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Abstract

Large Language Models (LLMs) have shown
impressive performance in mathematical rea-
soning tasks when guided by Chain-of-Thought
(CoT) prompting. However, they tend to pro-
duce highly confident yet incorrect outputs,
which poses significant risks in domains like
education, where users may lack the expertise
to assess reasoning steps. To address this, we
propose a structured framework that models
stepwise confidence as a temporal signal and
evaluates it using Signal Temporal Logic (STL).
In particular, we define formal STL-based con-
straints to capture desirable temporal properties
and compute robustness scores that serve as
structured, interpretable confidence estimates.
Our approach also introduces a set of uncer-
tainty reshaping strategies to enforce smooth-
ness, monotonicity, and causal consistency
across the reasoning trajectory. Experiments
show that our approach consistently improves
calibration metrics and provides more reliable
uncertainty estimates than conventional confi-
dence aggregation and post-hoc calibration.

1 Introduction

Large language models (LLMs) are increasingly
applied in educational contexts such as concept ex-
planation, question answering, and personalized
tutoring, especially in STEM domains like mathe-
matics (Kasneci et al., 2023). These models exhibit
strong capabilities in solving complex problems;
however, they also tend to produce answers that are
fluent and seemingly confident, yet factually incor-
rect. In educational settings, such outputs can be
particularly problematic, as students may lack the
expertise to distinguish between correct and incor-
rect reasoning (Polyxeni Paulina Kastania, 2024),
and may be misled by responses that appear trust-
worthy. This mismatch between confidence and
correctness raises critical concerns about the reli-
ability of LLM-generated answers and highlights

the importance of integrating uncertainty estima-
tion into educational AI systems.

Although prior work has explored various uncer-
tainty estimation techniques, such as predictive en-
tropy, sampling-based variance, and confidence cal-
ibration, most studies focus on general NLP tasks
rather than educational scenarios (Zhao et al., 2021;
Jiang et al., 2021). In educational contexts like
mathematics learning, well-calibrated uncertainty
can be especially useful for guiding student atten-
tion, supporting teacher oversight, and improving
feedback systems. However, existing uncertainty
metrics often show poor alignment with actual cor-
rectness (Zhu et al., 2025).

In this work, we address this challenge by
proposing a novel approach to estimate uncer-
tainty in LLM-based chain-of-thought (CoT) rea-
soning for high school mathematics problems. Our
method models the sequence of reasoning steps
as a temporal confidence signal and evaluates its
structural properties using Signal Temporal Logic
(STL) (Fainekos and Pappas, 2006). Instead of
modifying the LLM or directly penalizing its out-
puts, we quantify undesirable confidence behaviors,
such as abrupt increases following uncertain steps,
by computing robustness scores against formal STL
constraints. This yields a constraint-aware aggre-
gation scheme that captures how confidence is ex-
pected to evolve over time, offering a structured and
interpretable view of the reasoning process while
improving calibration. We evaluate our method
on a curated dataset of Chinese Gaokao mathemat-
ics multiple-choice questions (Zhang et al., 2023).
Experimental results show that our method signif-
icantly improves calibration, reducing Expected
Calibration Error (ECE) compared to baseline un-
certainty aggregation methods.

This paper’s contributions are: (1) a novel per-
spective that treats stepwise confidence in chain-of-
thought reasoning as a temporal signal amenable
to formal analysis, (2) a constraint-aware modeling
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approach that reshapes confidence trajectories and
quantifies their structural quality using STL robust-
ness and (3) empirical validation of our method’s ef-
fectiveness on Chinese Gaokao mathematics. Fig 1
provides an overview of our pipeline: starting from
stepwise CoT confidence, we apply uncertainty
reshaping followed by STL-based temporal logic
evaluation. This transformation results in inter-
pretable, structure-aware confidence scores.

