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Abstract
Large Language Models (LLMs) offer excit-
ing potential as educational tutors, and much
research explores this potential. Unfortunately,
there’s little research in understanding the base-
line behavioral pattern differences that LLM
tutors exhibit, in contrast to human tutors. We
conduct a preliminary study of these differ-
ences with the CIMA dataset and three state-
of-the-art LLMs (GPT-4o, Gemini Pro 1.5, and
LLaMA 3.1 450B). Our results reveal system-
atic deviations in these baseline patterns, par-
ticulary in the tutoring actions selected, com-
plexity of responses, and even within different
LLMs.

This research brings forward some early results
in understanding how LLMs when deployed
as tutors exhibit systematic differences, which
has implications for educational technology
design and deployment. We note that while
LLMs enable more powerful and fluid interac-
tion than previous systems, they simultaneously
develop characteristic patterns distinct from hu-
man teaching. Understanding these differences
can inform better integration of AI in educa-
tional settings.

1 Introduction

Large Language Models (LLMs) offer unprece-
dented capabilities for creating educational tech-
nologies that can interact with students. Unlike tra-
ditional intelligent tutoring systems (ITS), which
were often limited by constrained interfaces and
rigid interaction patterns (Alkhatlan and Kalita,
2019; Mousavinasab et al., 2021), LLMs provide
natural-language interactions that draw on exten-
sive linguistic and contextual training (Brown et al.,
2020; Bommasani et al., 2022). This allows LLMs
to respond to learner inputs in ways that more
closely resemble human tutors, presenting new pos-
sibilities for personalized learning experiences.

Despite their potential, important questions re-
main about how closely LLM tutoring interactions

align with human tutoring practices. Existing lit-
erature on human tutoring and ITSs emphasize
strategies such as scaffolding, immediate feed-
back, and adaptive questioning to meet the learners’
needs (Chi et al., 2001; VanLehn, 2011). However,
the conversational and pedagogical behaviors of
LLMs in tutoring scenarios remain underexplored.

The current work addresses this research gap.
Utilizing the CIMA dataset of language teaching
dialogues (Stasaski et al., 2020), which contains
multiple responses of human tutors to the same
students in an Italian language learning context, we
systematically examine and compare the structural
pedagogical patterns of human tutors and several
state-of-the-art language models, GPT-4o (OpenAI
et al., 2024), Gemini Pro 1.5 (Team et al., 2024),
and LLaMA 3.1 405B (Grattafiori et al., 2024).
We identify and characterize behavioral patterns of
LLM tutors and human tutors, focusing on action
preferences and response complexity.

Our analysis reveals several key findings:

1. Both human and AI tutors show similar high-
level preferences in action selection, with
hints comprising approximately 45% of all
tutoring actions.

2. Human tutors strongly prefer single-action re-
sponses (approximately 72% of interactions),
while LLM tutors consistently combine multi-
ple pedagogical actions in their responses.

3. Each LLM exhibits its own characteristic pat-
tern, highlighting the need for LLM-specific
tailoring.

As these systems continue to evolve and be de-
ployed in diverse learning contexts, recognizing
their distinctive behavioral patterns becomes in-
creasingly important—not to eliminate differences,
but to use them more effectively in creating educa-
tional experiences that complement human instruc-
tion.
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2 Related Work

2.1 Evolution of Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) have evolved
significantly over decades, from rule-based systems
with limited interaction capabilities to increasingly
sophisticated architectures. Traditional ITS plat-
forms like Cognitive Tutors (Anderson et al., 1995)
and knowledge-based tutors (Akkila et al., 2019)
demonstrated effectiveness in specific domains but
were constrained by rigid interaction patterns and
limited adaptability. These systems typically oper-
ated within carefully engineered knowledge frame-
works, making them powerful but inflexible (Van-
Lehn, 2011; Ma et al., 2014).

