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Abstract

In this paper, we investigated two approaches
to clinical question-answering based on patient-
formulated questions, supported by their nar-
ratives and brief medical records. The first
approach leverages zero- and few-shot prompt
engineering techniques with GPT-based Large
Language Models (LLMs), incorporating strate-
gies such as prompt chaining and chain-of-
thought reasoning to guide the models in
generating answers. The second approach
adopts a two-steps structure: first, a text-
classification stage uses embedding-based mod-
els (e.g., BERT variants) to identify sentences
within the medical record that are most rele-
vant to the given question; then, we prompt
an LLM to paraphrase them into an answer so
that it is generated exclusively from these se-
lected sentences. Our empirical results demon-
strate that the first approach outperforms the
classification-guided pipeline, achieving the
highest score on the development set and
the test set using prompt chaining. Code:
github.com/armandviolle/BioNLP-2025

1 Introduction

The ArchEHR-QA 2025 shared task (Soni and
Demner-Fushman, 2025b) focused on grounded
electronic health record question answering. The
goal was to design a system that could answer pa-
tients’ questions based on sentences from the pa-
tient’s medical notes providing evidence supporting
the answer’s statements.

A development dataset (Soni and Demner-
Fushman, 2025a) of 20 cases was at our disposal,
structured as follows in XML format: a patient nar-
rative (Pnarrative), where the patient states their
situation and asks their question(s); the original
patient question (Qpatient); its clinician reformula-
tion (Qclinician); and a medical note summarizing
the patient’s history, presented both as a whole
and sentence-by-sentence. Additionally, a JSON

file was provided which contained a label for each
sentence ("essential," "supplementary," or "not rel-
evant") with respect to the questions.

Three guidelines were set for the generated an-
swers: 1. a maximal length of 75 words, 2. one
sentence per line with, at the end of each line, the
cited id attribute(s) of the supporting medical note
sentence(s) and 3. avoiding using external data or
knowledge (relaxed later on).

The answers went through a two-step evaluation
based on their factuality, i.e. the effective citation
of “essential” sentences in the answers, and their
relevance, i.e the semantic similarity with the in-
puts. Consequently, we tried to design systems
suiting this layered structure with a classification
step of the medical note sentences’ relevance and a
summarization step rephrasing relevant sentences
into an answer to the Qpatient. We confronted these
approaches to Large Language Models (LLMs)
prompting strategies which we considered as base-
lines.

2 Methods

2.1 Sentence relevance classification

In this section, we present a method to iden-
tify question-relevant sentences using Sentence-
BERT’s bi-encoder and cross-encoder architec-
tures (Reimers and Gurevych, 2019), enabling the
LLM to generate answers grounded solely in the
extracted content.

2.1.1 Single-sentence classification using
short-context embeddings

First, we evaluated each clinical sentence individ-
ually against Pnarrative using pairwise compar-
isons.

We employed the pretrained cross-encoder ms-
marco-MiniLM-L12-v2, which was originally
trained on the MS MARCO dataset (Bajaj
et al., 2016), a large corpus of query-document

150

mailto:adam.remaki@sorbonne-universite.fr
mailto:armand.violle@sorbonne-universite.fr
mailto:natrajvikram.sivabalasubramanian@sorbonne-universite.fr
mailto:etienne.guevel@sorbonne-universite.fr
mailto:akram.redjdal@esiee.fr
https://github.com/armandviolle/BioNLP-2025


pairs ranked by relevance, and then fine-tuned
on 15 cases (5 for validation) from ArchEHR
dataset (Soni and Demner-Fushman, 2025a).

We also evaluated a bi-encoder model Jina-
embedding v3 (Sturua et al., 2024). Sentences
with cosine similarity score ≥ 0.5 to the query
were considered essential, using 0.5 as a midpoint
heuristic within the range of [0, 1]. eFigure 1 in
the Appendix shows the distribution of similarity
scores across label categories.

2.1.2 Multi-sentence classification using
long-context embeddings

In our second approach, we utilized Jina-
embedding v3’s 8k-token capacity to process multi-
ple sentences in context. Unlike the single-sentence
setup, each example consists of a concatenated in-
put of the Pnarrative and candidate sentences, for-
matted as [Question] </s> [Sentence 1] </s>
... [Sentence N]. The model outputs binary la-
bels indicating whether each sentence is Essential
or not (Supplementary/Not Relevant).