2 Related Work

Applications of LLMs in Education: LLMs have
been widely adopted in educational settings for
tasks such as grammar correction, content gener-
ation, problem explanation, and intelligent tutor-
ing. Prior studies highlight their potential to sup-
port learners across domains like language writ-
ing (Kasneci et al., 2023), mathematics (Gan et al.,
2023), and personalized feedback (Zhou et al.,
2025; Wang et al., 2024). For instance, LLMs like
MathGPT and Khanmigo have been used to gen-
erate step-by-step math explanations aligned with
curriculum standards (Shah et al., 2024), while
ChatGPT has shown promise in automated feed-
back for student essays and short answers (Kasneci
et al., 2023). Despite these advances, concerns
remain around academic integrity, hallucinated out-
puts, and students over-relying on unverified re-
sponses (Benítez et al., 2024). Moreover, few
works explicitly quantify how reliable these educa-
tional outputs are, or how uncertainty signals can
be used to guide learners or inform teachers. As
LLMs become integral to education technology, re-
cent surveys have called for deeper investigations
into trust, transparency, and uncertainty in educa-
tional applications (Idris et al., 2024).

Uncertainty in LLMs: LLMs exhibit remarkable
fluency across diverse NLP tasks, yet their outputs
often suffer from overconfidence and miscalibra-
tion (Kadavath et al., 2022), especially in impact-
sensitive domains such as education. Existing work
has explored various uncertainty estimation tech-
niques, including entropy-based methods like pre-
dictive entropy and confidence gaps (Zhu et al.,
2025), as well as sampling consistency across out-
puts (Lyu et al., 2025). Confidence calibration is
another active area, revealing that LLMs tend to
be overconfident, particularly in zero-shot or out-
of-domain tasks (Desai and Durrett, 2020; Zhao
et al., 2021). Recent studies also propose using
uncertainty signals to guide reasoning, such as

Uncertainty-Guided CoT prompting (Zhu et al.,
2025), active prompting for data selection, and
consistency-based calibration (Diao et al., 2023;
Lyu et al., 2025). However, most of these methods
have been evaluated on general NLP or code gener-
ation tasks, with limited attention to structured edu-
cational settings like math problem solving, where
reliable uncertainty estimates can help students as-
sess model-generated reasoning and assist teachers
in diagnosing student understanding..

CoT and STL: Recent advances in CoT prompt-
ing have significantly improved the multi-step rea-
soning ability of LLMs, yet they also introduce
new layers of uncertainty, such as error propaga-
tion across intermediate steps and unfaithful ex-
planations (Zhang et al., 2022; Wang et al., 2022;
Tanneru et al., 2024). In this work, we propose
a novel perspective that treats CoT steps as dis-
crete temporal signals, enabling the use of STL
to formally specify and evaluate reasoning quality
over time (Rescher and Urquhart, 2012). STL al-
lows for expressive specifications like eventually
correct or always consistent, and provides quan-
titative robustness scores that capture the degree
of satisfaction or violation (Fainekos and Pappas,
2006). This formalism has been successfully ap-
plied in domains such as motion planning (van Hui-
jgevoort et al., 2024), reinforcement learning (Li
et al., 2017), and control synthesis, and offers a
promising path toward interpretable and rigorous
evaluation of LLM-generated reasoning trajecto-
ries. Applying STL to CoT would not only enable
structured detection of flawed reasoning patterns
but also facilitate the development of confidence-
aware feedback and scoring systems in education
and other applications.

3 STL-Guided Confidence Estimation

Our approach consists of three stages: (1) generat-
ing a stepwise confidence signal via CoT prompt-
ing, (2) applying uncertainty reshaping strategies to
promote temporal consistency, and (3) evaluating
the reshaped sequence using STL. This pipeline
is illustrated in Fig 1(b), showing how each re-
shaping strategy transforms a sample confidence
trajectory. Compared to the original signal, our
smoothing strategies effectively suppress abrupt
spikes and produce a more temporally coherent
confidence trajectory, while preserving the overall
trend of reasoning. This behavior is crucial for
downstream STL-based evaluation, which benefits
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(a) Normal Test
Given vectors a=(2,3) and 
b=(x,6),determine whether the 
condition “x>−9” is a sufficient and/or 
necessary condition for
“the angle between a and b is acute”.

sufficient and/or necessary condition

Logit-based Confidence

Problem Solving Process: We 
are given two vectors: a=(2,3),
b=(x,6),We are asked …

   0.912
Normalized Logit Score

(b)     STL-based CoT Confidence 

Step 1: When is the angle 
between two vectors acute?

Necessary and sufficient

Self Evaluaction Confidence

   0.790
Self Evaluaction Score

Process 
Analysis

Internal-based Confidence by analyzing the 
logical consistency, multipath consistency or 
rewrite frequency of the solving process.

