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Abstract

Automatically answering patient questions
based on electronic health records (EHRS) re-
quires systems that both identify relevant ev-
idence and generate accurate, grounded re-
sponses. We present a three-part pipeline de-
veloped by WisPerMed for the ArchEHR-QA
2025 shared task. First, a fine-tuned BioClin-
icalBERT model classifies note sentences by
their relevance using synonym-based and para-
phrased data augmentation. Second, a con-
strained generation step uses DistilBART-Med-
Summary to produce faithful answers strictly
limited to top-ranked evidence. Third, we align
each answer sentence to its supporting evidence
via BiomedBERT embeddings and ROUGE-
based similarity scoring to ensure citation trans-
parency. Our system achieved a 35.0% over-
all score on the hidden test set, outperform-
ing the organizer’s baseline by 4.3 percent-
age points. Gains in BERTScore (+44%) and
SARI (+119%) highlight substantial improve-
ments in semantic accuracy and relevance. This
modular approach demonstrates that enforcing
evidence-awareness and citation grounding en-
hances both answer quality and trustworthiness
in clinical QA systems.

1 Introduction

As patient—portal adoption accelerates, message
volume now exceeds pre-pandemic levels; a longi-
tudinal study found a 55% rise in medical-advice
requests and 24% increase in daily inbox time for
physicians between 2019-2023 (Arndt et al., 2024).
Large Language Models (LLMs) can draft fluent
replies, yet uncontrolled hallucinations threaten pa-
tient safety (Nov et al., 2023; Biro et al., 2025). The
ArchEHR-QA 2025 shared task (Soni and Demner-
Fushman, 2025b) extends this trajectory by pairing
genuine portal questions with sentence-level evi-
dence annotations and requiring grounded answers.

This paper presents the submission by Wis-
PerMed, a three-part pipeline:

* BioClinicalBERT (Lee et al., 2019a) classifies
note sentences as essential, supplementary, or
not-relevant, with robustness improved via
synonym and paraphrase augmentation;

* DistiIBART-Med-Summary (Lewis et al.,
2019) generates an answer conditioned solely
on the top-ranked evidence and

* BiomedBERT (Gu et al., 2021a) embeddings
align each answer sentence to its most similar
evidence, yielding explicit citations.

2 Related Work

This section establishes the context for our multi-
component system that combines evidence classifi-
cation, answer generation, and citation alignment.

Electronic Health Record Question Answering.
Electronic Health Records (EHRs) contain valuable
patient information that can benefit both health-
care providers and patients. Giving patients ac-
cess to their EHRs can increase patient and physi-
cian trust, improve communication, strengthen the
physician—patient relationship, increase medication
adherence, and improve patient outcomes (Tapuria
et al., 2021). Question Answering (QA) systems on
patient-related data can assist clinicians in decision-
making and enable patients to better understand
their medical history (Bardhan et al., 2024). Un-
like general medical QA tasks that rely on cu-
rated knowledge sources (e.g., PubMed or med-
ical websites), EHR QA requires answer gener-
ation grounded in patient-specific records. This
introduces challenges in interpreting both informal
patient queries and domain-specific clinical text.
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Datasets. non Early progress relied on synthetic
corpora such as EMRQA (Pampari et al., 2018),
which repurposed i2b2 annotations (Ozlem Uzuner
et al., 2011) to create ~ 0.4 M evidence—answer
pairs. Work on structured records introduced MIM-
ICSQL for question-to-SQL generation on MIMIC-
III tables (Wang et al., 2020). To improve real-
ism and coverage, consumer-health resources like
MEDIQA-ANS (Savery et al., 2020) added question-
driven answer summaries, while MEDIQA-CHAT
captured full doctor—patient dialogues (Ben Abacha
et al., 2023). Recent benchmarks push modality
boundaries: EHRXQA integrates tabular EHR data
with chest-X-ray images for cross-modal reason-
ing (Bae et al., 2023). The ArchEHR-QA dataset
(Soni and Demner-Fushman, 2025a) extends this
trajectory by pairing genuine portal questions with
sentence-level evidence annotations and enforcing
grounded answers. The dataset is derived from
the MIMIC-III dataset (Johnson et al., 2016) and
comprises 120 patient cases (20 development, 100
test). Every case consists of a realistic patient ques-
tion, corresponding clinician-rewritten questions,
and annotated clinical note excerpts. Each clinical
note excerpt is segmented into sentences, which
are manually annotated as "essential", "supplemen-
tary", or "not-relevant" for answering the question.

