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Abstract

This paper presents a Large Language Model
(LLM)-based system designed to support
curriculum development, iteratively refined
through extensive user testing and deployed
within a major Finnish higher education insti-
tution over the past two years. Distinct from
typical content generation tools, our system fa-
cilitates iterative human-Al collaboration by
providing structured suggestions and analyzing
course descriptions for alignment with institu-
tional goals, accreditation requirements, and
competency frameworks. We investigate how
such a tool can reduce educators’ cognitive load
while preserving human expertise, detailing
the system’s technical architecture and iterative
development grounded in a human-centered
design approach. This involved prototyping,
workshops, and user testing with curriculum
coordinators and faculty across diverse depart-
ments. We present detailed findings, including
quantitative metrics, qualitative feedback, and
user quotes, demonstrating the system’s evolv-
ing reception and potential to support complex
educational planning tasks.

1 Introduction

Curriculum development in higher education
presents a significant challenge, demanding align-
ment with diverse stakeholder needs, estab-
lished competency frameworks, and stringent
quality-assurance standards (Barnett and Coate,
2005; Knight, 2001). Educators face increasing
pressure to design curricula that satisfy institutional
mandates and accreditation criteria while catering
to the evolving requirements of diverse student pop-
ulations (Teixeira et al., 2019; Oliver and Hyun,
2011). This complex task often results in consid-
erable cognitive load, compounded by fragmented
information systems and administrative hurdles
(Woelert, 2023).

While artificial-intelligence (Al) tools for writ-
ing assistance have advanced rapidly (Strobl et al.,
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2021), generic Al systems often lack the speci-
ficity required for effective curriculum develop-
ment. Key aspects such as alignment with com-
petency frameworks, nuanced assessment design,
and adherence to regulatory compliance are fre-
quently inadequately addressed (Zawacki-Richter
etal., 2019). Early applications of language mod-
els in education predominantly focused on content
generation, rather than supporting the inherently it-
erative and collaborative nature of curriculum writ-
ing (Roll and Wylie, 2016; Huang et al., 2023),
often failing to alleviate the core challenges faced
by educators.

In response to these limitations, we developed
an LLM-based curriculum-development system
designed as an interactive collaborator. Our ap-
proach emphasises maintaining human expertise
and agency throughout the writing process, shift-
ing the focus from mere automation to synergistic
human-AI partnership (Holstein et al., 2019; Ka-
mar, 2016; Wilson and Daugherty, 2018). This
system has been iteratively developed and tested
over 18 months at a multi-disciplinary university
of applied sciences in Finland. Figure 1 shows the
deployed system in active use, analyzing a nurs-
ing science master’s degree curriculum against UN
SDGs, illustrating the practical application of our
iterative design process.

This study explores several critical aspects
through the lens of our development and de-
ployment experience. We investigate how an
LLM-assisted tool can reduce the cognitive load on
educators during curriculum development, present-
ing evidence from user testing. We examine how
such a tool can effectively support the alignment of
curriculum content with institutional goals, accredi-
tation standards (e.g. UN Sustainable Development
Goals), and competency frameworks, reporting on
user experiences with these features. Additionally,
we consider how the system design, informed by
user feedback, accommodates varying levels of Al
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literacy among faculty members. Finally, we detail
how an iterative, human-centred design process,
combining user tests and workshops, effectively
refined the tool for practical integration into institu-
tional workflows.

2 Related Work

2.1 Curriculum Development Challenges and
Educator Needs

Curriculum development is a cornerstone of edu-
cational practice, demanding alignment across di-
verse requirements such as institutional goals, ped-
agogical principles, accreditation standards, and
learner needs (Barnett and Coate, 2005; Knight,
2001). Educators tasked with this complex endeav-
our often face significant cognitive load (Sweller,
1988). Existing digital tools frequently fall short,
hampered by usability issues, poor integration, and
failure to streamline workflows (Woelert, 2023;
Fernandez-Cerero et al., 2024). This can lead to
frustration among educators who find such tools
increase administrative burden rather than reduce
it (Blaich and Wise, 2018; Sjoberg and Lilja, 2019;
Duarte and Vardasca, 2023). Introducing Al there-
fore necessitates building trust; educator adoption

hinges on understanding how Al functions and per-
ceiving it as a supportive partner that complements
their expertise (Nazaretsky et al., 2022). Address-
ing these usability, workflow, and trust challenges
for educators is paramount.

