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Abstract

As Large Language Models (LLMs) are
increasingly deployed in educational envi-
ronments, two critical challenges emerge:
identifying the source of tutoring responses
and evaluating their pedagogical effectiveness.
This paper presents Phaedrus’ comprehensive
approach to the BEA 2025 Shared Task,
addressing both tutor identity classification
(Track 5) and actionability assessment (Track
4) in mathematical tutoring dialogues. For
tutor identity classification, we distinguish
between human tutors (expert/novice) and
seven distinct LLMs using cross-response
context augmentation and ensemble tech-
niques. For actionability assessment, we
evaluate whether responses provide clear
guidance on student next steps using selective
attention masking and instruction-guided
training. Our multi-task approach combines
transformer-based models with innovative
contextual feature engineering, achieving
state-of-the-art performance with a CV macro
F1 score of 0.9596 (test set 0.9698) for
identity classification and 0.655 (test set Strict
F1 0.6906) for actionability assessment. We
were able to score rank 5th in Track 4 and
rank 1st in Track 5. Our analysis reveals that
despite advances in human-like responses,
LLMs maintain detectable fingerprints while
showing varying levels of pedagogical ac-
tionability, with important implications for
educational technology development and
deployment. Our code and implementation
details are publicly available at https:
//github.com/Rajneesh-Tiwari/
BEA_2025_shared_task.

1 Introduction

The integration of Large Language Models
(LLMs) into educational environments has cre-
ated new opportunities and challenges for tutor-
ing systems. As AI-powered tutors become in-
creasingly prevalent, two fundamental questions
emerge: (1) Can we reliably identify the source

of tutoring responses to ensure transparency and
accountability and (2) How effectively do these re-
sponses guide students toward learning objectives
(Kochmar et al., 2022)

The BEA 2025 Shared Task (Kochmar et al.,
2025) addresses these critical questions through
two complementary tracks. Track 5 challenges
participants to classify the source of mathemati-
cal tutoring responses, distinguishing between hu-
man tutors (expert and novice) and seven different
LLMs: Gemini, GPT-4, Llama3-405B, Llama3-
8B, Mistral, Phi3, and Claude Sonnet. Track 4
focuses on evaluating the actionability of these
responses—whether they provide clear guidance
on what students should do next, a crucial factor
in effective pedagogical feedback (Daheim et al.,
2024).

These tasks are inherently related: understand-
ing who generated a response and how actionable
it is provides a comprehensive view of educational
dialogue quality. Our hypothesis is that different
tutors (human or AI) not only leave distinctive lin-
guistic fingerprints but also demonstrate varying
capabilities in providing actionable guidance. This
multi-dimensional analysis offers insights into the
current state of AI tutoring systems and their ped-
agogical effectiveness compared to human tutors.

Our team (Phaedrus) approach leverages
transformer-based models enhanced with task-
specific innovations. For identity classification,
we implement cross-response context augmen-
tation, allowing models to compare different
responses to the same question, and use spe-
cialized attention masking to focus on response
characteristics. For actionability assessment,
we develop instruction-guided training with
selective attention mechanisms that focus on
response-specific features indicating clear guid-
ance. Both tasks benefit from sophisticated
ensemble techniques and constraint satisfaction
post-processing.
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This paper presents our top-ranked systems for
both tracks, describing our unified methodology,
training strategies, and comprehensive analysis of
results. Our findings demonstrate that while LLMs
are becoming increasingly sophisticated in gener-
ating human-like responses, they still exhibit de-
tectable patterns that distinguish them from human
tutors, and they show varying capabilities in pro-
viding actionable pedagogical guidance.

2 Related Work

Recent research in educational dialogue assess-
ment has focused on multiple dimensions of qual-
ity evaluation. Tack and Piech (2022) intro-
duced a framework for evaluating LLM-based tu-
tors across three dimensions: whether they speak
like a teacher, understand a student, and help a stu-
dent. Building on this work, Tack et al. (2023)
organized shared task on generation of teacher re-
sponses in educational dialogues. The goal of the
task was to benchmark the ability of generative
language models to act as AI teachers, replying to
a student in a teacher-student dialogue using exist-
ing automatic metrics (e.g., BERTScore (Zhang*
et al., 2020), DialogRPT (Gao et al., 2020)) and
manual evaluation aligned with the proposed di-
mensions, highlighting ongoing challenges in the
reliable assessment of pedagogical dialogue qual-
ity.