   0.540
       Analysis Score

Given vectors a=(2,3) and 
b=(x,6),determine whether the 
condition “x>−9” is a sufficient and/or 
necessary condition for
“the angle between a and b is acute”.

+
Chain of Thought 
(CoT) prompting

Step 2: Compute the dot 
product aᐧb

Step 3: Find when   aᐧb > 0

Step 4: Is x>−9 a necessary 
condition?

Step 5: Is x>−9 a sufficient 
condition?

sufficient and/or necessary condition

0.8

1.0

0.9

0.9

0.9

Temporal Signal

Signal Reshaping

STL Robustness

STL-based CoT 
Confidence

Figure 1: (a) Conventional methods output global confidence via logit, self-evaluation, or internal analysis. (b) Our
method models step-wise CoT confidence as a temporal signal, applies signal reshaping, and evaluates robustness
using STL to obtain a temporally consistent confidence score.

from smoother and more causally consistent input
signals.

3.1 Problem Setup

We model LLMs as autonomous agents tasked with
solving high school mathematics problems. Given
an input question q ∈ Q, the agent generates a
final answer a ∈ A along with a scalar uncertainty
score u ∈ [0, 1], representing its confidence in the
answer. Ideally, high confidence should correspond
to high correctness probability, and vice versa (Guo
et al., 2017).

To evaluate calibration, we employ the Expected
Calibration Error (ECE) (Naeini et al., 2015; De-
sai and Durrett, 2020), a widely-used metric that
quantifies the mismatch between confidence and ac-
curacy. Formally, we partition predictions into M
bins based on their confidence values and compute:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| , (1)

where Bm denotes the set of predictions falling into
the m-th confidence bin, acc(Bm) is the empirical
accuracy defined as

acc(Bm) =
1

|Bm|
∑

i∈Bm

1[âi = ai], (2)

and conf(Bm) is the average predicted confidence.
Here, n is the total number of examples, and 1[·]
is the indicator function that returns 1 if the predic-
tion is correct, and 0 otherwise. Since the task is
formulated as multiple-choice classification, both
model predictions and ground-truth answers are
represented as one of a finite set of discrete options
(e.g., A, B, C, D). This allows correctness to be
determined via exact match of the selected option
label, avoiding ambiguities arising from natural
language variation. rect, and 0 otherwise.

In addition to ECE, we also report the Brier
Score (BS) as a complementary calibration metric.
The Brier Score measures the mean squared error
between predicted confidence and ground-truth cor-
rectness, defined as:

BS =
1

n

n∑

i=1

(ci − yi)
2, (3)

where ci ∈ [0, 1] is the model’s predicted confi-
dence for example i, and yi ∈ {0, 1} is the binary
correctness label. Lower Brier Scores indicate bet-
ter calibrated and more reliable confidence esti-
mates.

Unlike conventional classification tasks, reason-
ing in LLMs often unfolds over multiple steps (Wei
et al., 2022). This raises an additional challenge:
confidence should not only be calibrated across
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Question Logit Self-Eval Internal
Given vectors a = (2, 3) and b = (x, 6). Determine whether the condition “x > −9”
is a sufficient and/or necessary condition for “the angle between a and b is acute.”
Options: A. Sufficient but not necessary B. Necessary but not sufficient C. Sufficient
and necessary D. Neither sufficient nor necessary
Model answer: C (incorrect), True answer: B

0.99 0.98 0.99

Set parabola C : y2 = 4x. The focus is F . A line passes through (−2, 0) with slope 2
3

,
intersecting C at points M and N . Compute ⃗FM · F⃗N .
Options: A. 5 B. 6 C. 7 D. 8 (correct)
Model answer: D (correct)

0.98 0.95 0.97

Table 1: Examples of high school mathematics questions and confidence scores from three estimation strategies:
Logit-based, Self-evaluation, and Internal consistency. While the model is highly confident in all three views, the
first question is incorrectly answered, leading to significant miscalibration. The Expected Calibration Error
(ECE) for Logit, Self-Eval, and Internal confidences are 0.485, 0.465, and 0.480, respectively.

examples, but also evolve smoothly and consis-
tently over the reasoning trajectory (Zhu et al.,
2025). Hence, the problem extends to gener-
ating temporally coherent uncertainty sequences
that reflect both local confidence (per step) and
global correctness (final answer). Our objective
is thus to design a framework where uncertainty
estimates are not only well-calibrated across ex-
amples, but also evolve in a temporally consistent
manner—exhibiting properties such as smooth pro-
gression, causal coherence, and alignment with the
underlying reasoning process.

