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Abstract

Generating lay summaries of biomedical re-
search remains a time-intensive task, despite
their importance in bridging the gap between
scientific findings and non-expert audiences.
This study introduces a retrieval-augmented
fine-tuning framework for biomedical lay sum-
marization, integrating abstract-driven seman-
tic retrieval with LoRA-tuned LLaMA 3.1 mod-
els. Abstracts are used as queries to retrieve
relevant text segments from full-text articles,
which are then incorporated into prompts for su-
pervised fine-tuning. Evaluations on the PLOS
and eLife datasets show that this hybrid ap-
proach significantly improves relevance and
factuality metrics compared to both base mod-
els and those tuned individually, while main-
taining competitive readability. Prompt design
experiments highlight a trade-off between read-
ability and factual accuracy. Our fine-tuned
model demonstrates strong performance in rel-
evance and factuality among open-source sys-
tems and rivals closed-source models such as
GPT, providing an efficient and effective solu-
tion for domain-specific lay summarization.

1 Introduction

Biomedical research is essential to advancing hu-
man health and societal well-being. However,
with over 1.5 million articles published annually
(Gonzilez-Marquez et al., 2024), it is increasingly
difficult for readers to absorb new findings effi-
ciently. Although abstracts are designed to sum-
marize key results, their technical language often
limits accessibility for non-experts. Lay summaries
help bridge this gap by presenting core contribu-
tions in clear, non-technical language, yet they re-
main uncommon due to the manual effort required.
The BioLaySumm shared task addresses this chal-
lenge by promoting the automatic generation of
high-quality lay summaries to support broader un-
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derstanding of biomedical research (Xiao et al.,
2025).

Recent advances in large language models
(LLMs) have enabled zero- and few-shot summa-
rization, reshaping the field through strong lan-
guage understanding and instruction-following ca-
pabilities (Zhang et al., 2024). Results from the
BioLaySumm shared task further demonstrate that
LLM-based methods perform well in generating
lay summaries of biomedical texts (Goldsack et al.,
2024, 2023).

One of the key challenges in the BioLaySumm
shared task is the computational cost of feeding an
entire research article into a large language model
(LLM), even though many recent LLMs support
extended context windows (e.g., up to 128k tokens
in LLaMA 3.1). Prior research has investigated sev-
eral strategies to address this issue, including text
chunking, which segments lengthy documents into
smaller, more manageable units for summarization
by models such as Mixtral 8x7B (Bao et al., 2024),
or extractive summarization techniques that iden-
tify and select salient sentences from the full text
(You et al., 2024).

In this study, we developed a workflow that
integrates retrieval-augmented generation (RAG)
with LoRA-based fine-tuning to improve the per-
formance of LLaMA 3.1 on the biomedical lay
summarization task (Figure 1) . To address in-
put length constraints imposed by limited GPU
memory, we used the abstract of each article as
a query to retrieve relevant but complementary
content from the full text. Both the abstract and
the retrieved information were used to fine-tune
the model, enabling it to generate lay summaries
that match the editorial style of the target journals,
PLOS and eLife.

"https://github.com/ACL-LLM-
Research/BioLaySummarization
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Figure 1: Overview of the proposed workflow for
biomedical lay summarization. The abstract is used
to query a vector database constructed from the seg-
mented main text of the article. The retrieved content
is then combined with the abstract and processed by a
fine-tuned language model to generate a lay summary.

2 Methods

2.1 Datasets

In this study, we used a publicly available PLOS
and eLife dataset (Goldsack et al., 2022), which
includes both full research articles and their cor-
responding lay summaries written by the original
authors or editors. Summary statistics of the data
set can be found in the Appendix A.

2.2 Supervised Fine-Tuning

The LLaMA 3.1 8B model was used as the
base model for supervised fine-tuning (Grattafiori
et al.,, 2024). Given the size of the training
set, we adopted Low-Rank Adaptation (LoRA),
a parameter-efficient fine-tuning approach. A brief
hyperparameter search was conducted based on the
autoregressive loss. Further details are provided in
the Appendix B.

2.3 Retrieval-Augmented Generation (RAG)

The vector database was constructed using the main
text of each article. The text was segmented into
500-character chunks with a 50-character overlap.
Each chunk was embedded using the all-MiniLM-
L6-v2 model from the Sentence Transformers li-
brary, which encodes sentences and short para-
graphs into dense vectors optimized for semantic

similarity and retrieval (Reimers and Gurevych,
2019). The resulting embeddings were indexed
using FAISS (Douze et al., 2025).

