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Abstract

In this paper, we present the RETUYT-INCO
participation at the BEA 2025 shared task. Our
participation was characterized by the decision
of using relatively small models, with fewer
than 1B parameters. This self-imposed restric-
tion tries to represent the conditions in which
many research labs or institutions are in the
Global South, where computational power is
not easily accessible due to its prohibitive cost.
Even under this restrictive self-imposed setting,
our models managed to stay competitive with
the rest of teams that participated in the shared
task. According to the exact F1 scores pub-
lished by the organizers, the performance gaps
between our models and the winners were as
follows: 6.46 in Track 1; 10.24 in Track 2; 7.85
in Track 3; 9.56 in Track 4; and 13.13 in Track
5. Considering that the minimum difference
with a winner team is 6.46 points — and the
maximum difference is 13.13 — according to
the exact F1 score, we find that models with
a size smaller than 1B parameters are compet-
itive for these tasks, all of which can be run
on computers with a low-budget GPU or even
without a GPU.

1 Introduction

The remarkable advances in the development of
Large Language Models (LLMs) in recent years
have turned Natural Language Processing into a
discipline with great potential for application in
different domains, and Education is not the excep-
tion (Ignat et al., 2024). However, these techno-
logical advances are not affordable to everyone.
The cost of closed models — which are the most
powerful and are typically considered the State-of-
the-art in NLP — and the expensive infrastructure
required to use large open models, coupled with
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negative effects on the environment, make research
on other methods still essential.

Our RETUYT-INCO team, as a research lab
from South America, is no exception to this reality.
Naturally, we are concerned about these issues and,
consequently, we have focused on experimenting
with open models in recent editions of the BEA
shared tasks. For the 2023 shared task, consisting
in generating teacher responses in educational di-
alogues (Tack et al., 2023), we participated using
open models, obtaining competitive results (Bal-
adón et al., 2023). One of the highlights of our
participation was the “Hello” baseline, a simple
strategy we followed which achieved remarkable re-
sults, unveiling the fragility of BERTScore (Zhang
et al., 2020). More recently, for the 2024 BEA
shared task, consisting in performing simplifica-
tion experiments for different languages (Shardlow
et al., 2024), we mainly focused on fine-tuning
BERT and Mistral models (i.e., open models), even
using synthetic data in some cases (Sastre et al.,
2024).

In this paper, we present the RETUYT-INCO
participation in the five tracks of the BEA 2025
Shared Task: Pedagogical Ability Assessment of AI-
powered Tutors (Kochmar et al., 2025). This year,
in addition to maintaining our restriction of work-
ing with open models, we challenged ourselves
with an extra restriction: to experiment only with
language models of fewer than a billion parameters
and classical machine learning (ML) approaches.
We will call these lightweight models, as they have
to be small enough to run on a low-end GPU or
with no GPU at all. This restriction is related to the
situation many research labs face every day in the
Global South: the lack of minimum resources to
run what other regions consider small models (7B
parameters or more). In our case, we have limited
access to a national computing cluster, which we
can use to fine-tune LLMs up to 7B parameters,
but we do not have resources to host the fine-tuned
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Figure 1: Class balance in our train and dev sets. The columns are coupled according to classes.

LLMs and use them in real applications.
Moreover, this is not the only motivation for

this self-imposed restriction, as one of the research
lines of our lab is the application of NLP tools to aid
teachers in rural areas (Chiruzzo et al., 2022; Rosá
et al., 2025). In such contexts it is very unlikely
to use state-of-the-art LLMs, due to the impossi-
bility of using them through APIs (since children’s
privacy is key, sending private data to third-party
servers is not an option), and the prohibitive cost
of installing capable GPUs in trustworthy servers.

Overall, throughout this paper, we will try to
answer the general research question that motivated
our participation: What is the performance gap
between lightweight models and those state-of-the-
art models, which would naturally have a better
chance of winning the competition?.

