Leveraging Generative Al for Enhancing Automated Assessment in
Programming Education Contests

Stefan-Cosmin Dascalescu, Dumitran Adrian Marius marius.dumitran @unibuc.ro,
and Mihai Alexandru Vasiluta
University of Bucharest, Faculty of Mathematics and Computer Science (1,2),
Softbinator Technologies(2), QPillars (1)
Eindhoven University of Technology(3)

Abstract

Competitive programming contests play a cru-
cial role in cultivating computational thinking
and algorithmic skills among learners. How-
ever, generating comprehensive test cases to
effectively assess programming solutions re-
mains resource-intensive and challenging for
educators. This paper introduces an inno-
vative NLP-driven method leveraging gener-
ative Al (large language models) to auto-
mate the creation of high-quality test cases for
competitive programming assessments. We
extensively evaluated our approach on di-
verse datasets, including 25 years of Ro-
manian Informatics Olympiad (OJI) data for
5th graders, recent competitions hosted on
the Kilonova.ro platform, and the Interna-
tional Informatics Olympiad in Teams (IIOT).
Our results demonstrate that Al-generated test
cases substantially enhanced assessments, no-
tably identifying previously undetected errors
in 67% of the OJI 5th grade programming
problems. These improvements underscore
the complementary educational value of our
technique in formative assessment contexts.
By openly sharing our prompts, translated
datasets, and methodologies, we offer practi-
cal NLP-based tools that educators and con-
test organizers can readily integrate to en-
hance assessment quality, reduce workload,
and deepen insights into learner performance.

1 Introduction

Competitive programming has gained substantial
recognition in education for fostering computa-
tional thinking, problem-solving, and algorithmic
skills (Wing, 2006; Ackovska et al., 2015). How-
ever, comprehensive and effective test creation re-
mains labor-intensive and challenging for educa-
tors due to the need to anticipate various student
solution strategies and edge cases (Petrovi¢ and
Ivkovié, 2019; Luxton-Reilly et al., 2021). Re-
cent advancements in Natural Language Process-
ing (NLP) and generative Al, particularly large

89

language models (LLMs) such as GPT-4 (OpenAl,
2023), have opened new possibilities for automat-
ing complex educational tasks (Wang et al., 2024).

This research investigates leveraging generative
NLP techniques to automatically generate robust
and diverse test cases for programming problems.
Our approach aims to complement expert-crafted
tests, potentially reducing educators’ workload
and enhancing the quality of formative assess-
ments. We specifically analyze scenarios where
Al-generated tests improve upon initial expert
tests, revealing additional student errors or mis-
conceptions.

2 Background and Related Work

NLP techniques have increasingly been applied in
educational settings to automate tasks such as au-
tomatic scoring (Burrows et al., 2015; Attali and
Burstein, 2006), feedback generation (Kochmar
etal., 2020), and educational data mining (Romero
and Ventura, 2020). Generative models, in par-
ticular, have demonstrated significant potential in
automating content creation and providing per-
sonalized educational experiences (Kasneci et al.,
2023).

Previous studies have proposed methods for au-
tomated test case generation primarily using pre-
defined templates, symbolic execution, or genetic
algorithms (Candea and Godefroid, 2022; Fraser
and Arcuri, 2011). However, such approaches of-
ten lack flexibility or require significant domain-
specific tuning. Our research differentiates itself
by using generative NLP (specifically, LLMs) for
dynamic, contextually appropriate test generation
inspired by patterns used on competitive platforms
such as Codeforces (Codeforces, 2023).

Using LLMs for software testing in education
has been explored in works like Jalil et al. (Jalil
et al., 2023) and Mezzaro et al. (Mezzaro et al.,
2024), but these studies address general testing

Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 89-99
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

pedagogy and gamified exercises rather than test-
case generation for competitive programming or
Olympiad-style problems.

While significant interest exists regarding large
language models’ (LLMs) capabilities in com-
petitive programming contexts (OpenAl et al.,
2025; Huang et al., 2024), relatively little research
has explored leveraging LLMs specifically to as-
sist in creating problems which can be given at
Olympiads and other prestigious competitive pro-
gramming contests, with the only existent research
to our knowledge ((Liu et al., 2024), (Wang et al.,
2025), (Li and Yuan, 2024)) involves exploring the
way LLMs can help with preparing tasks given
to interview coding platforms such as LeetCode,
tasks that are often easier than those given at
IOI style competitions. Our work directly ad-
dresses this gap by providing empirical evidence
drawn from extensive historical and contempo-
rary competitive programming datasets, impacting
a broader range of problems given in contempo-
rary contests.

Our primary contributions include introducing
a novel generative NLP method for automated test
case creation, empirically demonstrating its effec-
tiveness across multiple competitive programming
datasets, and openly sharing our methodology and
datasets to support further research.

3 Methodology

3.1 Contests Selection

We decided to select a couple of different contests
for our tests spanning different formats and plat-
forms for our test. We focused on contests that
used CMS, a widely used platform for an impor-
tant set of contests where we had access to the offi-
cial data, and kilonova.ro, a platform that has open
access to sources and tests.