2.1 Tutor Identity and AI Detection

The challenge of distinguishing between hu-
man and AI-generated text has established sev-
eral foundations. Guo et al. (2023) demon-
strated that transformer models effectively iden-
tify LLM-generated text through distinctive lin-
guistic patterns, performing linguistic analysis to
identify patterns between ChatGPT and human ex-
pert responses. In educational contexts specifi-
cally, Chen et al. (2024) introduced Dr.Academy,
a benchmark for evaluating LLMs’ questioning
capabilities across general, humanities, science,
and interdisciplinary educational domains, reveal-
ing that different models demonstrate varying
strengths and distinctive patterns.

Our work extends these approaches by address-
ing a more complex classification problem: dis-
tinguishing not just between human and AI re-
sponses, but between multiple specific AI models
and different types of human tutors in educational
contexts.

2.2 Actionability and Pedagogical
Effectiveness

The assessment of pedagogical effectiveness in
tutoring responses has gained increasing atten-
tion. Macina et al. (2023) introduced MathDial,
a dataset for mathematical tutoring dialogues, and
evaluated tutor responses using coherence, cor-
rectness, and equitable tutoring criteria. Wang
et al. (2024) assessed tutoring responses based on
usefulness, care, and human-likeness, providing
additional dimensions for evaluation.

Most relevant to our actionability assessment,
Daheim et al. (2024) introduced a framework for
evaluating tutoring responses that includes action-
ability as a key criterion, defining it as whether a
response makes it clear what the student should do
next. Their findings suggest that even state-of-the-
art LLMs struggle to consistently provide action-
able guidance in educational contexts.

2.3 Technical Approaches

For student response evaluation, Fateen and Mine
(2023) compared in-context meta-learning and se-
mantic score-based similarity approaches for au-
tomated short answer grading in Arabic, demon-
strating different computational approaches to
evaluating student responses. Additionally, Mau-
rya et al. (2025) developed a comprehensive eval-
uation taxonomy for assessing LLM-powered AI
tutors, highlighting distinctive features in AI-
generated pedagogical interactions.

Our work builds upon these foundations while
introducing novel techniques specifically tailored
to both identity classification and actionability
assessment in educational dialogues, including
cross-response context augmentation, constraint
satisfaction optimization, and instruction-guided
training approaches.

3 Dataset and Task Overview

Both tracks utilize a unified dataset of mathemati-
cal tutoring dialogues (Maurya et al., 2025) com-
bining MathDial (Macina et al., 2023) and Bridge
(Wang et al., 2024) datasets with 300 development
dialogues. Track 5 requires classifying responses
into nine tutor categories (human expert/novice
and seven LLMs), with each conversation contain-
ing unique tutor identifications. Track 4 evalu-
ates response actionability using three categories
(Yes/To some extent/No). Both tasks use exact
macro F1 score as the primary evaluation metric.
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4 Methodology

Our team (Phaedrus) approach combines multi-
ple transformer-based models with task-specific
architectural enhancements and ensemble tech-
niques. We develop a unified framework that
addresses both tutor identity classification and
actionability assessment while leveraging shared
components and complementary innovations.

4.1 Base Model Architecture

The core of our system utilizes several transformer
variants, each selected for specific strengths in ed-
ucational dialogue analysis:

• DeBERTa-v3-large (He et al., 2023): 24 lay-
ers, 1024 hidden size, 304M parameters

• DeBERTa-v3-base (He et al., 2023): 12 lay-
ers, 768 hidden size, 86M parameters

• DeBERTa-v3-small (He et al., 2023): 6 lay-
ers, 768 hidden size, 44M parameters

• Longformer-base-4096 (Beltagy et al.,
2020): 12 layers, 768 hidden size, 149M
parameters, with efficient attention for long
sequences

• BigBird-RoBERTa-large (Zaheer et al.,
2021): 24 layers, 1024 hidden size, 340M pa-
rameters, with block sparse attention

• Qwen-2.5-0.5B (Qwen et al., 2025): 24 lay-
ers, 1024 hidden size, 0.5B parameters, fea-
turing advanced positional embeddings and
multi-query attention

• Zephyr-7B-alpha (Tunstall et al., 2023): 32
layers, 4096 hidden size, 7B parameters,
based on Mistral architecture with sliding
window attention

4.2 Shared Architectural Enhancements

Both tasks benefit from several common architec-
tural innovations:

Response Tokenization and Selective Atten-
tion: We added special tokens [R START] and
[R END] to explicitly mark tutor response bound-
aries. This enables custom attention masking that
zeros out attention weights for tokens beyond the
[R END] marker, forcing models to focus specif-
ically on response content rather than surrounding
context.