During the retrieval phase, each article’s abstract
was used as a query to retrieve semantically similar
and contextually relevant content from the corre-
sponding document in the vector database. The
top five most relevant chunks, ranked by embed-
ding similarity, were incorporated into the prompt
alongside the original abstract.

2.4 Evaluation Metrics

We evaluated summary quality using three metric
categories: relevance, readability, and factuality.

Relevance was evaluated using ROUGE (Lin,
2004), BLEU(Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005) and, BERTScore
(Zhang et al., 2020), which quantify lexical and
semantic overlap between the generated and refer-
ence summaries.

Readability was evaluated using the Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
Dale-Chall Readability Score (DCRS) (Dale and
Chall, 1948), Coleman-Liau Index (CLI) (Coleman
and Liau, 1975) and LENS (Maddela et al., 2023).

Factuality metrics include AlignScore (Zha et al.,
2023) and SummaC (Laban et al., 2022), which
estimate the consistency of generated summaries
with the source content.

Additionally, we explored the use of G-Eval,
an LLM-based evaluator that provides a holistic
assessment by jointly considering relevance, read-
ability, and factuality. However, it requires further
development and was not included in this study.
Further details are provided in Appendix C.

3 Result

We first explored several strategies to improve
model performance, including retrieval-augmented
generation (RAG), LoRA-based fine-tuning, and
prompt engineering using the validation set.
Based on these evaluations, we selected the best-
performing approach and compared its perfor-
mance on the test set against that of general-
purpose large language models.

3.1 Retrieval-Augmented Fine-Tuning

Our study utilizes LLaMA3.1-8B-Instruct as the
primary baseline model. To assess the impact
of scaling model size by an order of magnitude,
we also included the LLaMA3-70B-Instruct base
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model. However, the performance of the 70B
model was only marginally better than that of the
8B model (Table 1).

We then incorporated retrieval-augmented gen-
eration (RAGQG) to evaluate whether retrieved text
chunks from the full text could enhance summary
quality. The underlying hypothesis is that re-
trieved content may contain contextual information
relevant to key points mentioned in the abstract,
thereby providing additional background for gen-
erating more comprehensive and informative sum-
maries. Compared to the base model, the RAG
approach achieved higher scores in relevance met-
rics such as ROUGE and METEOR, as well as
in most readability metrics across both datasets,
although it underperformed in factuality metrics.

The main rationale for using retrieved text in
place of the full article is to minimize computa-
tional overhead. We compared the performance
of the RAG approach with models using full-
text input. Interestingly, the results were dataset-
dependent. On the PLOS dataset, the RAG-based
model outperformed the full-text model across all
relevance and factuality metrics. In contrast, on
the eLife dataset, the RAG-based summaries un-
derperformed relative to the full-text model in both
relevance and readability metrics.(Table 1).

Next, we evaluated whether supervised fine-
tuning using LoRA could enhance summary quality.
Compared to the base model, the LoRA fine-tuned
model demonstrated improvements across all evalu-
ation metrics on both the PLOS and eLife datasets,
with the exception of the readability metric LENS.
(Table 1).

Finally, we assessed a combined approach us-
ing both LoRA and RAG to determine whether
the two strategies are complementary. On the
PLOS dataset, this combined model outperformed
the base model as well as models using LoRA or
RAG alone in both relevance and factuality metrics,
though not in all readability metrics. On the eLife
dataset, the combined model outperformed oth-
ers in most relevance metrics and achieved higher
scores in one factuality metric, AlignScore (Ta-
ble 1).

3.2 Prompt-Based Trade-off between
factuality and readability

Given the low scores observed in readability met-
rics such as FKGL, CLI, and DCRS, we modi-
fied the prompt instructions to enhance readability.
Prompts 1 through 4 (B.2 to B.5) were designed

to incrementally increase emphasis on readability,
while progressively reducing focus on factual accu-
racy

The results from Prompt 1 to Prompt 4 with-
out LoRA exhibit a consistent upward trend across
all readability metrics (Table 2). However, this
improvement in readability is accompanied by a
decline in factuality, as evidenced by decreasing
scores in AlignScore and SummaC. In contrast,
for models fine-tuned using LoRA, the increase in
readability is less consistent compared to models
relying solely on RAG.

