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Abstract

With the rapid development of smart education,
educational conversation systems have become
an important means to support personalized
learning. Identifying tutors and understanding
their unique teaching style are crucial to opti-
mizing teaching quality. However, accurately
identifying tutors from multi-round educational
conversation faces great challenges due to com-
plex contextual semantics, long-term dependen-
cies, and implicit pragmatic relationships. This
paper proposes a dual-tower encoding architec-
ture to model the conversation history and tutor
responses separately, and enhances semantic
fusion through four feature interaction mecha-
nisms. To further improve the robustness, this
paper adopts a model ensemble voting strat-
egy based on five-fold cross-validation. Exper-
iments on the BEA 2025 shared task dataset
show that our method achieves 89.65% Marco-
F1 in tutor identification, ranks fourth among
all teams(4/20), demonstrating its effective-
ness and potential in educational AI applica-
tions. We have made the corresponding code
publicly accessible at https://github.com/
leibnizchen/Dual-Encoder.

1 Introduction

This paper will introduce in detail the methods and
experiments on mentor identification in the BEA
2025 shared task (Ekaterina et al., 2025).

Different teachers show unique language char-
acteristics and guidance preferences in practice,
including dimensions such as expression methods,
guidance techniques, and feedback patterns. These
differences exist not only in the surface language
form, but also in the information architecture and
semantic logic of the feedback content. If the tu-
tor’s identity can be accurately recognized and their
teaching quality evaluated, it would not only help
analyze and optimize teaching styles but also pro-
vide strong support for improving teaching quality
and instructional methods (Gan et al., 2023).

However, teaching dialogues are highly temporal
dynamics. Semantic evolution, problem progres-
sion, and students’ cognitive trajectories will have
a profound impact on the generation of feedback in
the current round. There are often complex prag-
matic connections between teacher responses and
contexts, which are difficult to model through ex-
plicit rules, which poses a great challenge to iden-
tity recognition. In recent years, natural language
processing technology has shown great potential
in semantic understanding and generation, provid-
ing new ideas for teaching context modeling and
personalized feedback generation. However, to
accurately portray teacher style, there are still prob-
lems such as data scarcity, identity generalization,
and style transfer (Liu et al., 2019; He et al., 2023).

To address the above problems, this paper pro-
poses a dual-tower encoding structure that inte-
grates identity perception and context modeling
capabilities for tutor identity recognition based on
the characteristics of teaching conversation. This
method extracts semantic features from the conver-
sation context and tutor responses respectively, and
designs four feature interaction mechanisms to en-
hance semantic fusion capability. Furthermore, we
propose a voting strategy based on 5-fold cross-
validation, in which the best-performing model
from each fold is selected, and final identity recog-
nition is completed through ensemble voting to
improve the stability and robustness of the model.

The main contributions of this paper are as fol-
lows:

• A dual-tower encoding architecture is pro-
posed to separate the semantic modeling pro-
cesses of conversation context and tutor re-
sponse, enhancing the recognition ability of
personalized teaching styles.

• A Feature Interaction Modeling is designed,
to overcome the limitations of traditional dual-
tower models that rely solely on concatenation
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or similarity measures.

• A model ensemble voting strategy based
on the optimal models from 5-fold cross-
validation is introduced to effectively improve
tutor identification accuracy and the general-
ization ability of the model.

Experimental results on the BEA 2025 Shared
Task 1dataset (Maurya et al., 2025) show that the
proposed method achieves 89.65% Macro-F1 in the
tutor identification task, verifying its effectiveness
and potential for application in smart education.

2 Related Work

2.1 LLM-Powered AI Tutors

Educational conversation teaching systems have
made significant progress in the field of natural lan-
guage processing (NLP). Qiang (2025) proposed
key technologies based on recurrent neural net-
works (Transformers) (Vaswani et al., 2017), rein-
forcement learning, and multimodal learning anal-
ysis, demonstrating the application potential of
these technologies in personalized learning path
recommendation and adaptive content generation.
(Mansur et al., 2019)proposed a personalized learn-
ing model based on deep learning algorithms to
explore the most suitable learning strategies for
students. The model fully considered the key fac-
tors of personalized learning during the construc-
tion and testing process, including adaptability, per-
sonalization, differentiation, and ability-oriented
learning. (Gan et al., 2023)proposed an intelligent
tutoring system based on a large language model
(LLM) to improve students’ performance. (Cain,
2024; Makharia et al., 2024) used advanced prompt
engineering techniques to deploy language models
as intelligent tutors to improve the personalization
and interactivity of teaching.