2.1.3 Data augmentation for robust
classification

To address data scarcity, we generated 748 syn-
thetic question-answer pairs from i2b2 (Uzuner
et al., 2011), emrQA (Pampari et al., 2018), and
MIMIC-III (Johnson et al., 2016)) clinical corpora.
Each instance contained: (i) a question (generated
via OpenAI’s gpt-o4-mini with manual prompt tun-
ing), (ii) clinical note excerpts, and (iii) binary rele-
vance labels. For sentence selection, we embedded
text using text-embedding-ada-002, retrieved
top-k matches via FAISS, and assigned labels (Es-
sential/Supplementary/Not relevant) based on rank-
ing position. We evaluated augmentation effec-
tiveness by fine-tuning both a ms-marco-MiniLM-
L12-v2 cross-encoder (short-context) and a Jina
Embedding v3 classifier (long-context). Details on
the training are available in the section A of the
Appendix.

2.2 Prompting LLMs for answer generation

In this section, we present an end-to-end method
that generates the answer using LLMs. To evaluate
different prompting strategies, we used the OpenAI
API with data sharing explicitly disabled, ensur-
ing that no inputs, outputs, were used to train or
improve OpenAI models.

2.2.1 Zero-shot prompting
Zero-shot prompting was our first approach to gen-
erate the answer, specifically to understand how
effectively LLMs could tackle both classification
and paraphrasing sub-tasks at once. We adapted
the prompt’s instructions and format according to
the observed output and best practices found in the
literature, as well as diverse combinations of in-
put data. We tested GPT-4.1-mini (OpenAI, 2025)
and Mistral Large (AI, 2024). More details on the
prompts can be found in eFigure 2 and eFigure 3
of the Appendix.

2.2.2 Prompting reasoning steps with
chain-of-thought

As chain-of-thought (CoT) has proven to be an effi-
cient prompting strategy to increase model reason-
ing abilities, we decomposed the task in a sequence
of distinct steps to help the model tackle the task.
We incorporated these reasoning steps into the sys-
tem prompt and fed it to a GPT-4.1-mini (OpenAI,
2025) model, mostly to control outputs’ format, try-
ing to force the model to autonomously check and
adapt its answer to the expected format. Prompt is
presented in eFigure 4 of the Appendix.

2.2.3 Few-shot prompting
In few-shot prompting, we created pairs of
question-answers to add as examples in our
prompts. To generate the “gold standard” answers,
we prompted GPT-4.1-mini (OpenAI, 2025) to
paraphrase essential sentences from the medical
note, based on the available labels in the dataset,
into an answer to the Qpatient. Then, for each
case, we sampled randomly a subset of pairs among
the other available cases that were included in the
prompt as examples, before the inference case’s
input. Prompts are presented in eFigure 5 and eFig-
ure 6 of the Appendix.

2.2.4 Prompt chaining: divide-and-conquer
We adopted a prompt chaining approach based on
the divide-and-conquer principle, breaking down
the overall task into a structured sequence of
smaller, interdependent subtasks. Each subtask
is addressed by a language model, and the inter-
mediate outputs are passed as inputs to subsequent
stages. An overview of the full pipeline is shown
in Figure 1.

This pipeline comprised five steps:
(i) Free answer generation. We prompted
o4-mini-2025-04-16 to generate a detailed and
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Figure 1: Overview of the prompt chaining workflow: each step refines the answer, improves grounding, and
enforces formatting.

informative answer, given the Pnarrative and the
associated full medical note. The prompt was de-
signed to encourage completeness, with no for-
matting constraints, in order to generate as many
relevant elements of the medical note as possible.
(ii) Essential sentence identification. The output
from Step 1, along with the medical note (provided
as a list of markdown-formatted sentences), is
passed to gpt-4.1-mini-2025-04-14. The model
was prompted to identify the minimal subset of sen-
tences that directly support the answer.
(iii) Answer reformulation with inline citations.
Using only the essential sentences from Step 2, the
same model was prompted to reformulate the an-
swer in a structured format. Each sentence appears
on a new line and includes inline citations (e.g.,
|3,7|) referencing the supporting sentence IDs.
(iv) Answer compression. We prompted the same
model to compress the reformulated answer into
a concise version constrained to 75 words, while
preserving the same inline citations.
(v) Strict answer compression (optional). If the
compressed answer still exceeds 75 words, we
prompt the same model again using the same com-
pression rules, but presented in a more structured

and imperative format. We allow up to three re-
tries. If the constraint remains unmet, we restart
the entire pipeline with a new seed.

