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Abstract

Automated question answering (QA) over elec-
tronic health records (EHRs) can bridge critical
information gaps for clinicians and patients, yet
it demands both precise evidence retrieval and
faithful answer generation under limited super-
vision. In this work, we present Neural, the
runner-up in the BioNLP 2025 ArchEHR-QA
shared task on evidence-grounded clinical QA.
Our proposed method decouples the task into
(1) sentence-level evidence identification and
(2) answer synthesis with explicit citations.
For each stage, we automatically explore the
prompt space with DSPy’s MIPROv2 opti-
mizer, jointly tuning instructions and few-shot
demonstrations on the development set. A
self-consistency voting scheme further im-
proves evidence recall without sacrificing pre-
cision. On the hidden test set, our method at-
tains an overall score of 51.5, placing second
stage while outperforming standard zero-shot
and few-shot prompting by over 20 and 10
points, respectively. These results indicate
that data-driven prompt optimization is a
cost-effective alternative to model fine-tuning
for high-stakes clinical QA, advancing the reli-
ability of AI assistants in healthcare.

1 Introduction

Automatically generating answers to patients’ med-
ical questions using information from their elec-
tronic health records (EHRs) poses significant chal-
lenges, but also offers substantial potential for im-
proving clinical communication and patient engage-
ment (Soni and Demner-Fushman, 2025b). The
ArchEHR-QA 2025 shared task directly targets this
problem by providing patient questions alongside
excerpts from clinicians’ notes, and requiring sys-
tems to generate grounded responses that explicitly
cite the supporting sentences.

Recent advances in Large Language Models
(LLMs) have shown promising results in the do-
main of answering clinical questions based on un-

structured patient notes (Singhal et al., 2025). How-
ever, fine-tuning LLMs for answering clinical ques-
tions based on unstructured patient notes is con-
strained by the limited availability of supervised
clinical data, which increases the risk of overfitting.
Consequently, prompt-based methods offer a prac-
tical and cost effective solution. Despite the advan-
tages, prompt engineering comes with its own set
of challenges (Karayanni et al., 2024). Crafting ef-
fective prompts for complex tasks often requires ex-
pert effort and iterative refinement. This difficulty
is amplified in the clinical domain, where identi-
fying the correct evidence from lengthy medical
notes is critical for accurate answers. Prior studies
have explored manual prompt designs and chain-
of-thought cues for medical QA (Tai and Tannier,
2025), yet these ad-hoc methods may not yield opti-
mal performance. Automated prompt optimization
techniques (Wang et al., 2023) offer a systematic
alternative, but often treat each task holistically and
may not incorporate domain expertise effectively.

In this work, we introduce a two-stage LLM
pipeline for clinical question answering that explic-
itly separates evidence identification and answer
generation. In each stage, prompts are automati-
cally optimized using the MIPROv2 optimizer from
DSPy (Khattab et al., 2021, 2024). The first stage
is dedicated to identifying the relevant information
within the clinical note, while the second stage
leverages this information to generate a precise and
contextually appropriate answer. By decomposing
the task into these two distinct stages, it becomes
possible to define clear, stage-specific evaluation
objectives, namely, F1 score for evidence retrieval
performance and the mean of word limit score, ci-
tation format score, BLEU, ROUGE, SARI, BERT,
ALIGN, and MEDCON scores for answer qual-
ity metrics. This decomposition also enables the
use of optimization algorithms to systematically
search for prompts that maximize these objectives.
To further improve reliability, we integrate a self-

104



consistency (Wang et al., 2022) approach in the
evidence retrieval stage: the model is run multiple
times, and a majority vote over the outputs deter-
mines the final cited sentences, reducing variability
and errors.

In summary, our contributions are:

• Decomposed Prompt Optimization Frame-
work: We propose a two-stage pipeline
that modularizes clinical QA, enabling dis-
tinct and targeted prompt optimization for
evidence retrieval and answer generation, a
paradigm shift from monolithic optimization
approaches.

• Systematic Instruction Space Exploration:
We demonstrate the efficacy of leveraging ad-
vanced optimizers like MIPROv2 to discover
high-performing, task-specific prompt config-
urations from limited development data, en-
hancing both performance and reproducibility.

• We perform a rigorous evaluation on an
expert-annotated clinical QA dataset, demon-
strating that our prompt-optimized pipeline
yields significant improvements in factual ac-
curacy and answer relevance compared to es-
tablished baselines, underscoring its effective-
ness for reliable clinical-QA.

2 Related Work

Clinical QA: Developing QA systems for clin-
ical data has long been an interest in biomedical
NLP. Earlier datasets like emrQA (Pampari et al.,
2018) generated large-scale QA pairs from elec-
tronic medical records by repurposing annotations,
but these often contained synthetic questions or
required mapping to structured outputs. Recent
research has shown that large LLMs can achieve
near-expert performance on medical QA bench-
marks (Singhal et al., 2025).

