 2e-5, a
maximum sequence length of 4096, and utilized
LoRA with a rank of 8 and an alpha of 16. In
contrast, the DeBERTaV3-base model was trained
for two epochs with a learning rate of 2e-5, a batch
size of 16, and a maximum sequence length of
1024.

3https://unsloth.ai/, Last Accessed: 24 February
2025.

4https://huggingface.co/microsoft/
deberta-v3-large, Last Accessed: 24. February 2025.

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct, Last Accessed: 24. February 2025.

6https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct, Last Accessed: 24. February 2025.

7https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-70B, Last Accessed:
24. February 2025.

8https://huggingface.co/deepseek-ai/
DeepSeek-R1, Last Accessed: 24. February 2025.

9https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3, Last Accessed: 24. February
2025.

10https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501, Last Accessed:
24. February 2025.

11https://huggingface.co/BioMistral/
BioMistral-7B-DARE, Last Accessed: 24. February
2025.

12https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-32B, Last Accessed: 24.
February 2025.
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https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
https://huggingface.co/BioMistral/BioMistral-7B-DARE
https://huggingface.co/BioMistral/BioMistral-7B-DARE
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B


Model E FP16 lr Batch GA LR LA DO MSL TM

Mistral-7B-v0.3 1/2 True 2e-5 6 – 16 32 0.1 4096 All linear
Mistral-Small-24B-Instruct-2501 2 True 2e-5 1 4 4 8 0.1 1400 All linear
DeepSeek-R1-Distill-Qwen-32B 2 True 2e-5 1 – 8 16 0.1 2024 All linear
BioMistral-7B-DARE 2 True 2e-4 6 – 32 64 0.1 4096 All linear

Table 8: Instruction-tuning hyperparameters for the models. Abbreviations: E - epochs; FP16 - FP16 training;
lr - learning rate; Batch - batch size; GA - gradient accumulation steps; LR - LoRA rank; LA - LoRA alpha;
DO - dropout; MSL - maximum sequence length; TM - targeted modules. Note that Biomistral Dare and Mistral
v03 instruct share the same hyperparameters as Mistral-7B-v0.3.

A.3 Decoding Setup

This section outlines the inference procedures used
to generate spans and summarization.

A.3.1 Task A: Span Identification and
Classification

Llama-3.3-70B-Instruct was deployed using vLLM
(Kwon et al., 2023), an inference framework de-
signed for efficient text generation. The model
was accessed via the OpenAI python package13

version 1.60.0, with default sampling parameters14

except for max_tokens, which was set to 2000. For
the instruction-tuned model Llama-3.1-8B-Instruct,
inference was performed using the unsloth frame-
work. Outputs were generated with default config-
uration15 but max_new_tokens set to 5000 and a
1.2 repetition penalty.

A.3.2 Task B: Perspective-Based
Summarization

For inference, all models were configured with
a maximum sequence length of 4.096 tokens, up
to 1.024 new tokens, deterministic decoding (do
sample set to false), and a temperature of 0.7. The
only exception is DeepSeek-R1-Distill-Qwen-32B,
which was run with a temperature of 0.6 while all
other inference parameters remained the same.

A.4 Classifier

Table 9 details the threshold tuning experiments
for the Mistral-7B-v0.3 model on the validation
set. For each perspective, the optimal threshold
is reported alongside the corresponding precision,
recall, and F1-Scores for both class 0 and class 1.

13https://github.com/openai/openai-python, Last
Accessed: 24. February 2025.

14https://docs.vllm.ai/en/latest/api/inference_
params.html, Last Accessed: 24. February 2025.

15https://huggingface.co/docs/transformers/
v4.49.0/en/main_classes/text_generation#
transformers.GenerationConfig, Last Accessed: 24.
February 2025.