311 O0JI

The Olimpiada Judeteand de Informatica (OJI) is
the county-level Computer Science Olympiad in
Romania. We selected this competition due to
its significance within the Romanian informatics
community, backed by a long-standing tradition
of over 25 years and the presence of a highly
qualified scientific committee. Moreover, as pre-
sented in (Dumitran et al., 2024), the OJI dataset
has been fully translated into English and thor-
oughly benchmarked. Preliminary experiments

90

using the 5th-grade problems' yielded promising
results, motivating us to extend our evaluation by
incorporating additional contests. A limitation of
the OJI dataset is that we did not have access to
the official submissions made during the contest;
instead, we relied on the sources submitted post-
contest via the Kilonova online judge. Neverthe-
less, the number of available submissions is sub-
stantial, making OJI one of the most resource-rich
datasets for programming contests in Romania.

3.1.2 IIOT

The International Informatics Olympiad in Teams
is an international team Olympiad in Informatics
which was founded in 2016 and ever since, it be-
came an increasingly prestigious contest in Roma-
nia and worldwide, being the only Olympiad style
team contest currently held in Romania. We se-
lected this competition due to its innovative na-
ture, both in terms of the format as well as due
to the nature of problem preparation, highly re-
garded as being innovative, the current team con-
sisting of dozens of former 101 and Olympiad par-
ticipants, as well as highly reputed coaches world-
wide. We have obtained access to the official con-
test server from the organizers, which allowed us
to grade the problems using the same environment
and the same submissions made during the con-
test. In addition, a large variety of post contest
source codes is available via the aforementioned
Kilonova?® judge.

3.1.3 Micul Gates, Info Oltenia, FII Code

We aimed to include in our evaluation contests
from 2025, as their scientific committees may
have leveraged Large Language Models (LLMs)
and other modern tools in the test creation pro-
cess. This allowed us to investigate whether our
methodology still yields consistent results under
these new conditions. Consequently, we extended
our experiments to recent contests hosted on the
Kilonova platform. An additional advantage of us-
ing these local contests is that we had access to the
official contestant submissions, providing a more
complete and reliable dataset for our analysis.
FIICode® is an annual programming contest
held by students from UAIC, with an online quali-

"The OJI V problem set used can be accessed at: https :
//kilonova.ro/problem_lists/453

*The IIOT problem set used can be accessed at: https:
//kilonova.ro/problem_lists/1286

3The FII Code 2025 problem set used can be accessed at:
https://kilonova.ro/problem_lists/1398

https://kilonova.ro/problem_lists/453
https://kilonova.ro/problem_lists/453
https://kilonova.ro/problem_lists/1286
https://kilonova.ro/problem_lists/1286
https://kilonova.ro/problem_lists/1398

fication round and an onsite final round. The prob-
lem difficulty is usually similar to a Codeforces
Div. 2 Round.

Info Oltenia* is an annual programming con-
test organized by teachers and enthusiasts from
the Oltenia region in south-west of Romania. This
contest has a long tradition and is essential in train-
ing the students from the region for OJI and ONI.

Micul Gates’ is an annual junior programming
contest organized in Oltenia targeted at middle
school students who are starting their competitive
programming journey.

These local contests, while being less presti-
gious than the Olympiad in Informatics, are very
important for training both beginners and experts
alike. Therefore, having a quality grading and
testing environment in places often overlooked by
problem setters is essential in order to nurture the
young students’ development. Thus, we found in-
cluding these contests important for fulfilling the
goals of our research.

3.1.4 RoAlgo Weekly

Furthermore, we also extened our methods to a
new series of contests, RoAlgo Weekly Contests,
organized by a group of volunteers from RoAlgo,
the largest Romanian online competitive program-
ming community. These contests involve very
easy problems, resembling the tasks given at na-
tional informatics exams and college admission
tests and we worked with the problem setting team
and offered them the tools developed as part of
our research. We have observed an improvement
in the contest quality and the productivity of the
team, as the process of preparing problems be-
came faster, while also improving the quality of
the test data.

3.2 Platforms and Evaluation &
Reevaluation

3.2.1 Kilonova

Kilonova is an open-source competitive program-
ming platform from Romania, whose accessibility
has facilitated its use in various research activities
(Dumitran et al., 2024, 2025). Its open nature pro-
vides valuable features beneficial for NLP-driven
research: submissions and evaluation results are

*The Info Oltenia 2025 problem set used can be accessed
at: https://kilonova.ro/problem_lists/1342
The Micul Gates 2025 problem set used can be accessed

at: https://kilonova.ro/problem_lists/1347

91

publicly accessible and easy to collect program-
matically; problem statements are structured in
Markdown, an LLM-friendly format; and test files
for most problems are conveniently downloadable.
Additionally, the platform offers a straightforward
API for integration and automation.

With cooperation from platform administrators,
we established a mirror of the official Kilonova
instance, containing a comprehensive set of his-
torical and contemporary programming problems.
Using Python scripting, we developed a semi-
automated pipeline for each problem, consisting
of the following steps:

1. Obtaining the official model solution;

2. Instructing the LLM to generate new test
cases based on the problem statement and

specified constraints;

. Packaging and uploading the new test cases
to the mirrored platform;

Selectively reevaluating previously accepted
submissions to measure the effectiveness and
robustness of the newly generated tests.