2.2 Contextual Content Understanding

Context understanding is the core challenge of ef-
fectively modeling long-range dependencies and
capturing subtle semantic relationships in the con-
text. Early methods such as recurrent neural net-
works (RNNs) laid the foundation for sequence
modeling, but often suffered from problems such as
gradient vanishing and limited context preservation
capabilities. The emergence of the Transformer
architecture (Vaswani et al., 2017) introduced the

1https://sig-edu.org/sharedtask/2025

self-attention mechanism, which significantly im-
proved the ability to capture global context infor-
mation. On this basis, pre-trained language models
such as BERT (Devlin et al., 2019) and its vari-
ants (RoBERTa) (Liu et al., 2019), DebertaV3 (He
et al., 2023)) have become standard tools for deep
semantic understanding in a wide range of tasks.
To more effectively handle longer contexts, mod-
els such as Longformer (Beltagy et al., 2020) and
BigBird (Zaheer et al., 2021) adopt sparse attention
mechanisms. To further enhance context modeling,
researchers have incorporated external knowledge
through models like K-BERT, integrated memory
mechanisms such as those used in Memory Net-
works and Transformer-XL (Dai et al., 2019), and
improved coreference resolution with models like
SpanBERT (Joshi et al., 2020). Despite these ad-
vances, several challenges remain, including han-
dling semantic ambiguity, preserving long-range
dependencies, mitigating context truncation, and
enabling complex multi-hop reasoning.

3 Methods

The dual encoder architecture is widely used in
long text information matching. Base on the work
of (Wang et al., 2023; Guo et al., 2024), we pro-
posed a dual encoder architecture for tutor identifi-
cation via Semantic Understanding of Pedagogical
Conversations model, the core structure of which
is shown in Figure 1. The model captures the deep
semantic representation of the conversation history
and tutor responses through independent bidirec-
tional encoders, and adopts a multimodal feature
fusion strategy to achieve fine-grained semantic
interaction modeling.

3.1 Dual encoder architecture
The model uses a dual Transformer encoder struc-
ture with independent parameters, which are de-
fined as history encoder Eh(·) and response en-
coder Eh(·). Given the input sequence (conversa-
tion history) {hi}Li=1 and (tutor response) {rj}Mj=1,
the context-aware semantic representation is ob-
tained through the pre-trained language model:

H = Eh(Emb(h1, ..., hL)) ∈ RL×d (1)

R = Er(Emb(r1, ..., rL)) ∈ RM×d (2)

Where d = 768 is the hidden layer dimension, L
and M represent the length of the conversation
history and the tutor response, respectively, and
Emb(·) represents the word embedding layer. To
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Figure 1: The core structure of Dual Encoder Architec-
ture.

obtain a global semantic representation, we extract
the hidden states from the first layer of DeBertaV3.
This step provides a lightweight yet informative
semantic encoding, which will serve as the founda-
tion for downstream tasks,the formula is as follows:

h = H[:, 0, :] ∈ Rd (3)

r = R[:, 0, :] ∈ Rd (4)

3.2 Feature Interaction Modeling
In order to effectively model the deep semantic as-
sociation between the conversation history and the
tutor’s response, we designed a multi-dimensional
feature fusion mechanism. This mechanism aims
to integrate the conversation context information
and the response representation from multiple se-
mantic perspectives. We found that relying on a
single feature fusion strategy, such as concatena-
tion or addition, has limited performance when
dealing with complex semantic relationships and is
difficult to fully capture potential semantic interac-
tion information. The ablation experiment section
provides proof. To overcome this problem, we con-
structed the following four complementary fusion
strategies from the perspective of information re-
dundancy control and semantic complementarity
enhancement:

• Concatenation Fusion: Concatenation fusion
is a basic and widely used feature integration

method that directly splices the conversation
history vector h with the tutor response vector
r, retaining all the semantic information in the
original representation:

fc = [h; r] ∈ R2d (5)

• Hadamard Product: The Hadamard product
is an effective method for modeling nonlin-
ear interactions between features. The fusion
result retains strong activation only when the
corresponding dimensions of the two feature
vectors have high values:

fm = h⊙ r ∈ Rd (6)

• Additive Fusion: Its main function is to cap-
ture semantic commonality and consistency.
Unlike concatenation and fusion, the addition
operation emphasizes the relative direction
and consistency of two vectors in the seman-
tic space:

fa = h+ r ∈ Rd (7)

• Subtract Fusion: It is used to characterize the
semantic difference between two vectors. In
conversation modeling, difference features of-
ten carry key information to distinguish valid
and invalid responses:

fs = abs(h− r) ∈ Rd (8)

The final joint representation is:

f = [fc; fm; fa; fs] ∈ R5d (9)

3.3 Classifier Design
The feature vector is mapped to dimension reduc-
tion through a cascade of processing modules:

y = W2(LayerNorm(ReLu(W1f + b1))) + b2
(10)

Where W1 ∈ R5d×256,W2 ∈ RC×256, C is the
number of categories. The processing flow is im-
plemented through a three-layer cascaded architec-
ture.

4 Experiment

This section verifies the effectiveness of the model
through systematic experiments, adopts a five-fold
cross-validation strategy to ensure the reliability of
the evaluation, and analyzes the contribution of key
components through ablation experiments.
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Figure 2: 5-fold cross validation model ensemble.

4.1 Dataset
Train set: 300 teaching scenario conversations pro-
vided by BEA 2025 Shared Task(Maurya et al.,
2025). Each teaching scenario Conversation has
at most 9 tutor responses, with a total of 2476 re-
sponses. We randomly divide tutor replies into
training set/validation set at a ratio of 4:1. Test
set: 191 teaching scenario conversations, includ-
ing 1547 responses with unknown tutor identity
information.

4.2 Five-fold Cross Validation Strategy
In order to systematically evaluate the generaliza-
tion performance of the model and effectively sup-
press overfitting, this study adopts a stratified five-
fold cross-validation framework. Cross-validation
process:

• Iterative validation: Each subset is designated
as the validation set in turn, and the remaining
four subsets are merged into the training set to
complete five rounds of independent training
and validation processes.

• Model selection: Continuously monitor the
performance of the validation set during each
round of training, and the model weight pa-
rameters corresponding to the highest Macro-
F1 score are retained.

• Cyclic validation: Through five complete iter-
ations, it is ensured that each sample partici-
pates in the validation process exactly once.

This scheme obtains robust model parameters
through cross-validation, and effectively improves
the accuracy and stability of model prediction by
combining ensemble learning strategies.

fold Macro-F1(%) Accuracy(%)
1 0.8903 0.8891
2 0.9103 0.9023
3 0.9012 0.8993
4 0.8890 0.8922
5 0.8997 0.9013
Average 0.8981± 0.87% 0.8968± 0.59%

Table 1: Results of five-fold cross validation on the
training set/validation set.

4.3 Five-fold Cross Validation Experimental
Results

Our method is stable across training/validation and
final test sets. Table 1 shows the detailed perfor-
mance of the model in the five-fold cross validation.
The experimental results show that the model ex-
hibits strong stability and robustness under differ-
ent data partitions In the five-fold cross validation,
the mean of Macro-F1 reached 0.8981, the stan-
dard deviation was only ±0.87%, and the fluctua-
tion range was controlled within 2.13 percentage
points; the standard deviation of Accuracy was
±0.59%, which further verified the robustness of
the model in dealing with changes in data distribu-
tion. This provides a feasibility basis for the model
integration method.

