
Proceedings of the 9th Workshop on Constraint Grammar and Finite State NLP, pages 28–31
March 5, 2025 ©2025 University of Tartu Library

Towards Natural Language Explanations of Constraint Grammar Rules

Daniel Swanson
Indiana University

Department of Linguistics
Bloomington, Indiana
dangswan@iu.edu

Abstract

This paper presents a general-purpose
parser for static analysis of Constraint
Grammar rules (that is, examining only the
rules, not potential inputs and outputs) and
applies it to the task of translating rules
into comprehensible explanations of be-
havior. An interactive interface for explor-
ing how individual components of each
rule contribute to these translations is also
presented.

1 Introduction

Constraint Grammar (Karlsson et al., 2011; Bick
and Didriksen, 2015) is a rule-based procedural
text processing paradigm which can be used for
a wide range of tasks, from part-of-speech tagging
to word sense disambiguation to parsing to trans-
lation. The formalism for expressing these rules is
quite compact, and can, at times, give rise to ex-
tremely complicated and arcane rules. Decipher-
ing what such rules do can often be rather chal-
lenging, particularly for beginners.

For example, consider the rule in Figure 1 from
the parser in Swanson and Tyers (2022). The
grammar operates on a corpus which has been
tagged for some syntactic relations but does not
have full trees. This particular rule tries to attach
a clause root to an immediately preceding clause
root that is a verb of speaking and is not as deeply
nested in quotations. For example, given the in-
put “He said ‘Go.’.”, the word “said” would have
<txt:0>, indicating that it was not a quotation
and “go” would have <txt:1>, indicating that it
was one quote deep and the rule would make “go”
a child of “said”.

This rule occurs in a collection of roughly 20
others with no comments other than the section
heading “Clause Connections” for context. Ide-
ally, any nontrivial rule would be accompanied by

an explanatory comment to aid in deciphering it,
but this is often not the case, leaving a daunting
task for those who might later seek to understand
a grammar.

To aid in remedying this problem, we now
present an interactive tool which translates Con-
straint Grammar rules into English sentences and
highlights which piece of the rule contributes each
piece of the explanation, which can serve as a
starting point for documenting existing grammars
in addition to providing support to students trying
to learn Constraint Grammar.

The paper is organized as follows: Section 2
describes our CG parser, Section 3 describes our
translation rules, Section 4 describes the interac-
tive interface for these translations, and Section 5
concludes.

2 Parsing Constraint Grammar

In order to explain a rule, it is first necessary to
parse the rule. For this task, we employ the Tree-
Sitter library (Brunsfeld et al., 2024). Tree-Sitter
provides tooling for writing context-free gram-
mars which compile to efficient parsers with bind-
ings in many major programming languages. The
original purpose of the library was as an alterna-
tive to regular expressions for syntax highlighting.
As a result, it is fast and robust against incomplete
or invalid input, which allows our tool to produce
useful output even if the user pastes in an invalid
rule. It also supports incremental re-parsing after
edits, though we do not yet make use of this fea-
ture.

An example of a rule in the grammar definition
is shown in Figure 2. This rule describes how to
parse a tag list, which consists of the LIST key-
word, a set name, an equals sign, a sequence of
tags, and a semicolon. It labels the name and the
list of tags, so that processing scripts can more
easily retrieve those. These rules are semanti-
cally similar to other parser generators, such as

28

SET NonPredAdv = (advb) - (role:P) ;
SET Top = (_) - (conj) - (@discourse) - NonPredAdv ;
WITH Top + (/ˆ<txt:\(\\d+\)>$/r)
IF (-1* Top + (VSTR:<txt<$1>) BARRIER Top) {
SETPARENT (*) TO (jC1 (*)) ;
MAP (@ccomp) (*) IF (jC1 SpeakingVerb) ;
MAP (@xcomp) (verb infc) IF (jC1 XcompInf) (c (prep)) ;

} ;

Figure 1: A compound rule (Swanson et al., 2023) from the parser in Swanson and Tyers (2022) which
attaches clause roots to the corresponding speaking verb. The set SpeakingVerb is a list of lemmas of
verbs which can introduce quotations and the set XcompInf is a list of control verbs that take infinitive
complements. Tags prefixed with @ are dependency labels and the rest are part-of-speech tags, apart from
role:P, which indicates that the source data marks the word as a predicate, , which indicates that the
source data marks the word as the root of an independent clause, and <txt:N>, which indicates that
a segment of text is N layers of quotation deep (so <txt:0> is narrative and <txt:2> is a quotation
within a quotation).

LIST: $ => kwd(’LIST’),
list: $ => seq(
$.LIST,
field(’name’, $.setname),
choice($.eq, $.pluseq),
field(’value’, $.taglist),
$.semicolon,

),

Figure 2: A Tree-Sitter rule for parsing LIST defi-
nitions. A list node is defined as consisting of a
LIST keyword, a name, an operator, a list of tags,
and a semicolon.