2 Dataset

For this edition, the dataset consists of 300 con-
versations (Maurya et al., 2025). Each dialogue is
composed of interactions between a teacher and
a math student. In the final turn of each dialogue
the student shows clear confusion about a concept,
and the dataset includes potential tutor responses
intended to help the student. These responses —
some of them generated by seven LLM-based tu-
tors and others written by human tutors — are also
evaluated by human evaluators (using Yes, No or

To some extent) according to four dimensions of
interest that coincide with the four proposed tracks
in the shared-task: mistake identification, mistake
location, providing guidance and actionability.

Due to the lack of a specific development set,
during the first month we split the official dataset
published by the organizers into two parts: 80%
We decided to do this split focusing on the conver-
sations — and not on the responses — trying to
ensure that each conversation and all its responses
stayed either in the train or the dev set. As a con-
sequence, our train-dev split may not preserve the
class balance of the original set. Figure 1 shows
the class balance for each dimension in our train
and dev partition.

3 Considered approaches

For our experiments we considered classical ML
classification algorithms, BERT-based approaches
and fine-tuning a small autoregressive language
model. Since all the tracks in the shared task are
classification problems, many of the models we
considered were used in more than one track. All of
them were trained (or fine-tuned) using our train
set, running on GoogleColab1 or a national compu-
tational cluster (see Section 3.4.1). At the end of
this section — in Subsection 3.5 — we will show

1https://colab.research.google.com/
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the results we obtained when evaluating them on
the dev set.

3.1 Preliminary experiments

To gain a greater understanding of how challenging
the tracks were, we performed four preliminary
experiments with increasing degree of complexity.

The first and most basic one consisted in an-
swering always yes, what naturally degraded the
F1 macro score, since the No and To some extent
classes were never chosen. Then, we tried using a
random classifier, which consistently yielded accu-
racy values around 33%

Additionally, before imposing ourselves the con-
straint of using lightweight models only, we wanted
to have an informed perception of how well bigger
LLMs could perform in these tracks. Therefore, we
explored both prompting a closed model via an API
and fine-tuning an open model. For prompting, the
model we chose was Gemini Flash 2.0 Lite2, us-
ing the prompt reported in the paper that presented
the dataset (Maurya et al., 2025). For fine-tuning,
we chose Llama 3.1 8B Instruct (AI@Meta,
2024), and used Low Rank Adaptation (LoRA) (Hu
et al., 2022). This experiment follows the same
methodology explained in Section 3.4.

3.2 Classical Machine Learning approaches

Among all the available algorithms in Sklearn3

we tried, those that had the best performance on
the dev set were Random Forest, SVC (Support-
vector classifier) and k-NN (k-Nearest Neighbors).
To represent the input texts we experimented with
Bag of Words and TF-IDF, trying different n-gram
ranges from n = 1 to n = 8.

Since all these algorithms have problems captur-
ing the complexities of long-context dependencies,
after some experimentation we decided to train the
models using the response text only, i.e. without
taking into consideration the full interaction be-
tween the student and the tutor. Those preliminary
experiments we did with the full interaction (i.e.
concatenating the response of the tutor to the con-
versation history) had a notably lower performance.

3.3 BERT-based approaches

We also tried BERT-based approaches. We exper-
imented with fine-tuning them, combining them

2https://deepmind.google/technologies/gemini/
flash-lite/

3https://scikit-learn.org/stable/supervised_learning.html

with classification algorithms and also with some
rules.

3.3.1 BERT for Tracks 1–4
We implemented a simple method by fine-tuning
a simple BERT model for tracks 1 through
4. Specifically, we finetuned the DistilBERT
distilbert-base-uncased variant (Sanh et al.,
2020), a compact and computationally efficient dis-
tillation of BERT with approximately 66 million
parameters.