Prompt Optimization: There is a growing in-
terest in automated prompt search or optimization.
More recently, methods such as APE (Zhou et al.,
2022) and OPRO (Yang et al., 2023) treat prompt
design as a black-box optimization problem, iter-
atively refining prompts by evaluating model out-
puts. MIPRO (Opsahl-Ong et al., 2024) extends
this idea to multi-stage LLM programs, jointly
optimizing the instructions and demonstration ex-
amples of each module in a pipeline. Our work

leverages the latest optimizer, MIPROv2 (Opsahl-
Ong et al., 2024), which uses a combination of
prompt proposal and Bayesian search to find high-
performing prompts efficiently.

Self-Consistency: Large LLMs can produce
variable outputs given the same prompt, espe-
cially under chain-of-thought reasoning. The self-
consistency decoding strategy (Wang et al., 2022)
addresses this by sampling multiple outputs and
choosing the result that is most consistent across
samples.

3 Methodology

Our method draws on a human-inspired decoupling
strategy, separating evidence gathering from solu-
tion formulation. In Stage 1, we identify relevant
resources analogous to conducting a web search
or literature review by retrieving key sentences. In
Stage 2, we frame the final solution by synthesizing
insights from the retrieved facts. We operational-
ize this intuition as a modular, two-stage pipeline
tailored to clinical QA.

Consider each clinical note excerpt is seg-
mented into individual sentences s1, s2, . . . , sn,
and each sentence si is annotated with a label
yi ∈ (essential, not-relevant, supplementary. The
label indicates whether si contains information es-
sential for answering a given patient/clinician ques-
tion q. This sentence-level annotation forms the
basis of Stage-1, while Stage-2 uses the content of
the essential sentences (post consistency testing) to
produce the final answer agen.

3.1 Sentence-Level Essentiality Classification

For a question–note pair let

Y + =
{
i
∣∣ yi = 1

}
, and Ŷ + =

{
i
∣∣ ŷi = 1

}
,

denote, respectively, the indices of gold-standard
essential sentences and the indices predicted es-
sential by the model. We begin with a manually
crafted prompt that presents the question q and
the sentence sequence {s1, . . . , sn} and requests
a binary relevance label for every sentence in ad-
dressing the q.

Prompt-Optimization Objective (Stage-1): We
invoke the MIPROv2 to optimize the prompt.
Treating the instruction text (and any embedded
demonstrations) as discrete parameters P ∈ P ,
MIPROv2 iteratively: (i) proposes a candidate
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prompt P , (ii) applies the fixed LLM to the train-
ing set, and (iii) updates P so as to maximize
the sentence-level F1

(
Y +, Ŷ +

)
. By searching this

space of instructions and few-shot exemplars, the
optimizer converges on a prompt P ∗ that elicits
labels with markedly higher precision and recall,
thereby yielding a more reliable evidence set for
Stage 2.

Self-Consistency Voting: To improve the relia-
bility of Stage 1, we apply a self-consistency voting
scheme: the classifier is executed R = 5 times on
the same (q, {si}) input, each run differing only in
its stochastic seed. Let ŷ(r)i ∈ {0, 1} be the binary
prediction for sentence si in run r (1 = essential).
The final label is obtained by majority vote,

vi =
R∑

r=1

ŷ
(r)
i , ŷi =




1 if vi ≥ τ = ⌈R/2⌉,
0 otherwise,

This aggregation suppresses spurious single-run
errors and retains sentences identified as essential
by at least three of the five passes, thereby reduc-
ing variance and boosting the expected F1 of the
evidence selection step.

3.2 Answer Generation from Essential
Sentences

Let q be the input question and let E =
{
si

∣∣
ŷi = 1

}
denote the set of sentences that Stage 1 pre-

dicted as essential. Given the pair (q, E), Stage 2
must produce a concise natural-language answer
agen that (i) directly addresses q, (ii) contains at
most 75 words, and (iii) cites the supporting sen-
tences in E using the required parenthetical no-
tation. We initialise Stage 2 with a hand-written
prompt template and then invoke MIPROv2 to
optimize this template. Let P denote a prompt
parameterised by its instruction wording and any
embedded demonstrations, and let gθ( · ;P ) be the
fixed LLM generator. Given an input pair (q, E)
the model outputs agen = gθ

(
(q, E);P

)
.

Prompt-Optimization Objective (Stage-2):
The goal is to maximise the composite reward

R
(
agen, a

∗, E
)
= 1

[
|agen| ≤ 75

]
︸ ︷︷ ︸

length

+ 1
[
format(agen, E)

]
︸ ︷︷ ︸

citations

+ 1
6

∑

m∈M
m
(
agen, a

∗)

︸ ︷︷ ︸
surface & semantic quality

where a∗ is the reference answer, | · | counts words,
and

M =
{

BLEU, ROUGE, SARI,

BERT, Align, MEDCON
}
.

