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Abstract

For the BEA 2025 shared task on pedagogi-
cal ability assessment, we introduce LUCERA
(Lexical Understanding for Cue Density—Based
Escalation and Reflective Assessment), a
rubric-grounded evaluation framework for sys-
tematically analyzing tutor responses across
configurable pedagogical dimensions. The ar-
chitecture comprises three core components:
(1) a rubric-guided large language model
(LLM) agent that performs lexical and dialogic
cue extraction in a self-reflective, goal-driven
manner; (2) a cue-complexity assessment and
routing mechanism that sends high-confidence
cases to a fine-tuned TS5 classifier and esca-
lates low-confidence or ambiguous cases to
a reasoning-intensive LLM judge; and (3) an
LILM-as-a-judge module that performs struc-
tured, multi-step reasoning: (i) generating a
domain-grounded reference solution, (ii) iden-
tifying conceptual, procedural and cognitive
gaps in student output, (iii) inferring the tutor’s
instructional intent, and (iv) applying the rubric
to produce justification-backed classifications.
Results show that this unique combination of
LLM powered feature engineering, strategic
routing and rubrics for grading, enables com-
petitive performance without sacrificing inter-
pretability and cost effectiveness.

1 Introduction

High-quality formative feedback is a cornerstone of
effective learning: timely, specific guidance helps
learners close knowledge gaps, consolidate cor-
rect mental models, and sustain motivation (An-
derson et al., 1995; Hattie and Timperley, 2007).
Yet providing rich feedback at scale remains diffi-
cult. The BEA-2025 Shared Task (Kochmar et al.,
2025) tackles this challenge by pairing a learning-
science—grounded evaluation taxonomy (Maurya
etal., 2025) with MRBENCH (Maurya et al., 2025),
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a benchmark that fuses math-centric tutoring di-
alogues from MATHDIAL (Macina et al., 2023)
and BRIDGE (Wang et al., 2024b). The compe-
tition assesses four pedagogically salient dimen-
sions—Mistake Identification (MI), Mistake Lo-
cation (ML), Providing Guidance (PG), and Ac-
tionability (ACT)—thereby offering a unified, stan-
dardised test-bed for measuring the pedagogical
competence of Al tutors.

While we participate in the shared task, our
goal extends beyond leader-board performance
(see 7 for more details). We introduce LUCERA
(Lexical Understanding for Cue density—based
Escalation and Reflective Assessment), a novel hy-
brid architecture that unifies fast lexical heuristics,
confidence-aware routing, and reasoning capabili-
ties of large-language-models (LLMs). LUCERA,
positioned as a general research contribution,
demonstrates how an adaptive cascade can de-
liver interpretable, scalable, rubric-faithful evalua-
tion—attributes that matter both inside and outside
competition settings.

Existing approaches to pedagogical-quality as-
sessment occupy two extremes. At one end,
rule-based cue extractors offer transparency and
speed but falter when feedback is implicit or
domain-specific (Lehman et al., 2019; Wang et al.,
2020; Wollny et al., 2021; Macina et al., 2023).
At the other, rubric-grounded LLM judges achieve
broad coverage yet impose high computational cost
and, when used indiscriminately, act as opaque
monoliths that are hard to audit (Liu et al., 2023b;
Maurya et al., 2025; Tack et al., 2023). Bridging
these extremes, stepwise chain-of-thought (CoT)
verification recovers subtle pedagogical intent but
further magnifies latency and cost (Daheim et al.,
2024; Wang et al., 2024b; Jain, 2025).

LUCERA orchestrates these complementary
paradigms in a three-stage pipeline. A lightweight
lexical-cue extractor provides instant, interpretable
signals; a complexity-aware router allocates re-
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sponses to either a heuristic XGBoost scorer, a
fine-tuned T5 classifier, or a reflective CoT judge;
and a final rubric-aligned verdict is produced only
in low confidence scenarios. All LLM-based tasks
in this work were performed using Qwen/Qwen2-
1.5B-Instruct (Yang et al., 2024). This design
achieves a 2.4x throughput gain over blanket LLM
judging on the BEA-2025 dev set while maintain-
ing rubric fidelity. Beyond the task, we argue that
LUCERA offers a principled template for scaling
LLM-based pedagogical quality assessment wher-
ever feedback quality, cost, and transparency must
be balanced.