3.2 Uncertainty Reshaping Strategies

To model reasoning-time uncertainty, we use CoT
prompting to elicit a sequence of intermediate rea-
soning steps {s1, . . . , sT }, each associated with
a confidence score ct ∈ [0, 1]. We treat the re-
sulting confidence sequence c = {c1, . . . , cT } as
a temporal signal (Rescher and Urquhart, 2012).
However, due to the inherent causal nature of rea-
soning, abrupt increases in confidence, especially
after initially low-confidence steps, can be mislead-
ing (Zhu et al., 2025). To take advantage of this
insight, we propose several signal reshaping func-
tions that induce smoother and causally consistent
confidence evolution. While some of these strate-
gies are conceptually related to smoothing methods
in time-series analysis, they are, to the best of our
knowledge, novel in the context of modeling step-
wise confidence in LLM-based reasoning.

• Causal Minimum Smoothing (CMS): Lim-
its future confidence based on past minimum
values plus a small fixed margin δ:

c̃t = min

(
ct,min

i<t
ci + δ

)

• Exponential Decay Smoothing (EDS): Ap-
plies exponential smoothing by blending the
current value with the average of past values:

c̃t = α · ct + (1− α) · 1
t

t−1∑

i=1

ci

• Monotonic Penalty Smoothing (MPS):
Dampens confidence spikes if the previous
step is below a fixed threshold τ . This focuses
on upward spikes, which are more likely to
mislead following uncertain steps:

c̃t =





ct−1 + ct
2

if ct−1 < τ and ct > ct−1

ct otherwise

• Guarded Smoothing (GS): Caps sudden
jumps beyond threshold τ plus tolerance ϵ:

c̃t =

{
τ + ϵ, if ct−1 < τ and ct > τ + ϵ

ct, otherwise

The reshaped sequence c̃ = {c̃1, . . . , c̃T } is
passed to a formal temporal logic evaluation mod-
ule described next as shown in Fig. 1(b).

3.3 STL-Based Temporal Evaluation
Rather than relying solely on the final-step con-
fidence cT or averaging all stepwise confidences,
we propose a STL-based framework to evaluate
the temporal structure of the confidence trajectory
c̃ = {c̃1, . . . , c̃T } (Fainekos and Pappas, 2006).
STL enables formal specification of desired tempo-
ral properties of confidence during reasoning, such
as smooth progression or eventual certainty.

Each STL formula encodes a specific tempo-
ral pattern, and its associated robustness score
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Figure 2: Visualization examples of stepwise confidence signals before and after applying different uncertainty
reshaping strategies. Each subplot compares the original confidence trajectory (yellow) against a smoothed version
(orange) using one of the following methods: (left to right) Causal Minimum Smoothing (CMS), Exponential Decay
Smoothing (EDS), Monotonic Penalty Smoothing (MPS), and Guarded Smoothing (GS). These transformations
produce smoother and more temporally consistent confidence profiles while preserving the overall trend.

ρi = ρ(c̃,STL) ∈ R quantifies how well the re-
shaped signal satisfies that property (Donzé and
Maler, 2010). A positive score indicates the satis-
faction margin, while a negative score represents
the magnitude of a violation.

We define three STL specifications, each yield-
ing a separate confidence score:

• Eventually Confident: Confidence should
eventually rise above a threshold τ :

STL1 = 3[t1,t2](c̃(t) > τ)

• Always Stable or Increasing: Confidence
should not drop abruptly:

∆c̃(t) = c̃(t)− c̃(t− 1)

STL2 = 2[t1, t2]

(
∆c̃(t) ≥ −ϵ

)

• Local Smoothness: Confidence should not
change too much between steps:

STL3 = 2[t1, t2]

(
|∆c̃(t)| ≤ δ

)

Each resulting score ĉ = ReLU(ρ(c̃,STL)) ∈
[0, 1] represents an interpretable, temporally-
informed confidence score derived from logic-
based robustness. These scores can be used in-
dependently for analysis or combined in multi-
dimensional calibration evaluation.

