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Abstract

Biomedical texts, such as research articles and
clinical reports, are often written in highly tech-
nical language, making them difficult for pa-
tients and the general public to understand. The
BioLaySumm 2025 Shared Task addresses
this challenge by promoting the development
of models that generate lay summarisations of
biomedical content. This paper focuses on Sub-
task 2.1: Radiology Report Generation with
Layman’s Terms. In this work, we evaluate
two large language model (LLM) architectures,
T5-large (700M parameter encoder–decoder
model) and LLaMA-3.2-3B (3B parameter
decoder-only model). Both models are trained
under fully-supervised conditions using the
task’s multi-source dataset. Our results show
that T5-large consistently outperforms LLaMA-
3.2-3B across nine out of ten metrics, includ-
ing relevance, readability, and clinical accu-
racy, despite having only a quarter of the pa-
rameters. Our T5-based model achieved the
top rank in both the open-source and close-
source tracks of the subtask 2.1.

1 Introduction

Biomedical texts, ranging from research articles to
clinical reports, are often written in highly technical
language. This presents a major barrier for patients
and the general public, limiting their ability to un-
derstand health information and make informed
decisions. As a response, the field of biomedical
lay summarisation has emerged to simplify expert-
level content into language that non-experts can
understand (Guo et al., 2021). A particular applica-
tion of this is the translation of radiology reports. A
recent analysis found that only about 4% (Martin-
Carreras et al., 2019) of radiology reports are writ-
ten below an 8th-grade reading level (the average
adult reading level). Without clear explanations,
the information can be confusing or even mislead-
ing, creating barriers to understanding one’s own
health.

To advance research in this area, the BioLay-
Summ 2025 Shared Task hosted at the BioNLP
Workshop at ACL 2025, introduces two primary
tasks aimed at improving the accessibility of
biomedical information for non-expert audiences
(Xiao et al., 2025). Task 1 focuses on the lay
summarisation of biomedical research articles, and
Task 2 centers on lay summarisation of radiology
reports. Participants are provided with a dataset
containing paired radiology reports and lay sum-
marisations from sources such as Open-i (Demner-
Fushman et al., 2016), PadChest (Bustos et al.,
2020), BIMCV-COVID19 (de la Iglesia Vayá et al.,
2020), and MIMIC-CXR (Johnson et al., 2019).
The shared task includes two evaluation tracks.
The open-source track uses test data from three
public datasets (Open-i, PadChest, and BIMCV-
COVID19), while the close-source track adds the
additional MIMIC-CXR dataset. In this work, we
trained our models exclusively on the open-source
datasets and submitted predictions for both the
open-source and close-source tracks.

While language models have become central to
biomedical lay summarisation (Xie et al., 2023),
there remains no clear consensus on whether
encoder-decoder or decoder-only architectures are
better suited to this task. Prior studies have shown
both to be effective in different contexts, but few
have directly compared them under controlled,
fully-supervised conditions. Motivated by this, we
conduct a comparison between an encoder–decoder
model T5-large (Raffel et al., 2020) and a decoder-
only LLaMA-3.2-3B model (Meta AI, 2024). Our
final submission, based on T5-large, achieved the
highest overall score in Subtask 2.1, ranking first
among all participating teams. It consistently out-
performs LLaMA-3.2-3B across nine of ten evalu-
ation metrics, despite having only a quarter of the
parameters.
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2 Related Work

2.1 Biomedical Lay Summarisation

Biomedical lay summarisation is a sequence-to-
sequence task that translates specialised medi-
cal language into accessible explanations for non-
experts, such as patients (Xie et al., 2023). While
biomedical summarisation has traditionally fo-
cused on preserving factual accuracy and complete-
ness, much less attention has been given to simpli-
fying language for broader public understanding.
In response to this need, the BioLaySumm Shared
Task series (2023–present) was introduced to en-
courage the development of models that generate
lay summaries from biomedical content (Goldsack
et al., 2023, 2024; Xiao et al., 2025).