For this experiment, we only considered the re-
sponse text as input data, without the conversation
history. We fine-tuned the model to predict each of
the target variables (mistake_identification,
mistake_location, providing_guidance,
actionability). We initially tried to fine-tune
the model in a three-class configuration, but our
experiments were unable to predict any value of the
class To some extent whatsoever, so we changed
the approach. We ended up training two-class
models, joining No and To some extent as the
negative class. After fine-tuning, we analyzed the
logit of the positive class and observed that even if
both classes were lumped together during training,
the No values actually got lower logit than the To
some extent values, which allowed us to define
thresholds to separate the three classes.

The hyperparameters in these experiments were
the number of training epochs (from 1 to 3) and
two thresholds to distinguish the frontier between
No and To some extent, and between To some
extent and Yes, which depending on the target
output could vary between -1 and +1. In this round
of experiments, we used Adam optimization with a
learning rate of 5× 10−6.

3.3.2 BERT for Track 5
In our approach to track 5, the objective was to
classify the tutor identity based once again solely
on the provided response text. For fine-tuning, the
following parameters were used: a learning rate
of 2 × 10−5, a weight decay of 0.01, a training
duration of 4 epochs, and batch sizes set to 16.

3.3.3 Sentence Embeddings
In addition to fine-tuning, we explored the use
of BERT-like models to generate sentence embed-
dings (Reimers and Gurevych, 2019), which were
then combined with classical ML methods for clas-
sification.

For tracks 1–4, we used the
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multilingual-e5-large-instruct4 model
(Wang et al., 2024), a multilingual encoder
initialized from xlm-roberta-large (Conneau
et al., 2019) (561M parameters). We generated a
sentence embedding for each example in our train-
ing partition and then used those embeddings as
input to classical classifiers: k-NN and multilayer
perceptron (MLP). For this approach we explored
three different input configurations:

• Response-only: The input consists solely of
the embedding corresponding to the response
to be evaluated.

• Response + conversation history: The input
is formed by concatenating the embedding of
the response with the embedding of the full
conversation history.

• Response + conversation history + LLM
probabilities: The input extends the previous
configuration by appending the probabilities
assigned to the three class labels by the fine-
tuned LLM (see Section 3.4).

For the k-NN classifier, we chose k = 9 based
on the performance on our dev set prior to submit-
ting predictions for the competition’s test set. For
the MLP, we used a simple model with no hidden
layer and trained it until convergence, defined as no
improvement greater than a tolerance of 1× 10−4

for 10 consecutive iterations.
For the mistake identification dimension, due to

the high class imbalance in the training data, we ap-
plied under-sampling by fitting the k-NN classifier
on a perfectly balanced subset. This subset con-
tained an equal number of examples for each class,
matching the count of the least frequent class. As
shown in Section 4, this strategy led to improved
performance. For this classifier, different values
of k for each track were chosen (mistake identi-
fication: 415; mistake location: 540; providing
guidance: 125; actionability: 96).

For track 5, we explored leveraging the Distil-
BERT model that was previously fine-tuned for di-
rect sequence classification (as described in the pre-
vious section). In this setup, the core transformer
layers (the base model, without the classification
head) of this fine-tuned DistilBERT were employed
as a feature extractor. Embeddings were generated
for the "response" texts. These DistilBERT-derived

4https://huggingface.co/intfloat/
multilingual-e5-large-instruct

embeddings were used as input features for an XG-
Boost classifier (Chen and Guestrin, 2016), which
was configured for multiclass classification corre-
sponding to the number of tutor labels.

3.3.4 BERT approach + Educated guess

Another experimental approach we tried for track
5 was to take the predictions of the BERT + XG-
Boost model and, based on the distribution of the
predicted labels, guess some tutor identities. Under
the premise that if the model predicted correctly
the majority of the time the correct tutor for a cer-
tain label, then taking the same prediction for a
label might improve the performance of the model.
Therefore, for this approach we modified the pre-
dictions of BERT + XGBoost forcing to always
classify Tutor9 as “Novice”, Tutor2 as “Mistral”
and Tutor3 as “Llama31405B”.