The field has progressively sought more natu-
ral and adaptive educational technologies. Dialog-
based tutoring systems (Graesser et al., 1999; Rus
et al., 2013) attempted to incorporate conversa-
tional elements but remained limited by predefined
pathways. Recent advances in NLP have enabled
more sophisticated systems capable of processing
and generating natural language interactions (Rus
et al., 2013; Nye et al., 2014), setting the stage for
the current generation of LLM-based educational
tools.

2.2 Language Models in Educational
Applications

Large Language Models represent a fundamental
shift in educational technology, offering unprece-
dented fluidity in natural language interaction cou-
pled with broad knowledge coverage. Recent re-
search has explored various applications of LLMs
in education, including personalized learning (Park
et al., 2024), assessment (Wang et al., 2024), and
tutoring (Kumar et al., 2024).

Studies have demonstrated LLMs’ potential to
support complex learning processes through adap-
tive dialogue (Schmucker et al., 2023) and to gener-
ate contextually relevant explanations (Naik et al.,
2024). LLMs’ performance as educational tools
has primarily been studied through various metrics
such as learning gain (Pardos and Bhandari, 2023)
or through assessing the quality or correctness of
LLM responses (Kumar et al., 2024).

However, while these systems enable more nat-
ural interaction, they simultaneously operate ac-
cording to statistical patterns learned during train-
ing rather than pedagogical principles explicitly
encoded by designers (Brown et al., 2020; Bom-
masani et al., 2022). This tension between fluid

interfaces and underlying fixed statistical patterns
remains underexplored in educational applications
of LLMs.

2.3 Tutoring Patterns and Behaviors

Research on human tutoring has extensively doc-
umented the patterns that characterize effective
teaching interactions. Chi et al. (2001) identi-
fied interactive patterns like scaffolding and feed-
back loops that support student learning. VanLehn
(2011) further explored the balance between dif-
ferent pedagogical moves, noting that expert tutors
dynamically adjust their approach based on student
needs. Feedback, specifically, has been widely
studied, with Hattie and Timperley (2007) empha-
sizing its critical role in facilitating student learning
through targeted interventions.

In comparing AI and human tutoring behaviors,
early work by Graesser et al. (1999) examined dif-
ferences between human tutors and AutoTutor, find-
ing systematic differences in questioning strategies
and elaboration patterns. More recent work by
Stasaski et al. (2020) with the CIMA dataset high-
lighted the diversity of valid teaching approaches
human tutors employ, noting the low agreement
rate (18.1%) between different tutors responding
to the same student input. This underscores the
complexity of establishing normative patterns for
tutoring behavior.

2.4 Interaction Patterns in Language Models

Research on conversational behavior and dialogue
generation in LLMs has identified patterns related
to turn-taking, conversational coherence, and re-
sponse complexity (Sandler et al., 2024; Shaikh
et al., 2023). These studies highlight that while
LLMs produce coherent interactions, the underly-
ing statistical nature can lead to repetitive patterns
and superficial dialogues – this behavior has, in
part, also led to LLMs being labeled as “stochastic
parrots” (Bender et al., 2021).

The few studies that have examined instructional
patterns in AI systems have typically focused on
direct comparisons of specific responses rather than
population-level analysis of behavioral distribu-
tions (Puech et al., 2024). These findings empha-
size the need to systematically analyze LLM in-
teraction patterns to better understand their educa-
tional utility and identify areas for improvement.
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2.5 Research Gap

Our research addresses the need to systematically
analyze LLM interaction patterns by conducting a
detailed comparison of human and LLM tutoring
patterns across multiple dimensions of analysis, fo-
cusing on action distributions, response complexity,
and teaching dynamics. This population-level ap-
proach provides a new perspective on how LLMs
function in educational contexts compared to hu-
man tutors, with implications for both educational
technology design and pedagogical theory.