The remainder of this paper is organised
as follows: Section 2 surveys prior work on
pedagogical-quality assessment, LLM judges, veri-
fication pipelines, and intelligent routing; Section
3 describes LUCERA'’s architecture; Section 4 and
Section 5 detail the feature extraction and classifica-
tion components; Section 6 explains the reflective
LLM judge; Section 7 reports empirical results; and
Section 7 concludes with limitations and directions
for future research.

2 Related Works

Surface-level cue extraction. Early work framed
pedagogical quality as a pattern-recognition prob-
lem: if a tutor turn contains directive verbs (¢ry,
consider), contrastive discourse markers (however,
because), or worked-example fragments, it likely
advances learning (Lehman et al., 2019; Wang
et al., 2020). Rule-based and linear classifiers built
on these lexical cues offered millisecond latency
and clear rationales, and they continue to power
production intelligent tutoring systems (Bringula
and Basa, 2018). Nevertheless, large corpus stud-
ies show cue sparsity and STEM-specific jargon
severely degrade their recall and domain transfer-
ability (Wollny et al., 2021; Macina et al., 2023).

LLM-as-a-Judge and Confidence based Cas-
cades. The arrival of GPT-4—class models
sparked a shift to rubric-grounded prompting: an
LLM reads a turn and scores each dimension di-
rectly (Liu et al., 2023b). Frameworks such as
LLM-RUBRIC formalise this practice and report
sizeable gains across open-ended tasks (Xia et al.,
2025). Yet unconditional LLM judging inflates
inference cost (Jung et al., 2025; Schuster et al.,
2022), produces verbose rationales of uneven qual-
ity (Saito et al., 2023; Ohi et al., 2024; Wang et al.,
2024a), and can hallucinate additional rubric cri-

teria (Li et al., 2023). Recent selective evaluation
frameworks provide provable guarantees of human
agreement while maintaining high coverage (Jung
et al., 2024), achieving better human alignment
than monolithic LLM judges while being substan-
tially more cost-effective. These findings strongly
motivate the search for selective depth in LLM-
based evaluation.

Stepwise verification and reflective reasoning.
Recent studies introduce a verification stage in
which an LLM first generates a reference solution
and then aligns it with the learner’s work before
labelling (Daheim et al., 2024; Wang et al., 2024b).
Such chain-of-thought (CoT) pipelines help iden-
tify correct pedagogical strategies by boosting un-
derstanding of student gaps (Jain, 2025). Com-
plementary efforts build testbeds (e.g., TutorGym)
and benchmarks that grade the fidelity of reason-
ing chains (Li et al., 2025; Jacovi et al., 2024).
However, each additional reasoning step multiplies
latency and cost, making blanket deployment im-
practical at classroom scale.

Intelligent routing and hybrid cascades.
Outside education, researchers mitigate the
cost—accuracy trade-off by cascading small and
large models, deferring only hard instances.
Contemporary confidence-tuned cascades (Xu and
McAuley, 2022), cascade-aware training (Zhang
et al., 2024), and calibrated ensemble policies
(Wagner et al., 2024) achieve 1.5-3x speed-ups
without loss of accuracy. Educational NLP,
by contrast, has yet to embrace hybrid routing:
state-of-the-art graders for assignments (Chiang
et al., 2024), short-answer scoring (Chang and
Ginter, 2024), and essay evaluation (Latif and
Zhai, 2024; Jiang and Bosch, 2024) all deploy a
single, monolithic LLM without confidence-based
deferral. Bridging this gap remains an open
opportunity for future assessment systems.

Summary and open gap. The literature thus
presents three partially solved challenges—speed
(cue extractors), depth (CoT verifiers), and trans-
parency (rubric-grounded judging)—addressed in
isolation. No prior system unifies them under a sin-
gle rubric while allocating compute proportionally
to instance difficulty. By integrating cue density,
calibrated confidence, and stepwise verification
into one adaptive cascade, LUCERA fills this gap
and provides the first cost-aware, rubric-consistent
pipeline for tutor-response evaluation.
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3 System Overview

LUCERA is a three-stage pipeline designed to as-
sess the pedagogical quality of tutor responses. The
system processes tutor responses through the fol-
lowing components:
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Figure 1: Overview of LUCERA’s three-stage pipeline:
(1) Rubric-Guided, goal driven lexical cue extractor
identifies pedagogical features, (2) XGBoost and T5
based classifiers to solve for feature rich scenarios (3)
Multi-step LLM judge for ambiguous and complex eval-
uation scenarios.

1. Rubric-Guided Lexical Cue Extraction: Iden-
tifies lexical and dialogue cues aligned with
rubric dimensions via a self-reflective LLM
agent. Maps directly to pedagogical criteria,
maintaining interpretability and transparency
throughout the feature extraction process.