2.2 NLP Applications for Curriculum
Analysis and Related Tasks

Applying Natural Language Processing in edu-
cation has often involved building specialised
pipelines for narrow analytical tasks, frequently re-
quiring substantial feature engineering. Areas such
as automated essay scoring, grammatical-error cor-
rection (Bryant et al., 2019), and readability as-
sessment (Aluisio et al., 2010) have seen dedicated
development, yet applying NLP effectively to cur-
riculum development presents unique challenges.
A central task is ensuring semantic alignment be-
tween components like learning outcomes, course
content, and assessments, and verifying coverage
of external competency frameworks. Early NLP ap-
proaches tackled this via greedy similarity metrics
(Rus and Lintean, 2012) or by constructing educa-
tional knowledge graphs through concept linkage
(Dang et al., 2021). Analysing curriculum structure
is another key requirement. Techniques for extract-
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ing prerequisite relations increasingly model course
networks as graphs; recent work employs heteroge-
neous graph neural networks to infer prerequisite
links from course-sequence data (Roy et al., 2019).
While effective for specific goals, these exam-
ples illustrate a trend towards fragmentation: dis-
tinct models, feature sets, and separate tools were
developed for semantic similarity, structural rela-
tions, quality attributes, or content generation. Sup-
porting the holistic process of curriculum writing;
integrating multiple analyses and feedback remains
difficult with such pipeline-based approaches.

2.3 Human-Centred Design: Bridging NLP
Power and Educator Usability

NLP’s analytical power only translates into impact
when integrated via human-centred design (HCD).
Educational settings involve diverse users (Gulba-
har, 2008), and the cognitive load of complex tools
is a major barrier (Sweller, 1988; Paas et al., 2003).
Iterative HCD-workshops, prototyping and usabil-
ity testing is essential for creating educational tech-
nology that educators find intuitive, trustworthy,
and supportive (Druin, 2002; Quintana et al., 2004).
For Al tools, transparency and user control are vital
(Nazaretsky et al., 2022). Designing Al systems as
collaborative partners that augment educator capa-
bilities (Holstein et al., 2019) is therefore central to
our methodology.

2.4 Prompt Engineering for Curriculum
Development

Large foundation models such as PaALM-2' offer a
shift away from fragmented pipelines. Effectively
using these general-purpose models for specialised
educational tasks relies on prompt engineering.
While fine-tuning adapts models (Touvron et al.,
2023), carefully crafted prompts can steer an LLM
(Brown et al., 2020). Chain-of-thought prompt-
ing encourages structured reasoning suitable for
alignment checks (Wei et al., 2022). Prompting for
structured output (e.g. JSON) permits automatic
parsing and presentation to educators, bridging the
gap between raw LLM output and usable assistance
(Ouyang et al., 2022).

2.5 Our Contribution: An Integrated,
Human-Centred LLM Application

We present an LL.M-assisted system co-designed
as a collaborative partner for curriculum writing.

Thttps://ai.google/discover/palm2/

Our contribution lies in a rigorous HCD process
and a system architecture that prioritises educator
usability, cognitive-load reduction, and integrated
support for curriculum alignment. We move be-
yond fragmented individual NLP tools, such as se-
mantic similarity analysis (Rus and Lintean, 2012;
Dang et al., 2021), prerequisite extraction (Roy
et al., 2019), readability (Aluisio et al., 2010) and
error detection (Leacock et al., 2014), to leverage
a single foundation model (PaLM-2). Carefully
engineered prompts and a transparent Ul provide
unified support for alignment, quality checks, and
structured suggestions.

3 Methodology

Our methodology employed a human-centered de-
sign (HCD) approach over an 18-month period, fo-
cusing on iterative development informed by con-
tinuous user feedback from the target end-users
within a major Finnish university of applied sci-
ences.