This selective reevaluation capability allowed
targeted assessment of the incremental value pro-
vided by Al-generated test cases without disrupt-
ing the broader user experience.

322 CMS

CMS (Contest Management System) has been the
de facto standard online judging platform for the
International Olympiad in Informatics since 2012
(Maggiolo et al., 2012), and is widely adopted for
national and international programming contests
including ICPC, OJI (since 2021), and IIOT. The
widespread adoption of CMS is due primarily to
its robustness, scalability, and comprehensive sup-
port for managing multiple test datasets.

In our research context, CMS provided sig-
nificant advantages, notably its inherent support
for parallel management of distinct sets of tests,
facilitating direct and meaningful comparison of
submission performance across different testing
methodologies. However, the platform lacks a
comprehensive API, necessitating more manual
and labor-intensive processes for uploading tests
and retrieving evaluation results, which somewhat
limited our automation capabilities compared to
Kilonova.

https://kilonova.ro/problem_lists/1342
https://kilonova.ro/problem_lists/1347

3.2.3 Scoring System

In our research, we have relied on 1OI-style scor-
ing, where a solution code can earn between 0
and 100 points depending on the proportion of
test cases on which they produce a correct out-
put within the time and memory parameters, as
this was the scoring system used in every contest
in our dataset except for FIICode (FIICode used
ICPC style scoring, where a solution must pass
all test cases to earn full credit). While the scor-
ing system differs slightly across various 1OI style
contests, our research relied on scoring solutions
with a score between 0 and 100 points, propor-
tional to the number of test cases passed by the
Al-generated test cases (4 points per test case, 25
test cases in total, therefore a maximum score of
100 can be achieved).

3.3 Generative AI-Based Test Generation

We utilized 03-mini-high, the newest and most
powerful publicly available model developed by
OpenAl for coding-related tasks. Through pre-
cise prompt engineering, we guided the model to
generate tests based on patterns inspired by the
Codeforces problem set. The prompts included
detailed problem descriptions and explicit instruc-
tions for creating edge cases, boundary values, and
complex scenarios designed to challenge diverse
programming strategies. The generated tests were
integrated with existing contest management sys-
tems (CMS, Kilonova) for immediate and scalable
evaluation.

Leveraging our competitive programming expe-
rience, we used testlib®, the standard C++ library
for contest tasks (used by Codeforces/Polygon).
Initially, we used an LLM to generate testlib com-
ponents (generator, validator, parameters, batch
file). This batch file ran the generator with a model
solution manually extracted from contest sources
(official or Kilonova). We used English prob-
lem statements generated via prior work (Dumi-
tran et al., 2024).

3.3.1 Prompting

Our initial prompt, designed to guide the LLM in
generating testing components, was structured as
follows:

You are given a competitive program-
ming problem in markdown. Based on

*https://github.com/MikeMirzayanov/
testlib

this problem, please create the follow-
ing tools in order to test students’ source
codes against a set of strong test cases.

» Test case generator (ideally, you
should use the testlib.h li-
brary developed for Codeforces).
The generator should compile ac-
cording to C++17 standards and
you should avoid direct usages of
opt method unless you write a
function that specifically creates
that template

* Validator for validating the tests
generated

» Test case parameters which can
be used by the testcase generator
aforementioned

* A batch file for Windows that runs
the generator for all test cases.

The test cases generated must be com-
prehensive, cover all possible corner
cases and include tests with maximum
parameters for the input constraints as
well as inputs spread out (add more
large tests). generate a set of 25 test
case parameters which can be used
by the generator. the pattern for test
case names should be test0l.in,
test02.1in etc. Below you get the
task attached.

While this initial prompt yielded promising re-
sults, we observed inconsistencies...

Therefore, we developed an upgraded version...
This revised prompt was:

You are given a competitive program-
ming problem in markdown. Based on
this problem, please create the follow-
ing tools in order to test students’ source
codes against a set of strong test cases.

* Test case generator:
— Itusesthe testlib.h library
developed for Codeforces

— The generator must be written
in C++ 17

— Use argvs for parameters,
cout for printing

Here is an example based on an-

other problem which should be

92

https://github.com/MikeMirzayanov/testlib
https://github.com/MikeMirzayanov/testlib

your model:
(here, the model code based on one
of the preliminary results was at-
tached)

* Validator for validating the tests
generated

» Test case parameters which can
be used by the testcase generator
aforementioned

* A batch file for Windows that runs
the generator for all test cases
Here is a model for the batch file.
(here, the model batch file was at-
tached)

The test cases generated must be com-
prehensive, cover all possible corner
cases and include tests with maximum
parameters for the input constraints as
well as smaller tests (prioritize larger
test cases). Generate a set of 25 test
case parameters which can be used by
the generator. The pattern for test
case names should be test01l.in,
test02.1in etc.

Task is attached.

This prompt enhances flexibility for complex
programming challenges by making its generated
parts easy to adjust.

4 Experiments

4.1 Experimental Setup

We investigated two primary applications for the
LLM-generated test data:

1. Complementary Role: Augmenting exist-
ing human-authored test suites to improve
coverage, potentially catching more edge
cases or maximum constraint scenarios.