Unfortunately, this approach turned out to per-
form poorly in comparison to the BERT + XG-
Boost one, denoting that the labels shown in the
test dataset might not have a direct mapping with
the actual classes.

3.4 Fine-tuning autoregressive LM

In addition to using encoder-only transformers
such as BERT, we also experimented with decoder-
only LMs. For these experiments, we only fo-
cused on the first four tracks. Although these
tracks are framed as classification and are there-
fore usually better suited to encoder-only ar-
chitectures, we wanted to compare BERT-style
fine-tuned models with similarly sized, fine-
tuned autoregressive LMs. Specifically, we used
Qwen2.5-0.5B-Instruct5 (Team, 2024; Yang
et al., 2024), which has 494 million parameters
and has undergone instruction tuning.

3.4.1 Training

We performed full fine-tuning on our train partition.
Each example was converted into a prompt follow-
ing the prompt template adopted during the model’s
instruction tuning phase. The prompt (available in
Appendix A) consists of:

• System prompt: We used the same system
prompt reported in the shared-task dataset pa-
per (Maurya et al., 2025), which was also used
for LLM-based evaluation.

5https://huggingface.co/Qwen/Qwen2.5-0.
5B-Instruct
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• User message: This part contains the conver-
sation history, a task-specific rubric, and the
response to be evaluated. The rubrics are the
same as those used in the dataset paper.

• Assistant message: This consists solely of
the class label corresponding to the example
(Yes / No / To some extent).

We experimented with two different training ap-
proaches:

• Dimension-specific approach: This involves
training four separate models, each dedicated
to one of the four evaluation dimensions (mis-
take identification, mistake location, provid-
ing guidance, and actionability). Each model
is trained only on examples corresponding to
its specific dimension.

• Multi-dimension approach: This involves
training a single model using the combined
training data from all four dimensions. The
model is expected to infer the appropriate eval-
uation criteria based on the scoring rubric in-
cluded in the user message.

The multi-dimension approach may help miti-
gate the class imbalance present in certain dimen-
sions (particularly mistake identification), as the
model is exposed to a more balanced distribution
of the three class labels across different contexts.

The model was trained for three epochs with
a batch size of 8 and a learning rate set to 2 ×
10−4, using a linear scheduler with a warm-up ratio
of 0.03 and weight decay of 0.001. The training
objective was next-token prediction, the same as in
pre-training.

To train these models, we used the ClusterUY
infrastructure (Nesmachnow and Iturriaga, 2019)
with limited (and usually interrupted) access to
NVIDIA A100 and NVIDIA A40 GPUs.

3.4.2 Inference
Once the models are fine-tuned, we perform in-
ference using greedy decoding. The input prompt
includes the system prompt and the user message,
and the model is tasked with generating the assis-
tant message. Since these are classification tasks,
we perform a single forward pass and select the
class label whose first token receives the highest
logit value. Only the three candidate tokens (cor-
responding to the possible class labels) are con-
sidered, and the rest are ignored. This approach

prevents hallucinations by constraining the model
to produce one of the predefined labels.

We observed that with the previous method, the
To some extent label was often under-predicted
in favor of the Yes or No labels. To address this,
we introduced an alternative method using thresh-
olds defined separately for each dimension. We
retrained the multi-dimension model (i.e. a single
model for the first four tracks) on a subset of the
training data and used the remaining examples as
a validation set to tune the thresholds. The train-
ing/validation split was 80/20.

Using the fine-tuned model’s predictions on the
validation set, we computed the average probability
of each class, grouped by the predicted label. Based
on these statistics, we manually defined threshold
rules using only the predicted probabilities for the
Yes and No labels. Table 4 in Appendix B shows
the threshold values we chose.

3.5 Results obtained over the dev set

We evaluated all these models on the dev set and
the results are shown in Table 1.