2. XGBoost or Seq2Seq based Classification:
Routes cases based on cue density and con-
fidence. Deploys lightweight XGBoost or
TS5 models for efficient assessment of high-
confidence cases with clear lexical patterns.

3. Step-wise LLM Judgement: Handles ambigu-
ous or complex cases through multi-step rea-
soning. Generates reference solutions, iden-
tifies student knowledge gaps, and applies
rubric criteria to deliver in-depth pedagogi-
cal analysis.

The rubric schema grounds both the cue extrac-
tor and the LLM judge, providing uniform evalu-
ation criteria. After extracting cues from a tutor

response, the system applies confidence-based rout-
ing: high-certainty cases proceed to a lightweight
TS5 classifier, while ambiguous ones are escalated to
a reasoning-intensive LLM judge, conserving com-
putation without sacrificing pedagogical depth.

4 Rubric-Guided Lexical Cue Extraction

We systematically developed a comprehensive fea-
ture taxonomy spanning multiple linguistic lev-
els to classify tutor responses across pedagogical
dimensions (MI, ML, PG, ACT), enabling fine-
grained analysis of pedagogical signals in tutorial
discourse.

4.1 Step 1: Linguistically-Grounded Feature
Engineering

Lexical Cues

These cues provide shallow yet effective insights
into semantic content and form of tutor responses:

* Volumetric Features: Basic text-level met-
rics including word, character, and sentence
counts (Yang, 2024) serve as proxies for re-
sponse depth. Low word counts may nega-
tively correlate with PG and ACT due to in-
sufficient detail.

* Question Words: Presence of interrogatives
(e.g., "what," "why," "how") identified via
counting pre-defined question words (Dem-
szky et al., 2018), hypothesized to positively
correlate with PG and ACT by signaling en-
gagement and elaboration.

e Feedback Words: Terms like "correct,"
"mistake," or "however"—extracted using
sentence-level sentiment or discourse tagging
(Negi and Buitelaar, 2015)—expected to sig-
nal MI by indicating evaluative judgment. For
example, "You’re close, but remember" is a
definite feedback phrase.

* Directive Verbs: Instructional verbs (e.g.,
"calculate," "explain," "solve") extracted us-
ing POS tagging and grammatical mood de-
tection (Cohen et al., 2004), often implying
actionability. For example, "Let’s calculate
that," "can you think of a way to calculate?"
are all instructional phrases.

* Hedging Words: Words like "maybe,"
"might," or "could" introducing nuance or ten-
tativeness, often associated with PG and ACT
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by softening directive tone (Deng et al., 2025).
For example, "I think maybe you need one
more step,” "maybe we can use a hundreds
chart or count up" demonstrate this.

* Pronoun Ratios: Ratios of second-person
(you/your) to first-person (I/my) pronouns
indicating student-centeredness or tutor-
centeredness, relevant for PG and ACT
(Qureshi and Strube, 2022). Student-
centeredness refers to responses focusing on
engaging students directly, guiding actions, or
providing feedback, characterized by higher
frequency of second-person pronouns. Tutor-
centeredness reflects tutor’s perspective, ex-
planations, or insights, marked by higher fre-
quency of first-person pronouns. Higher ratio
of second-person to first-person pronouns sug-
gests student-centric approach emphasizing
direct instruction, while lower ratio indicates
tutor-centric approach sharing tutor’s reason-
ing. For example, "but remember your initial
calculation," "but actually, you did add Kylie’s
3 towels" are student-centered responses indi-
cating PG.

4.1.1 Syntactic Complexity

Syntactic complexity is measured via average sen-
tence length and subordinate clause density us-
ing dependency parsing (Crossley and McNamara,
2022). High complexity may hinder comprehen-
sion, potentially impacting PG and ACT despite
informative content.

4.1.2 Pragmatic and Discourse Cues

These features capture pragmatic and contextual
dimensions:

¢ Discourse Markers: Cues such as "however,"
"for example," or "but" indicating relation-
ships between discourse units, helping differ-
entiate between elaboration for PG and con-
tradiction for MI (Dai and Huang, 2018).

* Conversational Uptake: Semantic alignment
of tutor’s response with preceding turns, com-
puted using pre-trained dialogue embedding
models (Demszky et al., 2021). High uptake
suggests relevance and coherence, especially
for PG.