We also estimated the average readability met-
rics of the reference summaries using 100 examples
from the eLife training set. These editor-written
summaries achieved average scores of FKGL =
11.1694, CLI = 12.2691, DCRS = 11.1068, and
LENS = 58.9321. In comparison, our generated
summaries using the RAG approach with Prompt
4 produced slightly lower, but comparable re-
sults: FKGL = 11.6004, CLI = 12.5959, DCRS
=14.3942, and LENS = 52.1310.

3.3 Comparison against other pretrained
LLMs

Given the strong overall performance of LLaMA
3.1-8B with retrieval-augmented fine-tuning us-
ing prompts that emphasize factual accuracy, we
submitted its results for test set evaluation and com-
pared them to summaries generated by various
types of LLMs, including GPT, Qwen (a hybrid
reasoning model), and Seed/Doubao (a mixture-of-
experts model). The aggregated results across both
datasets are presented in Table 3 .

Our model achieves the highest average scores in
ROUGE, BLEU, METEOR, AlignScore, and Sum-
maC, demonstrating superior performance com-
pared to other LLMs, including GPT-4. Among the
general-purpose systems, GPT-4 performs second-
best on relevance metrics, but still lags behind our
approach by over 0.02 in ROUGE and 0.04 in ME-
TEOR. In contrast, the Doubao and Qwen-3-32B
models perform significantly worse, highlighting
the effectiveness of retrieval-augmented LoRA fine-
tuning for domain-specific summarization. In read-
ability metrics, our system achieves stronger per-
formance than GPT-3.5 on CLI, FKGL, and DCRS,
although it underperforms relative to GPT-4.
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Approach Dataset  ROUGE BLEU METEOR BERTScore FKGL| CLI| DCRS| LENS AlignScore SummaC

LLaMA3.1-8B base PLOS 0.3015 6.5620 0.2523 0.8472 159551 14.3183 17.6025 43.7496 0.7888 0.6043
LLaMA3.1-70B base PLOS 0.3177 5.9399 0.2732 0.8482 16.6955 14.6441 18.4586 56.0141 0.7838 0.6110
LLaMA3.1-8B +RAG PLOS 0.3111 6.4173 0.2757 0.8448 15.6542 14.0322 16.3438 37.9543 0.7716 0.5969
LLaMA3.1-8B, full text PLOS 0.2868 5.5198 0.2696 0.8386 14.0785 13.7034 15.3931 39.2586 0.7406 0.4899
LLaMA3.1-8B +LoRA PLOS 0.3125 8.0553 0.2684 0.8483 142926  13.6650 15.7595 43.5402 0.7961 0.6606
LLaMA3.1-8B +RAG+LoRA  PLOS 0.3682  13.1528 0.3294 0.8589 16.0238  13.6458 16.2309 59.2123 0.8905 0.8325
LLaMA3.1-8B base eLife 0.1938  0.9549 0.1247 0.8250 15.0991 14.1559 17.8718 50.6078 0.8171 0.5587
LLaMA3.1-70B base eLife 0.2583 2.6717 0.2026 0.8237 16.2511 142092 17.7906 419114 0.8145 0.5141
LLaMA3.1-8B +RAG eLife 0.2357 1.6102 0.1654 0.8208 14.7901  13.8905 16.3313  35.0491 0.7680 0.4821
LLaMA3.1-8B, full text eLife 0.2475 2.7377 0.2267 0.8124 12.8411 13.7393 149535 16.7232 0.7919 0.4650
LLaMA3.1-8B +LoRA eLife 0.2276 1.2622 0.1467 0.8283 14.2445 13.5854 16.2066 46.0314 0.8103 0.5900
LLaMA3.1-8B +RAG+LoRA  eLife 0.3093  4.8882 0.2404 0.8277 16.0863 13.5323 17.1463  49.9853 0.8187 0.5412

Table 1: Performance of models with RAG and LoRA on the validation set. | Indicates that lower values correspond
to better performance. Bold indicates the best score in each dataset. All metrics were computed on the full validation
set (PLOS, n = 1376. eLife, n = 271).