The system prompts used in the pipeline are pro-
vided in eFigure 7 in the Appendix. One may note
that only prompt chaining and CoT consistently
produced answers within the 75-word limit. Other
methods required post-processing compression, as
described in Section E of the Appendix.

3 Results

3.1 Sentence relevance classification

Table 1 reports the performance of various
embedding-based models in identifying essential
sentences. We present precision, recall, and F1-
score for each model configuration including the
pretrained cross-encoder ms-marco-MiniLM-L12-
v2 (with 33.4 million parameters), Jina Embed-
ding v3 (Sturua et al., 2024) (with 572 million
parameters) evaluated in both a bi-encoder (single-
sentence) and a multi-sentence classification set-
ting. The second and third columns indicate fine-
tuning on the ArchEHR sample and the augmented
dataset, respectively.
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Model ArchEHR FT* Augmented FT* Precision Recall F1-score
ms-marco-MiniLM 0.24 (0.20-0.28) 0.51 (0.42-0.60) 0.29 (0.25-0.34)
ms-marco-MiniLM ✓ 0.37 (0.34-0.41) 0.28 (0.24-0.33) 0.29 (0.26-0.32)
ms-marco-MiniLM ✓ 0.36 (0.35-0.37) 0.90 (0.88-0.92) 0.51 (0.50-0.52)

Jina (single-sentence) 0.49 (0.41-0.61) 0.55 (0.43-0.66) 0.52 (0.44-0.59)
Jina (multi-sentence) ✓ 0.39 (0.33-0.46) 0.70 (0.59-0.82) 0.50 (0.44-0.56)

Table 1: Performance of embedding-based models for essential sentence classification on the development set.
Metrics are reported as mean (95% confidence interval). *FT: fine-tuned.

3.2 Prompting LLMs for answer generation

Table 2 reports the performance of various prompt-
ing methods using large language models. The first
column lists the prompting strategies. The second
column presents the factuality score, measured as
the F1-score on the essential sentence identification
task. The third column shows the relevance score,
computed as the average of several semantic sim-
ilarity metrics (bleu, rouge, medcon, alignescore,
bertscore, and sari) between the generated answer
and the concatenation of the essential sentences,
the Pnarrative, and the Qclinician.

Development Set
Method Factuality Relevance
Zero-shot Mistral 51.1 (2.6) 31.1 (0.7)
Zero-shot GPT 56.6 (2.1) 32.5 (0.6)
Chain-of-thought 52.4 (1.9) 33.2 (0.5)
Few-shot 54.5 (1.9) 32.5 (0.5)
Prompt chaining 59.3 (0.2) 37.9 (0.3)

Test Set
Method Factuality Relevance
Prompt chaining 54.2 35.5

Table 2: Comparison of methods on factuality and rele-
vance score for the development and test sets. Results
are reported as mean (standard deviation) over 10 ran-
dom seeds for the development set. Test result is shown
for the best-performing method.

4 Discussion

Our findings highlight several important insights
regarding the classification of essential sentences
in clinical narratives. First, fine-tuning on the
ArchEHR dataset alone did not yield consistent per-
formance gains. We attribute this to the dataset’s
limited size (only 20 annotated cases), which is
insufficient for effective adaptation. Moreover,
the augmented dataset significantly improved the
performance of the cross-encoder model. It not
only boosted F1-scores but also reduced variance
across runs, suggesting that the model benefited

from the synthetic data. However, fine-tuning the
Jina-Embedding v3 model with augmented data
and multi-sentence input did not improve perfor-
mance. This may be due to the LoRA adapters
being poorly suited for this fine-tuning setup, or
because the model’s initial performance left little
room for improvement. Further investigation is
needed to understand the cause.

Despite extensive experimentation with
embedding-based approaches, including both
single and multi-sentence configurations, we
observed that LLMs outperformed them on the
sentence classification task. Nevertheless, it is
noteworthy that a relatively small 33M-parameter
BERT cross-encoder achieved the same F1-score
of 0.51 as the much larger 123B-parameter Mistral
large model, highlighting a meaningful tradeoff
between performance and computational cost.