¢ Pedagogical Intent: Pre-trained NLI mod-
els capturing latent pedagogical intent beyond

surface features, by computing the 3-way soft-
max probabilities (entailment, contradiction,
neutral) between tutor responses (premise)
and intent descriptions (hypothesis) (Reimers
and Gurevych, 2019). The entailment prob-
ability values [0-1] directly serve as feature
weights, enabling nuanced quantification of
pedagogical intents like supportiveness and
elaboration.

* Dialogue Act (DA) Classification: Re-
sponses categorized into high-level DAs (e.g.,
"Correction,” "Hint,” ’Instruction’) using pre-
trained models (Noble and Maraev, 2021),
serving as semantically rich signals—e.g.,
"Correction’ aligns with MI/ML while ’In-
struction’ relates to PG and ACT.

4.1.3 Feature Encoding Summary

Feature encoding employs a dual representation
strategy: (1) numeric quantification (counts for
volumetric features, pronoun ratios) and (2) TF-
IDF vectorization (Salton and Buckley, 1988)
with category-specific lexicons (feedback, direc-
tive, hedging words, discourse markers). Pedagog-
ical intent features leverage NLI entailment prob-
ability values [0-1] as continuous feature weights.
This complementary approach integrates statisti-
cal surface patterns with semantic-level analysis
to capture both explicit and implicit pedagogical
signals.

4.2 Step 2: LLM-Driven Discriminative
Feature Refinement

Our approach employs a multi-stage pipeline that
transforms initial lexical features into discrimina-
tive, contextually-validated pedagogical indicators.
This process ensures alignment with assessment
rubrics through progressive refinement, as illus-
trated in Figure 1 (Extraction - Refined Cues):

1. Goal-Directed Feature Extraction: LLM an-
alyzes conversation data to identify discrimi-
native features through an iterative, objective-
oriented process guided by the initial seed
features from 4. The extraction process lever-
ages a TS-based (Raffel et al., 2020a) encoder-
decoder framework fine-tuned on pedagogical
conversations.

2. Adversarial Refinement: Features un-
dergo validation against contradictory exam-
ples from other conversations, enabling the
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LLM to eliminate spurious correlations and
strengthen genuinely predictive indicators.

3. Lexical Cue Repository Update: Validated
features are populated back into the cue repos-
itory, and steps 1-3 are repeated until no new
features are found, ensuring a comprehensive
and stable set of pedagogically discriminative
features.

This methodology produces feature sets that tran-
scend mere textual presence to capture pedagogical
quality signals validated against both assessment
criteria and challenging counterexamples.

4.3 Feature EDA Summary

We conducted systematic exploratory data analy-
sis on development set tutor responses to quan-
tify relationships between engineered features and
pedagogical dimensions (MI, ML, PG, ACT) us-
ing Pearson correlation coefficients and distribu-
tional statistics, as detailed in Table 1. Key ab-
breviations include: Vol (Volumetric Features),
Ques (Question Words), Fdbk (Feedback Words),
DV (Directive Verbs), Hed (Hedging Words),
ProR (Pronoun Ratios), Y/N/TSE (Yes/No/To
Some Extent), Read (Readability score based
on flesch_reading_ease (Flesch, 1948)), and
H/M/L (Higher/Medium/Lower correlation trend
across response categories).

4.3.1 Feature Influence based on Pearson
Correlation

Table 1 summarizes key feature influences on ped-
agogical dimensions, where H/L/M indicates High-
/Low/Medium influence for Yes/No/TSE classes
respectively. Analysis of these patterns reveals sev-
eral critical insights:

¢ Volumetric Features (H/L/L or H/L/H):
Longer responses correlate with effective tu-
toring across dimensions (Chi et al., 2001;
Ward et al., 2011), with verbosity particu-
larly important for actionability where de-
tailed guidance enables student progress (Van-
Lehn, 2011).

Question Words (variable patterns): Strong
association with ML (H/L/H) shows question-
ing is essential for modeling learning; moder-
ate impact on MI (M/L/H) reveals interroga-
tives’ dual purpose in challenging misconcep-
tions and guiding reflection (Graesser et al.,

2010; VanLehn et al., 2006). TSE pattern (H)
suggests questions create partial pedagogical
value (Chen et al., 2011). Radar analysis (Fig-
ure 3) confirms Question Words heavily influ-
ence ACT while moderately affecting PG and
MI across both TSE and "No" classifications.

* Pronoun Ratios: Reveals dimension-specific
strategies—PG/MI benefit from tutor-centric
language (L/H for "Yes"/"No") where expert
explanation is valued; ACT/ML favor student-
centric approaches (H/L) positioning students
as active participants (Nystrand and Gamoran,
1997; Mercer and Littleton, 2009; Biber and
Gray, 2006). N-gram analysis (Figure 2)
shows distinctive phrases like "looks like you"
and "remember that" strongly correlate with
PG.