Approach Dataset ROUGE BLEU METEOR BERTScore FKGL| CLI| DCRS| LENS AlignScore SummaC
RAG, prompt 1 plos 0.3111 6.4173 0.2757 0.8448 15.6542 14.0322 16.3438 37.9543 0.7716 0.5969
RAG, prompt 2 plos 03139 6.3055 0.2856 0.8456 14.3461 13.6433 15.6403 46.0194 0.7479 0.5559
RAG, prompt 3 plos 0.3088 6.3005 0.2632 0.8492 13.0738 12.9733 14.2286 62.0774 0.7013 0.5466
RAG, prompt 4 plos 0.2966  4.5010 0.2493 0.8467 11.7158  12.1700 12.5419 66.4741 0.5951 0.5133
RAG+LoRA, prompt 1 plos 0.3682  13.1528 0.3294 0.8589 16.0238  13.6458 16.2309 59.2123 0.8905 0.8325
RAG+LoRA, prompt 2 plos 0.3485  9.8177 0.3227 0.8550 16.5375 13.5550 16.3920 66.1999 0.7753 0.6310
RAG+LoRA, prompt 3 plos 0.3601  10.1433 0.3315 0.8561 15.1839 133211 15.7658  69.0966 0.7598 0.5718
RAG+LoRA, prompt 4 plos 0.3434  8.2041 0.3230 0.8560 15.1830 12.8227 14.9630 73.0403 0.6322 0.5242
RAG, prompt 1 elife 0.2357 1.6102 0.1654 0.8208 147901 13.8905 16.3313  35.0491 0.7680 0.4821
RAG, prompt 2 elife 0.2638 2.2989 0.1846 0.8271 13.5047 13.3958 15.5217 46.3963 0.7802 0.5234
RAG, prompt 3 elife 0.2739  3.1185 0.2050 0.8283 11.8284 12.7894 14.3307 47.2025 0.7419 0.5303
RAG, prompt 4 elife 0.2771 3.2216 0.2031 0.8296 11.6004 12.5959 14.3942 52.1310 0.7366 0.5375
RAG+LoRA, prompt 1 elife 0.3093  4.8882 0.2404 0.8277 16.0863  13.5323 17.1463 49.9853 0.8187 0.5412
RAG+LoRA, prompt 2 elife 0.2886  4.4900 0.2186 0.8241 15.8230 15.0335 14.0296 52.6318 0.7171 0.5104
RAG+LoRA, prompt 3 elife 0.2957  4.8307 0.2215 0.8252 15.6024  14.8157 13.7995 52.2966 0.7302 0.5364
RAG+LoRA, prompt 4 elife 0.3061 5.0620 0.2317 0.8303 153697 139646 13.3087 60.8793 0.6404 0.4672

Table 2: The impact of prompt design on generated summaries using augmented LLaMA 3.1 models. Prompts 1
through 4 progressively increase emphasis on readability while reducing emphasis on factuality. | indicates that
lower values correspond to better performance. Bold values indicate the best score within each dataset. All metrics
were computed on the full validation set (PLOS, n = 1376; eLife, n = 271).

Model ROUGE BLEU METEOR BERTScore FKGL| CLI| DCRS| LENS AlignScore SummaC
LLaMA3.1-8B +RAG+LoRA, prompt I~ 0.3469  8.6382 0.2978 0.8534 16.9472 109176 17.2120 57.6922 0.8801 0.7471
LLaMA3.1-8B +RAG, prompt 4 0.2985  4.6963 0.2499 0.8457 12.9965 103171 14.5694  53.3393 0.7646 0.5704
Seed/Doubao-1.5-pro, RAG, prompt 1 0.1371  0.4055 0.1202 0.8052 12.3599  11.0582 15.6888 71.4021 0.3423 0.4382
Qwen3-32B, RAG, prompt 1 0.1926  1.4937 0.1396 0.8338 164236  14.2241 19.7064  40.6607 0.6860 0.5315
GPT3.5, RAG, prompt 1 0.2918  3.9624 0.2076 0.8536 17.5771  12.1847 18.9784 66.3074 0.8047 0.5118
GPT3.5, RAG, prompt 4 02543 2.2707 0.1709 0.8544 147574  11.7962 16.9538 74.9194 0.7850 0.5180
GPT4, RAG, prompt 4 0.3207  5.4428 0.2532 0.8554 12.2789  9.5065 13.3833 80.4591 0.6754 0.5210

Table 3: Final submission and test set performance compared to other general-purpose LLMs. The table reports
average results across the PLOS and eLife datasets. | indicates that lower values correspond to better performance.
Bold values indicate the best scores. All metrics were computed on the test set ( PLOS, n = 142. eLife, n = 142).
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4 Discussion and Conclusion