Generalized Mean (GeM) Pooling: Instead
of standard mean pooling, we implemented GeM
pooling with a learnable parameter p to compute
sequence-level representations. Given a sequence
of hidden vectors x = {x1, x2, . . . , xn}, where
each xi ∈ Rd is the hidden representation of the i-
th token and n = |x| is the sequence length, GeM
pooling is defined as:

GeM(x) =

(
1

n

n∑

i=1

xpi

)1/p

(1)

Here, the exponentiation and root are applied
element-wise, and p ∈ R is a learnable parameter
that controls the sharpness of the pooling opera-
tion.

Multi-Sample Dropout: Inspired by (Inoue,
2020), we implemented multi-sample dropout
with varying rates (0.2 to 0.27) applied to the same
representation, then averaged the results. This acts
as an implicit ensemble, reducing variance without
additional computational cost.

4.3 Task-Specific Innovations
4.3.1 Track 5: Identity Classification

Enhancements
For tutor identity classification, we developed sev-
eral specialized techniques:

Cross-Response Context Augmentation:
Rather than treating each response in isolation,
we concatenate all available responses to the
same question from different tutors, creating rich
comparative context. This allows models to learn
distinctive patterns by seeing how different tutors
address identical student queries.

Constraint Satisfaction Post-processing: We
formulated the response classification task as a
constraint satisfaction problem to ensure that each
class is assigned at most once per conversation, re-
flecting the assumption that a tutor identity should
not repeat in a single dialogue.

Let c denote a conversation with a set of re-
sponses Rc = {r1, r2, . . . , rn}, and let pr,j rep-
resent the predicted probability that response r ∈
Rc belongs to class j, where j ∈ {0, 1, . . . , 8}.
Total there are 9 classes starting from 0 to 8 where
class ”0” is considered as ”novice”. We define bi-
nary decision variables xr,j ∈ {0, 1} indicating
whether response r is assigned to class j. The ob-
jective is to maximize the total assignment con-
fidence while satisfying the uniqueness constraint
per class within each conversation:
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maximize
∑

c

∑

r∈Rc

8∑

j=0

pr,j · xr,j (2)

subject to
8∑

j=0

xr,j = 1 ∀r ∈ Rc (3)

∑

r∈Rc

xr,j ≤ 1 ∀j ∈ {0, . . . , 8},∀c

(4)

xr,j ∈ {0, 1} (5)

We opted for a greedy algorithm due to its prac-
tical efficiency and implementation simplicity. By
prioritizing responses with the highest prediction
confidence and assigning them the most probable
unassigned class, the method effectively resolves
assignment conflicts with minimal computational
cost. Empirical results show that this approach im-
proves macro F1 scores by 2–3%, highlighting its
effectiveness in enforcing consistent class assign-
ments within conversations.

Algorithm 1 Constraint Satisfaction Algorithm

1: for all conversations c do
2: Ac ← ∅ ▷ Set of already assigned classes

in conversation c
3: Sort responses r ∈ Rc by maxj pr,j in de-

scending order
4: for all response r in sorted order do
5: ĵ ← argmaxj /∈Ac

pr,j ▷ Best
unassigned class

6: Assign class ĵ to response r
7: Ac ← Ac ∪ {ĵ}
8: end for
9: end for

4.3.2 Track 5: Meta-Model Ensemble with
Pseudolabeling

Our Track 5 ensemble combines six transformer
models through a sophisticated meta-modeling
pipeline and was able to achieve 1st position Ta-
ble 1:

1. Base Model Predictions: We collect class
probability outputs from all six transformer
models (54 features total)

2. Feature Enhancement: We augment with
TF-IDF vectors, count vectors, linguistic fea-
tures, and math-specific markers

3. Gradient Boosting: We train LightGBM,
XGBoost, and CatBoost models on combined
features

4. Pseudolabeling: High-confidence test pre-
dictions (probability > 0.85) are added to
training data with constraint satisfaction

5. Voting: Final predictions use weighted vot-
ing across all meta-models

4.3.3 Track 4: Actionability Assessment
Enhancements

For actionability assessment, we implemented
instruction-guided training:

Actionability Criteria Instruction: We incor-
porated explicit actionability assessment criteria
directly into model input:

Instruction: Analyze the tutor’s
response and determine if it
provides actionable guidance to the
student.