Biomedical Language Models. Domain-specific
language models have revolutionized biomedical
NLP applications (Yang et al., 2023). While early
approaches fine-tuned general-domain models like
BERT (Devlin et al., 2019) on biomedical cor-
pora, research has demonstrated that pre-training
language models from scratch on biomedical text
yields substantial performance gains across various
tasks (Gu et al., 2021b). In the realm of medi-
cal text summarization, models like DistilBART-
Med-Summary'! have been developed to condense
clinical documents into concise summaries while
preserving essential information. These models are
trained on large-scale medical datasets and fine-
tuned to capture the specific linguistic characteris-
tics of clinical narratives.

BioBERT (Lee et al., 2019b), a domain-specific
model pretrained on large-scale biomedical cor-
pora, significantly outperforms general-domain
BERT on biomedical text mining tasks. Building
on this foundation, BiomedBERT (Gu et al., 2021a)
was trained solely on biomedical text from scratch

1https ://huggingface.co/Mahalingam/
DistilBart-Med-Summary, Last Accessed: 30.04.2025
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and achieved excellent results across multiple
biomedical NLP benchmarks. Bio_Clinical BERT
(Alsentzer et al., 2019) specializes further in clini-
cal text by initializing from BioBERT and training
on MIMIC notes, a database containing electronic
health records from ICU patients.

Data Augmentation In the medical domain, the
scarcity of annotated datasets poses a challenge to
the development of robust models. To address this,
data augmentation techniques have been employed
to artificially expand training datasets, thereby en-
hancing model generalizability and mitigating over-
fitting. In clinical contexts, leveraging domain-
specific resources such as the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004a) and
WordNet (Miller, 1994) for synonym replacement
has proven effective in maintaining the integrity of
medical terminology during augmentation (Kang
et al., 2020; Shorten et al., 2021). Furthermore, the
use of LLMs like Gemini (Hoffmann et al., 2023)
to generate synthetic data have shown promise in
producing high-quality, diverse clinical text (Wang
et al., 2024), which is particularly beneficial for
tasks in low-resource settings.

3 Methods

WisPerMed adopts a three-part pipeline summa-
rized in Figure 1.

Sentence-level relevance classification. Each
clinical note sentence is encoded with BIOCLIN-
ICALBERT (Lee et al., 2019a). The model is
fine-tuned on the ArchEHR-QA development split
(batch size 8, 5 epochs, initial learning rate set
to 2 x 107% according to the default learning rate
scheduler from the transformers library (Wolf et al.,
2020)) to predict essential, supplementary, or ir-
relevant labels. The training data are expanded by
500%, to 100 cases, using: (1) synonym substi-
tution derived from UMLS (Bodenreider, 2004b)
and WordNet (Miller, 1994) and (2) paraphrase
generation with Gemini.

Answer generation. The evidence set, clinician-
rewritten question, and a fixed instruction prompt
are concatenated and passed to DistilBART-Med-
Summary. The prompt (refer to Listing 2 in Ap-
pendix 6) instructs the model to (i) restrict content
to the provided evidence. Decoding employs beam
search (Meister et al., 2020) (beam size 5, repeti-
tion penalty 1.2) and truncates the output to < 75
tokens, as required by the task limit. Only the first
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75 tokens are included in the performance evalua-

tion.
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Figure 1: Workflow of the three-part pipeline. The
first stage performs relevance classification, identifying
sentences as essential, supplementary, or not-relevant
for answer generation. The second stage generates an
answer using the prioritized evidence. The final stage
adds explicit citations by linking each answer sentence
to its supporting evidence.

Citation alignment. Each answer sentence is em-
bedded with BIOMEDBERT (Gu et al., 2021a). Us-
ing Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE) score (Lin, 2004) calculations, we
link sentences in the answer to the most similar sen-
tences of the clinical notes. A similarity threshold
of 0.30 ensures that lower-scoring sentences are
tagged as unsupported. The selected citations are
then being added to the corresponding sentences in
the answer to maintain the task’s citation format.

Implementation. Models are trained and exe-
cuted with PyTorch 2.6.0 (Paszke et al., 2019) us-
ing Python 3.12.9 on a single Nvidia RTX 4080
Super (16GB). Source code is released under MIT
License.”

2https ://github.com/rtg-wispermed/ArchEHR-QA,
Last Accessed: 09.05.2025
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4 Evaluation

The metrics for evaluation are divided into fac-
tuality and relevance metrics. Factuality metrics
include Precision, Recall, and F1-score (Powers,
2020) in both micro and macro variations. In ad-
dition, all scores are measured in a strict (includ-
ing only sentences classified as "essential") and a
lenient (including sentences classified as "essen-
tial" and "supplementary") variation. The mean
of all factuality scores (Strict Citation F1 scores)
is the Overall Factuality score. Relevance metrics
include Bilingual Evaluation Understudy (BLEU)
(Papineni et al., 2002), ROUGE (Lin, 2004) and
System output Against References and against the
Input (SARI) (Xu et al., 2016). Semantic simi-
larity is measured with BERTScore (Zhang et al.,
2019). AlignScore (Zha et al., 2023) provides task-
agnostic factual consistency, and MEDCON (Med-
ical Concept Overlap (Yim et al., 2023)) captures
clinical concept agreement. The mean of all sur-
face metrics is the overall relevance score. Lastly,
the overall score is calculated by the mean of the
Overall Factuality score and the overall relevance
score.