Replacement Role: Assessing if LLMs can
fully replace human effort in test case gener-
ation for simpler problems without compro-
mising test quality.

All experiments used the refined prompt (detailed
earlier) via the OpenAl API with English prob-
lem statements as input. For each problem, an
LLM generated 25 test cases. We compared solu-
tion performance on the original human tests ver-
sus these Al-generated tests, specifically measur-
ing how many initially 100-point solutions failed
on the Al data. Findings are detailed below.

93

4.2 OJI Dataset Analysis

For the Romanian National Olympiad in Infor-
matics (OJI) dataset, we focused on the comple-
mentary role (point 1 above), evaluating if LLM-
generated tests could enhance existing human-
curated suites.

Using an internal Kilonova instance, we re-
placed official tests with the 25 LLM-generated
tests and re-judged previously 100-point solutions,
recording the number still passing.

M 0%
00.1-10%
M 10.1-25%
0 25.1-50%
O 50+%

‘

Figure 1: Impact of Al-generated tests on previously
accepted OJI V solutions. The chart shows the dis-
tribution of 46 problems based on the percentage of
their 100-point solutions that failed when re-evaluated
against the LLM-generated test set.

Figure 1 shows the Al tests’ effectiveness on the
OJI V dataset. While ~33% (15/46) of problems
showed no change for 100-point solutions, most
~67%, 31/46) saw some previously accepted so-
lutions fail the new tests. Notably, for ~13% (6/46
problems), over 25% of prior 100-point solutions
failed (4 in the 25.1-50% range, 2 over 50%). This
significant failure rate in a subset of problems un-
derscores the potential for LLM-generated tests to
uncover non-trivial edge cases or scenarios missed
by human-authored test data, thus serving a valu-
able complementary role.

4.3 1IOT

As we got access to the official contest server, we
were able to extract more complex data for the
problems, thus being able to identify the number
of solutions which passed both sets of test data as
well as only one of them.

We have tested our method on the batch prob-
lems given at this year’s preliminary rounds, the
most standard category of problems given in
olympiads in informatics. As we had wider ac-

cess to data, we have been able to extract more
information out of grading the original and the Al
generated dataset.

Problem 100p Before | 100p After | Both Sets | Only Original | Only AI
walrus 114 113 109 5 4
azugand 49 49 47 2 2
expansionplan 0 0 0 0 0
problemsetting 65 65 65 0 0
binarygrid 21 21 21 0 0
divisor 58 57 57 1 0
homework 0 7 0 0 7
rummy 2 2 2 0 0
videogame 2 2 2 0 0
tetristiling 2 2 2 0 0
progressiveart 56 43 41 15 2
rummy 2 2 2 0 0
kingdomroads 1 1 1 0 0
indexing 81 51 51 30 0
rmi 81 77 73 8 4
sandwich 44 27 19 25 8
boardgame 43 43 41 2 2
weights 7 7 7 0 0
andqueries 12 11 9 3 2
pali2 51 3 3 48 0
maxdifference 36 30 29 7 1
lake2 5 4 4 1 0
pizza 53 31 31 22 0
subjects 117 104 103 14 1
matred 17 11 11 6 0

Table 1: IIOT results with original and Al set

The addition of Al-generated test cases demon-
strably improved the grading process for this
dataset. For several problems, the Al tests proved
stronger than the original human-authored ones;
notably, for pali2 and pizza, numerous solu-
tions previously accepted failed the Al tests, often
due to incorrect answers (WA) or exceeding time
limits (TLE).

However, these results also preclude using Al
tests as a complete replacement for human cura-
tion at this stage. Conversely, for problems like
sandwich, walrus, and homework, a signif-
icant number of solutions passed the Al tests de-
spite failing the original human-authored set, in-
dicating the Al tests missed certain critical cases
captured by the originals.

Therefore, while LLMs show significant
progress in test case generation, they cannot yet
reliably replace human effort entirely across all
scenarios. Our findings indicate that a hybrid
approach—augmenting human-curated test sets
with LLM-generated cases—currently offers
the most robust path toward improving test data
quality and ensuring more accurate grading (i.e.,
maximizing the acceptance of correct solutions
while rejecting incorrect ones).

4.4 Local and Regional Contests

Similarly to IIOT dataset, we had access to all the
official submissions made by the contestants dur-

94

ing the rounds, as well as the complete statistical
data on the number of accepted solutions. How-
ever, due to the limitations of the Kilonova online
judge, we were only able to test whether the new
test data can help us in a complementary setup.

4.4.1 Info Oltenia

Applying the same methodology to the Info Olte-
nia contest (hosted on Kilonova), we analyzed 18
problems, noting this contest uses distinct prob-
lem sets and committees per age group. Results
are summarized in Figure 2.

B 0%
00.1-10%
@ 10.1-25%
0 25.1-50%
O 50+%

Figure 2: Impact of Al-generated tests on previously
accepted Info Oltenia solutions (18 problems ana-
lyzed). The chart shows the distribution based on the
failure rate of 100-point solutions against LLM tests.

