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Abstract

As part of the BioLaySumm shared task at ACL
2025, we developed a summarization tool de-
signed to translate complex biomedical texts
into layperson-friendly summaries. Our goal
was to enhance accessibility and comprehen-
sion for patients and others without specialized
medical knowledge. The system employed
an extractive-then-abstractive summarization
pipeline. For the abstractive component, we ex-
perimented with two models: Pegasus-XSum
and a Falcons.ai model pre-trained on medical
data. Final outputs were evaluated using the
official BioLaySumm 2025 metrics. To pro-
mote practical accessibility, we completed all
experimentation on consumer-grade hardware,
demonstrating the feasibility of our approach
in low-resource settings.

1 Introduction

The BioLaySumm shared task Lay Summarization
of Biomedical Research Articles and Radiology
Reports @ BioNLP Workshop, ACL 2025 (Xiao
et al., 2025) is conducting its third iteration this
year. The goal of the shared task is to improve
techniques for summarizing biomedical texts in
non-scientific lay-terms, in order to increase the
accessibility and understanding of medical texts
for patients and others who are not in the medi-
cal field. We used the data from the shared task
as well as their evaluation methods to create and
evaluate our models and referenced previous partic-
ipants’ work for inspiration. We used an extractive-
then-abstractive summarization technique. Begin-
ning with extractive summarization and followed
by training both the Pegasus-XSum model and the
Falconsai/medical_summarization model to pro-
duce abstractive summaries. As a step towards
future iterations of summarization, we have also
created a dictionary of medical terms translated to
lay-terms for injection.'

"https://github.com/michael-pollack/573Project.git
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2 Related Work

Our pipeline of extractive-to-abstractive summa-
rization was inspired by previous iterations of this
workshop (Goldsack et al., 2023), (Goldsack et al.,
2024) and the winning paper from 2024 (You et al.,
2024). Our work is also influenced by the datasets
used in this task (eLife and PLOS), which were de-
veloped by (Goldsack et al., 2022) and (Luo et al.,
2022).

3 Description of Data

The dataset ‘BioLaySumm?2025-PLOS’ consists of
26,291 rows and the dataset ‘BioLaySumm?2025-
eLife’ consists of 4,729 rows. Each row consists
of the following information: the original text of a
biomedical article, a gold-standard lay-terms sum-
mary, a list of section headings, a list of keywords,
the year of publication, and the article title. Both
datasets are already split into training, validation,
and test.

We created a lay-term dictionary to add lay-term
injection to our pipeline in the future. The dic-
tionary consists of medical terms and their cor-
responding lay-term alternative based on a Stan-
ford Glossary of medical terms (Stanford Research
Compliance Office, n.d.). We were careful to start
definitions with a consonant if the original word be-
gan with a consonant, and extended this to vowels.
This premeditated measure was taken to facilitate
smoother substitutions in the future with lay-term
injections in the abstractive summaries.

3.1 Pre-Processing Data

Analysis showed that there are a large number of
citations in academic text, which tend not to con-
tribute significantly to the actual meaning of the
document and are laden with complicated punc-
tuation that affected our sentence tokenizer. We
removed all information enclosed in parentheses
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using regex and acknowledge that it removes more
than just citations.

Since TF-IDF relies on vocabulary counts to cal-
culate the importance of words, it is beneficial to
remove stopwords and lemmatize the data first to re-
duce vocabulary size and establish obvious connec-
tions between different morphological variations of
the same word. We used the built-in NLTK list of
English stopwords, as well as our own short list of
custom stopwords to target and remove stopwords
from the data. NLTK’s WordNet Lemmatizer was
used to lemmatize remaining words in the docu-
ment. The data we used to create the extractive
summaries consists of both the clean lemmatized
data resulting from these preprocessing techniques
as well as the un-lemmatized version.

4 Model

4.1 Total Pipeline Overview

We use data cleaning and TF-IDF for pre-
processing and the creation of extractive sum-
maries. The extractive summaries are fed into an
abstractive summary model.

4.2 TF-IDF

Term Frequency — Inverse Document Frequency
(TF-IDF) (Sparck Jones, 1988) gives each word
in a document a score based on importance to the
document’s meaning relative to the collection of
documents. We chose TF-IDF because it allows us
to numerically calculate the importance of words
and sentences in a systematic way, thereby allowing
us to rank which sentences should appear in the
final extractive summary.

We used Scikit-Learn’s prebuilt TF-IDF vector-
izer model with the cleaned and lemmatized Elife
training data as input to calculate the numerical
importance of every word in each document in the
data set. This produces a set of (word, vector) pairs
for each document, where the larger the vector
number, the higher the importance of the word. We
calculated the importance of each sentence within
a document by summing the TF-IDF scores of each
word in the current sentence and dividing by the
sentence’s total word count. A higher score means
that the sentence has a greater relevance to the
meaning of the document.

We then return the 40% top-scoring sentences as
an extractive summary.