5 Results and Discussion

Table 1 presents overall scores on the ArchEHR-
QA hidden test set. The approach by WisPerMed
improved upon the organizer’s baseline by ~ 4.3%.
Both the Overall Factuality and the overall rele-
vance improved by ~ 2.6% and ~ 6.1% respec-
tively.

Metric  WisPerMed Baseline DMIS Lab
Overall 35.0 30.7 53.7
OF 36.2 33.6 58.6
OR 33.9 27.8 48.8

Table 1: Comparison of Overall, Overall Factuality
(OF), and Overall Relevance (OR) scores for Wis-
PerMed, the organizer’s baseline and DMIS Lab

The three-part pipeline demonstrates consistent
improvements over the organizer’s baseline across
key relevance and factual accuracy metrics, as
shown in Table 2. Notably, it achieves a 44% rel-
ative improvement in BERTScore (29.5 vs. 20.5),
indicating superior semantic alignment with ref-
erence texts through contextual embeddings. The
119% improvement in SARI (61.0 vs. 27.8) high-
lights enhanced content preservation during text
simplification or rewriting tasks, even compared
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to DMIS Lab (36.7). While both systems show
comparable performance in UMLS-based concept
recognition (MEDCON), WisPerMed’s 3.5-point
gain in AlignScore (62.3 vs. 57.7) suggests bet-
ter factual consistency in clinical narratives. The
first-place team, DMIS Lab, achieved significantly
higher overall scores, indicating that there is still
headroom for improving our approach.

Metric WisPerMed Baseline DMIS Lab
BLEU 2.0 0.1 14.3
ROUGE-LSum 22.6 33.6 46.5
SARI 61.0 27.8 36.7
BERTScore 29.5 20.5 53.9
AlignScore 62.3 57.7 92.4
MEDCON 25.9 25.6 49.3

Table 2: Comparison of relevance metrics between Wis-
PerMed, organizers-baseline and DMIS Lab

Table 3 shows that our approach achieves con-
sistently higher recall and F1 scores than the or-
ganizer’s baseline across both strict and lenient,
micro-averaged settings, with strict recall (micro)
improving from 21.9 to 26.9 and strict F1 (micro)
from 33.6 to 36.2. These gains indicate a higher
ability to identify a greater proportion of relevant
information, reducing false negatives. On the other
hand the organizer’s baseline demonstrates higher
precision, indicating that our approach contains
more false positives. Overall, the metrics demon-
strate the focus on maximizing relevant coverage.

Metric WisPerMed Baseline DMIS Lab
Strict Precision (mic) 55.4 71.6 57.9
Strict Recall (mic) 26.9 21.9 59.3
Strict F1 (mic) 36.2 33.6 58.6
Lenient Precision (mic) 59.1 77.0 61.2
Lenient Recall (mic) 27.1 22.3 59.2
Lenient F1 (mic) 37.1 34.6 60.2
Strict Precision (mac) 54.0 77.4 62.1
Strict Recall (mac) 34.0 31.5 69.0
Strict F1 (mac) 37.7 39.0 61.2
Lenient Precision (mac) 59.5 83.0 66.6
Lenient Recall (mac) 339 30.8 67.1
Lenient F1 (mac) 39.9 39.9 63.2

Table 3: Comparison of strict and lenient (micro/-
macro) precision, recall, and F1 scores for WisPerMed,
organizers-baseline and DMIS Lab

Further experiments on the ArchEHR-QA de-
velopment set have been conducted to compare
three different sequence-to-sequence text genera-
tion models. Specifically, we chose three models
from huggingface: (1) Flan-T5 (Chung et al., 2022),
(2) BART-Large-CNN (Lewis et al., 2019) and (3)
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DistilBART-Med-Summary. The results (refer to
Table 4) indicate that both BART-models capture
medical concepts in their generated answer more
precisely compared to Flan-T5. While DistilBART-
Med-Summary achieves the highest Overall Fac-
tuality score due to its finetuning on medical data,
BART-Large-CNN can capture the relevance of
information with a higher precision. Another find-
ing is that Flan-T5 requires a detailed and specific
prompt to generate answers that adhere to task re-
quirements (see Listing 1). Both BART models, on
the other hand, perform well with a much simpler
prompt.