4.4 Feature Interaction Ablation Experiment

Table 2 shows the ablation experiment results of
the model fusion mechanism, which shows the im-
pact of different fusion strategies on model perfor-
mance (Macro-F1 and Accuracy). It includes both
individual usage and removal of four fundamental
fusion operations: concatenation, Hadamard prod-
uct, addition, and subtraction. As can be seen from
the table: using a single fusion method leads to
slightly lower performance compared to the full
model. Among them, Subtract-only achieved rela-
tively high performance (Macro-F1 0.8849, Accu-
racy 0.8845), showing its effectiveness in capturing
differences. Removing individual fusion methods
also results in performance drops. Among them,
the performance decrease caused by removing the
Hadamard fusion (w/o Hadamard) is more obvious
(Macro-F1 0.8832, Accuracy 0.8815), indicating
that Hadamard plays an important role in capturing
feature interactions. The full model performs best
in all indicators, with Macro-F1 reaching 0.8981,
Accuracy 0.8968, and a small standard deviation,
which verifies that the synergy of each fusion oper-
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fusion methods Dimension Macro-F1(%) Accuracy(%)
Concatenation-only 2d 0.8811 ± 0.67% 0.8891 ± 0.57%
Additive-only 1d 0.8823± 0.83% 0.9003± 0.85%
Subtract-only 1d 0.8849± 0.84% 0.8845± 0.87%
Hadamard-only 1d 0.8822± 0.76% 0.8823± 0.67%
w/o Concatenation 3d 0.8901± 0.84% 0.8812± 0.80%
w/o Additive 4d 0.8873± 0.57% 0.8843± 0.83%
w/o Subtract 4d 0.8845± 0.81% 0.8839± 0.89%
w/o Hadamard 4d 0.8832 ± 0.82% 0.8815± 0.77%
Full model (Proposed) 5d 0.8981± 0.87% 0.8968± 0.59%

Table 2: Ablation Experiment Results of Feature Fusion.

ation has a positive contribution to improving the
robustness and predictive ability of the model.

Overall, the ablation study confirms the effec-
tiveness and necessity of the proposed multi-fusion
mechanism.

Conclusion

This study solves the problem of tutor identification
in educational conversation systems by introducing
a dual encoding framework to effectively model
conversation history and tutor response. By com-
bining advanced feature interaction mechanisms
and integrated voting strategies, the method demon-
strates strong performance and robustness, achiev-
ing 89.65% Macro-F1 on the BEA 2025 shared
task dataset. These results confirm the value of our
approach in capturing personalized teaching styles
and improving semantic consistency in feedback
generation.

Limitations

Although our proposed dual-encoder framework
performs well on the tutor identification task, it still
has some limitations. First, the effectiveness of the
model depends on the availability of labeled data,
which may be limited in real-world educational set-
tings. Second, the current approach assumes the
existence of clear conversational turns and well-
structured dialogues. Third, while the model cap-
tures personalized teaching styles to some extent,
it does not explicitly incorporate speaker-specific
historical profiles, which may further improve the
recognition accuracy. Finally, the generalizability
of the model across different educational domains
and languages remains to be explored.

Ethical Considerations

This study uses de-identified educational conversa-
tion data provided by the BEA 2025 Shared Task
organizers. No personally identifiable information
is included. The task of tutor identification is aimed
at supporting pedagogical analysis and improving
educational tools, not at surveilling or ranking hu-
man educators. All model outputs are intended
for research use only, and ethical guidelines for
educational data processing have been followed.
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Appendix

.1 Other Shared Tasks
We also participated in 4 tasks beyond the tutor
identification task, and achieved the following rank-
ings:

Mistake Identification task: 14/44
Mistake Identification task: 13/32
Providing Guidance task: 9/35
Actionability task: 11/35
The above data is from the official statistics of

BEA workshop at ACL 2025.

.2 Method Details
The above four tasks all adopt a unified method
framework. Specifically, we construct a dual tower
encoder architecture based on the DeBERTaV3 pre
trained model. Unlike the feature interaction mod-
eling strategy introduced in the tutor identification
task, this study did not adopt complex interaction
mechanisms for these four tasks, but simply con-
catenated the feature vectors output by the twin
towers. Subsequently, a routing selection module is
introduced to screen and optimize the concatenated
features, and finally the final category prediction is
completed through a linear layer.
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