3 Methodology

3.1 Research Questions

This study investigates differences between how
language models and humans approach the tutoring
task. We examine the underlying patterns in how
these systems engage with learners compared to
human tutors. This focus can be broken down into
specific questions in light of ITS and AI:

1. How do artificial tutoring systems function
when given the same context as human tutors?

2. What systematic differences emerge in how
AI and human tutors structure their teaching
interactions?

These questions address core theoretical inter-
ests about the nature of LLMs as ITS while avoid-
ing assumptions about what constitutes “correct”
or “effective” tutoring. By focusing on behavioral
patterns rather than performance metrics, we aim
to understand fundamental differences in how arti-
ficial and human tutors approach the teaching task.

3.2 Design Principles

Our methodology is shaped by several key princi-
ples:

Population-Level Analysis: Rather than at-
tempting direct turn-by-turn comparisons between
human and LLM responses, we focus on analyz-
ing aggregate behavioral patterns across the entire
dataset. This approach is particularly important
given the low agreement rate (18.1%) observed
between human tutors in the CIMA dataset.

Reference Distribution Approach: We aggre-
gate human tutor responses to create reference dis-
tributions that capture the characteristic patterns of
human tutoring behavior. These distributions serve
as a baseline for comparative analysis.

Model Comparison: We maintain separate dis-
tributions for different LLM configurations, en-
abling us to distinguish between model-specific
behaviors and general LLM characteristics.

This approach reorients our research question
from “Does this LLM respond like a human tutor
would?” to “Does this LLM’s pattern of action
choices align with the patterns we observe in hu-
man tutors?”.

3.3 Dataset

Our analysis utilizes the CIMA (Conversational
Instruction with Multi-responses and Actions)
dataset (Stasaski et al., 2020), which provides tu-
toring dialogues focused on teaching Italian prepo-
sitional phrases to English speakers. The dataset
is particularly valuable for our study as it captures
multiple valid tutoring responses for each student
interaction, reflecting the reality that there is rarely
one “correct” way to respond in a tutoring context.

Key features of the dataset include:

• Multiple Valid Approaches: For each stu-
dent utterance, three different tutors provide
responses, showing distinct but equally valid
tutoring strategies.

• Action Labeling: Each response is annotated
with pedagogical actions (Hint, Question, Cor-
rection, Confirmation, Other).

• Progressive Learning: The dataset captures
how concepts build across exercises.

The dataset contains 391 completed exercises
across 77 students, with each exercise grounded in
both visual and conceptual representations. The
mean response lengths (6.82 words for students,
9.99 words for tutors) indicate substantive interac-
tions. This richness, combined with explicit action
labeling, provides a strong foundation for analyz-
ing how different tutors structure their teaching
interventions.

3.4 Dataset Enhancement with AI Tutors

To enable direct comparison between human and
artificial tutoring patterns, we enhanced the CIMA
dataset by generating parallel responses from state-
of-the-art language models. We selected three ad-
vanced instruction-tuned models:

• GPT-4o 2024-08-06 (OpenAI) (OpenAI et al.,
2024)
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• Gemini Pro 1.5 (Google) (Team et al., 2024).

• LLaMA 3.1 405B instruct nitro
(Meta) (Grattafiori et al., 2024)

This selection from different providers, each
with distinct architectural choices and training ap-
proaches, allows us to distinguish between behav-
iors fundamental to language models in general
versus those specific to particular implementations.

For response generation, we developed a struc-
tured prompting system that provides each model
with equivalent context to what human tutors re-
ceived in the original dataset. Each interaction uses
a prompt template that specifies:

You are a language tutor teaching Italian. Avail-
able actions:

• Question: Ask student for clarification or to
elaborate

• Hint: Provide indirect guidance
• Correction: Point out and fix errors
• Confirmation: Acknowledge correct re-

sponses
• Other: Any other type of response

Context:

• Target phrase (IT): {target_phrase[’it’]}
• Target phrase (EN): {target_phrase[’en’]}
• Grammar rules: {grammar_rules}
• Conversation history: {conversa-

tion_history}

Please provide a response as a tutor to the stu-
dent’s last message. Respond in JSON format
with: { "response": "your response text", "ac-
tions": ["your action types"] }

This approach ensures consistent action catego-
rization and response formats across all interac-
tions.