Classification Rules:
- Label as "Yes" if the response gives

specific, clear instructions on what
to do next

- Label as "To some extent" if the
response hints at needed action but
lacks specificity

- Label as "No" if the response only
provides the answer without guidance

Remember: Focus on whether the response
guides the student’s next steps, not
just whether it’s correct.

4.3.4 Track 4: Optimized Weighted
Ensemble

For Track 4, we developed a streamlined ensemble
approach:

1. Model-Level Weighting: Global weights for
each model applied to all class probabilities

2. Model-Class Weighting: Individual weights
for each model-class combination (12
weights total)

3. Threshold Optimization: Class-specific
probability thresholds to address class imbal-
ance

4. Hyperparameter Optimization: Optuna-
based optimization using macro F1 as the tar-
get metric
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Table 1: Task 5 Leaderboard: Identity Classification

Rank Team Ex. F1 Ex. Acc
1 Phaedrus 0.9698 0.9664
2 SYSUpporter 0.9692 0.9657
3 Two Outliers 0.9172 0.9412
4 JInan Smart Education 0.8965 0.8940
5 BLCU-ICALL 0.8930 0.8908

4.4 Training Strategy
Our team (Phaedrus) training strategy incorpo-
rated several techniques to maximize performance
across both tasks:

Cross-Validation: We employed 5-fold Strati-
fied Group K-Fold cross-validation, ensuring dia-
logues from the same conversation ID remained in
the same fold to prevent data leakage while main-
taining class distribution.

Hyperparameter Configuration: We used
AdamW optimizer with weight decay of 0.003,
learning rates ranging from 1e-5 to 3e-5 depending
on model size, and OneCycleLR scheduler with
maximum learning rate reached at 30% of training
steps. For larger models, we implemented gradient
accumulation with effective batch sizes of 16-32.

Task-Specific Input Formatting: To maxi-
mize ensemble diversity, we designed distinct in-
put templates for different model architectures,
each optimized for their specific attention mech-
anisms and training paradigms:

BERT-family Models (DeBERTa, Longformer,
BigBird):
[Question] + [SEP] + [R_START] + [

Response] + [R_END] + [SEP] + [
Context]

Structured format with explicit token boundaries
for enhanced attention control

Qwen-2.5 Model:
Track 5: Question: [Question]; Answer: [

Response]; Context: [Context]
Track 4: Question: [Question]; Response:

[Response]

Natural language format optimized for
instruction-following capabilities

Zephyr-7B Model:
Question: [Question]; Answer: [Response]

Parameter-Efficient Fine-tuning: For larger
models, we utilized Low-Rank Adaptation
(LoRA) with model-specific configurations:

Qwen-2.5 used rank=256/alpha=512 (Track 4)
or rank=64/alpha=128 (Track 5), while Zephyr
used rank=16/alpha=32. Models were quantized
to 4-bit or bfloat16 precision to reduce memory
requirements.

Early Stopping and Regularization: We im-
plemented early stopping based on validation
macro F1 score with patience of 3 epochs.
Dropout rates were set to 0.1 for base models, with
multi-sample dropout providing additional regu-
larization through ensemble-like averaging.

5 Experiments and Results

5.1 Experimental Setup

We trained our models using 5-fold cross-
validation with early stopping based on validation
macro F1 score. Each model was trained for 25
epochs using AdamW optimizer with weight de-
cay of 0.003 and OneCycleLR scheduler.

5.2 Track 5: Tutor Identity Classification
Results

Table 2 presents the performance of our identity
classification system.

Our Track 5 system achieved a macro F1 score
of 0.9596, securing rank 1st 1 in the competition
leaderboard. The results demonstrate several key
findings:

1. Cross-Response Context provides the
largest individual contribution, confirming
that comparative information between dif-
ferent tutor responses is highly valuable for
distinguishing tutor identities.

2. Pseudolabeling adds consistent improve-
ment across all classes, with the largest gains
for classes with fewer training examples.