3.1 User-Centered Development Activities

We engaged curriculum coordinators and faculty
members from diverse disciplines including Health-
care, Architecture, Therapeutic Studies, Engineer-
ing, and Business. Our development activities in-
volved several key interactions. One-on-one us-
ability testing occurred in January-February 2024
with 5 curriculum coordinators using early proto-
types. These sessions involved participants per-
forming domain-specific tasks, such as analyzing
their 2024 curriculum against UN SDGs, institu-
tional goals, and workplace requirements, while us-
ing a think-aloud protocol. Sessions were observed
and recorded for qualitative analysis. Additionally,
two major workshops were conducted as qualita-
tive feedback sessions. The first, on June 6th, 2024,
brought together 12 participants from five faculties
for a demo presentation followed by hands-on test-
ing and group discussions with casual Q&A. The
second workshop, held on November 8, 2024, in a
hybrid format, included 14 participants (both previ-
ous and new users) and followed a similar format
of demo presentation, testing, and discussion, fo-
cusing on gathering requirements for features and
integration priorities. Separately from these work-
shops, the demo tool was made publicly available
via the institution’s internal staff website, allow-
ing independent access and usage. Throughout
this process, feedback was collected via multiple
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channels: interview notes, observation logs dur-
ing testing, workshop discussions, and open-ended
survey questions provided qualitative data from
the interactive workshop sessions, while quantita-
tive data was collected through a System Usability
Scale (SUS)-inspired online feedback form com-
pleted by curriculum coordinators and faculty who
accessed and used the demo tool independently via
the internal website. This multi-faceted approach
allowed us to identify usability requirements, cog-
nitive load points, and evolving user needs, partic-
ularly regarding varying levels of Al literacy and
integration with existing workflows.

3.2 Technical Architecture and System
Implementation

The system was developed with a focus on modular-
ity, scalability, and integration capabilities, employ-
ing a specific technical stack. The backend was
implemented in Python? using the Flask® frame-
work, deployed with uWSGI* behind an Nginx®
reverse proxy on Debian/Ubuntu® Linux servers
hosted within the institution’s infrastructure; basic
HTTP authentication via Nginx provided access
control. For data persistence, MongoDB” (v. 7.0.1,
initially with access control disabled during early
development) served as the NoSQL database, stor-
ing curriculum data in a queryable format from
the organization’s curriculum database, organized
by year (e.g., 2023, 2024, 2025), and recording
document update timestamps. The frontend was
a single-page application (SPA) built with React®,
utilizing React’s Context API and hooks for state
management, and communicating with the backend
via RESTful API calls secured with CORS config-
uration. Al integration leveraged Google’s Vertex
AT’ platform, specifically accessing the multilin-
gual PaLM-2 foundation model through predefined
prompt templates engineered to request structured
JSON output, enabling reliable parsing and presen-
tation of targeted feedback within the user interface
in both Finnish and English. Security and logging
included Nginx handling HTTPS encryption via
SSL/TLS certificates and maintaining basic Nginx

Zhttps://www.python.org/

3https:/flask.palletsprojects.com/

“https://uwsgi-docs.readthedocs.io/

Shttps://nginx.org/

®Debian: https://www.debian.org/, Ubuntu: https://ubuntu.
com/

"https://www.mongodb.com/

8https://react.dev/

*https://cloud.google.com/vertex-ai

access logs with a 14-day rotation; application-
level user interaction logging was minimal to pri-
oritize privacy, which limited retrospective usage
analysis but showed approximately 5 unique IP ad-
dresses accessing the API during a representative
14-day testing period. This architecture allowed for
iterative updates to components like the LLM or
UI while maintaining core functionality.

3.3 Iterative, Human-Centered Design
Process

The 18-month development cycle unfolded follow-
ing HCD principles across three main stages. The
first stage focused on initial prototyping and testing,
involving one-on-one tests (Jan-Feb 2024) for core
concept validation and identifying fundamental us-
ability issues, with feedback primarily concern-
ing navigation and initial orientation. The second
stage incorporated this feedback into a more robust
prototype presented at the June 2024 workshop;
this phase highlighted user needs for clearer guid-
ance and workflow structuring to reduce cognitive
load. The third stage addressed feedback from the
first workshop and gathered requirements for more
sophisticated functionality during the November
2024 workshop. In this final stage, user requests
shifted towards advanced capabilities such as in-
tegration with the Peppi student information sys-
tem, import features for existing drafts, quality con-
trol mechanisms, and enhanced multilingual and
domain-specific support. Throughout this entire
process, both qualitative and quantitative user feed-
back continuously informed design adjustments,
feature prioritization, and refinement of the Al in-
teraction model.