The first observation we want to do is that even
when classical ML algorithms did not manage to
be the best in any track, they are still competitive.
Some of them even achieved good performances,
sometimes getting closer to the best model in the
track. Secondly, we want to highlight that some
sentence embeddings approaches performed better
than using the fine-tuned Llama3.1 8B that we con-
sidered in the preliminary experiments. Finally, as
expected, neural models performed the best.

Another interesting observation is that the
Llama 3.1 8B LoRA fine-tuning, a model 16
times larger than Qwen and BERT, did not achieve
significantly better results. In some dimensions,
such as providing guidance and actionability, it
even performed worse than the fine-tuned Qwen.

Overall, the best models in each track were as
follows:

• Track 1 (Mistake Identification) – Sentence
Embeddings and k-NN, using the balanced
dataset

• Track 2 (Mistake Location) – Fine-tuning Dis-
tilBERT with thresholds

• Track 3 (Providing Guidance) – Fine-tuning
Qwen using the multi-dimension approach
and thresholds
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Track 1 Track 2 Track 3 Track 4 Track 5
Approach Mistake identification Mistake location Guidance Actionability Tutor identity

F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy
Preliminary experiments
Always Yes 30.26 83.13 26.42 65.66 22.98 52.61 22.16 49.80 – –
Random 23.95 33.73 26.94 31.93 30.02 31.33 28.99 30.72 11.75 12.05
Gemini Flash 2.0 Lite 50.74 76.71 48.49 62.25 46.54 55.62 – – – –
Llama 3.1 8B (LoRA) 74.41 92.37 50.68 76.71 51.83 63.25 55.90 72.09 – –
Classical Machine Learning
RandomForest + TF-IDF (1-5)grams 71.46 90.76 47.24 74.10 44.08 60.64 52.00 64.26 70.25 69.68
RandomForest + TF-IDF (1-7)grams 60.14 87.55 40.17 60.64 40.93 52.21 42.00 58.23 69.66 68.47
RandomForest + TF-IDF (1-8)grams 71.04 90.56 46.92 74.30 44.37 60.44 50.19 62.25 68.13 66.87
SVC + TF-IDF (1-2)grams 71.82 91.37 49.26 75.50 43.10 61.04 48.42 65.06 79.16 77.71
SVC + TF-IDF (2-5)grams 60.47 88.96 43.74 73.96 40.68 60.64 40.92 60.04 74.76 73.69
k-NN (k = 7) + TF-IDF (1-2)grams 73.24 91.16 46.82 71.49 49.52 60.64 50.91 59.84 60.11 59.24
Fine-tuning DistilBERT
DistilBERT 58.37 90.76 50.30 76.91 42.24 61.24 57.01 68.47 86.51 85.94
DistilBERT (thresholds) 63.04 88.35 56.30 67.47 52.22 55.22 53.02 66.67 – –
BERT Embeddings + XGBoost – – – – – – – – 87.74 87.14
Sentence Embeddings
e5 (response) k-NN (k = 9) 74.93 91.77 48.06 76.69 47.40 58.84 48.55 58.84 – –
e5 (resp+hist) MLP 72.82 90.96 54.17 75.30 52.51 60.44 56.42 65.06 – –
e5 (resp+hist+llm) MLP 73.54 91.16 54.36 75.30 52.10 59.84 56.51 65.46 – –
e5 (resp) k-NN (balanced) 79.16 92.37 47.82 71.08 52.85 56.83 49.08 50.00 – –
Fine-tuning Qwen
Qwen (dimension-specific) 74.73 92.17 48.30 74.70 52.71 63.05 61.20 73.29 – –
Qwen (multi-dimension) 73.04 91.37 51.96 74.50 53.26 61.45 59.57 68.47 – –
Qwen (thresholds) 65.58 81.33 54.92 64.06 54.18 55.82 55.82 58.84 – –

Table 1: Results for the five tracks over our dev set. In bold, the best results according to each metric for each track.