3. Ensemble Diversity proves crucial, as each
model contributes uniquely to final perfor-
mance.
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Model Val Macro F1 Val Accuracy LB Macro F1 LB Accuracy

DeBERTa-v3-base 0.8971 0.8901 NA NA
DeBERTa-v3-large 0.8995 0.8914 NA NA
Longformer-base 0.8945 0.8865 NA NA
BigBird-RoBERTa-large 0.8761 0.8671 NA NA
Qwen-2.5-0.5B 0.8938 0.8869 NA NA
Zephyr-7B-alpha 0.8811 0.8740 NA NA

LightGBM meta-model 0.9226 0.9172 0.9250 0.9263
+ Pseudolabeling 0.9585 0.9547 0.9604 0.9619
Final Ensemble 0.9596 0.9560 0.9698 0.9664

Table 2: Track 5 performance on validation set using 5-fold cross-validation and leaderboard results

Table 3: Task 4 Results: Actionability Assessment

Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc
1 bea-jh 0.7085 0.7298 0.8527 0.8837
2 BJTU 0.6992 0.7363 0.8633 0.8940
3 MSA 0.6984 0.7537 0.8659 0.8908
4 lexiLogic 0.6930 0.7162 0.8393 0.8675
5 Phaedrus 0.6907 0.7298 0.8346 0.8656

5.3 Track 4: Actionability Assessment
Results

Table 4 presents the performance of our action-
ability assessment system.

Our Track 4 system achieved a macro F1 score
of 0.655, securing 5th Table 3 place on the com-
petition leaderboard. The results reveal:

1. Model-Class Weighting outperforms simple
model-level weighting, suggesting different
models have strengths for different action-
ability categories.

2. Instruction Guidance significantly im-
proves model understanding of actionability
criteria.

3. Middle Category Challenge: The ”To some
extent” category shows lower performance,
reflecting inherent ambiguity in partial ac-
tionability.

5.4 Feature Importance Analysis

Figure 1 shows feature importance from our Track
5 LightGBM meta-model, revealing model-class
specialization patterns.

The analysis reveals that different architectures
excel at detecting specific tutor identities, validat-
ing our multi-model ensemble approach. Each

LLM leaves distinct ”fingerprints” detectable by
specialized transformer architectures.

6 Discussion

Our comprehensive approach to both tutor identity
classification and actionability assessment pro-
vides valuable insights into the current state of AI
tutoring systems and their relationship to human
tutoring effectiveness.

6.1 Cross-Task Insights
The combination of both tasks reveals important
patterns:

1. Identity-Actionability Correlation: Our
analysis suggests that human expert tutors
consistently receive higher actionability rat-
ings than most LLMs, indicating that the
source of a response correlates with its peda-
gogical effectiveness.

2. LLM Differentiation: Different LLMs show
distinct patterns not only in linguistic finger-
prints but also in their ability to provide ac-
tionable guidance. This suggests that model
architecture and training approaches influ-
ence pedagogical capabilities.

3. Detectability vs. Quality: Despite LLMs’
increasing sophistication in generating
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Model Val Macro F1 Val Accuracy LB Macro F1 LB Accuracy

DeBERTa-v3-small 0.6169 0.7124 NA NA
DeBERTa-v3-base 0.6262 0.7161 NA NA
DeBERTa-v3-large 0.6360 0.7112 NA NA
Qwen-2.5-0.5B 0.6387 0.7205 NA NA

Model-level weights opt. 0.6536 0.7387 NA NA
Model-class weights opt. 0.6548 0.7346 0.6836 0.7292
Final Ensemble 0.6551 0.7350 0.6907 0.7298

Table 4: Track 4 performance on validation set using 5-fold cross-validation and leaderboard results

0 0.5 1 1.5 2

·104

Phi3 deberta large
Llama31405B deberta large

Expert deberta large
GPT4 zephyr

Phi3 longformer large
Sonnet qwen

Gemini longformer large
GPT4 deberta large

Mistral deberta large
Llama318B deberta large

Importance Score
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Top 10 Features by Importance in Track 5 Meta-model

Figure 1: Top 10 feature importance scores showing model-class specialization in tutor identity. Each feature rep-
resents how confident a specific transformer architecture is in predicting a particular tutor identity. For example,
”Phi3 deberta large” indicates the DeBERTa-large model’s probability output for the Phi3 LLM class classifica-
tion.

human-like responses, they remain de-
tectable through subtle patterns while
showing varying quality in educational
effectiveness.