Over time, the field of biomedical summarisa-
tion has evolved from rule-based and statistical
methods to neural architectures and, more recently
to language models (Xie et al., 2023). A simi-
lar trend is evident in the BioLaySumm Shared
Tasks: in 2023, only 3 teams used LLMs, while in
2024, 18 teams used decoder-only LLMs (BioGPT
(Luo et al., 2022), BioMistral (Labrak et al., 2024),
GPT-4 (OpenAI, 2023), LLaMA (Touvron et al.,
2023)) and 13 teams using encoder-decoder LLMs
(T5 (Raffel et al., 2020), FLAN-T5 (Chung et al.,
2024)), reflecting a growing interest in applying
both architectures to the task of lay summarisation
(Goldsack et al., 2024).

2.2 Encoder-Decoder and Decoder-only
Language Models

Both encoder–decoder and decoder-only LLMs are
based on the Transformer architecture (Vaswani
et al., 2017), which was originally introduced for
sequence-to-sequence tasks such as machine trans-
lation. The Transformer consists of two compo-
nents: an encoder that processes the input into
a latent space, and a decoder that generates the
output based on that representation and the previ-
ously generated tokens. Encoder–decoder models,
such as T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020), leverage both components to perform
a wide range of text-to-text tasks, including trans-
lation, summarization, and question answering. In
contrast, decoder-only models, such as the GPT se-
ries (OpenAI, 2022, 2023) and LLaMA (Touvron
et al., 2023), comprise only the decoder component.
These models are trained using an autoregressive
objective, predicting the next token based solely
on preceding tokens in a unidirectional manner. In

the context of biomedical summarisation, both en-
coder–decoder and decoder-only models remain
active areas of research, with no definitive answer
as to which performs better (Goldsack et al., 2024).
In this work, we will compare an encoder-decoder
model T5 to a decoder-only model LLaMA on the
task of lay summarisation of radiology reports.

2.3 Lay Summarisation of Radiology Reports

Due to the lack of alignment data, initial studies in-
vestigated the feasibility of direct prompting LLMs
such as ChatGPT (OpenAI, 2022) and GPT-4 (Ope-
nAI, 2023), to simplify radiology reports. The
generated contents are reviewed by radiologists to
measure accuracy, completeness, and simplicity.
For instance, lyu (2023) showed that while Chat-
GPT could generate understandable plain-language
summaries, it often over-simplified or introduced
inaccuracies. Similarly, Kuckelman et al. (2024)
found that ChatGPT’s summaries of musculoskele-
tal radiology reports were generally accurate but
sometimes lacked completeness. In 2024, Zhao
et al. (2025) introduced the LaymanRRG frame-
work, utilised GPT-4o to translate professional ra-
diology reports from MIMIC-CXR into layman’s
terms. BioLaySumm Shared Task 2 (Xiao et al.,
2025) built on this dataset to establish a standard-
ised benchmark for evaluating lay summarisation
systems across four datasets Open-i, PadChest, and
BIMCV-COVID19 and MIMIC-CXR (Demner-
Fushman et al., 2016; Bustos et al., 2020; de la
Iglesia Vayá et al., 2020; Johnson et al., 2019).

3 Methodology

Our primary goal was to develop a model for
Subtask 2.1 of the BioLaySumm 2025 Shared
Task, which involved generating lay summarisa-
tions from radiology reports. As part of this effort,
we fine-tuned T5-large (Raffel et al., 2020) and
LLaMA-3.2-3B (Meta AI, 2024) on the shared task
dataset. The model with the highest validation
BERTScore-F1 (Zhang et al., 2020) was submitted
for testing on both the open-source track and the
close-source track, described in Section 3.2.

3.1 Model Selection

We selected two prominent open-source LLM ar-
chitectures:

• T5-large (Raffel et al., 2020): An en-
coder–decoder model pretrained on Colos-
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sal Clean Crawled Corpus (C4) dataset (com-
prises 156 billion tokens) (Dodge et al., 2021).

• LLaMA-3.2-3B (Meta AI, 2024): A decoder-
only model pretrained on up to 9 trillion to-
kens from publicly available sources, includ-
ing Common Crawl, Wikipedia, and other
web-based corpora.