YACC (Levine et al., 1992), though expressed in
JavaScript syntax. The present CG parser consists
of 101 such rules and has been tested against every
CG file maintained by the Apertium project (For-
cada et al., 2011; Khanna et al., 2021).

An example of the output of this rule is shown in
Figure 3. Given the list of gender tags shown, the
overall parser will produce the tree. This is the de-
fault string representation of the trees, with nodes
denoted by S-expressions and field names indi-
cated by colons. For example, (tag (ntag))
indicates an ntag node1 which is a child of a tag
node.

The parser is usable for static analysis and syn-
tax highlighting and is available from GitHub2,

1ntag is a non-quoted tag, contrasted with qtag, which
is a quoted tag.

2https://github.com/apertium/
tree-sitter-apertium

Input:

LIST Gender = m f nt ;

Output:

(source_file
(list
(LIST)
name: (setname)
(eq)
value: (taglist
(tag (ntag))
(tag (ntag))
(tag (ntag)))

(semicolon)))

Figure 3: The parse tree of a CG declaration as
produced by the Tree-Sitter grammar.

NPM3, and PyPI4.

3 Translation Rules

In order to generate the English translation of
a given tree, we apply a set of rules that ex-
tract a node and its descendants using Tree-Sitter’s
builtin query system and map them to string tem-
plates which those descendants are inserted into.
For example, the template for a setname node is
the set {name}, where name is the name of
the set as it appears in the rule. Rules are applied

3https://www.npmjs.com/package/
tree-sitter-cg

4https://pypi.org/project/
tree-sitter-cg/

29

https://github.com/apertium/tree-sitter-apertium
https://github.com/apertium/tree-sitter-apertium
https://www.npmjs.com/package/tree-sitter-cg
https://www.npmjs.com/package/tree-sitter-cg
https://pypi.org/project/tree-sitter-cg/
https://pypi.org/project/tree-sitter-cg/

Define the set NonPredAdv as any word which has the tag advb and does not have the tag role:P.

Define the set Top as any word which has the tag and does not have the tag conj and does not have the
tag @discourse and does not match the set NonPredAdv.

Find a word which matches the set Top and has the tag /ˆ<txt:\(\\d+\)>$/r in context some
reading in the cohort 1 positions to the left or further in that direction (stop looking if you reach one
which matches the set Top) is one which matches the set Top and has the tag VSTR:<txt<$1> and run
the following rules:

Set the parent of any word which is the target of the containing WITH rule to some reading in the
cohort found by context test 1 in the containing WITH rule which must be one which can be any
word.

If some reading in the cohort found by context test 1 in the containing WITH rule is one which
matches the set SpeakingVerb then add the tag @ccomp to a word which is the target of the con-
taining WITH rule and prevent other rules from adding tags.

If some reading in the cohort found by context test 1 in the containing WITH rule is one which
matches the set XcompInf and some reading in a child cohort is one which has the tag prep then
add the tag @xcomp to a word the tags verb, infc and prevent other rules from adding tags.

Figure 4: The output of the translator for the rule shown in Figure 1.

in order and from top to bottom of the tree, with
the first to match taking precedence.

Most of the rules are written to capture a single
node and translate it without knowing what its par-
ent or child is. Thus an inlineset node, which
can be a setname or a list of tags in parentheses
or various combinations of the two, is translated
using which has ... or which matches
... and most other nodes which might con-
tain inlinesets are written to ensure that that
makes grammatical sense. Occasionally, this is not
feasible and in those cases, a rule can be written
which captures its grandchildren or is conditioned
on its parent. An example of the former is a special
case of the inlineset rule which checks for an
inline set that only contains the tag * and trans-
lates it to any word. An example of the latter is
a special case of that which further checks if the
set is the target of a rule inside a WITH block, in
which case the translation is the target of
the containing WITH rule. An example
of the output of the translator is shown in Figure 4.

We have implemented processors for these rules
in both Python and JavaScript, enabling usage in
both offline scripts and the browser.

4 Interactive Interface

We have created an online front-end for the trans-
lation rules5. The interface presents two panes.

5Available at https://mr-martian.github.io/
rule-explainer/

The user can type or paste rules in the left pane
and the right pane will show a live-updating trans-
lation of the rules. A screenshot of the interface is
shown in Figure 5.

We use the Tree-Sitter parse tree to provide syn-
tax highlighting to the rules in the left pane. In
addition, we tag each node of the tree in both the
source rules and the translation, so that if the user
hovers over either side, the corresponding text in
the other pane is highlighted.

5 Conclusion and Future Work

In this paper, we have presented a general-purpose
parser for static analysis of Constraint Grammar
rules, as well as a system on top of that for trans-
lating those rules into English sentences.