The indicator terms enforce hard constraints on
length and citation format, while the mean of the
six metrics rewards lexical overlap, semantic fi-
delity, factual consistency, and medical–concept
coverage.

Search Procedure: MIPROv2 explores the dis-
crete prompt space P by iteratively proposing can-
didate prompts, evaluating them on a validation set,
and selecting

P ∗ = argmax
P∈P

E(q,E,a∗)

[
R
(
gθ((q, E);P ), a∗, E

)]

The optimal prompt P ∗ consistently elicits answers
that are succinct, properly cited, and of high quality
according to all surface–level and semantic metrics,
thus satisfying the Stage 2 requirements.

4 Experimental Setup

Dataset: We evaluated our system on the
ArchEHR-QA 2025 dataset (Soni and Demner-
Fushman, 2025a). This dataset contains 120
question-note cases derived from MIMIC-III/IV
clinical notes. Each case includes a patient ques-
tion (often a layperson’s phrasing) and a clinician-
rewritten question focusing on the key medical
query, along with a relevant excerpt from the pa-
tient’s EHR notes. The notes are annotated with
sentence numbers and labels indicating relevance
(“essential,” “supplementary,” “not relevant”) to
the question. The official split provides 20 cases
as a development set and 100 cases as a test set
. We used the 20 development cases for prompt
optimization and for all ablations. Final results
on the test set were obtained via the Codabench
submission system.

Evaluation Metrics: Following the official
ArchEHRQA shared task protocol, we evaluate
each submission along two complementary axes:
Factuality and Relevance, which help capture evi-
dence faithfulness and response quality. Factuality
is quantified by matching the set of note sentences
cited by the model against expert-annotated evi-
dence and computing precision, recall, and F1. We
report a strict variant that counts only essential
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Table 1: Evaluation of participants on factuality and relevance metrics. Bold indicates the best performance in
each column, underlined the second best. Here PS , RS , FS

1 denote micro-averaged strict precision, recall and
F1; PL, RL, FL

1 denote micro-averaged lenient precision, recall and F1; AVGfact and AVGrelev are the official
“Overall Factuality” and “Overall Relevance” scores, and “Overall” is the combined score. Abbreviations: R.L.=
ROUGE-Lsum, B.S. = BERTScore, A.S. = AlignScore, M.C. = MEDCON .

Model Factuality Relevance Overall
PS RS FS

1 PL RL FL
1 AVGfact BLEU R.L. SARI B.S. A.S. M.C. AVGrelev

DMISLab � 57.9 59.3 58.6 61.2 59.2 60.2 58.6 14.3 46.5 36.7 53.9 92.4 49.3 48.8 53.7
Ours � 55.4 63.8 59.3 58.4 63.7 60.9 59.3 8.5 34.1 73.1 39.1 67.3 40.0 43.7 51.5

LAILab � 56.0 65.5 60.4 59.7 66.0 62.7 60.4 6.5 32.7 69.2 37.4 65.3 38.4 41.6 51.0
LAMAR 60.6 53.6 56.9 64.0 53.5 58.3 56.9 6.0 32.1 65.8 36.4 64.3 43.6 41.4 49.1
ssagarwal 68.8 36.2 47.5 71.7 35.6 47.6 47.5 4.7 31.1 70.0 36.9 74.9 38.0 42.6 45.0

Few-Shot 71.2 38.2 49.8 74.5 37.8 50.2 49.8 1.7 25.5 53.9 28.7 54.5 39.7 34.0 41.9
Zero-Shot 71.6 21.9 33.6 77.0 22.3 34.6 33.6 0.1 15.2 47.8 20.5 57.7 25.6 27.8 30.7

citations and a lenient variant that also accepts sup-
plementary evidence, following the task guidelines.
Relevance is evaluated as the arithmetic mean of
complementary surface and semantic level met-
rics: BLEU (Papineni et al., 2002), ROGUE (Lin,
2004), SARI (Xu et al., 2016), BERTScore (Zhang
et al., 2020), AlignScore (Zha et al., 2023), and
MEDCON (Yim et al., 2023).

Baselines: To gauge the performance of our
prompt optimization approach, we compare it
against two baselines:

• Zero-Shot Prompting: A single, succinct in-
struction per stage. This reflects the common
practice of “plug-and-play” prompting with-
out any exemplars.

• Few-Shot Prompting: Adds two manually se-
lected demonstrations to each stage’s prompt
but preserves the terse directive style. This
isolates the value of exemplars alone, without
optimization.