3.2 Datasets

Task 2.1 includes two evaluation tracks. The open-
source track evaluates models on test sets from
three publicly available datasets: Open-i, Pad-
Chest, and BIMCV-COVID19 (Demner-Fushman
et al., 2016; Bustos et al., 2020; de la Iglesia Vayá
et al., 2020). The close-source track adds an ad-
ditional dataset, namely MIMIC-CXR (Johnson
et al., 2019). We trained our models exclusively on
the three open datasets, and submitted the same
model to both the open-source track and close-
source track. This setup enables us to evaluate
in-domain performance (on seen datasets) as well
as generalisation to unseen data (MIMIC-CXR).
Table 1 summarises the dataset composition across
tracks.

3.3 Data Processing and Tokenisation

For training T5, input and output sequences were to-
kenised separately using a SentencePiece tokeniser.
The input (e.g., a radiology report) was tokenised
without an end-of-sequence token, while the out-
put (e.g., a lay summarisation) includes the <eos>
token at the end. For example, the input “The
chest X-ray shows pneumonia.” was tokenised as
[’_The’, ’_chest’, ..., ’_pneumonia.’],
and the output “There is an infection in the lungs.”
was tokenised as [’_There’, ’_is’, ...,
’_lungs.’, ’<eos>’]. In contrast, LLaMA-3.2-
3B used a byte-level BPE tokeniser and expected
the input and output to be concatenated into a sin-
gle sequence for decoder-only training. We used
a special token <s> to separate the lay summari-
sation from the radiology report. Specifically, the
input before tokenisation was “The chest X-ray
shows pneumonia.<s>There is an infection in the
lungs.</s>”, where </s> is the end-of-sentence
token.

3.4 Training

We trained both models for six epochs using Py-
Torch Distributed Data Parallel (DDP) on a sin-
gle H100 compute node with four GPUs. Each

Table 1: Composition of datasets for Subtask 2.1.
We train on the three open-source track datasets (top).
The MIMIC-CXR dataset (bottom) is used exclusively
for the close-source track and is not included in our
training or validation.

Dataset Train Val Test

Open-source track datasets (training)
Open-i 2,243 134 186
PadChest 116,847 7,824 7,130
BIMCV-COVID19 31,364 2,042 3,221

Open-source total 150,454 10,000 10,537

Close-source track addition (evaluation only)
MIMIC-CXR 45,000* 5,000* 500

Close-source test total – – 11,037
* Provided for reference only; not used in training or

validation.

GPU processed a local batch size of 2, resulting
in a global batch size of 8. We used the AdamW
optimiser (Loshchilov and Hutter, 2019) with a
learning rate of 2e-5 and a constant learning rate
schedule with 500 warmup steps. Input sequences
were truncated or padded to a maximum length of
2048 tokens, and during inference, the models were
allowed to generate up to 300 tokens. BERTScore-
F1 (Zhang et al., 2020) was used as the primary
metric for model selection.

3.5 Metrics

The evaluation is based on three key categories
defined by the BioLaySumm 2025 Shared Task:
relevance, readability, and clinical accuracy.

Relevance measures how well the generated
summaries align with the reference texts. ROUGE-
1/2/L (Lin, 2004) are computed for lexical overlap;
BLEU (Papineni et al., 2002) for 1-to-4-gram preci-
sion with brevity penalty; METEOR (Banerjee and
Lavie, 2005) for word-level matches and ordering;
BERTScore (Zhang et al., 2020) for embedding-
based semantic similarity. Semantic similarity be-
tween radiology report and lay summarisations is
also measure.

Readability evaluates how easy the generated
text is to understand for a general audience. The
Flesch–Kincaid Grade Level (FKGL) (Kincaid
et al., 1975), Dale–Chall Readability Score
(DCRS) (Dale and Chall, 1948), and the Cole-
man–Liau Index (CLI) (Coleman and Liau, 1975)
are reported; lower values indicate simpler lan-
guage.

Clinical accuracy assesses the factual correct-
ness of medical content. This is captured by
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Table 2: Performance of LLaMA-3.2-3B and T5-large across relevance, readability, and clinical-accuracy metrics
(open-source track). Boldface indicates best score.

Model ROUGE BLEU MET. BERT. FKGL† DCRS† CLI† Sim. RadF1 ChexF1

LLaMA-3.2-3B 64.20 42.90 67.70 94.90 7.46 9.38 8.04 87.90 37.20 85.00
T5-large-770M 66.9 45.6 70.2 95.3 7.43 9.34 8.11 88.9 40.0 85.6

† Lower values indicate better readability.