As shown in Figure 2, the LLM-generated tests
frequently identified flaws missed by the origi-
nal suites. Notably, ~28% (5/18 problems) saw
over 25% of their prior 100-point solutions fail
the new tests, with ~17% (3/18) exceeding a
50% failure rate. This significant impact, poten-
tially linked to the varied committees, highlights
the value of LLM tests in complementing human-
authored sets, especially where original test qual-
ity may vary.

4.4.2 FIICode

For the FII Code 2025 contest hosted on Kilonova,
we evaluated both original and upsolved submis-
sions against LLM-generated tests. This analy-
sis strongly confirmed the exceptional quality of
the original human-authored test cases, reflect-
ing the contest’s reputation for rigorous problem
setting, often driven by Balkan/Central European
Olympiad in Informatics (BOI/CEOI) and Interna-
tional Olympiad in Informatics (I0I) medalists.
The LLM-generated tests had a remarkably
minimal impact. Across the six problems that re-

ceived accepted solutions during the contest or up-
solving period’, five saw absolutely no change in
the verdict for submissions that initially scored
100 points when re-evaluated against the aug-
mented test set. For the single exception, Iggy
and Bits, where one submission out of 41 pre-
viously accepted solutions failed after the addition
of the LLM tests (reducing the 100-point count
from 41 to 40). This outcome, with only a sin-
gle verdict change among hundreds of 100-point
solutions across the contest, highlights the robust-
ness of the original test suite and indicates limited
added value from simple LLM test augmentation
in this high-quality setting.

4.4.3 Micul Gates 2025

Applying our methodology to the Micul Gates
2025 contest on Kilonova, we found the LLM-
generated tests demonstrated higher relative
strength compared to the original suite for this
event. Notably, no submission passed the Al tests
while failing the original ones.

Furthermore, the Al tests proved strictly
stronger for problem stalpi, where all 5 orig-
inally accepted solutions failed the new tests. For
the other evaluated problems receiving accepted
solutions (joc, numere, sir), the 100-point
counts remained unchanged®. This suggests the
LLM successfully generated more comprehensive
or challenging test cases than the original set in
this instance.

4.5 Qualitative Application: RoAlgo Weekly
Contests

RoAlgo Weekly Contests are a series of con-
tests hosted on Kilonova where the challenges
are of a much lower level than those given at
the olympiads and programming contests, and the
problem setting team has used our method to gen-
erate the test data, which has improved their work
significantly as there was no need of humanly gen-
erated data anymore. The testers have checked the
data generated and there were no errors whatso-
ever.

"Problems analyzed were Maximize Grandi’s
Function (190 AC solutions), No More Threes (124
AC), Golderberg (107 AC), Frumusel (89 AC), Iggy
and Bits (41 AC), and More or Less (14 ACQ).
An additional problem, Accent, received no accepted
solutions.

8 Analyzed problems and initial AC counts: joc (28),
numere (5), sir (7), stalpi (5). sophie had 0 AC.

95

5 Results Analysis and Discussion

Our experiments across diverse datasets highlight
the potential and nuances of using LLMs for test
case generation in programming education con-
texts.

5.1 Overall Verdict Analysis

To understand the types of errors uncovered by
the Al-generated tests across different datasets, we
analyzed the distribution of verdicts for solutions
that passed the original tests but failed the aug-
mented set. The primary verdict types considered
are:

* WA (Wrong Answer): The program pro-
duced incorrect output on at least one test
case.

* TLE (Time Limit Exceeded): The program
failed to complete within the allocated time
limit.

* MLE (Memory Limit Exceeded): The pro-
gram consumed more memory than permit-
ted.

* RE (Runtime Error): The program termi-
nated abnormally (e.g., crash, invalid mem-
ory access).

Due to the very low frequency of Runtime Er-
rors (only 4 instances across all analyzed datasets
where Al tests caused a previously accepted solu-
tion to fail with RE), they have been omitted from
the following chart (Figure 3) for clarity.

In the OJI V dataset, reflecting problems for
younger students, Wrong Answer (WA) verdicts
dominated the newly failed solutions (250 in-
stances). This suggests the Al tests primarily
caught logical errors or missed edge cases com-
mon among less experienced programmers. In
contrast, the IIOT dataset, featuring more complex
problems, showed a more balanced distribution
between WA (96 instances) and Time Limit Ex-
ceeded (TLE) errors (81 instances), with a smaller
number of Memory Limit Exceeded (MLE) cases
(13 instances). This indicates the Al tests for
IIOT were effective at identifying suboptimal al-
gorithms or implementations (TLE) alongside log-
ical flaws (WA).

]DOJI vRII0T

7] T

5

= 400 - :

=

3

n

=

=

=

2 200 - 2

[

Z

(3

o

5 100 - .

e

=

=

Z 0 [—
WA TLE MLE

Verdict Type

Figure 3: Distribution of primary verdicts (WA, TLE,
MLE) for solutions that passed original tests but failed
Al-generated tests, stacked by dataset category. RE
verdicts (4 instances total) omitted due to low fre-
quency.