The biggest limitation of the current system is
that the parser does not distinguish between dif-
ferent types of tags, so simple tags like n, regu-
lar expressions like /n\(\\d\)/r, string substi-
tutions like VSTR:$1, and numeric comparisons
like <P>3> are all currently parsed as simply un-
quoted tags, making it difficult to fully translate
them based solely on the parse tree. Thus in the
translation in Figure 4, there is no indication of
the fact that the WITH condition is looking for a
pair of words where one has a numeric <txt> tag
with a lower value than the other. Unfortunately, it
is probably impossible to solve this problem com-
pletely, since string substitution can generate spe-
cial tags, and thus some thing cannot be identi-

30

https://mr-martian.github.io/rule-explainer/
https://mr-martian.github.io/rule-explainer/

Left Pane:

Right Pane:

Figure 5: The interactive interface for the rule-
explainer. The user is hovering over the words
the tag @ccomp in the right-hand pane and so the
@ccomp tag on line 7 is highlighted in the left-
hand pane. (In a webbrowser, these sections will
appear next to each other, but here they are shown
vertically for the sake of legibility.)

fied without executing the rule, but some amount
of greater specificity is probably possible.

Another avenue for expansion is to translate into
other natural languages or into multiple levels of
detail (that is, to collapse some parts of the expla-
nation if they are not needed). Perhaps there could
be a more beginner-friendly set of rules that ex-
plain each step at length and a more simple version
for users who understand CG rules in general and
just happen to be confused by one in particular.

Finally, one could imagine a system that does
the reverse of this one and translates English de-
scriptions into actual CG rules, along the lines of
what Tyers and Howell (2021) report doing man-
ually. This system could be used to generate an
initial parallel corpus for training a reverse system
and also to help users double check the output.

Acknowledgments

I would like to thank Tino Didriksen for his as-
sistance in the development and packaging of
the Tree-Sitter grammar. I would like to thank
Matthew Fort and Meesum Alam for their feed-
back on the structure of some of the rule descrip-
tions. Finally, I would like to thank Robert Pugh,
Nils Hjortnaes, and Francis Tyers for their com-
ments on earlier drafts of this paper.

References
Eckhard Bick and Tino Didriksen. 2015. CG-3 —

beyond classical constraint grammar. In Proceed-
ings of the 20th Nordic Conference of Computa-
tional Linguistics (NODALIDA 2015), pages 31–39,
Vilnius, Lithuania. Linköping University Electronic
Press, Sweden.

Max Brunsfeld, Amaan Qureshi, Andrew Hlynskyi,
Patrick Thomson, ObserverOfTime, Josh Vera, dun-
dargoc, Phil Turnbull, Timothy Clem, Douglas Crea-
ger, Andrew Helwer, Rob Rix, Daumantas Kavolis,
Hendrik van Antwerpen, Michael Davis, Will Lillis,
Ika, Amin Yahyaabadi, Tuan-Ahn Nguyen, bfredl,
Matt Massicotte, Stafford Brunk, Christian Clason,
Niranjan Hasabnis, Mingkai Dong, Samuel Moelius,
Steven Kalt, Segev Finer, and Kolja. 2024. tree-
sitter/tree-sitter: v0.24.4.

Mikel L Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. 2011.
Apertium: a free/open-source platform for rule-
based machine translation. Machine translation,
25:127–144.

Fred Karlsson, Atro Voutilainen, Juha Heikkilae,
and Arto Anttila. 2011. Constraint Grammar:
a language-independent system for parsing unre-
stricted text, volume 4. Walter de Gruyter.

Tanmai Khanna, Jonathan N Washington, Francis M
Tyers, Sevilay Bayatlı, Daniel G Swanson, Tommi A
Pirinen, Irene Tang, and Hector Alos i Font.
2021. Recent advances in apertium, a free/open-
source rule-based machine translation platform for
low-resource languages. Machine Translation,
35(4):475–502.

John R Levine, Tony Mason, and Doug Brown. 1992.
Lex & yacc. O’Reilly Media, Inc.

Daniel Swanson, Tino Didriksen, and Francis M. Ty-
ers. 2023. WITH context: Adding rule-grouping to
VISL CG-3. In Proceedings of the NoDaLiDa 2023
Workshop on Constraint Grammar - Methods, Tools
and Applications, pages 10–14, Tórshavn, Faroe Is-
lands. Association of Computational Linguistics.

Daniel Swanson and Francis Tyers. 2022. A Univer-
sal Dependencies treebank of Ancient Hebrew. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 2353–2361, Mar-
seille, France. European Language Resources Asso-
ciation.

Francis M Tyers and Nick Howell. 2021. Morpholog-
ical analysis and disambiguation for breton. Lan-
guage Resources and Evaluation, 55(2):431–473.

31

https://aclanthology.org/W15-1807
https://aclanthology.org/W15-1807
https://doi.org/10.5281/zenodo.14061403
https://doi.org/10.5281/zenodo.14061403
https://aclanthology.org/2023.nodalida-cgmta.2
https://aclanthology.org/2023.nodalida-cgmta.2
https://aclanthology.org/2022.lrec-1.252
https://aclanthology.org/2022.lrec-1.252