CheXbert-F1 (Smit et al., 2020), which gauges
agreement on clinical findings, and RadGraph-
F1 (Jain et al., 2021), which measures overlap of
medical entities and their relations.

4 Results and Discussion

4.1 Comparing Encoder–Decoder Models and
Decoder-only Models Results

We present our submission results for the open-
source track in Table 2, comparing our fine-tuned
models: T5-large and LLaMA-3.2-3B. T5-large
outperforms LLaMA-3.2-3B across 9 out of 10
metrics, including all relevance (ROUGE, BLEU,
METEOR, BERTScore, and semantic similarity)
and clinical accuracy metrics (RadGraph-F1 and
CheXbert-F1). Readability scores are similar
across models, but T5 achieves lower Dale–Chall
and FKGL scores, indicating slightly simpler vo-
cabulary.

Notably, T5-large achieves these results with
only one-quarter the parameters of LLaMA-3.2-
3B, suggesting that encoder–decoder architectures
may be more efficient for the supervised lay sum-
marization task. Several factors may explain this
performance difference. First, the encoder–decoder
structure of T5 is inductively biased toward in-
put–output transformation tasks such as summari-
sation and paraphrasing, potentially making it more
effective in low-resource, domain-specific settings.
Second, the larger capacity of LLaMA-3.2-3B may
require more training data to fully optimise, and in
limited-data scenarios, its performance could suffer
due to underfitting or instability. Indeed, we ob-
served more fluctuation in validation scores during
LLaMA training, whereas T5’s training curve was
smoother and more consistent.

These quantitative results are further supported
by qualitative case studies in Appendix A and B,
where T5’s outputs consistently demonstrate higher
fidelity to the original clinical findings while of-
fering clearer and more accessible lay-language
paraphrasing. For example, in Case 1, T5 trans-

Table 3: Performance of T5-large
on the open-source track evalua-
tion and close-source track evalua-
tion. Boldface indicates best score.

Metric Open Close

ROUGE-L 66.90 58.66
BLEU 45.61 32.08
METEOR 70.17 62.68
BERTScore 95.30 94.33
FKGL† 7.43 7.65
DCRS† 9.34 8.60
CLI† 8.11 7.88
Semantic Score 88.88 89.52
RadGraph-F1 39.96 34.81
CheXbert-F1 85.64 68.20

lates technical terms like "atelectasis and consoli-
dation" into "lung collapse and solid areas," while
LLaMA retains the original jargon, making the
output less readable for general audiences. In
Case 2, T5 maintains more specific references such
as “heart problems related to the coronary arter-
ies” and “chronic obstructive pulmonary disease
(COPD),” whereas LLaMA tends to generalise or
simplify more loosely.

4.2 Comparing Open-source Track and
Close-source Track Submission Results

We submitted our model to both the open-source
track and close-source track for evaluation, with re-
sults shown in Table 3. The close-source track
evaluates model performance on a broader test
set than the open-source track. Specifically, the
open-source track includes test samples from three
public datasets—Open-i, PadChest, and BIMCV-
COVID19—while the close-source track adds
MIMIC-CXR.

Our model was trained exclusively on the open-
source track training set, which means that its per-
formance on the close-source track reflects both
in-domain evaluation (on seen sources) and out-of-
domain generalisation (on unseen MIMIC-CXR ex-
amples). We can observe overall trends: compared
to the open-source track results, the close-source
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track metrics drop across nearly all categories, espe-
cially BLEU, ROUGE-L, and CheXbert-F1. How-
ever, because the closed test set is a mixture of all
four datasets and aggregate scores are reported, we
cannot isolate exact performance on MIMIC-CXR.
Also, due to the absence of comparison with T5-
large trained on the closed-source track, the relative
performance drop remains unknown. Therefore,
we cannot fully conclude on the model’s generali-
sation to unseen data.

Nevertheless, our model achieved the top rank
in both the open-source and close-source tracks,
according to the competition leaderboard, outper-
forming all other submissions, including those
trained on the full close-source dataset.