4 Results and Evolution of User Feedback

The iterative HCD process yielded rich insights into
user needs and the system’s effectiveness, revealing
a clear evolution in feedback as the tool matured
and users gained familiarity.

4.1 Initial Usability Testing (Jan-Feb 2024)

One-on-one sessions with 5 curriculum coordina-
tors using early prototypes highlighted fundamental
usability challenges and cognitive load concerns.

Orientation and Guidance: Users frequently
expressed confusion upon first use:

"There is no clarification here, I wouldn’t
know what this is. It wouldn’t hurt to
have a tool guide."
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Figure 2: Screenshot of the prototype interface. The left panel shows course topics and learning outcomes;
colour highlights indicate segments automatically matched by the LLM. The right panel lists the UN Sustainable
Development Goals (SDGs) with the corresponding curriculum fragments, illustrating the tool’s alignment-analysis

feature.

"Computer tools are not my favorite
thing to deal with. I would like a guar-
anteed clarification of what I need to do
with just a glance..."

Several users failed to notice key interface elements
like year selection buttons, indicating issues with
visual hierarchy. As one coordinator noted, "I
didn’t even see the year button. Maybe it could
be larger or pointed out to me with some kind of
guide?".

Cognitive Load from System Fragmentation:
Users expressed frustration with managing infor-
mation across multiple existing institutional tools.

"There is a huge amount of information
in different databases and tools in this
house, but it is always difficult to find...
it always takes a long time to find what I
need."

"It is frustrating to fill all kinds of on-
line sticky notes with these goals, and
then not have the time or coordination
to apply these goals anywhere within the
actual teaching."

Another user lamented the typical workflow: "Ev-
ery year we have to jump between Peppi, Excel
sheets, Teams files, and meeting notes. It’s exhaust-
ing and error-prone." This highlighted the need for
better integration and workflow streamlining, espe-
cially among faculties such as healthcare, which are

burdened by need to align with several additional
national and institutional standards (?).

Observational Data: During these sessions, ob-
servers noted consistent patterns: initial hesitation,
significant time spent exploring menus before start-
ing tasks, and a tendency to restart tasks rather than
troubleshoot upon encountering errors. However,
users showed visible positive reactions (surprise,
verbal approval) when seeing the structured anal-
ysis generated by the Al, recognizing its potential
time-saving benefits.

4.2 Workshop Feedback Evolution

First Workshop (June 6, 2024): With 12 partici-
pants from 5 faculties, this session confirmed per-
sistent issues with navigation and cognitive load.
The primary feedback emphasized the need for
much clearer step-by-step guidance within the tool
to structure the writing process itself, moving be-
yond simple text generation towards active work-
flow support.

Later Workshop (November 8, 2024): This
session with 14 participants (hybrid format)
showed a distinct shift. Having addressed basic
usability, requests focused on advanced function-
alities. Key demands emerged, such as a strong
need for importing existing draft curriculum texts
for LLM analysis and revision. Repeated requests
were made for seamless integration with the insti-
tutional Peppi student information system to avoid
redundant data entry. There was also a clear need
expressed for better handling of discipline-specific
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terminology and requirements, particularly voiced
by Healthcare and Engineering faculty coordina-
tors; one noted, "Within our healthcare domain...
there are specific training hours and certain areas
of expertise that the students must meet," while an-
other expressed concern about nuance: "Al is not
able to detect all the "weak signals’... I can recog-
nize teaching-related problems... that I’m not sure
Al would catch". Finally, users expressed a desire
for features ensuring quality control and alignment
with institutional standards and competency frame-
works.

Participants consistently reiterated the impor-
tance of the Al acting as a collaborator. One from
healthcare faculty stated, "I hope we can spend the
most time on industry-specific goals... I'd like the
easiest available tool for these general overhead
tasks... We can then focus on our own expertise."

Experiences with Generic LLLMs: Users who
had tried generic tools like ChatGPT for curriculum
tasks reported difficulties:

"I have used Al (ChatGPT)... I tried to
ask the Al to integrate the principles of
sustainable development into this course,
but what came out was difficult to use. I
had to ask over and over to get the result
I need."