• Track 4 (Actionability) – Fine-tuning Qwen
using the multi-dimension apporach

• Track 5 (Tutor identification) – BERT embed-
dings and XGBoost

4 Final submissions and experimental
analysis

After evaluating all the previously described mod-
els on our dev set, we chose those which had the
best performance, trying to ensure that at least one
model of each category (Classical machine learn-
ing, Fine-tuning DistilBERT, SentenceEmbeddings
and Fine-tuning Qwen) was used to predict the test
instances in most of the tracks. The classical ML
models were trained from scratch using both our
train and dev set, while the neural models were
only fine-tuned using the train set.

Table 2 shows the performance of our models in
each track, the results we obtained and the result-
ing ranking position (#). To better understand the
performance of our systems, we also considered
quartiles for each track, and they are included in
the table under the “Q” column. Taking a first look
at the quartiles, we can see that none of our models
was competitive enough to climb the rankings and
finish in the first quartile. However, we want to
highlight that in three out of the five tracks (Track1,
Track3 and Track4) our models managed to finish
in Q2.

Overall, as when evaluating on the dev set, this

Submission F1-macro Accuracy # Q
Track 1 - Mistake identification

e5 (resp.) k-NN (balanced) 65.35 84.49 56/153 Q2

Qwen (dimension-specific) 64.94 86.68 62/153 Q2

DistilBERT (thresholds) 64.30 85.20 64/153 Q2

SVC + TF-IDF 59.11 84.81 104/153 Q3

e5 (response) k-NN (k = 9) 58.39 84.36 110/153 Q3

Track 2 - Mistake location
DistilBERT (thresholds) 49.58 58.63 47/86 Q3

Qwen (multi-dimension) 49.52 70.78 49/86 Q3

e5 (resp+hist) MLP 49.40 67.36 51/86 Q3

Qwen (thresholds) 49.13 55.20 54/86 Q3

SVC + TF-IDF 45.85 70.39 72/86 Q4

Track 3 - Providing guidance
Qwen (multi-dimension) 50.49 59.47 36/105 Q2

DistilBERT (thresholds) 49.19 53.85 48/105 Q2

Qwen (thresholds) 47.53 50.36 64/105 Q3

k-NN + TF-IDF 47.41 59.21 66/105 Q3

e5 (resp+hist) MLP 47.14 57.85 71/105 Q3

Track 4 - Actionability
Qwen (dimension-specific) 61.28 70.33 42/87 Q2

Qwen (multi-dimension) 60.54 68.00 46/87 Q3

e5 (resp+hist) MLP 56.37 63.22 60/87 Q3

DistilBERT (thresholds) 52.61 64.12 68/87 Q4

RandomForest + TF-IDF 51.91 62.64 70/87 Q4

Track 5 - Tutor identification
BERT + XGBoost 83.85 84.74 27/54 Q3

DistilBERT 83.85 84.74 28/54 Q3

SVC + TF-IDF 80.44 80.22 39/54 Q3

BERT + Educated guess 68.16 68.65 42/54 Q4

Table 2: Results for the five tracks over the competi-
tion’s test data. The “#” column indicates the position
the system got in the rankings, and the “Q” column in-
dicates the quartile related to that position (splitting in
4 buckets the number of participants in each track).

time the neural models again achieved the best per-
formance among our models. Moreover, something
interesting to observe is that the fine-tuned Qwen
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Track Rank / Total Q ∆ Exact F1 ∆ Exact Accuracy ∆ Lenient F1 ∆ Lenient Accuracy
Track 1 23 / 44 Q3 71.81− 65.35 = 06.46 86.23− 84.49 = 01.74 89.57− 83.95 = 05.62 94.57− 91.92 = 02.65

Track 2 21 / 32 Q3 59.83− 49.59 = 10.24 76.79− 58.63 = 18.16 83.86− 72.00 = 11.86 86.30− 76.08 = 10.22

Track 3 17 / 35 Q3 58.34− 50.49 = 07.85 66.13− 59.47 = 06.66 77.98− 70.57 = 07.41 81.90− 77.51 = 04.39