5.2 Illustrative Cases: Successes and
Challenges

The quantitative data is complemented by specific
examples. The Al tests demonstrated remarkable
success in cases like pali2 (IIOT), where 48 out
of 51 previously accepted solutions failed on a
maximal TLE-inducing test missed by the origi-
nal setters. Similarly, for cartele (OJI), nearly
two-thirds of solutions failed on various corner
cases identified by the AI. This often occurred
with older problems where manual test genera-
tion standards might have been less rigorous, high-
lighting the AI’s ability to systematically explore
edge conditions.

However, the LLM approach faced challenges
with certain problem types, particularly those in-
volving complex geometric properties or very
specific input constraints, such as The Dutch
Farmer (IIOT) and Vedere (InfoOltenia). Gen-
erating valid and meaningful tests for such prob-
lems remains difficult even for humans and repre-
sents an area requiring more sophisticated prompt-
ing or validation. Furthermore, as seen in the
IIOT analysis (e.g., sandwich, walrus), Al
tests sometimes missed cases caught by human ex-
perts, leading to solutions erroneously passing the
Al set.

96

5.3 Implications for Assessment and
Education

Our findings strongly support the use of LLM-
generated test cases in a complementary role.
They demonstrably enhance existing test suites by
uncovering errors missed by human setters, partic-
ularly for edge cases and performance limitations.
This directly improves the accuracy and fairness
of assessments. As evidenced by the RoAlgo
Weekly contests, this approach can also increase
the productivity of problem-setting teams, espe-
cially for less complex problems, by providing a
strong baseline set of tests.

The results also clearly indicate that current
LLM-based generation is not yet reliable enough
for full replacement of human-authored tests in
all scenarios, especially for complex problems or
high-stakes competitions. The instances where Al
tests were weaker than human tests highlight the
need for expert oversight.

The most effective approach appears to be a
hybrid model: leveraging LLMs to generate a
broad set of candidate tests, including challeng-
ing boundary and performance cases, followed by
human expert review, selection, and potential aug-
mentation. This combines the scalability and sys-
tematic exploration of Al with the nuanced under-
standing and validation capabilities of human ex-
perts.

Furthermore, integrating Al-generated tests can
provide valuable formative feedback, helping ed-
ucators identify common student misconceptions
or areas where algorithmic understanding is weak
(e.g., distinguishing WA-prone vs. TLE-prone
problems). Reducing the burden of manual test
creation can free up educator time for more direct
student interaction and instructional design.

6 Future Work

While initial results are promising, we can sig-
nificantly improve outcomes for certain problems
by using more specific prompts for the generator,
such as instructing models to output code for spe-
cific graph types.

Additionally, experimenting with more LLMs
beyond OpenAl’s o03-mini-high could provide
valuable comparisons of different generation
methods. We also note that generating more than
the current 25 test cases per problem would better
align with real-world competitive programming
requirements, especially for difficult problems.

Building on this, we propose three research di-
rections:

* ICPC-Style Contests: Adapt the methodol-
ogy for team competitions.

¢ Platform Generalization: Validate on more
platforms (e.g., LeetCode, HackerRank, uni-
versity systems, other olympiads).

* Human-AI Co-Design: Develop tools
for educator-guided refinement and Al-
suggested edge cases for human validation.

These directions aim to test the limits of auto-
mated generation while ensuring alignment with
real-world assessment practices.

Limitations

While our approach demonstrates significant
promise in automating test generation for pro-
gramming contests, several limitations merit dis-
cussion:

 Platform Coverage: Our analysis focused
primarily on contests hosted on the Kilo-
nova.ro platform and the IIOT dataset (eval-
uvated using CMS). While these represent
diverse formats (national olympiads, team
competitions, online platforms), they do
not encompass all important paradigms like
ICPC-style contests or widely used platforms
such as Codeforces or AtCoder. Expand-
ing to these platforms could reveal context-
dependent variations in test-generation effi-
cacy but faces challenges in accessing both
contestant solutions and original test cases
due to privacy and intellectual property con-
straints.

* Model Dependencies: The quality and ef-
fectiveness of the generated tests are in-
trinsically linked to the capabilities of the
underlying LLM (in our case, OpenAI’s
03-mini-high model”) and the precision
of the prompt engineering. Performance may
vary significantly when using different LLMs
(e.g., open-source models or those from other
providers) or less optimized prompts. While
we release our final prompts to aid repro-
ducibility (see Appendix X), the core model
capability remains a key factor.

You might want to specify if this is known to be based
on GPT-4 or a similar architecture, if permissible.

97

* Generalizability for Full Replacement:
Our findings strongly support the use of
LLM-generated tests in a complementary role
to enhance existing human-authored suites,
particularly effective for identifying edge
cases or performance issues missed in older
or less rigorously tested problem sets (e.g.,
OJI V, Info Oltenia). However, the results,
particularly from the high-quality FIICode
contest and instances in the IIOT dataset
where Al tests missed errors caught by hu-
man tests, indicate that current LLM-based
generation is not yet consistently reliable
enough for full replacement of expert-curated
tests, especially in high-stakes competitions
or for problems with very complex logical or
constraint structures. Human oversight and
validation remain essential.