This highlighted the value of our tool’s structured
approach and tailored prompts.

4.3 Quantitative Evaluation

Following the qualitative feedback, a modified
SUS-style questionnaire focused on problem re-
porting was administered to participants familiar
with the refined system. Due to its targeted nature,
the sample size was small (n=4). The results (Table
1) indicate strong perceived utility for finding infor-
mation (M=4.2) and content review (M=4.1), and
high potential transferability (M=4.3). Interface us-
ability (M=3.5) and learning curve (M=2.3, inverse
scale) showed higher variability (SD=1.1, 1.2 re-
spectively), supporting qualitative feedback about
differing experiences based on user background
and the need for continued ease-of-use improve-
ments. Technical reliability was rated reasonably
well (M=2.0, inverse scale).

Users also requested clearer visual feedback on
standards coverage. Figure 2 illustrates the final Ul
that emerged from these iterations, showing colour-
coded curriculum fragments mapped to specific
SDGs.

5 Discussion

Our study demonstrates the potential for a carefully
designed LLM-assisted tool, developed through an
iterative, human-centered process, to effectively
support the complex task of curriculum develop-
ment in higher education. The detailed results from
user testing (Section 4) provide concrete evidence
addressing our core research questions.

The significant reduction in cognitive load was
a key goal. Initial feedback highlighting confu-
sion ("no clarification here...") and frustration with
fragmented systems ("jump between Peppi, Excel
sheets...") directly informed design iterations fo-
cused on providing clearer guidance and structured
workflows. While full integration remains a chal-
lenge, the positive reception of the Al’s structured
analysis capabilities and the high rating for "Utility
for content review" (M=4.1, see Table 1) suggest
the tool successfully offloads some analytical bur-
den. The shift in later feedback towards requesting
deeper integration further indicates users perceived
the tool’s potential to streamline their work.

The system’s ability to support alignment with
institutional goals, accreditation standards (like UN
SDGs), and competency frameworks was validated
by user tasks during testing and the specific re-
quests for enhanced quality control features in later
workshops. The technical choice to use PaLM-2
via Vertex Al with structured JSON output proved
crucial, enabling the system to provide targeted
analysis rather than generic text, addressing the
shortcomings users experienced with tools like
ChatGPT ("had to ask over and over...").

Preserving human expertise was paramount.
User quotes consistently emphasized the need for
the Al to be a collaborator, handling "general over-
head tasks" so educators could "focus on our own
expertise” and address domain-specific nuances or
"weak signals". The iterative design allowed us
to balance automated assistance with user control,
ensuring the tool augmented rather than replaced
pedagogical judgment (Holstein et al., 2019; Ka-
mar, 2016).

Accommodating varying Al literacy was implic-
itly addressed through the iterative process. Initial
focus on fundamental usability ("guaranteed clari-
fication... with just a glance") catered to less tech-
savvy users, while later feature requests (import, ad-
vanced analysis) reflected the growing confidence
and demands of users becoming more familiar with
Al capabilities. The quantitative results showing
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Table 1: Teacher Feedback (5-point Likert scale, n=4)
Items use inverse scale where lower scores indicate better performance.

Curriculum design task helpfulness criteria Mean Score  Std. Dev.
Finding up-to-date degree info 4.2 0.8
Interface usability 35 1.1
Clarity of instructions 3.8 0.9
Learning curve (1=Easy, 5=Hard)* 2.3 1.2
Utility for content review 4.1 0.7
Technical reliability (1=Reliable, 5=Unreliable)* 2.0 0.7
Interface readability 39 0.5
Output and transferability of results 4.3 0.6

variance in usability and learning curve scores (Ta-
ble 1) reinforce the need for continued attention to
accessibility for all users.

The technical architecture (Section 3) sup-
ported this iterative development. The modular
Flask/React stack and the use of a managed Al ser-
vice (Vertex Al) facilitated relatively rapid proto-
typing and incorporation of feedback. The specific
backend choices (Python, MongoDB, uWSGI, Ng-
inx on Linux) represent a pragmatic and common
stack for such institutional tools.