Perspective T Class P R F1

experience 0.25 0 0.971 0.945 0.958
1 0.700 0.819 0.755

suggestion 0.25 0 0.903 0.747 0.818
1 0.666 0.863 0.751

cause 0.15 0 0.971 0.936 0.953
1 0.375 0.580 0.455

question 0.15 0 0.990 0.988 0.989
1 0.673 0.705 0.688

information 0.40 0 0.849 0.752 0.797
1 0.671 0.790 0.726

Table 9: Threshold (T) tuning results on the validation
set for the Mistral-7B-v0.3 model. For each perspective,
the optimal threshold and the corresponding precision,
recall, and F1-Scores for class 0 and class 1 are reported.

For instance, for the experience perspective, a
threshold of 0.25 yields excellent performance for
class 0 (P = 0.971, R = 0.945, F1 = 0.958) and
solid results for class 1 (P = 0.700, R = 0.819,
F1 = 0.755). In contrast, the cause perspective
exhibits a very low F1-Score of 0.455 for class 1
despite high performance for class 0. These re-
sults demonstrate that while well-supported classes
achieve high scores, those with fewer examples
remain difficult to classify accurately.

A.5 Prompting

This section details the design of system and user
prompts, including formatting strategies for both
sub-tasks.

A.5.1 Task A: Span Identification and
Classification

The prompting setup is designed to ensure struc-
tured, consistent, and accurate extraction of
perspective-based spans. The motivation be-
hind this approach was to align the model’s pre-
training with the task requirements, leveraging the
instruction-following capabilities of LLMs that
have undergone instruction-tuning. Since such
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System:

You are an advanced AI model specializing in perspective-aware span extraction. Your objective is to analyze health-
related community question-answering forums, where users ask health-related questions and receive multiple answers
containing different perspectives.
# Task
Identify relevant spans (text segments) within user-provided answers that correspond to one or more of the five perspective
categories:

CAUSE: It underlines the potential cause of a medical phenomenon or a symptom. It answers the “Why” regarding
a specific observation, offering insights to identify the root cause.

SUGGESTION: It encapsulates strategies, recommendations, or potential courses of action towards management or
resolution of a health condition.

EXPERIENCE: It covers first-hand experiences, observations, insights, or opinions derived from treatment or
medication related to a particular problem.

QUESTION: It consists of interrogative phrases, follow-up questions and rhetorical questions that are sought to
better understand the context. They typically start with phrases like Why, What, Do, How, and Did etc, and end in a
question mark.

INFORMATION: It encompasses segments that offer factual knowledge or information considering the given query.
These segments provide comprehensive details on diagnoses, symptoms, or general information on a medical condition.
Classify each identified span into the correct perspective category based on its meaning and intent.
## Guidelines for Identifying and Classifying Spans:

Select complete spans. Avoid excessively short spans that lack context.
Only include spans that align with a perspective category.
Never change the wording or formatting of the spans. EXTRACT and not rewrite.

# Output Format
Your response must always be one valid PerspectiveSpans object:
“‘typescript
interface PerspectiveSpans {

EXPERIENCE: string[],
INFORMATION: string[],
CAUSE: string[],
SUGGESTION: string[],
QUESTION: string[]

}
“‘
Each perspective category should contain a list of spans extracted from the answers. If no span belongs to a category,
leave an empty list. Do not add additional perspectives.
# Example
## User Input:
"answers": [

<answer1>,
...
<answern>

]
## Assistant output
“‘typescript
const spans: PerspectiveSpans = {

"CAUSE": [<cause_span1>, <cause_span2>],
"SUGGESTION": [<suggestion_span1>, ..., <suggestion_spann>],
"EXPERIENCE": [],
"QUESTION":[],
"INFORMATION": [<information_span1>]

}
“‘

Figure 3: System prompt for Task A defining the task, perspective categories, and extraction guidelines for structured
span identification.

models are trained to interpret and execute user
instructions, framing the task in a conversational
format was a natural way to enhance compliance
with task constraints.