3.5 Analysis Framework

Our analysis examines two key dimensions of tu-
toring behavior:

• Action Distribution Analysis: We examine
the relative frequency of fundamental tutor-
ing actions across different populations. This
analysis compares the baseline distribution
derived from human tutors against Language
Model behavior, identifying systematic pref-
erences or avoidances in action selection.

• Action Combination Analysis: We investi-
gate patterns in how actions are combined
within individual responses, including the
typical number of actions per response and
the balance between single-action and multi-
action responses.

3.6 Methodological Limitations
Our analysis framework operates within several
important constraints:

• Dataset Characteristics: The study utilizes a
dataset limited to Italian preposition instruc-
tion with crowdsourced rather than profes-
sional tutors.

• Structural Constraints: The prescribed
JSON response format may influence natural
interaction patterns, and the restricted action
vocabulary limits expressive range.

• Model Implementation: Analysis is limited
to three model variants with a single prompt
template approach and no model fine-tuning.

• Scope of Conclusions: While we can identify
alignment or deviation from human behavioral
patterns, we cannot evaluate the optimality
of tutoring choices or assess the quality of
specific responses.

Our focus on action distributions represents a
deliberate methodological choice, prioritizing the
analysis of strategic-level behavioral alignment
over response-level quality assessment.

4 Analysis

Our analysis revealed systematic differences in how
language models and human tutors approach the
educational task, with patterns emerging across
multiple dimensions of analysis.

4.1 Action Distributions
Both human and AI tutors demonstrate a strong
preference for hints as their primary teaching ac-
tion, with hints comprising approximately 45% of
all actions across both human and LLM sessions
(Figure 1). This suggests fundamental alignment
in basic tutoring strategy, possibly reflecting the
effectiveness of scaffolded guidance over direct
instruction.

However, examining the broader action distri-
butions reveals key differences in pedagogical ap-
proaches. Human tutors show a more balanced
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Figure 1: Distribution of actions by different tutors,
showing the relative frequency of different pedagogical
strategies.

distribution between corrections (20.3%) and ques-
tions (21.5%), suggesting a diverse approach. In
contrast, AI systems exhibit model-specific pat-
terns - while all maintain the primacy of hints, they
differ in secondary strategies. GPT-4o and Gemini
Pro 1.5 demonstrate a stronger tendency toward cor-
rections (28.7% and 29.4% respectively) compared
to questions (7.3% and 6.8%), while LLaMA 3.1
maintains a more balanced profile closer to human
tutors.

Statistical analysis confirmed that the observed
differences in action distributions between human
and AI tutors were significant (χ2 = 495.17, p <
.001, Cramer’s V = 0.124), indicating a weak to
moderate effect size. This suggests an interest-
ing pattern: while there is fundamental alignment
in primary teaching strategies (the preference for
hints), significant differences emerge in how sec-
ondary strategies are deployed. This nuanced find-
ing reveals that LLMs have captured core aspects
of tutoring behavior while diverging in other di-
mensions.

4.2 Response Complexity

The most striking difference between human and
AI tutors emerges in response complexity (Figure
2). Human tutors demonstrate a strong and con-
sistent pattern for single-action responses, with ap-
proximately 71.8% of responses containing just
one action, 24.6% containing two actions, and only
3.6% containing three or more. This pattern sug-

gests a teaching strategy focused on clear, targeted
interventions.

Figure 2: Distribution of the number of pedagogical
actions per response in tutoring sessions.