4.3 Conclusion

This study investigated the task of translating ra-
diology reports into lay summarisation as part of
Subtask 2.1 of the BioLaySumm 2025 Shared Task.
We compare the performance of two large lan-
guage model (LLM) architectures: the decoder-
only LLaMA-3.2-3B and the encoder–decoder T5-
large. Our results demonstrate that the T5-large
model consistently outperforms LLaMA-3.2-3B
across a broad range of metrics, including rele-
vance, readability, and clinical accuracy, despite
having significantly fewer parameters. This find-
ing suggests that encoder–decoder models may be
more effective and parameter-efficient for fully-
supervised summarisation tasks, such as lay sum-
marisation of radiology reports.
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A Case Study 1
Table 4: Comparison of T5 and LLaMA outputs for a radiology report indicating COVID-19-type pneumonic
infiltrates. T5 better paraphrases technical terms like “atelectasis” into lay-friendly expressions like “lung collapse,”
improving accessibility. LLaMA preserves more clinical terminology, which may limit interpretability. T5 also
mirrors the structure of the ground truth better, enhancing relevance and readability.

Radiology Report Ground Truth Lay Summary

Bands of atelectasis and consolidation in the
mid-lung fields, along with confluent
opacities in the lower mid-lung fields, also
showing bilateral involvement. Findings,
considering the reported history, could
correspond to COVID-19-type pneumonic
infiltrates. Evaluate progression and correlate
with clinical and laboratory data.

There are areas of lung collapse and
thickening in the middle parts of the lungs,
along with large blurry spots in the lower
middle areas, affecting both lungs. These
findings, considering the patient’s history,
could be related to the type of lung
inflammation seen in COVID-19. Further
evaluation of the progression and correlation
with clinical and lab data is needed.

T5-large Output LLaMA-3.2-3B Output

There are bands of lung collapse and solid
areas in the middle parts of the lungs, along
with merged cloudiness in the lower middle
parts of the lungs, affecting both sides. These
findings, considering the reported history,
could be signs of COVID-19-type lung
inflammation. It is important to evaluate the
progression and compare with clinical and lab
data.

The middle areas of the lungs show signs of
atelectasis and consolidation, and the lower
middle areas of the lungs have merged
opacities on both sides. These findings,
considering the patient’s history, could be
related to COVID-19-like lung infiltrates. It
is recommended to evaluate the progression
and correlate this with clinical and laboratory
data.
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B Case Study 2
Table 5: Comparison of T5 and LLaMA outputs for a radiology report covering dyspnea, coronary artery disease,
scoliosis, and COPD. T5 demonstrates better consistency with the ground truth by retaining specific phrases like
“coronary artery disease” and clearly expressing medical conditions. LLaMA tends to generalise phrases (e.g., “heart
problems”), which may lose important details for patient understanding.

Radiology Report Ground Truth Lay Summary

Reason for consultation: dyspnea. Old
coronary artery disease. Significant dorsal
scoliosis. Aortic elongation with descending
aortic dilatation. Right pleural thickening.
Radiological signs of chronic obstructive
pulmonary disease (COPD).

The person came in because they were having
trouble breathing. They have a history of
heart problems related to the coronary
arteries. They also have a significant curve
in their spine. Their main blood vessel, the
aorta, is longer than usual and the part of
it that goes down from the heart is wider.
The outer layer of the lung on the right side
is thicker than it should be. The x-ray shows
signs of a lung disease called COPD, which
makes it hard to breathe.

T5-large Output LLaMA-3.2-3B Output

The patient came in because they were having
trouble breathing. They have a history of
heart problems related to the coronary
arteries. They also have a significant curve
in their spine. The main blood vessel
coming out of the heart is stretched out and
wider than normal. The outer lining of the
lungs on the right side is thicker than it
should be. The x-ray shows signs of a
long-term lung condition called chronic
obstructive pulmonary disease (COPD).

The patient came in because they were having
trouble breathing. They have a history of
heart problems and a curved spine. The
main blood vessel leaving the heart, called
the aorta, is stretched out and the part that
goes down from the heart is widened. The
outer lining of the lungs on the right side is
thicker than normal. The x-ray shows signs
of a long-term lung condition called COPD.
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