Applying both LoRA and RAG to fine-tune
LLaMA3.1 resulted in superior overall perfor-
mance on the biomedical lay summarization task
compared to using the base model or applying
LoRA or RAG individually. This combined ap-
proach substantially improved relevance and fac-
tuality metrics, though it slightly reduced perfor-
mance on most readability metrics. The gains in rel-
evance and factuality are likely attributable to the
additional contextual information retrieved from
the full text, which often contains factual content
present in the reference summaries but absent from
the abstract. The slight decline in readability met-
rics, such as FKGL, CLI, and DCRS, may result
from the introduction of new concepts via the re-
trieved content or from the integration of additional
information using more complex sentence struc-
tures, such as subordinate clauses.

Our prompt design experiments revealed a trade-
off between factuality and readability in LLM-
generated summaries, suggesting that efforts to
simplify language or meet brevity constraints may
compromise the accurate representation of com-
plex scientific content. It may be challenging for
a single model to simultaneously enforce simpli-
fied vocabulary and sentence structures, comply
with word count constraints, and extract essential
information while preserving technical precision.
A potential solution is to adopt a two-stage summa-
rization framework (Goldsack et al., 2025), where
an "author" model first extracts key factual con-
tent, followed by a "writer" model that generates
a more readable summary while preserving that
information.

Our RAG fine-tuned LLaMA3.1 model demon-
strated superior performance in relevance and fac-
tuality metrics compared to pretrained general-
purpose LLMs in this summarization task. How-
ever, we also observed that the pretrained GPT-4
model excels in readability metrics while main-
taining competitive performance in relevance and
factuality. This suggests that GPT-4 may serve as
a strong base model for fine-tuning, potentially
achieving well-balanced performance across all
evaluation criteria, as demonstrated in previous
work (You et al., 2024). Nevertheless, leveraging
GPT-4 for fine-tuning and inference entails signifi-
cantly higher computational and financial costs.

Limitations

This study has several limitations. First, the RAG
component relied exclusively on the main text of
each article. As a result, it may have omitted essen-
tial background information, such as fundamental
biological concepts, which are critical for generat-
ing accurate and accessible lay summaries. Future
work could enhance summary quality by incorpo-
rating external domain-specific resources—such as
biomedical ontologies or reference texts—into the
RAG pipeline. Additionally, the embedding model
used in our RAG implementation was a small, cost-
efficient variant. Employing larger and more power-
ful models, such as all-mpnet-base-v2, may further
improve retrieval quality and overall summariza-
tion performance. Third, we used prompt templates
optimized for LLaMA 3.1 to evaluate other LLMs,
which may disadvantage models whose optimal
prompts differ in structure or emphasis.
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Dataset Train Validation Test
PLOS 24,773 1,376 142
eLife 4,346 242 142

Table 4: Number of examples in the training, validation,
and test sets of the PLOS and eLife lay summary dataset.
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Figure 2: Word counts of PLOS reference summaries in
the training and validation sets.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

A Dataset Summary Statistics

The dataset was divided into training, validation,
and test sets, as shown in Table 4.

Summary statistics of word counts are presented
in Tables 5 and 6 to confirm that the validation and
test splits are representative of the dataset. The
training, validation, and test sets display compa-
rable mean and median word counts. However,
13 instances in the PLOS training set contain in-
correctly phrased abstracts, each comprising fewer
than 500 tokens according to the LLaMA 3 to-
kenizer. These instances were identified as hav-
ing improperly parsed abstracts and were removed
prior to training.

The reference summaries typically range from
100-300 words for PLOS and 200-600 words for
eLife ( Figure 2 and Figure 3). These ranges in-
formed the prompt design, enabling the model to
generate summaries of comparable lengths .

B Fine-Tuning

The prompts used for LoRA fine-tuning—with and
without RAG—are provided in B.1 and B.2, respec-
tively. Similar prompts were used during inference,
except that the reference summary part was omit-
ted.
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Figure 3: Word counts of eLife reference summaries in
the training and validation sets.
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The final LoRA configuration employed a LoRA
rank of 8, a LoRA alpha of 16, a LoRA dropout
of 0.1, and a learning rate of 1 x 107°. Hyper-
parameters such as the LoRA rank (8, 16) were
explored using the PLOS dataset, but performance
differences were minimal. The number of epochs
(1, 2, 4) was also explored. The optimal number
of training epochs was found to be 1 for the PLOS
dataset and 2 for the eLife dataset. The training and
validation loss curves are available in the GitHub
repository.