* Cost and Scalability: Although utilizing
proprietary LLM APIs can raise concerns
about operational costs, our extensive evalu-
ation across multiple contests demonstrated
exceptional cost-effectiveness. The entire
process of generating 25 test cases for each
analyzed problem incurred a total API cost of
only $4.64 USD. This was achieved through
an efficient combination of targeted API
calls (averaging approximately $0.1 USD per
problem) and leveraging free user interface
interactions during development where feasi-
ble. This low cost underscores the method’s
practicality and affordability for educators
and contest organizers seeking substantial
improvements in test coverage and potential
time savings compared to manual creation,
without significant financial investment.

* Fixed Number of Generated Tests: We
standardized on generating 25 test cases per
problem for this study. While effective in re-
vealing previously undetected errors across
various datasets, this fixed number may not
be universally optimal. Real-world com-
petitive programming practices often involve
larger test sets, especially for more difficult
problems. Future work could investigate gen-
erating a larger or adaptive number of tests
based on problem complexity or type, al-
though this would proportionally impact the
(currently very low) generation cost.

Ethical Considerations

The use of generative Al in educational assess-
ments raises several ethical concerns that require
careful mitigation:

* Transparency: All Al-generated content in
our experiments is clearly documented, with
prompts and methodologies openly released
to enable scrutiny (Mitchell et al., 2019).

e Data Privacy: Contestant solutions were
anonymized and used in compliance with
GDPR and platform terms of service. No
personally identifiable information was pro-
cessed by our models. In fact the contestant
data was never given to the models and only
the open available problem definition were
offered to them.

Acknowledgments

This research was partially supported by Softbina-
tor Technologies and Together.ai. We thank both
organizations for their support and commitment to
advancing research in educational technology and
low-resource language processing.

References

Nevena Ackovska, Agnes Erd6sné, Emil Stankov, and
Mile Jovanov. 2015. Report of the ioi workshop
"creating an international informatics curriculum for
primary and high school education".

Yigal Attali and Jill Burstein. 2006. Automated es-
say scoring with e-rater V.2. Journal of Technology,
Learning, and Assessment, 4(3).

. Burrows, I. Gurevych, and B. Stein. 2015. The eras
and trends of automatic short answer grading. Inter-
national Journal of Artificial Intelligence in Educa-
tion, 25:60-117.

George Candea and Patrice Godefroid. 2022. Auto-
mated Software Test Generation: Some Challenges,
Solutions, and Recent Advances, page 505-531.
Springer-Verlag, Berlin, Heidelberg.

Codeforces. 2023. Codeforces contest rules. Ac-

cessed: 2023-12-01.

Adrian Marius Dumitran, Adrian-Catalin Badea,
Stefan-Gabriel Muscalu, Angela-Liliana Dumitran,
Stefan-Cosmin Dascalescu, and Radu-Sebastian
Amarie. 2025. Exploring large language models for
translating romanian computational problems into
english. Preprint, arXiv:2501.05601.

98

Adrian Marius Dumitran, Adrian Catilin Badea, and
Stefan-Gabriel Muscalu. 2024. Evaluating the per-
formance of large language models in competitive
programming: A multi-year, multi-grade analysis.

Gordon Fraser and Andrea Arcuri. 2011. Evosuite:
Automatic test suite generation for object-oriented
software. pages 416—419.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong,
Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong Shen,
Chen Lin, Nan Duan, and Weizhu Chen. 2024.
Competition-level problems are effective 1lm eval-
uators. Preprint, arXiv:2312.02143.

Sajed Jalil, Suzzana Rafi, Thomas D. LaToza, Kevin
Moran, and Wing Lam. 2023. Chatgpt and software
testing education: Promises amp; perils. In 2023
IEEFE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW).
IEEE.

Enkelejda Kasneci, Kathrin Sessler, Stefan Kiiche-
mann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinne-
mann, Eyke Hiillermeier, Stephan Krusche, Gitta
Kutyniok, Tilman Michaeli, Claudia Nerdel, Jiir-
gen Pfeffer, Oleksandra Poquet, Michael Sailer,
Albrecht Schmidt, Tina Seidel, Matthias Stadler,
Jochen Weller, Jochen Kuhn, and Gjergji Kasneci.
2023. Chatgpt for good? on opportunities and
challenges of large language models for education.
Learning and Individual Differences, 103:102274.

Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Varun
Gupta, [ulian Vlad Serban, and Joelle Pineau. 2020.
Automated personalized feedback improves learn-
ing gains in an intelligent tutoring system. In Ar-
tificial Intelligence in Education: 21st International
Conference, AIED 2020, Ifrane, Morocco, July 6—
10, 2020, Proceedings, Part Il 21, pages 140-146.
Springer.

Kefan Li and Yuan Yuan. 2024. Large language models
as test case generators: Performance evaluation and
enhancement. Preprint, arXiv:2404.13340.

Kaibo Liu, Yiyang Liu, Zhenpeng Chen, Jie M. Zhang,
Yudong Han, Yun Ma, Ge Li, and Gang Huang.
2024. Llm-powered test case generation for detect-
ing tricky bugs. Preprint, arXiv:2404.10304.

Andrew Luxton-Reilly, Paul Denny, and David Kirk.
2021. Assessing programming performance with
partial credit assignments. ACM Transactions on
Computing Education, 21(3):1-24.