4.3 Pegasus-XSum

Pegasus is an abstractive text summarization model
developed by Google Research (Zhang et al., 2020).
It is based on the Transformer architecture and was
specifically pre-trained for summarization tasks us-
ing a "gap-sentence" technique, where whole sen-
tences are masked and the model learns to predict
them from the remaining text. This model was
chosen because it could be fine-trained on our hard-
ware.

4.4 TS5 for Medical Text Summarization

Parallel to Pegasus-XSum, we also used the Fal-
consai/medical_summarization model (Wolf et al.,
2020). This T5 Large for Medical Text Summa-
rization model is fine-tuned specifically for medi-
cal domain summarization tasks. This model was
selected for its strong performance on domain-
specific texts and its ability to run efficiently on
consumer-grade hardware, making it suitable for
reproducible and accessible NLP research.

4.5 Computing Limitations

Limited access to high-end computing made it un-
realistic to fine-tune hyper-parameters during the
data validation. This is discussed in Section 7.1.

5 Evaluation

Relevance is measured using ROUGE (1, 2,
and L), BLEU, METEOR, and BERTScore.
ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) includes measures to automatically
determine the quality of a summary by comparing
it to other (ideal) summaries created by humans.
BLEU (Bilingual Evaluation Understudy) is a mea-
surement of an automatic translation and a human
written translation of the same material. METEOR
(Metric for Evaluation of Translation with Explicit
ORdering) is based on the harmonic mean of
unigram precision and recall, with recall weighted
higher than precision. For BERTScore, a neural
evaluation metric uses contextual embeddings
from pre-trained language models (like BERT) to
calculate similarity scores between candidate and
reference texts.

Readability is measured using Flesch-Kincaid
Grade Level (FKGL) and Dale-Chall Readability
Score (DCRS), Coleman-Liau Index (CLI), and
LENS. Factuality is measured using AlignScore,
and SummacC.
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6 Results

For the medical summarization model, we used
’Summarize the following scientific article" as the
prompt followed by the summary of the TF-IDF.
For the pegasus models, we pass the TF-IDF sum-
mary through the model.

The results table of our summarizations are
shown in 1.

6.1 Relevancy

As shown our evaluation data, medi-
cal_summarization scored highest for relevance.
This model was developed specifically for summa-
rization of medical text and it follows reasonably
that it would score the highest. The extractive
summaries coming in second in relevancy, beating
out the Pegasus-XSum model (another specifically
trained model for summarization) The extractive
summaries were based mainly on frequency of
word occurrence, using TF-IDF, which may make
sense in context as a word that occurs frequently
in the documents but is not an extremely general
word of English, has a high likelihood of being
relevant.

6.2 Readability

The Pegasus-XSum model dominated in the re-
sults for Readability in the FKGL evaluation metric,
with the fine-tuned version of the model perform-
ing extremely well under the LENS evaluation met-
ric. For DCRS the Pegasus-XSum model seems to
perform slightly better than the rest, with the fine-
tuned version actually performing the worst, and
for CLI all three models other than the fine-tuned
pegasus model perform at extremely similar levels,
with the medical_sumarization model just barely
performing a bit better than the rest. Readability
tends to focus on word complexity and overall clar-
ity of a summary. The Pegasus model is trained
on medical texts, along with a wider variety of text
to produce summarizations. This wider expanse
of data could contribute to its readability scores as
opposed to relevance because it is trained to create
well-made abstractive summaries.

6.3 Factuality

Our original extractive summaries performed better
than other models using both evaluation metrics.
This is a relatively unsurprising result as the ex-
tractive summaries utilize the original sentences
from the documents. Consequently, the summaries

will be more factual than for the pegasus or medi-
cal_summarization models because the text is com-
ing straight from the source.

7 Discussion

7.1 Accessible AI

In this section, we discuss how medical summa-
rization systems can be made more accessible to
a broader range of users. While recent advance-
ments in medical NLP have demonstrated impres-
sive capabilities, they often come with steep com-
putational requirements, limiting their practical use
outside well-resourced research institutions. Bed-
narczyk et al.(2025) report that the success of us-
ing an LLM for summarization relies on the com-
putational resources available and future research
should “evaluate the economic impact of deploy-
ment to ensure that LLM adoption is both tech-
nically and financially sustainable in clinical set-
tings.” We argue that accessibility - in both eco-
nomic and practical terms - is essential if these
technologies are to benefit clinicians, medical re-
searchers, and public health professionals operat-
ing in low-resource environments or institutions
without dedicated computing clusters.

7.2 Economic Accessibility

The growing trend toward large-scale models has
created a barrier to entry for many who wish to
apply or replicate state-of-the-art NLP techniques.
We quickly ran into computational resource barri-
ers because our plans of replicating previous work
required computing resources that we did not have.
As a result, our final choice of models and data
processing were simpler to run, and can be used by
people who do not have access to high-end comput-
ing resources. Our approach eliminates the need
for expensive GPU clusters that are often used in
academic settings.

All experiments in this study were conducted on
one of two laptops. We used either a laptop with
an Intel 13th Gen Core i9-13900H CPU, 32GB of
RAM and a NVIDIA GeForce RTX 4060 Laptop
GPU with 8GB RAM. This configuration, while
not trivial, remains within reach of many individ-
uals with limited budgets and does not rely on a
distributed GPU cluster or a cloud-based API that
incurs costs.