Results indicate that prompting strategies isolat-
ing subtasks through sequential prompt chaining
led to more accurate sentence classification, im-
proved answer relevance, and reduced variability,
with standard deviation nearly ten times smaller
for the factuality score. Interestingly, zero-shot
prompting outperformed both few-shot and CoT
approaches. While the reason remains unclear, this
may suggest that overly long system prompts were
less effective for this task.

5 Conclusion

This study addressed the ArchEHR-QA challenge,
where the goal is to answer patient-specific clin-
ical questions by identifying and citing essential
sentences from clinical notes. For sentence classifi-
cation, augmenting the dataset with synthetic QA
pairs improved performance and reduced variation.
While embedding models such as bi-encoders and
cross-encoders produced solid results, LLMs con-
sistently outperformed them. For this task, prompt
chaining, which isolates subtasks, gave the best
result.
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Limitations

The first limitations to mention are related to the
LLMs we used for prompting strategies. Indeed
OpenAI’s GPT models and Mistral AI’s models
are proprietary and thus lack transparency on their
training process (e.g data corpora used) and some
functionality (e.g “determinism not guaranteed”
when fixing seed parameter). In research, it is a
major drawback as it is hard to truthfully build
upon undisclosed features. Moreover, these models
are pay-as-you-go, so we stuck to smaller, cheaper
models that enabled us to run multiple experiments
(we spent almost 100$ worth of OpenAI tokens for
the challenge). Scaling up to models such as GPT-
4.5, o1 or o3 may have improved performances-but
it comes at a cost.

One limitation of our synthetic dataset is that the
complexity of the sentence classification task often
requires domain-specific medical knowledge. As
a result, the generated data may not fully capture
the nuances present in real clinical scenarios. In-
corporating validation and annotation by medical
experts could help ensure the reliability and clinical
relevance of the synthetic data, thereby increasing
its impact for downstream tasks.

To conclude, we reflect on the evalua-
tion methodology, particularly the suitability of
BLEU (Papineni et al., 2002) for assessing the rel-
evance metric. BLEU includes a brevity factor that
can disproportionately penalize predicted answers
that differ in length from the reference. In our case,
relatively short predicted answers (with a maxi-
mum expected length of 75 words) were evaluated
against much longer references composed of con-
catenated Pnarrative, Qclinician, and essential sen-
tences. This mismatch in length likely contributed
to the uniformly low BLEU scores observed across
the leader board.
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Appendix

A Training details for sentence
classification

A.1 Cross-encoder finetuning
We trained the cross-encoder on both the aug-
mented dataset and archEHR sample using iden-
tical hyperparameters: binary cross-entropy loss,
AdamW optimizer (learning rate 2 × 10−5), and
batch size of 64. Training proceeded for 10 epochs.

A.2 Multi-sentence classification
We fine-tuned the LoRA adapter specifically de-
signed for classification in the Jina-Embedding
v3 model, which includes five task-specific LoRA
adapters in total. These adapters are integrated into
the embedding and linear layers of the multi-head
attention mechanism, with a rank of 4 and α = 1.
We fine-tuned the classification adapter on our syn-
thetic QA dataset for 5 epochs using the AdamW
optimizer (learning rate: 2 × 10−5). Due to the
long input sequences, we used a batch size of 1.
Class imbalance was addressed using a weighted
BCEWithLogitsLoss, and mixed-precision train-
ing (bfloat16) was enabled via torch.cuda.amp.
Inputs followed the format: [Question] </s>
[Sentence 1] </s> ... [Sentence N] The
final prediction was produced by a linear head ap-
plied to sentence embeddings extracted at the </s>
token positions.

B Bi-encoder classification

The bi-encoder approach using Jina Embedding v3
demonstrated significantly higher cosine similar-
ity scores between patient questions and sentences
labeled as "Essential" (mean = 0.62) compared to
other categories (mean = 0.41, t-test p < 1×10−10).
eFigure 1 shows the distribution of similarity scores
across label categories, revealing clear separation
between essential and non-essential phrases.