Challenges remain, particularly the significant
technical and administrative hurdles of deep inte-
gration with complex systems (Brown et al., 2015;
Sholeh et al., 2025). Supporting highly specialized
disciplinary nuances and extending robust support
for specific Finnish academic language or poten-
tially underrepresented languages require ongoing
effort. However, the positive trajectory of user
feedback validates the HCD methodology and the
potential of specialized LLM tools for complex
educational planning.

6 Limitations and Future Work

While the HCD process yielded valuable insights
and a functional tool, several limitations exist. The
18-month development timeline, driven by institu-
tional curriculum renewal cycles, meant full inte-
gration with systems like Peppi was not achieved,
limiting immediate efficiency gains highlighted as
desirable by users ("jump between Peppi, Excel
sheets..."). The automated analysis criteria were ini-
tially based on available institutional frameworks
and UN SDGs; refining these for deeper discipline-
specific requirements needs further work, as noted
by users concerned about healthcare standards or
engineering "weak signals."

The quantitative evaluation presented (Table 1)
is based on a small sample size (n=4), limiting
generalizability; it primarily served to corrobo-
rate qualitative findings during the iterative pro-
cess. While the PalLM-2 model offers multilingual
capabilities, dedicated fine-tuning or prompt opti-
mization for specific Finnish academic contexts or
other languages (e.g., Sdmi languages) was beyond
the scope of this phase.

While our approach relies on prompt engineer-
ing to adapt the general-purpose PalLM-2 model for
curriculum development tasks, this may be insuffi-
cient for optimal performance in highly specialized
domains. Effective prompts can improve output
quality and structure, but cannot fully compensate
for potential gaps in domain-specific training data
or the nuanced understanding that dedicated fine-
tuning or domain adaptation might provide. For
instance, highly technical healthcare curriculum re-
quirements or engineering accreditation standards
may benefit from models specifically trained on
educational content within those disciplines. Fu-
ture work should explore whether fine-tuning ap-
proaches or domain-adapted models would signifi-
cantly improve alignment accuracy and reduce the
need for extensive prompt iteration.

The evaluation focused heavily on usability and
perceived usefulness during development. Longi-
tudinal studies are crucial to assess the tool’s sus-
tained impact on actual curriculum quality, align-
ment consistency across departments, and measur-
able changes in educator workload and satisfaction
over time. Systematically evaluating effectiveness
across a wider range of disciplines is also neces-
sary. The minimal application-level logging, while
prioritizing privacy, restricts retrospective analysis
of feature adoption and user pathways.

Future work will prioritize tackling the Peppi
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integration challenge to enhance workflow automa-
tion. We plan to collaborate further with faculty to
refine domain-specific analysis capabilities and ex-
pand language support. Exploring mechanisms for
secure sharing of curriculum components or best
practices across departments or potentially institu-
tions represents another avenue. Rigorous, long-
term evaluations measuring impact on curriculum
outcomes and educator efficiency are essential next
steps to guide continued refinement and demon-
strate long-term value. Improving backend logging
for anonymized usage patterns, while respecting
privacy, would also aid future development.

7 Conclusion

This paper detailed the design, development, and
user-centered evaluation of an LLM-assisted cur-
riculum writing tool deployed at a major Finnish
university of applied sciences. Through an 18-
month iterative HCD process involving extensive
user testing with curriculum coordinators and fac-
ulty, we created a system intended as a collabora-
tive partner, aiming to reduce cognitive load and
enhance alignment with standards, rather than sim-
ply automating writing. We presented specific tech-
nical details of the system (Python/Flask backend,
React frontend, MongoDB, Vertex Al/PaLM-2 in-
tegration) and rich qualitative and quantitative data
from user tests and workshops. The evolution of
user feedback, from initial usability concerns ("no
clarification here...") to demands for advanced fea-
tures like Peppi integration and sophisticated anal-
ysis, strongly validates the iterative methodology.
Our findings indicate that specialized LLM tools,
co-designed with educators and focused on struc-
tured assistance, can effectively support complex
educational planning tasks while preserving human
expertise. While challenges in integration and do-
main specificity persist, this work offers a practical
case study and valuable insights into developing
human-centered Al solutions for higher education
workflows.
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