In contrast, AI tutors consistently combine mul-
tiple actions in their responses, though with inter-
esting variations between systems. LLaMA shows
the strongest preference for dual-action responses
(82.3%), while GPT-4o and Gemini Pro display a
more balanced distribution. GPT-4o uses single
actions in about 31.5% of responses and dual ac-
tions in 64.7%, while Gemini Pro shows a more
even split between single (42.8%) and dual actions
(54.9%).

A Kruskal-Wallis test revealed significant differ-
ences in the number of actions per response across
the four tutor types (human and three LLMs) (H =
1507.37, p < .001). Post-hoc pairwise comparisons
with Bonferroni correction showed significant dif-
ferences between humans and each LLM (p < .001
for all comparisons), as well as between all pairs
of LLMs (p < .001). This confirms that not only
do AI tutors differ from human tutors in response
complexity, but each AI model exhibits its own
statistically distinct pattern in how it structures re-
sponses.

5 Discussion

5.1 Summary of Research Findings
Our study provides a comparative population-level
view of how LLM tutors and human tutors ap-
proach the teaching task.

Our first finding is that both human tutors and
LLM tutors share a high-level strategy, where hints
are the main tutoring action (approximately 45%
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of all actions each). This suggests that LLMs have
learned to prioritize guidance much like human
experts. The secondary actions show some differ-
ences. Human tutors use a somewhat balanced
mix of questions and corrections in the interac-
tions (roughly 20% each), indicating an approach
that alternates between direct feedback and prompt-
ing student thinking. For the secondary actions,
LLM tutors show skewed distributions; for exam-
ple, GPT-4o and Gemini 1.5 rely more heavily on
corrections, whereas LLaMa 3.1 maintained a more
human-like balance.

These differences in action preference suggest
that while LLMs have captured the primary tactic
of hinting, they diverge in how they follow up,
either by explaining or correcting or by probing the
learner.

The second finding is the strong contrast in
response complexity between human tutors and
LLMs. Human tutors strongly prefer a concise,
single-action response (roughly 70% of human tu-
tor responses in the dataset had only one pedagogi-
cal action). In comparison, LLM tutors frequently
combine multiple actions in a single response; the
difference was the strongest for LLaMa 3.1, where
over 80% of the responses had two actions). Sta-
tistical tests confirmed that these differences in re-
sponse complexity are significant.

The third finding is that LLMs have unique be-
havioral signatures. Although the three evaluated
LLMs have been trained with large masses of data,
each had their distinct tutoring style. This high-
lights that the way how an LLM interacts reflects
the model’s design choices or fine-tuning. These
results extend the prior observations by Graesser
et al. (1999), who noted systematic differences in
tutoring style between a classical ITS (AutoTutor)
and human tutors. We find that LLM-based tutors
likewise deviate from human tutors.

5.2 Pedagogical and Practical Implications
The differences identified in our analysis have im-
plications for educational practice and the design of
AI tutoring systems. First, the alignment of primary
strategy in terms of heavy use of hints highlights
that LLMs have converged on a generally effec-
tive tutoring practice. This is encouraging from a
pedagogical point of view, as hints are known to fa-
cilitate learning by prompting student thinking (Chi
et al., 2001).

However, the way how LLM tutors use sec-
ondary strategies could affect learning in subtle

ways. For example, the LLMs were more likely
to provide corrections, and asked prompting ques-
tions less frequently than human tutors. Asking
questions is often used to encourage active learning
– if an LLM tutor predominantly gives corrections,
the student might become more passive in the learn-
ing process.

On the other hand, providing rapid corrections
can be also be beneficial, depending on the sce-
nario. The pedagogical implication is that LLM
tutors should be tailored to the contexts and objec-
tives: if the objective is to foster student reasoning,
LLMs should be tweaked to ask more open-ended
questions rather than providing quick fixes. Further-
more, compound responses might overwhelm the
learner, and to avoid this, LLMs should be adapted
to match the user competences. That is, there is
room for improvement in the pedagogical quality
and ability of LLM-driven tutors.