C Classification with a large encoder

Here we report an evaluation of gte-Qwen2-7B-
instruct (Li et al., 2023). When using the prompt
presented in eFigure 8, the model ended up overfit-
ting on the training set while failing to generalize
the information on the validation set . For the ac-
curacy it reached 0.98 and the f1 0.98 in training,
while in validation the best metrics were : f1 0.33,
recall 0.28, precision 0.41.

eFigure 1: Distribution of cosine similarity between
question and sentence

D CoT and Few-Shot implementation
details

We used the three roles offered by the
chat.completions.create of the OpenAI
API client: system to describe the general beahior
of the model, user to input data and additional
information helping the model to respond such as
reasoning steps or examples, and assistant to
input example responses for few-shot prompting.
The system prompt and user prompts were very
similar in few-shot (see Figure 6) and CoT (see
Figure 4). For the user inference prompt, we
just concatenated the selected data consisting in
Pnarrative, Qpatient, Qclinician and the sentence-
by-sentence medical note excerpt in few-shot,
while in CoT we first prompted the reasoning steps
and then the same inputs.

For CoT, we created examples using the first
2 cases by prompting successively the reasoning
steps and input data in ChatGPT. We then used
the final answers as “gold standard” to provide an
example for each case before inference, which re-
sulted in the following (considering a single case):

1. We prompt the system role (see Figure 4 for
detailed prompts).

2. We prompt the user role with the reasoning
steps and the input data of an example case.

3. We prompt the assistant role with the final
answer obtained with ChatGPT.

4. Finally, we prompt the actual inference case
to the user role.
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In few-shot, before generating the answers, we
zero-shot a summarization task with the system
prompt on Figure 5 and a user prompt containing
essential sentences only and Qpatient. We used
them in the few-shot strategy to provide as follows,
considering a single case:

1. We randomly sampled 5 cases among the 19
other available to serve as examples.

2. We prompt the system role.

3. We prompt 5 times user-assistant roles
successively, user prompts being the sam-
pled cases formatted as inference prompts,
and assistant prompts being the correspond-
ing sampled cases’ previously generated para-
phrase.

4. Finally, we prompt the actual inference case
to the user role.

For CoT, we created examples using the first
2 cases by prompting successively the reasoning
steps and input data in ChatGPT. We then used
the final answers as “gold standard” to provide an
example for each case before inference, which re-
sulted in the following (considering a single case):

1. We prompt the system role (see Figure 4 for
detailed prompts).

2. We prompt the user role with the reasoning
steps and the input data of an example case.

3. We prompt the assistant role with the final
answer obtained with ChatGPT.

4. Finally, we prompt the actual inference case
to the user role.

E Answer post-processing to enforce
word limit

To enforce the 75-word limit required by the evalu-
ation protocol, we apply a post-processing script to
the model-generated answers. Although the sum-
marization prompt explicitly specifies this limit,
responses occasionally exceed it. The cleanup pro-
cess ensures validity and evaluation compatibility
through the following steps:

• Grouped summarization: Consecutive sen-
tences with identical citations are grouped and
summarized using GPT-4.1-mini, with a dy-
namic word limit to ensure the final output
stays within the 75-word constraint.

• Citation preservation: Citations from the
original outputs are preserved and reattached
to the corresponding summarized segments to
maintain factual alignment.

• Fallback handling: If summarization fails
or exceeds the limit, a generic sentence is
inserted: "Additional supporting evidence."
with the missing citations appended.

• Format compliance: The evaluation
script requires at least one citation line
in the format Sentence or summary.
|citation_id(s)|, but not necessarily one
for every sentence.

This method prioritizes factual consistency and
strict format adherence, and was found to be effec-
tive when used with a controlled summarization
model such as GPT-4.1-mini.
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F System prompts

eFigure 2: Mistral large zero-shot prompt

eFigure 3: Zero-shot prompt using GPT 4.1-mini

eFigure 4: Prompts for system (top) and user (bottom)
roles used for the CoT experiments with OpenAI API.

eFigure 5: System prompt used to generate essential
sentences’ and Pnarrative’ summarized paraphrase in
Zero-Shot fashion.
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eFigure 6: Prompt for system role used for Few-Shot
experiments with OpenAI API.

eFigure 7: System prompts used for the prompt chaining
pipeline.

eFigure 8: Prompt for Qwen2-gte-7B-instruct

Each phrase of the excerpt makes a sample, the example shown
here is for the first phrase. In bold are the added text to give
context to the instruct model.
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