A series of prompts with progressively increased
emphasis on readability were explored: Prompt 1
(B.2), Prompt 2 (B.3), Prompt 3 (B.4), and Prompt
4 (B.5). Blue color coding indicates instructions
related to accuracy, while orange color coding high-
lights instructions aimed at improving readability.

C Evaluation of G-Eval

Multiple classical metrics were employed in this
study, some of which exhibited contradictory be-
havior during prompt optimization. This highlights
the challenge of determining appropriate weights
for each metric in order to construct a meaningful
overall evaluation score. Previously, equal weights
were assigned to each metric to calculate average
performance within each evaluation aspects (Gold-
sack et al., 2024). Recent advancements have intro-
duced the "LLM-as-a-Judge" paradigm, wherein
large language models are employed as evaluators
for complex tasks, offering scalable, cost-effective,
and consistent assessments across diverse domains
(Gu et al., 2025).

In this preliminary study, we employed G-Eval,
an LLM-based evaluation framework that prompts
a language model to assign scores and provide jus-
tifications based on criteria such as relevance, read-
ability, and factuality (Liu et al., 2023). G-Eval
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Text Min Max Mean Median
Train Abstract 71 509 166 165
a Main text 324 28,696 10,200  9.890
Validati Abstract 76 306 166 165
AICAION  Naintext 3,408 23,048 10,031 9,707
Test Abstract 83 464 267 220
S Main text 2,666 16,954 8,157 8,032

Table 5: Words counts of abstracts and articles from the eLife dataset.

Text Min Max Mean Median

Train Abstract 2% 701 268 269
Main text 748 26,643 6754  6.581

Validation  Abstract 93 561 271 273
andation\rdintext 933 24751 8.869 8,649
et Abstract 97 377 245 245
©s Main text 3,316 17,330 7735  7.521

Table 6: Word counts of abstracts and articles from the PLOS dataset. * indicate instances with unusually low word
counts due to incorrectly parsed abstracts, which were removed prior to training.

was implemented using the GPT-3.5-turbo model,
and the evaluation criteria are detailed in Box C.1.

To evaluate the effectiveness of G-Eval for this
task, we conducted a controlled experiment us-
ing synthesized data. Specifically, we examined
whether G-Eval scores could differentiate among
positive controls, negative controls, and standard
summaries generated with the LLaMA3.1 model
using various prompts. The positive controls (Para-
phrased Gold Summaries) were created by para-
phrasing the reference summaries to preserve their
factual content while altering surface form. The
negative controls (Intentionally Degraded Sum-
maries) were generated by prompting the model to
produce outputs characterized by vague language,
poor structure, and incorrect terminology. The stan-
dard summaries were generated directly from ab-
stracts using a conventional prompt. All prompts
used to generate this synthetic data are listed in
Table 7.

The results showed that paraphrased reference
summaries achieved the highest median G-Eval
scores, while intentionally degraded summaries re-
ceived the lowest scores. Summaries generated
using the standard prompt fell between these two
extremes (Figure 4). These findings suggest that
G-Eval is effective in distinguishing between sum-

maries of varying quality.

In addition, summaries that received low G-Eval
scores were manually reviewed to assess the jus-
tifications provided by the G-Eval framework for
their evaluation.

We applied G-Eval scoring to 20 test set exam-
ples across four model configurations: the LLaMA
3.1 baseline, LLaMA 3.1 + LoRA, LLaMA 3.1 +
RAG, and LLaMA 3.1 + RAG + LoRA (Figure 5).
Consistent with the results in Table 1, the model
fine-tuned with both LoRA and RAG achieved the
highest median G-Eval score, suggesting that G-
Eval is capable of distinguishing higher-performing
models from lower-performing ones. However, the
boxplot reveals substantial variance across the 20
evaluated samples, indicating that a larger sample
size would be necessary to establish statistical sig-
nificance.

Upon reviewing examples with low G-Eval
scores, we found that the most common reason for
low performance was the omission of key details
present in the reference summary. This issue likely
stems from limitations in the abstract, which may
lack sufficient context, and from retrieved chunks
that failed to supplement the missing information.
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Box B.1: LoRA without RAG, prompt 1

#system:You are an expert science communicator. Your task is to generate a clear,
accurate, and formal summary of biomedical research articles.

The summary should be accessible to a general audience while maintaining
scientific rigor.

#user:

Title: (...)