6.2 Technical Contributions
Our methodology contributes several innovations
to educational dialogue assessment:

1. Cross-Response Context Augmentation:
This technique significantly improves iden-
tity classification by providing comparative
information, suggesting that tutor identity is
best understood in relation to alternative re-
sponses.

2. Constraint Satisfaction Integration: The
post-processing approach for enforcing
unique class assignments demonstrates how
task-specific constraints can be integrated
into neural classification systems.

3. Instruction-Guided Training: The explicit
incorporation of assessment criteria into
model input proves effective for actionability
evaluation, suggesting broader applications
for criterion-based classification tasks.

4. Multi-Model Specialization: Our feature
importance analysis confirms that different
transformer architectures capture comple-
mentary aspects of educational dialogues,
supporting diverse ensemble approaches.

6.3 Educational Implications
The findings have significant implications for ed-
ucational technology:

1. Transparency and Accountability: The
ability to reliably identify AI vs. human tu-
toring responses enables better transparency
in educational settings where students may
not be aware of AI involvement.
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2. Quality Assurance: Automated actionabil-
ity assessment can provide real-time feed-
back to improve both human and AI tutoring
responses, potentially enhancing educational
outcomes.

3. AI Development Guidance: The identifica-
tion of specific areas where LLMs fall short
in actionability provides clear targets for im-
proving AI tutoring systems.

4. Hybrid Systems: Understanding the com-
plementary strengths of human and AI tutors
can inform the design of hybrid systems that
leverage the best aspects of both.

6.4 Methodological Insights

Our approach reveals several important method-
ological considerations:

1. Task Complementarity: The combination
of identity classification and quality assess-
ment provides a more comprehensive evalua-
tion framework than either task alone.

2. Context Importance: Both tasks bene-
fit significantly from contextual information,
whether through cross-response comparison
or instruction guidance.

3. Ensemble Effectiveness: Different ensem-
ble strategies (meta-learning vs. weighted
voting) prove optimal for different tasks, sug-
gesting that ensemble design should be tai-
lored to specific problem characteristics.

4. Constraint Integration: The successful in-
tegration of domain constraints (uniqueness)
into neural models demonstrates the value
of combining symbolic and connectionist ap-
proaches.

These findings collectively demonstrate that ef-
fective educational dialogue assessment requires
sophisticated approaches that consider both the
source and quality of responses, with important
implications for the development and deployment
of AI tutoring systems.
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8 Limitations

While our multi-task approach achieved strong
performance on both BEA 2025 Shared Task
(Kochmar et al., 2025) tracks, several limitations
should be noted:

1. Domain Specificity: Our models were
trained and evaluated specifically on mathe-
matical tutoring dialogues. Performance may
not generalize to other educational domains
with different discourse patterns or pedagog-
ical requirements.

2. Language and Cultural Constraints: The
dataset primarily consisted of English-
language dialogues reflecting specific educa-
tional contexts. Performance on multilingual
or cross-cultural tutoring scenarios remains
untested.

3. Temporal Limitations: As LLMs continue
to evolve rapidly, the distinctive patterns
identified by our models may change. Fu-
ture versions of the same LLMs might exhibit
different characteristics, potentially reducing
classification effectiveness.

4. Computational Requirements: Our ap-
proach relies on large transformer models and
sophisticated ensemble techniques, requir-
ing significant computational resources that
may limit practical deployment in resource-
constrained educational environments.

5. Interpretability Challenges: While our
models achieve high classification accuracy,
they provide limited insights into the specific
linguistic or pedagogical features that drive
classification decisions, making it difficult to
extract actionable guidance for improving tu-
toring responses.

6. Category Granularity: The discrete catego-
rization schemes may oversimplify complex
phenomena—tutor identity includes many
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sub-variations within categories, and action-
ability might be better represented as a con-
tinuum rather than discrete classes.

Future work could address these limitations
by expanding to multiple educational domains,
developing more efficient architectures, incor-
porating explainable AI techniques, and explor-
ing the explicit modeling of cross-task relation-
ships. Additionally, longitudinal studies track-
ing LLM evolution and cross-cultural validation
would strengthen the generalizability of these ap-
proaches.
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