Track 4 17 / 29 Q3 70.85− 61.29 = 09.56 72.98− 70.33 = 02.65 85.27− 82.72 = 02.55 88.37− 85.59 = 02.78

Track 5 12 / 20 Q3 96.98− 83.85 = 13.13 96.64− 84.75 = 11.89 N/A N/A

Table 3: Performance difference between our best submissions and the winners, for each task. This table was built
based on the team results, so the total number of submissions for each track is always fewer than those considered
in Table 2.

models and the BERT models got similar perfor-
mance. This seems to indicate that the generative
capabilities of Qwen are good enough to also work
as an emergent classifier.

Most of the models we used are not well-suited
for handling long contexts. This led us to ques-
tion how essential the conversation history truly
is for assessing the four evaluation dimensions, or
whether the model’s response alone is enough to
obtain good results. Therefore, we tested training
some models both with and without including the
conversation history as input. In this regard, the
most significant experiments were those using sen-
tence embeddings. These experiments show that
nearly every dimension benefits from the inclusion
of history, except for the mistake identification di-
mension, which performs notably better without it
(i.e. using only the tutor’s response). More broadly,
Qwen-based methods (which incorporate the full
conversation history) achieve the best results in pro-
viding guidance and actionability, and, in contrast,
BERT-based methods (which do not use the conver-
sation history) perform better on mistake location.
This pattern suggests that more subtle dimensions
like guidance and actionability benefit more from
access to the full conversational context. Further
experimentation is required to validate all these
preliminary observations.

Finally, while the DistilBERT with XGBoost
approach seemed to have a good performance on
our dev set, its final performance (on the test set)
was identical to that of the DistilBERT fine-tuning
model (without XGBoost). This was not the only
difference we had between our dev set and the test
set. As can be seen by comparing Tables 1 and 2,
most methods performed noticeably better on our
internal dev set than on the test set. We believe
this performance gap may be due to differences in
the class distributions between the two sets.

Furthermore, the experiment using under-
sampling to balance the classes showed a signif-
icant improvement on the test set, going from

being the worst-performing submission to being
the best one. This further highlights the impact of
class imbalance on model performance.

4.1 How far were these lightweight models
from winning?

Finally, to answer our research question, we
wanted to check how far our lightweight models
went in the shared task. Beyond the ranking posi-
tions, we wanted to focus on how big (according
to the official scores) was the gap between these
models and those that settled the state of the art,
winning the competition. In Table 3 we show the
difference (∆) — for each metric — of our best
predictions with the winner team in each track6.
As a reference, we also include our team’s position
in that track and the correspondent quartile (this
time, based on the number of teams, and not on the
number of submitted systems).

Taking a look at the table, we can see that, ac-
cording to ∆ Exact F1, the closest gap between our
performance and the winning team was 06.46 (in
Track 1), while the biggest gap was 13.13 (in Track
5). We think this difference in performance is very
small considering the restrictions we had.

5 Conclusions

In this paper we presented the RETUYT-INCO
participation at the 2025 BEA shared task, char-
acterized by our self-imposed restriction of only
using models under 1B parameters. Although our
research lab have access to cheap API LLMs and
very limited access to run 7B LLMs on clusters,
we are conscious that this is not the case for other
research labs in the Global South, that usually work

6Since the organizers considered the Exact F1 metric as
the main one, we considered as winning teams those which got
the highest score according to that metric. Therefore, for all
metrics, we calculated the ∆ according to the score achieved
by the winning team in that track. This way, even if a different
team got a better result according to other metric, we still
calculated the ∆ according to the winning team.
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in even deeper under-resourced scenarios. Our self-
imposed restriction tries to represent this scenario.

Overall, we used classical machine learning
models, BERT-based models, and a QWEN 0.5B
LLM. Despite their (very small) size we finished
in mid-ranking positions. Beyond the results in
the rankings, the result we want to highlight is
that the gaps in performance we had with the win-
ning teams were between 6.46 and 13.13 F1 exact
points.