Broadly speaking, our results emphasize that
LLM tutors, despite the fluent dialogue, have em-
bedded biases in how they tutor. This resonates
with the tension noted by Horvitz between fluid
and natural interfaces and the rigid patterns of au-
tomated systems (Horvitz, 1999).

5.3 Limitations
Our work comes with a set of limitations, which
we acknowledge. Firstly, our study focuses on a
single dataset and domain, i.e. the CIMA dataset of
Italian language learning dialogues (Stasaski et al.,
2020). The tutoring patterns that we focused on
(for both humans and LLMs) may be specific to
language teaching or even to particular prompts and
tasks in CIMA, and it is possible that the balance of
actions and complexity would be different to other
datasets. This means that the generalizability of the
results should be assessed with additional contexts
and datasets.

Secondly, our analysis focused on population-
level comparisons, but it does not capture how a
tutor might adapt over a tutoring session. Human
tutors often dynamically adjust their strategy based
on students’ progress, but we do not know to what
extent this holds for LLM tutors, and our current
analysis misses these dynamics.

Thirdly, our annotation strategy was automatic,
and relied on the existing categories in the CIMA
dataset. It is possible that LLM (or human) actions
do not always neatly fall into specific categories.
We sought to mitigate this by using clear defini-
tions, but acknowledge the presence of noise. Ad-
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ditionally, we relied on LLMs’ self-reported action
classifications without manual validation. While
our population-level patterns are robust to some
classification noise, future work should validate the
accuracy of these self-classifications. Furthermore,
our analysis does not capture subtler nuances in
responses; as an example, a human tutor might pro-
vide a more encouraging response than an LLM,
even if both responses are categorized as hints.

Additionally, as the CIMA dataset was released
in 2020 and our tested LLMs were trained on data
through 2023-2024, it is possible that the dataset
appeared in their training corpora. While this does
not invalidate our behavioral analysis—the patterns
we observe reflect how these models approach tu-
toring tasks regardless of prior exposure—it should
be considered when interpreting the alignment be-
tween LLM and human tutoring strategies.

Finally, we cannot deduce the efficiency of the
tutoring. This is a limitation of the practical signifi-
cance of the work. Despite these issues, our work
fills a gap by systematically comparing the baseline
behaviors of human and LLM tutors.

6 Conclusion

In this paper, we studied LLM-based tutors differ
from human tutors in their interaction patterns, con-
ducting a population-level analysis using the CIMA
tutoring dataset. Our focus was on the behavioral
structure of the tutoring, composed of what actions
the tutors take and how they deliver them.

By generating parallel tutoring responses using
three state-of-the-art LLMs and comparing them
against human tutor responses, we observe the fol-
lowing: (1) LLM tutors and human tutors have
similar high-level tactics with a shared emphasis
on giving hints, which indicates that current LLMs
have learned or been tuned to adopt some of the ex-
isting practices of humans; (2) When going beyond
the high-level tactics, there are significant differ-
ences in how LLM tutors balance their actions and
in how complex the responses are; (3) The differ-
ences are not uniform across the LLM tutors, which
highlights that each LLM has its own “personal”
style of tutoring. These findings were made possi-
ble by analyzing the aggregate patterns over many
tutoring responses, moving beyond anecdotal or
one-to-one comparisons.

Recognizing and understanding these patterns
is important when seeking to make informed de-
cisions on how to effectively integrate LLMs into

learning environments. The differences that we
highlight suggest areas where LLM tutors might
benefit from additional tailoring (e.g. tailoring
LLMs to the context and objectives, and to match
the user competences).

In conclusion, we present a foundation for treat-
ing behavioral patterns of LLM tutors as a subject
of study by its own right, parallel to how one might
study different teaching styles among human tutors.
We have also shown how to quantitatively character-
ize how an LLM “teaches”. Such a characterization
can help in aligning LLM tutor behavior towards
educational best practices, while also benefiting
from the existing capacities such as consistency
and breadth.
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