While our STL-based scoring framework does
not require labeled data during reasoning, it does
rely on threshold hyperparameters (e.g., τ, ϵ, δ) that
influence robustness computation. To set them, we
perform a grid search on a held-out validation set.
This makes our approach partially post-hoc in na-
ture: only the STL evaluation stage requires data-
driven tuning, whereas the preceding confidence re-
shaping is fully unsupervised and model-agnostic.

4 Experiments

In Section 4, we present an ablation study and a
comparison against established post-hoc calibra-
tion techniques that investigates the impact of STL
parameterization and compares our method against
established post-hoc calibration techniques such as
Temperature Scaling (Guo et al., 2017) and His-
togram Binning (Zadrozny and Elkan, 2001). Our
results show that STL-based evaluation provides
not only competitive calibration performance but
also interpretable, temporally grounded diagnostics
of reasoning quality.
Experimental Setup: We conduct our experi-
ments using the Qwen-7B language model,1 a high-
performing open-source LLM optimized for Chi-
nese and mathematical reasoning tasks. Our eval-
uation is conducted on all multiple-choice ques-
tions from Chinese national college entrance ex-
ams (Gaokao) spanning 2010 to 2022, totaling
12 years of official high school mathematics prob-
lems. These questions are drawn from GAOKAO-
Bench (Zhang et al., 2023), to assess LLMs’ lan-
guage understanding and symbolic reasoning capa-
bilities using real-world exam data. Table 1 illus-
trates representative examples.

To prevent the model from relying on surface-
level pattern matching or memorized templates, we
augment the dataset following strategies inspired
by GSM-Symbolic (Mirzadeh et al., 2024), which
shows that LLMs often fail when symbols, num-
bers, or phrasing are changed. We use a more
advanced reasoning model – OpenAI’s o1 API
to perform all paraphrasing operations in a con-
trolled and semantically faithful manner. Specifi-
cally, each original problem is rewritten to preserve
logical structure and correct answer while vary-
ing lexical expressions (e.g., transforming "find

1https://huggingface.co/Qwen/Qwen-7B
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Figure 3: ECE comparison of four confidence estimation methods. (1) Final-step confidence; (2) average confidence
over CoT steps; (3) CoT confidence after applying Uncertainty Reshaping Strategies; and (4) STL-based CoT
confidence, which combines Uncertainty Reshaping Strategies with the STL1 formula (Eventually Confident:
confidence should eventually exceed a threshold τ ). The STL1-enhanced method achieves the best calibration (ECE
= 5.5).

the intersection of sets A and B" into
"determine the elements shared by both A
and B"). We further introduce linguistic variation
through backtranslation, translating problems into
a pivot language (such as French) and then back
to English, thereby injecting natural noise with-
out changing semantics. Additionally, symbolic
formulations are diversified using template-based
transformations—for example, the set expression
“A ∩B” may be rephrased as “x ∈ Z,

√
x ≤ 4” or

“B = {x ∈ Z | x2 ≤ 16}”. These augmentations
collectively evaluate the model’s robustness to para-
phrasing, symbol rewriting, and structural variation,
ensuring assessment focuses on genuine reason-
ing rather than memorized syntax. The correct an-
swer for each augmented sample is inherited from
the corresponding original Gaokao-Bench problem,
since paraphrasing and symbolic transformations
preserve semantic and logical equivalence. In to-
tal, the original 432 questions are each rewritten
twice, resulting in a final dataset of 1,296 problem
instances for evaluation.

Quantitative Results and Analysis: To illustrate
how different estimation methods affect calibra-
tion behavior, Figure 3 shows an example confi-
dence histogram under four representative strate-
gies. While it only reflects a single problem in-
stance and one STL constraint (STL1), the figure
demonstrates how reshaping and temporal logic
evaluation yield more aligned and interpretable
confidence estimates. We now turn to aggregate
results across the full test set. All scores are aver-
aged over three runs, and ± denotes standard devia-
tion caused by the randomness introduced through

temperature-controlled decoding, which affects the
variability and creativity of LLM outputs. Table 2
presents the Expected Calibration Error (ECE) for
various estimation strategies across three types of
uncertainty sources: logits-based, self-evaluation-
based, and internal-based. Table 3 complements
this with Brier Scores, which jointly capture cali-
bration and sharpness of probabilistic estimates.