Abstract: (...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#fassistant:
(ref summary...)

G-Eval score
.
L

i
o o
~ [e:]
|
\

4y 1

GEval Score

Paraphrased Standard Intentionally .
Gold Prompt Degraded 0.3 L i -+
Summaries Outputs Summaries i

0.2 °
LlaMA3 baseline LlaMA3+LoRA LIaMA3+RAG LIaMA3+RAG+LoRA

Figure 4: G-Eval scores for summaries generated by the

LLaMA3.1-Instruct model and control conditions. Para-  Fjgure 5: G-Eval scores for summaries generated by
phrased Gold Summaries were created by rephrasing  the LLaMA 3.1 model and fine-tuned models, with or
the original lay summaries while preserving their mean-  without RAG. n=20

ing. Intentionally Degraded Summaries were generated

by explicitly prompting LLaMA 3.1 to produce out-

puts with vague language, poor structure, and incorrect

terminology. n=20
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Box B.2: LoRA with RAG, prompt 1

#system: You are an expert science communicator. Your task is to generate a
clear, accurate, and formal summary of biomedical research articles.

The summary should be accessible to a while maintaining
scientific rigor.

#user:

Title: (...)

Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#assistant:
(ref summary...)

Box B.3: LoRA with RAG, prompt 2

#system: You are an expert science communicator. Your task is to generate a
clear, accurate, and formal summary of biomedical research articles.
The summary should be accessible to a using
, While maintaining
scientific accuracy.
#user:
Title: (...)
Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#assistant:
(ref summary...)
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Box B.4: LoRA with RAG, prompt 3

#system: You are an expert science communicator. Your task is to generate a
clear, accurate, and formal summary of biomedical research articles.

The summary should be accessible to a . Use
#user:
Title: (...)

Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#assistant:
(ref summary...)

Box B.5: LoRA with RAG, prompt 4

#system: You are an expert science communicator. Your task is to generate a
summary of biomedical research articles.

The summary should be accessible to a . Use
#user:
Title: (...)

Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#fassistant:
(ref summary...)

212



Box C.1: G-Eval Evaluation Criteria

Evaluate the generated lay summary on the following three criteria: 1. Relevance
(1-5): Does the summary retain all major findings and themes of the source abstract?
Score higher if it covers key points, even if phrased differently. Penalize
only if essential information is missing or incorrect topics are introduced. 2.
Readability (1-5): Is the summary easy to understand for a non-expert audience?
Consider fluency, sentence structure, and clarity. Avoid penalizing for simplified
language unless it introduces confusion. 3. Factuality (1-5): Does the summary
accurately reflect the scientific claims in the source abstract? Check for
hallucinations or misinterpretations, not just omissions. Each criterion should
be scored from 1 (poor) to 5 (excellent). Then provide a final Overall Score.

213




Synthetic Data Type  Prompt

Paraphrased Gold #system

Summaries You are a professional science communicator. Your role is to paraphrase
lay summaries with precision, maintaining the original meaning and
content without introducing interpretation or additional information.
#user
Title: (...)
Summary: (...)
Rephrase the summary in 100-300 words. Do not include explanations,
commentary, or additional remarks.
Keep the response strictly to the summary.
#assistant

Intentionally #system

Degraded Summaries

You are a deliberately ineffective science communicator. Your task is to
generate an example of a poorly written summary of biomedical research.
This summary should reflect common mistakes in science communica-
tion, such as vague language, poor structure, and misuse of terminology.
The summary may also include minor factual inaccuracies or exagger-
ated claims to illustrate how misleading summaries might appear. This
output will be used strictly for educational comparison with well-written
summaries.

#user

Title: (...)

Abstract: (...)

Provide a poor-quality summary of the article in 100-300 words, reflect-
ing issues like lack of clarity, overgeneralization, or scientific inaccuracy
(intended for contrastive purposes only). At least some summary needs to
be generated. Do not include explanations, self-reflections, or additional
notes.

Keep the response strictly to the summary.

#assistant
Standard Prompt #system
Outputs You are an expert science communicator. Your task is to generate a

clear, accurate, and formal summary of biomedical research articles. The
summary should be accessible to a general audience while maintaining
scientific rigor.

#user

Title: (...)

Abstract: (...)

Provide a formal summary of the article in 100—300 words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary.

#assistant

Table 7: Prompts used to generate paraphrased, degraded, and standard summaries for evaluating G-Eval.
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