5 Results

Table 1 presents the comparative performance of
our system alongside competing submissions on
the ArchEHR-QA 2025 test set. Our approach
ranked second overall, achieving a combined score
of 51.5, with individual scores of 59.3 for factu-
ality and 43.7 for relevance. Crucially, our sys-
tem maintained consistently high performance
across all evaluation axes, in contrast to other
systems that exhibited strong performance on iso-
lated metrics but lacked robustness overall. We
observe a substantial margin of improvement
over baseline prompting strategies: our method
outperforms the zero-shot and few-shot variants
by approximately 20 and 10 points, respectively,

on the overall score. These gains underscore the
effectiveness of automated prompt optimization,
which systematically discovers high-performing
instructions and demonstrations tailored to each
stage of the QA pipeline. Moreover, our system’s
relative stability across metrics—including both
surface-level (BLEU, ROUGE, SARI) and seman-
tic (BERTScore, AlignScore, MEDCON) relevance
measures—suggests that prompt optimization not
only improves individual metrics but also con-
tributes to the holistic quality and trustworthi-
ness of generated answers. These findings affirm
our central claim: that prompt optimization is not
merely a heuristic tuning step, but a principled and
impactful method for enhancing LLM-based clini-
cal QA systems.

6 Conclusion

We propose a two-stage approach for clinical
question answering on medical notes, leveraging
DSPy’s MIPROv2 optimizer to autonomously fine-
tune prompts for each stage. In Stage 1, the method
extracts essential evidence from the notes by op-
timizing the prompt to maximize the evidence F1
score. In Stage 2, the system generates answers by
optimizing a prompt based on a composite metric
incorporating several metric (word limit score, cita-
tion format score, BLEU, ROUGE, etc.), yielding
concise, structured, and clinically reliable response.
This prompt-optimized pipeline demonstrates sub-
stantial improvements over baselines, highlighting
the efficacy of prompt optimization within a mod-
ular LLM framework. The results suggest that
prompt engineering can transit from heuristic prac-
tice to data-driven optimization process, identify-
ing high-performing prompts tailored to specific
tasks. For medical question answering systems,
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this advancement enhances both evidence retrieval
and answer trustworthiness, representing a signif-
icant step toward the development of reliable AI
assistants for clinicians and patients.

Future research directions include integrating
web search agents to retrieve external medical
knowledge absent from clinical notes, further en-
riching the capabilities and completeness of auto-
mated clinical QA systems.

7 Limitations

Despite strong performance on the ArchEHR-QA
benchmark, our two-stage prompt-optimized frame-
work faces limitations rooted in both data and
model design. The curated and annotated EHR ex-
cerpts used for evaluation do not reflect the messi-
ness of real-world clinical notes, which often suf-
fer from incompleteness, inconsistency, and in-
stitutional variability; this makes generalization
across healthcare settings difficult, especially given
the lack of standardization and privacy restric-
tions on accessing realistic data. Furthermore, the
model has not been domain-adapted and relies on
a generic tokenizer, potentially missing special-
ized medical vocabulary crucial for understanding
nuanced queries. The modular two-step process,
while flexible, introduces latency and risk of com-
pounding errors, especially as the size of the candi-
date space in MIPROv2 grows. This reranker also
depends heavily on metrics like BLEU, which can
reward surface-level similarity over true semantic
alignment and are sensitive to the distribution of
training data. Together, these factors raise concerns
about both scalability and the quality of alignment,
even when evaluation scores appear strong.

8 LLM Settings

In both stages of our pipeline—sentence-level evi-
dence identification and answer synthesis—we em-
ploy the GPT-4.1 model accessed via the OpenAI
API. To accommodate the extensive clinical con-
text and few-shot demonstrations during prompt
optimization, we allocate a maximum context win-
dow of 10,000 tokens. All prompt-optimization
experiments (i.e., MIPROv2’s evaluation of candi-
date prompt templates and few-shot exemplars) are
conducted with a low-variance decoding strategy,
setting the temperature to 0.3. This relatively “cold”
sampling regime promotes determinism, ensuring
that our optimizer receives consistent feedback on
prompt efficacy as measured by evidence-retrieval

F1 or composite relevance metrics.
For the self-consistency mechanism in Stage

1, we leverage stochastic sampling to capture the
model’s latent uncertainty. Specifically, we issue R
= 5 independent generations per question–note pair,
each sampled at temperature 0.7. A majority-vote
over these five runs determines the final label for
each sentence, suppressing spurious outliers while
preserving genuinely informative evidence. All
other decoding parameters (e.g., top-p, frequency
and presence penalties) are held at their API de-
faults, isolating temperature and context length as
the principal levers in our experimental configura-
tion.

9 Prompts and Code Availability

To promote transparency and reproducibility, we
release all manual and optimized prompt templates,
together with our full pipeline implementation at
our GitHub repository1.
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