By using moderately sized, open-access models,
such as Pegasus-XSum, and optimizing evaluation
tools, we demonstrate that it is feasible to run sum-
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62.7306
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medical_s
ummarizati
on 0.2845

4.8686 0.2405 0.8396

16.7401

11.6596 16.2369 |9.4109 |0.6118 0.6531

Figure 1: Evaluation Results

marization pipelines and evaluate results locally.
This makes the system viable for clinicians, medi-
cal students, or NGOs who may wish to generate
or verify lay summaries in real-world medical com-
munication contexts.

7.3 Practical Reproducibility and
Implementation

An important tenet of scientific research is repro-
ducibility. Methods that can be implemented on
accessible hardware can more easily be reproduced
by scholars and others who want to learn. An anal-
ysis by Belz et al. (2021) demonstrates that repli-
cation and reproducibility are critical to scientific
research, yet "it is surprisingly hard to achieve, 70%
of scientist reporting failure to reproduce someone
else’s results, and more than half reporting failure
to reproduce their own."

In this study, reproducibility was hindered by the
complexity of previous configurations, conflicting
dependencies, and reliance on costly computing en-
vironments. By deliberately choosing lightweight
tools and open-source resources, we designed a
summarization and evaluation pipeline that can be
easily shared, executed, and adapted.

7.4 The Downside of Small Computing

While our emphasis on accessibility enables
broader participation in this task, it also introduces
notable limitations. Fine-tuning Pegasus-XSum
on our consumer-grade hardware required approxi-
mately 40 hours, significantly slowing experimen-
tation cycles. These experimentation cycles were
slow and had to be run sequentially, instead of in
parallel as could be done on a distributed GPU clus-

ter. Due to hardware constraints, we were unable to
explore larger or more recent models which would
likely to produce results that score higher on the
leaderboard.

Time and resource constraints prevented us from
fine-tuning with separate validation data, limiting
our ability to tune hyper-parameters effectively.
These trade-offs demonstrate the challenges faced
by low-resource researchers and scientists while
highlighting the need to develop lightweight, effi-
cient models that perform well without requiring
extensive investments in hardware.

8 Conclusion

Our work demonstrates that medical summariza-
tion is achievable even with limited computational
resources. By leveraging models like Pegasus-
XSum, we were able to develop and evaluate effec-
tive summarization systems on a standard laptop,
highlighting the potential for accessible and repro-
ducible research in this space. Our findings support
the idea that meaningful contributions to biomedi-
cal NLP can be made without relying on large-scale
infrastructure, paving the way for more inclusive
and resource-efficient approaches to language tech-
nology.

Limitations

While our system demonstrates results in generat-
ing readable and relevant lay summaries of biomed-
ical texts using consumer-grade hardware, several
limitations should be acknowledged.
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Dataset Diversity

This work relies exclusively on two open-
acess datasets: BioLaySumm2025-eLife and
BioLaySumm?2025-PLOS, both of which consist
entirely of English language documents from a set
of biomedical articles. As such, our model’s gener-
alizability to other medical domains or languages
is untested.

Lay-Term Dictionary Coverage

The lay-term lexicon that we created, while a valu-
able resource for term injection, is limited in scope.
It is derived from a single source (Stanford Re-
search Compliance Office) and does not cover all
relevant terminology. It requires an additional step
and is not part of the summarization pipeline.

Pre-Processing

Our pre-processing decisions, particularly the re-
moval of all parenthetical content using regular ex-
pressions, may have inadvertently discarded mean-
ingful information. Although our rationale was that
parenthetical content typically contains citations or
supplementary material, this approach may have
led to the loss of scientific details.

Experimentation Bottlenecks

Because all experiments were conducted on
consumer-grade hardware without parallel GPU
resources, experimentation had to proceed sequen-
tially and in a time-consuming manner. This sig-
nificantly limited our ability to iterate on model
design or integrate new features (such as lay-term
injection).

Validation and Fine-Tuning

Time and hardware constraints prevented us from
fine-tuning using dedicated validation data. This
limited our capacity to adapt the models. As a
result, our models may not be optimally calibrated
for the data distributions.

Ethical Considerations

The goal of this project and of the shared task as
a whole is to expand the reach of biomedical text
and make this information more approachable
to people outside of the medical field. However,
it is important to acknowledge that this task is
not without its risks. For example, a flawed
summarization system has the potential to give
false information or omit important details from

the original text, which is fundamentally opposed
to the goal of the project. Additionally, it is
important to include a diverse selection of texts
when training a model of this kind, in order to
reduce biases and create a model that can adapt
and be used for a variety of new documents.

For this type of project, it is important to
know that private information is not included in
training documents, as that would be a violation
of the privacy of individuals. The data included
in our project was provided by the creators of
the BioLaySumm shared task and comes from an
open-access publisher (PLOS) and journal (eLife)
so this is not a major concern for us.
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