We find that gap surprisingly small, taking into
account that we did not use LLMs bigger than 1B,
nor paid for API access, nor paid for premium
cloud computing, nor needed top-tier resources to
run our experiments. Additionally, following the
environmental concerns that surround the carbon
footprint of state-of-the-art LLMs (Luccioni et al.,
2023; Faiz et al., 2024; Liu and Yin, 2024), we
consider this an interesting tradeoff: to sacrifice
some performance, in order to have models that
do not need extensive training/inference time or
power, but that are still competent. Based on all of
the above, we think research on models that run on
low-cost GPUs — or need no GPU at all — should
definitely go on.

6 Limitations

Throughout the paper we have outlined several lim-
itations we have to run experiments with large mod-
els. These constraints led to our self-imposed re-
striction of using only neural models with fewer
than 1B parameters. Naturally, our work does not
present state-of-the-art results, nor does it intend
to. Furthermore, we prioritized breadth (i.e. trying
many model types) over depth (i.e. optimizing a
single approach or architecture extensively). While
this gives a broader perspective on the diverse pos-
sibilities that lightweight models have to offer, it
may have limited the performance ceiling of indi-
vidual models.

Regarding our methodology, we made the deci-
sion of splitting the full set into two subsets (train
and dev) considering as a priority to keep the con-
versations and their responses in the same subset.
This decision may have introduced some noise and
class imbalance, since we found remarkable differ-
ences in the performance of our models over the
dev set and the final test set (after submission).
Since the fine-tuned models and the thresholds used
were adjusted specifically to our dev set, they may
not generalize well to other similar corpora.

Finally, and related to the previous considera-
tions, we did not systematically perform hyper-
parameter tuning due to both hardware and time
limitations. Additionally, prior to our final submis-
sions, we only trained (from scratch) the classical
ML models on the full set (our train + dev sets).
Since the neural models were our best approaches,
searching better hyperparameters and training them
with more data could have made the performance
gaps a bit smaller.
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A Prompts

This Appendix presents the prompts used for
fine-tuning the decoder-only language models, as
explained in Section 3.4.

System prompt

You are a critic evaluating a tutor's
interaction with a student, responsible
for providing a clear and objective single
evaluation based on specific criteria.
Each assessment must accurately reflect the
absolute performance standards.

User message

# Previous Conversation between Tutor and
Student:
{history}

# Scoring Rubric:
{rubric}

# Tutor Response:
{response}

Mistake identification rubric

[Has the tutor identified a mistake in a
student's response?]
1) Yes
2) To some extent
3) No

Mistake location rubric

[Does the tutor's response accurately point
to a genuine mistake and its location?]
1) Yes
2) To some extent
3) No

Providing guidance rubric

[Does the tutor offer correct and relevant
guidance, such as an explanation, ela-
boration, hint, examples, and so on?]
1) Yes (guidance is correct and relevant
to the mistake)
2) To some extent (guidance is provided but
it is fully or partially incorrect or
incomplete)
3) No

Actionability rubric

[Is it clear from the tutor’s feedback what
the student should do next?]
1) Yes
2) To some extent
3) No

B Qwen Thresholds

Table 4 presents the thresholds used with the Qwen
model, as explained in Section 3.4.

Dimension Yes condition No condition TSE condition
Mistake Identification Yes > 0.90 & No < 0.05 Yes < 0.40 & No > 0.50 Otherwise
Mistake Location Yes > 0.75 & No < 0.15 Yes < 0.42 & No > 0.50 Otherwise
Providing Guidance Yes > 0.65 & No < 0.12 Yes < 0.35 & No > 0.45 Otherwise
Actionability Yes > 0.70 & No < 0.14 Yes < 0.25 & No > 0.65 Otherwise

Table 4: Threshold-based classification rules for each
evaluation dimension using Qwen. TSE = "To some
extent".
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