From the ECE results, we observe that tradi-
tional post-hoc calibration methods such as Tem-
perature Scaling (Guo et al., 2017) and Histogram
Binning (Zadrozny and Elkan, 2001) reduce mis-
calibration compared to raw one-step uncertainty.
For example, Histogram Binning achieves an ECE
of 0.139 on logits-based predictions, improving
substantially over the one-step baseline (0.324).
However, these methods operate globally and do
not account for the multi-step nature of reasoning
in LLMs.

In contrast, CoT-based methods yield stronger
performance, especially when combined with our
proposed Uncertainty Reshaping Strategies. Sim-
ply averaging confidence across CoT steps reduces
ECE across all sources, and applying smoothing
techniques such as Causal Minimum Smoothing
(CMS) or Exponential Decay Smoothing (EDS)
brings further gains. For instance, CMS reduces
logits-based ECE to 0.107, the lowest among all
non-STL methods.

STL-based temporal evaluation further improves
calibration. By enforcing high-level temporal con-
straints like Eventually Confident (STL1), Always
Stable (STL2), and Locally Smooth (STL3), the
model’s confidence trajectory becomes more inter-

887



Method Reshaping Strategy Logits-based ↓ Self-evaluation-based ↓ Internal-based ↓
1-step Uncertainty - 0.324± 0.045 0.692± 0.035 0.694± 0.033

Temperature Scaling - 0.246± 0.061 0.158± 0.033 0.173± 0.046
Histogram Binning - 0.139± 0.004 0.095± 0.069 0.185± 0.129

CoT Average

- 0.141± 0.062 0.542± 0.039 0.603± 0.037
CMS 0.107 ± 0.048 0.486± 0.040 0.579± 0.041
EDS 0.126± 0.022 0.502± 0.036 0.573± 0.039
MPS 0.129± 0.063 0.530± 0.037 0.602± 0.038
GS 0.140± 0.060 0.538± 0.038 0.579± 0.021

STL1 (Eventually Confident)

- 0.174± 0.019 0.082± 0.021 0.102± 0.055
CMS 0.250± 0.198 0.136± 0.006 0.119± 0.023
EDS 0.236± 0.064 0.098± 0.012 0.500± 0.497
MPS 0.211± 0.019 0.080± 0.017 0.100± 0.046
GS 0.212± 0.026 0.077± 0.018 0.096± 0.035

STL2 (Always Stable)

- 0.170± 0.071 0.113± 0.011 0.075± 0.040
CMS 0.153± 0.021 0.126± 0.013 0.074± 0.030
EDS 0.114± 0.063 0.114± 0.015 0.056 ± 0.028
MPS 0.188± 0.009 0.118± 0.015 0.063± 0.013
GS 0.164± 0.074 0.111± 0.013 0.070± 0.039

STL3 (Locally Smooth)

- 0.184± 0.021 0.154± 0.015 0.099± 0.031
CMS 0.122± 0.018 0.081± 0.037 0.084± 0.030
EDS 0.149± 0.008 0.076 ± 0.040 0.083± 0.034
MPS 0.171± 0.025 0.151± 0.030 0.083± 0.046
GS 0.180± 0.017 0.118± 0.006 0.091± 0.043

Table 2: Expected Calibration Error (ECE) comparison across confidence sources and estimation strategies. STL-
based methods, particularly STL1–STL3 combined with Uncertainty Reshaping (CMS, EDS), consistently yield
better calibration than traditional techniques.

pretable and aligned with reasoning quality. STL1
combined with GS achieves an ECE of 0.077
on self-evaluation-based confidence and 0.096 on
internal-based, outperforming all other approaches.
Notably, STL2 with EDS reaches an ECE of
0.056 on internal-based confidence—the best re-
sult across all settings.

The Brier Score analysis mirrors this trend.
STL methods consistently produce lower scores
than CoT average or standard post-hoc techniques.
STL1 with CMS achieves the best self-evaluation-
based Brier Score (0.234), while STL2 with EDS
offers the best internal-based score (0.056). These
results confirm that applying STL logic not only
improves calibration error but also leads to sharper,
more reliable probability estimates.

Overall, STL-based confidence estimation out-
performs traditional calibration and CoT-only base-
lines, particularly when paired with CMS or EDS.
These findings highlight the value of structured
temporal logic as a calibration framework for LLM-
based reasoning, offering both theoretical guaran-
tees and empirical gains.