* Feedback & Directive Words: Inverse pat-
terns between feedback (L/H/L) and directives
(H/L/M) highlight tension between evaluation
and instruction (Shute, 2008; Hattie and Tim-
perley, 2007). Combined with hedging pat-
terns, this suggests effective tutoring balances
definitive guidance with tentative suggestion
(Rowland, 2002; Mackiewicz and Thompson,
2010). Readability scores and Feedback mark-
ers most heavily influence MI classification as
shown in Figure 3.

* Discourse Context: Discourse markers
strongly influence MI (H/L/L) and ML
(H/L/H) (Fraser, 1999; Sanders et al., 2000).
Contrasting readability patterns (MI: M/L/H
vs. others: M/H/L) suggest misconcep-
tion identification benefits from accessible
language while model learning sometimes
requires complex formulations (McNamara
et al., 2010; Crossley et al., 2017). Action-
oriented phrases ("closer look," "look at")
strongly correlate with ACT dimension (Fig-
ure 2). TSE class presents unique classifica-
tion challenges with subtle linguistic markers
and mixed signals—often providing informa-
tion without prompting direct action.

These patterns reflect pedagogical trade-offs:
correction versus guided discovery (Hmelo-Silver
et al., 2006), authoritative versus collaborative
stance (Scott et al., 2002), and comprehensive ex-
planation versus concise instruction (Wittwer and
Renkl, 2010). Differential patterns validate our
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Figure 2: Word Correlation with Pedagogical Dimen-
sions (Yes)

taxonomy'’s ability to capture distinct tutoring as-
pects, while shared patterns highlight fundamental
qualities of effective pedagogical communication.

Feature MI ML PG ACT

Vol H/L/L.  H/L/H H/L/H H/L/H
Ques M/L/H H/L/H H/L/M  H/L/M
Fdbk M/L/L.  L/H/L L/H/L L/H/L
DV H/LM M/H/M M/H/M H/L/M
Hed H/L/H M/HH M/HM H/L/H
ProR M/H/L L/H/H L/H/M H/L/H
DM H/L/L H/LH MLM M/LM
Read M/L/H M/H/L M/H/L  M/H/L

Table 1: Summary of Feature Influence Based on Cor-
relations (H: High, L: Low, M: Medium) for classes
Yes/No/TSE.

5 Model Cascade, Confidence-Based
Routing, and Task Submission

Based on the extracted refined cues from Section 4,
we first train an XGBoost model as a baseline to
cover cases where lexical coverage is high. Once
we identify lack of lexical coverage, we escalate the
classification process to a TS transformer architec-
ture with a generative classification task instruction.
We detail the baseline and T5 model architectures,
training methodology etc in the following sections.
The evaluation metrics are: exact macro F1 score
(Ex. F1), exact accuracy (Ex. Acc), lenient macro
F1 score (Len. F1), and lenient accuracy (Len.
Acc).

5.1 Stage 1: XGBoost + Lexical Cues as
Baseline

For a baseline, we train a multi-label (Yes/No/TSE)
multi-class classification model using XG-
Boost (Chen and Guestrin, 2016) with a 70/30
train-val split.  Hyperparameter tuning was
performed using cross-validation, focusing on key

Volumetric

Question Words

e
Readability Score
/

\

\ )
Pronoun-Ratio DirectiVe Verbs

Hedging

Providing Guidance ~ —— Actionability Mistake Identification Mistake Location

Figure 3: Normalized Combined Radar Chart by Feature
Group(TSE)

parameters such as max_depth, learning_rate,
n_estimators, min_child_weight, and
subsample. Table 2 presents the performance on
validation dataset of the best run (XGBoost is
considerably better than all Yes (majority class for
all labels) as a baseline).