The system prompt (see Figure 3) was designed
to provide precise definitions and distinguishing
criteria for each of the five perspectives. These

explicit definitions help the model differentiate be-
tween similar categories and prevent incorrect or
overly broad span selections. Furthermore, the sys-
tem prompt reinforces extraction constraints, en-
suring that the model preserves the wording and
formatting of the original text in the user prompt
(see Figure 4) rather than generating new or para-
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User:

"answers": [
<answer1>,
...
<answern>

]

Figure 4: User prompt for Task A providing the input format with a list of answers from a the discussion thread.

Assistant:

“‘typescript
const spans: PerspectiveSpans = {

"CAUSE": [<cause_span1>, <cause_span2>],
"SUGGESTION": [<suggestion_span1>, ..., <suggestion_spann>],
"EXPERIENCE": [],
"QUESTION":[],
"INFORMATION": [<information_span1>]

}
“‘

Figure 5: Assistant response for Task A demonstrating the structured TypeScript-like format for extracted spans.

phrased spans. The example used in the system
prompt to demonstrate the formats is the training
example with uri 1504599.

Another critical consideration was the need for
structured outputs to facilitate automatic evalua-
tion. Since LLMs generate open-ended text by
default, responses can vary notably in format if not
explicitly constrained. To address this, the output
structure was formatted as a TypeScript-like ob-
ject (see Figure 5), enforcing a predefined schema
where extracted spans are categorized under their
respective perspective labels.

Beyond instruction-tuned training, the prompt-
ing framework was also applied to zero-shot and
few-shot inference settings to assess the model’s
ability to generalize its span extraction capabilities
without direct fine-tuning. The zero-shot setting
tested whether the model could infer the extrac-
tion rules solely from the system prompt, while the
few-shot setting provided additional gold-standard
examples. In the standard few-shot setting, multi-
ple examples were included in the same conversa-
tion, allowing the model to learn span extraction
through analogy. In contrast, the few-shot with re-
peated system message reinforced consistency by
repeating the system prompt before each example.

A.5.2 Task B: Perspective-Based
Summarization

Figure 6 shows the prompt for the instruction-
tuning of the summarization task, on the example of

the information perspective. For other perspectives,
only the "Perspective Instruction" was changed:

• Information Perspective: For information
purposes, generate a concise summary.

• Suggestion Perspective: It is suggested, gen-
erate a concise summary with suggestions.

• Experience Perspective: One user shared his
experience, generate a concise summary.

• Cause Perspective: Some of the causes, gen-
erate a concise summary.

• Question Perspective: It is inquired, generate
a concise summary addressing the questioner.
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System:

Task: In recent years, healthcare community question-answering (CQA) forums have allowed users to seek advice
and share experiences. Answers may contain diverse perspectives, such as factual information, suggestions, personal
experiences, potential causes, or follow-up questions. The goal is to generate a concise, perspective-specific summary
that accurately reflects the essence of the relevant content from the discussion.

Writing Guidelines:

1. Analyze the provided information to capture essential ideas and significant medical details.
2. Generate a concise summary that reflects the core essence of the annotated perspective.
3. Frame the summary as follows:

• For Information summaries, begin with phrases like “For information purposes.”
• For Suggestion summaries, begin with phrases such as “It is suggested,” “It is advised,” or “Consider.”
• For Experience summaries, begin with phrases like “One user shared his experience” or “In user’s experience.”
• For Cause summaries, begin with phrases like “Some of the causes.”
• For Question summaries, begin with phrases such as “It is inquired.”

4. Do not add any information beyond what is provided.

Perspective Instruction: {e.g., “For information purposes, generate a concise summary.”}

Question: <QUESTION>

Context: <CONTEXT>

Answers:
- <answer1>
- <...>
- <answern>

Information Summary:

User:

<Summary>

Figure 6: Example prompt used for generating perspective-specific summaries. The System box details the task,
guidelines, and input information, while the User box specifies the required output.
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