Stefano Maggiolo, Giovanni Mascellani, et al. 2012.
Introducing cms: a contest management system.
Olympiads in Informatics, 6:86-99.

Simone Mezzaro, Alessio Gambi, and Gordon Fraser.
2024. An empirical study on how large language
models impact software testing learning. In Pro-
ceedings of the 28th International Conference on

https://doi.org/10.15388/ioi.2015.16
https://doi.org/10.15388/ioi.2015.16
https://doi.org/10.15388/ioi.2015.16
https://ejournals.bc.edu/index.php/jtla/article/view/1650
https://ejournals.bc.edu/index.php/jtla/article/view/1650
https://doi.org/10.1007/s40593-014-0026-8
https://doi.org/10.1007/s40593-014-0026-8
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://codeforces.com/blog/entry/4088
https://arxiv.org/abs/2501.05601
https://arxiv.org/abs/2501.05601
https://arxiv.org/abs/2501.05601
https://doi.org/10.1109/INISTA62901.2024.10683837
https://doi.org/10.1109/INISTA62901.2024.10683837
https://doi.org/10.1109/INISTA62901.2024.10683837
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://arxiv.org/abs/2312.02143
https://arxiv.org/abs/2312.02143
https://doi.org/10.1109/icstw58534.2023.00078
https://doi.org/10.1109/icstw58534.2023.00078
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1016/j.lindif.2023.102274
https://arxiv.org/abs/2404.13340
https://arxiv.org/abs/2404.13340
https://arxiv.org/abs/2404.13340
https://arxiv.org/abs/2404.10304
https://arxiv.org/abs/2404.10304
https://doi.org/10.1145/3445982
https://doi.org/10.1145/3445982
https://doi.org/10.1145/3661167.3661273
https://doi.org/10.1145/3661167.3661273

Evaluation and Assessment in Software Engineer-
ing, EASE °24, page 555-564, New York, NY, USA.
Association for Computing Machinery.

Margaret Mitchell, Simone Wu, and Andrew Zaldivar.
2019. Model cards for model reporting. Proceed-
ings of the Conference on Fairness, Accountability,
and Transparency.

OpenAl, :, Ahmed El-Kishky, Alexander Wei, An-
dre Saraiva, Borys Minaiev, Daniel Selsam, David
Dohan, Francis Song, Hunter Lightman, Ignasi
Clavera, Jakub Pachocki, Jerry Tworek, Lorenz
Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer,
Mostafa Rohaninejad, Nat McAleese, 03 contrib-
utors, Oleg Miirk, Rhythm Garg, Rui Shu, Szy-
mon Sidor, Vineet Kosaraju, and Wenda Zhou.
2025. Competitive programming with large reason-
ing models. Preprint, arXiv:2502.06807.

OpenAl. 2023. Gpt-4 technical report.

Goran Petrovi¢ and Zeljko Ivkovié. 2019. Automated
test case generation for programming challenges.
IEEE Transactions on Education, 62(4):302-310.

Cristébal Romero and Sebastidn Ventura. 2020. Ed-
ucational data mining and learning analytics, an up-
dated survey. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 10(3).

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang,
Joleen Liang, lJiliang Tang, Philip S. Yu, and
Qingsong Wen. 2024. Large language models
for education: A survey and outlook. Preprint,
arXiv:2403.18105.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng
Huang, Zhaoyang Chu, Da Song, Lingming Zhang,
An Ran Chen, and Lei Ma. 2025. Testeval: Bench-
marking large language models for test case genera-
tion. Preprint, arXiv:2406.04531.

Jeannette M. Wing. 2006. Computational thinking.
Communications of the ACM, 49(3):33-35.

A Appendices

Longest Palindrome abridged statement: You are
given a sequence of N positive integers on the
blackboard, where some of the numbers have been
erased and replaced with —1. Now, we want to re-
store the sequence by replacing the —1 values with
the same number of his choice. Your task is to de-
termine the length of the longest palindromic con-
tiguous substring that can be obtained after choos-
ing an optimal value for z.

TLE test for Longest Palindrome:
200000, a1 = a2 = ... =ap, = —1

Cartele abridged statement: You are given an
access card system developed in a school, with
every student having one such card. The system

N

99

prints every day the log of the students, with vari-
ous information shown. Knowing the set of infor-
mation, find the number of boys and girls who are
still at school, the number of seconds where we
had at least one student in school and the biggest
timespan where an odd number of boys were at
school at the same time.

WA test for Cartele:

C 3, N 8, logs
[[b701028],[f 010 30],[be0 10 33]
,[fe01040],[b701041],[f e 010 48]
,[fi101058],[f 7011 4]]

https://doi.org/10.1145/3287560.3287596
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1109/TE.2019.2925324
https://doi.org/10.1109/TE.2019.2925324
https://doi.org/10.1002/widm.1355
https://doi.org/10.1002/widm.1355
https://doi.org/10.1002/widm.1355
https://arxiv.org/abs/2403.18105
https://arxiv.org/abs/2403.18105
https://arxiv.org/abs/2406.04531
https://arxiv.org/abs/2406.04531
https://arxiv.org/abs/2406.04531
https://doi.org/10.1145/1118178.1118215