Model OF OR  Overall
Flan-T5 5492 29.63 42.27
BART-Large-CNN 64.04 52.69 58.36
DistilBART-M-S 7042 49.33 59.87

Table 4: Overall score, Overall Factuality (OF) and
Overall Relevance (OR), for each model

The impact of data augmentation was evaluated
on the ArchEHR-QA development set. The results
(refer to Table 5 in Appendix) demonstrate that
synonym augmentation can greatly improve the
model’s performance in every metric. Including
synthetic data generated by Gemini on the other
hand has minor impact on the performance metrics.

6 Conclusion

The three-part pipeline proposed by WisPerMed
system demonstrates that a modular, relevance-first
approach can deliver competitive performance on
ArchEHR-QA 2025 while retaining transparency.
The combination of BioClinicalBERT-based (Lee
et al., 2019a) sentence selection, answer genera-
tion with DistilBART-Med-Summary, and Biomed-
BERT citation alignment (Gu et al., 2021a) yielded
results that surpassed the organizers’ baseline and
maintained strong precision across strict and le-
nient settings. We demonstrated that models based
on BART (Lewis et al., 2019) are better suited for
grounded answer generation for EHR questions
compared to Flan-T5 (Chung et al., 2022) variants.
We further conclude that synonym augmentation
based on UMLS (Bodenreider, 2004a), and Word-
Net (Miller, 1994) can greatly improve the perfor-
mance of relevance classification.



Limitations

While the WisPerMed pipeline achieves a strong
improvement in the relevance metrics, several
weaknesses remain. Reliance on hard probabil-
ity thresholds in the relevance classifier caps cita-
tion recall at roughly 27%. Synthetic training data
generated via Gemini paraphrasing occasionally
alters medical meaning, introducing label noise
that propagates downstream. Because all models
are tuned on MIMIC style documentation, perfor-
mance may degrade when confronted with different
institutional note formats or specialty-specific jar-
gon. The ROUGE-score-based similarity method
for citation alignment may misassign identifiers
when multiple sentences are semantically simi-
lar. The decision to use BERT-based sequence-
to-sequence (seq2seq) models was made to min-
imize hardware requirements, enabling the three-
step pipeline to be trained on a single consumer
GPU, such as the Nvidia RTX 4080 Super (16GB).
However, our three-part pipeline could be outper-
formed by more demanding Retrieval-Augmented
Generation (RAG) approaches, which jointly opti-
mize retrieval and generation while explicitly link-
ing answers to sources, reducing citation errors.
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Listing 1: Flan-T5 Prompt

f"""Question: {question}

Context: {context}

Instructions:

1. Create a comprehensive, narrative
answer in paragraph form to the
question based STRICTLY on the
provided context sentences

2. Use complete sentences. Do NOT use
lists

3. Every sentence in your answer MUST be

directly supported by evidence from
the context

4. Minimize paraphrasing. Prefer using
exact phrases from the context for
medical terms, findings, and actions

5. The answer must not exceed 75 words

6. Preserve all medical terminology
exactly as it appears. Do not
simplify

7. Ensure clinical accuracy and a
professional tone

Answer :

nnn

Listing 2: BART-Large-CNN / DistilBART-Med-
Summary Prompt

(f"{context} Based on the text above,
answer the question: {question}\n”
f"Answer:")
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Metric No Aug. Synonym Aug. Synonym Aug. + Synth. Data

Strict Macro Precision 70.17 100.00 100.00
Strict Macro Recall 40.18 65.15 65.15
Strict Macro F1 49.08 75.84 75.84
Strict Micro Precision 71.64 100.00 100.00
Strict Micro Recall 34.78 53.62 53.62
Strict Micro F1 46.83 69.81 69.81
Lenient Macro Precision 75.17 100.00 100.00
Lenient Macro Recall 34.87 50.60 50.60
Lenient Macro F1 45.09 63.65 63.65
Lenient Micro Precision 77.61 100.00 100.00
Lenient Micro Recall 27.51 39.15 39.15
Lenient Micro F1 40.62 56.27 56.27
Overall Factuality Score 46.83 69.81 69.81
SARI 66.94 73.46 73.56
BLEU 2.74 3.81 3.85
BERTScore 36.06 43.96 43.68
ROUGE-1 30.88 36.89 36.89
ROUGE-2 23.48 31.45 31.67
ROUGE-L 22.65 25.57 28.99
ROUGE-Lsum 29.76 36.31 36.31
AlignScore 64.37 87.05 89.17
MedCon 38.81 49.85 49.85
Overall Relevance Score 33.87 39.38 39.35
Overall Score 40.35 54.60 54.58

Table 5: Scores for each augmentation type: No Augmentation, Synonym Augmentation, and Synonym Augmenta-
tion + Synthetic Data.
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