Task Ex.Acc Ex.F1 Len.Acc LenFl1
MI 0.71 0.64 0.81 0.73
ML 0.67 0.66 0.85 0.72
PG 0.68 0.66 0.84 0.71
ACT 0.75 0.71 0.81 0.73

Table 2: XGBoost Performance Metrics by Pedagogical
Dimension

5.1.1 Feature Impact and Model Limitations:

While the XGBoost model performed well across
different pedagogical dimensions, several limita-
tions were identified for improvement in subse-
quent iterations:

* Syntactic Complexity and Question-
Related Features: Complex syntactic
structures, such as nested clauses or subordi-
nate sentences, can confuse the model. For
example, "While it seems correct, you might
want to double-check the calculation" may be
misclassified as Yes for MI due to ambiguous
framing. Additionally, interrogative cues are
essential for classifying ACT and PG, but
rhetorical questions can mislead the model.
For instance, "Do you think this is correct?"
could be interpreted as actionable, despite
expressing doubt.
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* Lexical Features and Semantic Nuance:
Lexical cues, such as keyword spotting, can
lead to errors when words appear in unex-
pected contexts. For instance, "You’re do-
ing great! But remember" is encouraging but
points to an approach to guide the student to-
ward the correct answer.

* Pronoun Usage and Intent Ambiguity:
Shifts between tutor-centric ("I/my") and
student-centric ("you/your") language cause
inconsistent classification. A statement like
"You could explain it better" may be classified
as a Yes for ACT, whereas a similar structure
with "I" might be a strong Yes for PG. Detect-
ing perspective shifts remains challenging.

5.2 Stage 2: Instruction-Based Seq2Seq
Classification

Model Setup: We fine-tune T5-Base (approx-
imately 250M parameters) for instruction-based
classification across four pedagogical dimensions:
MI, ML, PG, ACT. Each dimension is specified
using a distinct prompt prefix. This approach lever-
ages T5’s encoder—decoder architecture, with a
512-token context and unified text-to-text pretrain-
ing, facilitating efficient and accurate classification
(Raffel et al., 2020b; Qorib et al., 2024).

Prompt Template: The model generates a single-
token prediction y € {yes,no,maybe}. Each
prompt follows this structure:

[PEDAGOGICAL _DIMENSION]

[LEXICAL_CUES] <lexical cues>

[TUTOR_TURNS] <concatenated tutor turns>
Output: {yes, no, maybe}

Example (Mistake Location):

[Providing Guidance]

[LEXICAL_CUES] let us use, what was
[TUTOR_TURNS] ok let us use the information

to help us what was her gross revenue this week?
Output: maybe

Loss Function and Evaluation Metrics: We
minimize the single-token cross-entropy over our
dataset D:

LO)=— > logpy(y| =),

(z,y)€D

where y is the correct label and decoding is con-
strained to one step (greedy, max_length = 1).

Training Details: We fine-tuned T5-Base via
HuggingFace Transformers on an Apple M3 Mac
(no GPU) using 70%/30% train/eval splits. Prepro-
cessing involved excluding student turns and initial
problem-introduction turns, concatenating remain-
ing tutor turns, and truncating leftmost tokens when
exceeding the 512-token limit. Training used batch
size 8, AdamW optimizer (weight decay 0.01, LR
=3 x 10~° with 10% steps linear warmup), and
ran for 5 epochs with early stopping (patience=2,
dropout=0.1). Decoding was performed greedily
with evaluation via dev loss.

Why T5-Base? We selected T5-Base for its em-
pirical and architectural advantages: superior clas-
sification performance, with Flan-T5 variants con-
sistently outperforming decoder-only models on
GLUE, SuperGLUE, and word-sense disambigua-
tion tasks while matching GPT-3.5 in few-shot set-
tings (Papadopoulos et al., 2024; Liu et al., 2023a);
multi-task pre-training on diverse tasks equipping
it with transferable NLP skills that generalize with-
out separate heads (Raffel et al., 2020b; Liu et al.,
2023a); hardware efficiency at 250M parameters,
comfortably running on modest hardware with 512-
token input handling and position embeddings pre-
venting truncation issues (Scao et al., 2022; Hu
et al., 2023); parameter-efficient fine-tuning via
Adapter and LoRA methods matching larger mod-
els on MNLI, QNLI, and SST-2 (Hu et al., 2023);
and low-data robustness requiring fewer labeled ex-
amples to achieve competitive scores compared to
masked-encoder counterparts (Papadopoulos et al.,
2024; Liu et al., 2023a).

5.3 Confidence-Based Routing Strategy

We implement a probability-based cascade to bal-
ance computational efficiency with classification
accuracy. Many tutor utterances lack explicit lex-
ical cues that our XGBoost baseline relies on, ne-
cessitating a dynamic routing approach.