5 Conclusion

This paper presents a structured approach to confi-
dence estimation for LLM-based mathematical rea-
soning. By modeling stepwise confidence as a tem-

poral signal and evaluating its quality using STL,
our method addresses limitations in traditional cali-
bration and step-level aggregation techniques. We
introduce a suite of uncertainty reshaping strate-
gies and STL-based robustness constraints that en-
force desirable properties such as eventual certainty,
monotonic progression, and local smoothness.

Experimental results on GAOKAO-Bench
demonstrate that our STL-based evaluation, partic-
ularly when paired with smoothing strategies like
CMS and EDS, consistently achieves lower ECE
and Brier Scores compared to standard baselines.
Beyond quantitative improvements, the framework
provides a principled, interpretable method for di-
agnosing and enhancing reasoning quality in edu-
cational LLM applications.

6 Limitations

While our method improves calibration and inter-
pretability, it is currently limited to high school-
level multiple-choice math problems. Extending
the framework to open-ended questions, formal
proofs, or multi-modal reasoning is a promising
direction. Since all experiments are conducted on
Qwen-7B, generalization to other models remains
uncertain. Testing on models like Gemma 3, Llama
3.2, or DeepSeek would help assess robustness
across architectures.
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Method Reshaping Strategy Logits-based ↓ Self-evaluation-based ↓ Internal-based ↓
1-step Uncertainty - 0.339± 0.019 0.677± 0.032 0.678± 0.032

Temperature Scaling - 0.263± 0.040 0.255± 0.018 0.276± 0.018
Histogram Binning - 0.284± 0.002 0.263± 0.020 0.259± 0.021

CoT Average

- 0.225± 0.033 0.498± 0.023 0.564± 0.028
CMS 0.218± 0.032 0.442± 0.019 0.537± 0.029
EDS 0.219± 0.032 0.455± 0.017 0.530± 0.027
MPS 0.219± 0.033 0.483± 0.022 0.563± 0.028
GS 0.222± 0.033 0.493± 0.022 0.536± 0.037

STL1 (Eventually Confident)

- 0.223± 0.003 0.244± 0.001 0.246± 0.001
CMS 0.218 ± 0.005 0.234 ± 0.000 0.240± 0.000
EDS 0.219± 0.003 0.238± 0.001 0.241± 0.001
MPS 0.221± 0.000 0.243± 0.002 0.246± 0.001
GS 0.223± 0.004 0.243± 0.002 0.239± 0.001

STL2 (Always Stable)

- 0.238± 0.008 0.252± 0.005 0.254± 0.002
CMS 0.239± 0.009 0.246± 0.002 0.249± 0.001
EDS 0.243± 0.004 0.253± 0.003 0.253± 0.001
MPS 0.239± 0.006 0.252± 0.004 0.254± 0.002
GS 0.238± 0.008 0.252± 0.004 0.257± 0.005

STL3 (Locally Smooth)

- 0.232± 0.011 0.236± 0.002 0.240± 0.001
CMS 0.237± 0.008 0.241± 0.002 0.242± 0.001
EDS 0.239± 0.006 0.242± 0.001 0.244± 0.000
MPS 0.236± 0.010 0.236± 0.003 0.238 ± 0.002
GS 0.233± 0.011 0.235± 0.001 0.249± 0.002

Table 3: Brier Score comparison across methods. Lower scores indicate better-calibrated and sharper probabilistic
predictions. STL-based temporal constraints further improve performance beyond CoT averaging and post-hoc
calibration.

Both the reshaping strategies and STL specifi-
cations are manually defined. Future work could
explore learning them dynamically via reinforce-
ment learning or differentiable logic, enabling more
adaptive and data-driven calibration beyond man-
ual tuning.

This paper focuses on linear chain-of-thought
reasoning. More complex prompting paradigms,
such as tree-of-thought (Yao et al., 2023), intro-
duce branching and cyclic structures that pose new
challenges for temporal modeling. Extending our
evaluation to computation tree logic (CTL) to ac-
commodate such structures would broaden its ap-
plicability to richer and more realistic cognitive
processes.

Finally, our method is post-hoc and does not in-
fluence model inference. Integrating uncertainty
feedback into real-time tutoring systems could en-
able dynamic intervention, hinting, and early error
detection.
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