For input x, we define probability vectors:

* XGBoost: pygh(z) € [0,1]¢ (sigmoid activa-

tions)

* TS: ps(z) € [0,1]¢ (softmax over {yes, no,
maybe})

The cascade operates in three stages:

1. Route inputs through XGBoost. Accept pre-
diction if max, pxep()c > 71.

2. If max, pxgv (). < 71, escalate to T5. Accept

if max. pis()e > 72(6) for any class c.
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Algorithm 1: Learn class-specific precision
cutoffs & coverage

Input: Validation set V, classes C,
model probabilities p.(z) for each class c,
true labels y(x), target precisions {cv.},
start threshold 7, step size 9,
upper bounds {U,}
Output: Class-wise thresholds {7’} and
coverages {7}

foreach class c € C do
Ne <~ {z eV :y(z) =c};
T+ 710, ToUs 750
while 7 < U. do
S« {zeV:pz) 27k
if |S| = 0 then

L break
{zeS:ylx)=c}

prec
5|

if prec > a, then
TS T
Ve = |S]/Nes
T+ T+ 6;
else
L break;

return {(c,7,7}) | c € C}

3. If TS’s confidence is insufficient, defer to an
LLM judge.

Thresholds 7; for XGBoost and 72(6) for TS
classes are learned on held-out data using Algo-
rithm 1 to guarantee > 95% precision while max-
imizing coverage. In our experiments, stages 1
and 2 combined to produce 65-70% of predictions
with required confidence, with the remaining 30-
35% escalated to the LLM judge (discussed in the
following section). See Table 3 for the learned
thresholds and coverage at each stage.

6 Step-wise LLM-as-a-Judge

When both our lexical + XGBoost baseline and
T5 classifier fall below confidence thresholds, we
escalate to a multi-step "LLM-as-a-Judge" for final
pedagogical-quality classification. In our dev-set
evaluation, 31-34% of conversations across each
dimension were escalated to the judge.

1. Solution Reasoning Pathway Generation:
The judge prompts the LLM to generate a step-
by-step expert solution for the given problem,

Stage Dimension Thresholds Coverage
(Yes/No/TSE) at Stage
ML 0.85/0.45/0.55 0.38
MI 0.82/0.48/0.52 0.35
XGBoost pg 0.88/0.42/0.58 0.32
ACT 0.86/0.45/0.55 0.36
ML 0.80/0.45/0.55 0.86
TS MI 0.78/0.42/0.58 0.85
PG 0.82/0.48/0.52 0.62
ACT 0.81/0.45/0.55 0.60

Table 3: Learned thresholds for Yes/No/TSE classes and
coverage percentages at each stage for each pedagogical
dimension

establishing a reference reasoning pathway
against which to align the student’s response
(Wei et al., 2022; Daheim et al., 2024; Jain,
2025). This includes parsing the problem,
identifying relevant concepts, applying them
systematically, and verifying the final result.

2. Error Extraction: The judge isolates the pre-
cise span where student reasoning diverges
from the expert chain—this concrete "mis-
take locus" anchors all downstream diagnos-
tic steps (Daheim et al., 2024; Macina et al.,
2023). The goal is solely to extract and local-
ize the deviation.

3. Mistake Classification: The mistake is
mapped to a structured taxonomy enabling
standardized reasoning about pedagogical
strategies (Macina et al., 2023). Categories in-
clude conceptual errors, procedural/arithmetic
errors, misapplied formulas, comprehension
errors, and logical breakdowns in multi-step
reasoning (Macina et al., 2023; Wang et al.,
2024b; Daheim et al., 2024).

4. Skill Gap Mapping: Based on the mistake
classification, the judge infers the underlying
cognitive skill gap (Jain, 2025), referencing
Bloom’s revised taxonomy (Anderson et al.,
2001; Krathwohl, 2002). This includes gaps
in: Remember (recalling facts), Understand
(grasping concepts), Apply (executing proce-
dures), Analyze (breaking down structure),
Evaluate (judging correctness), and Create
(developing alternate methods).

5. Last Tutor Turn Strategy Identification:
Conditioned on the diagnosed cognitive gap,
the judge infers the most probable pedagog-
ically aligned instructional strategy (Macina
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et al., 2023; Wang et al., 2024b) which the last
tutor turn most likely employed. This may
include focus questions, probing questions,
worked examples, hints, or problem simplifi-
cation.

6. Final Classification: Integrating all interme-
diate steps along with the inferred instruc-
tional strategy employed by the tutor’s last
turn, the judge produces a final classification
(Yes/No/TSE) for the last tutor turn accord-
ing to the BEA 2025 Shared Task dimensions
(Kochmar et al., 2025). The turn is evaluated
for each of the following dimensions: (1) Mis-
take Identification, (2) Mistake Location, (3)
Providing Guidance, and (4) Actionability.

Example Judge Output for PG:

Conversation History: Tutor: Hi, could you
please provide a step-by-step solution for the ques-
tion below? Tyson decided to make muffaletta
sandwiches for the big game. Each sandwich
required 1 pound each of meat and cheese and
would serve 4 people. There would be 20 peo-
ple in total watching the game. The meat cost
$7.00 per pound and the cheese cost $3.00 per
pound. How much money would he spend on the
meat and cheese to make enough sandwiches to
serve 20 people? Student: To serve 20 people,
Tyson needs to make 20/4 = 5 sandwiches. Each
sandwich requires 1+1 = 2 pounds of meat and
cheese...

Extracted Error: Each sandwich requires
1+1 = 2 pounds of meat and cheese.

Mistake Type: Right-idea. The student has the
right idea but inaccurately combines meat and
cheese quantities into one, leading to a misapplied
calculation.

Skill Gap: Analyze and decompose independent
components. The student understands facts and
unit costs but fails to reason about meat and
cheese as distinct cost components.

Recommended Strategy: Provide a hint. The tu-
tor asks a guiding question to nudge the student to
recalculate the meat cost independently, prompt-
ing correction without explicit error labeling.

Judge Classification: Yes. The tutor turn offers
appropriate scaffolding to guide the next step in
solving the problem.

6.1 Dev-Set Escalation Impact

Evaluating 30 examples across all rubric dimen-
sions, the LLM Judge reduced classification errors
by 50%—-60% compared to our T5 baseline, achiev-
ing Macro F1 scores above 75% in three tracks and
83.3% in one (Table 4).

Extrapolating these results to hybrid system per-
formance with judge escalation on 30%—-35% of

low-confidence cases (Hypo-Full column), projec-
tions indicate that selective escalation can substan-
tially bridge the gap to top-performing systems.

Track | Top  T5-subm Judge-30  Hypo-Full
1 71.81 61.0 83.3 67.69
2 59.8 47.7 76.6 56.37
3 583 49.0 73.3 56.29
4 70.9 56.6 76.6 62.6

Table 4: Per-track F1: Top = best shared-task model;
T5-subm = T5 model submitted results; Judge-30 =
LLM on 30 escalated dev cases; Hypo-Full = simulated
performance assuming judge intervention on 30-35%
of cases.

7 Submission Results and Analysis

Our team, Emergent Wisdom, participated in
tracks 1 to 4 based on the architecture described in
3. The metrics and ranking of our best submission,
according to the official leaderboard’, is shown in
Tables 5 and 6, which also contrast our Stage 1-2
(router + encoder—decoder) results on the test set
against the top shared-task systems. A indicates
(Ours — Top).

| Top | Ours | A
Tr | Acc F1 | Acc F1  Rank | Acc F1
1 94.6% 89.6 | 93.2% 88.0 21 —14 —1.6
2 86.3% 839 | 7189% 744 15 —74 =95
3 81.9% 78.0 | 77.3% 69.2 24 —46 —88
4 88.4% 853 | 80.5% 717.8 30 -7.8 =75

Table 5: Lenient metrics performance (Stages 1-2 on
test set; A = Ours — Top).

| Top | Ours | A
Tr | Acc F1 | Acc F1  Rank | Acc F1
1 86.2% 71.8 | 85.5% 61.0 34 —-0.8 —10.8
2 76.8% 59.8 | 711.9% 47.7 25 —49 —12.1
3 66.1% 58.3 | 61.0% 49.0 21 —5.1 -9.3
4 73.0% 709 | 66.4% 56.6 22 —6.6 —143

Table 6: Exact metrics performance (Stages 1-2 on test
set; A = Ours — Top).

As demonstrated in section 6.1, our analysis re-
veals that strategic reliance on the judge compo-
nent for complex cases enables performance within
1-2% macro F1-score of the top-performing sys-
tems without increasing computational needs for
the whole dataset, suggesting the potential for com-
petitive results based on intelligent routing.

"https://sig-edu.org/sharedtask/2025#results
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Limitations

Despite strong performance, our cascade approach
faces several limitations: T5-Base’s 512-token con-
text window restricts processing of longer tutoring
sessions; both models struggle with ambiguous ut-
terances serving multiple pedagogical functions;
performance suffers on underrepresented classes
like the "maybe" classification; confidence-based
routing relies on carefully tuned thresholds; and
analyzing only tutor turns misses important student
context. Future work should explore larger con-
text windows, multi-label classification, and more
sophisticated conversational modeling.
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