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Abstract

Recent advances in LLMs offer new opportu-
nities for supporting student writing, particu-
larly through real-time, composition-level feed-
back. However, for such support to be effec-
tive, LLMs need to generate text completions
that align with the writer’s internal representa-
tion of their developing message, a represen-
tation that is often implicit and difficult to ob-
serve. This paper investigates the use of eye-
tracking data, specifically lookback fixations
during pauses in text production, as a cue to
this internal representation. Using eye move-
ment data from students composing texts, we
compare human-generated completions with
LLM-generated completions based on prompts
that either include or exclude words and sen-
tences fixated during pauses. We find that incor-
porating lookback fixations enhances human-
LLM alignment in generating text completions.
These results provide empirical support for gen-
erating fixation-aware LLM feedback and lay
the foundation for future educational tools that
deliver real-time, composition-level feedback
grounded in writers’ attention and cognitive
processes.1

1 Introduction

Natural language processing (NLP) solutions exist
for scaffolding students who are learning to pro-
duce effective text. These support both surface-
level accuracy (grammar and spelling), and also
compositional-level effectiveness, i.e. helping stu-
dents produce text that communicates a coherent
message (e.g., Franzke et al., 2005; Roscoe and
McNamara, 2013). Recent advances in large lan-

1Following the initial submission, we discovered an error
in one of the analysis scripts that inadvertently introduced
data contamination. To ensure the validity of the findings, all
models were rerun using corrected code. This version reports
the updated results. While specific numerical values have
changed, the main conclusions of the study remain unaffected.
Our code is available publicly at https://go.chukharev.
com/bea-2025.

guage models (LLMs) enable promising innova-
tive applications for intelligent support of writing
tasks. Specifically, there are potential advantages
to providing composition-level feedback in real
time, while the writer is still forming their mes-
sage, rather than retrospectively, once their text is
complete.

Achieving this is challenging, but is brought
within reach by LLMs. These can generate plausi-
ble completions to text that a student is in the pro-
cess of composing. However, providing feedback
based on these plausible completions has limited
learning benefit unless the LLM-generated com-
pletions are aligned with those that the student in-
tended to produce. Human-LLM alignment will
increase if the LLM captures important features
of the writer’s current internal representation of
their developing message. However, these mental
representations are not directly observable. They
are also likely to be implicit, at least in part: The
writer might not have explicitly articulated their
developing message even in their own internal rep-
resentation (Torrance, 2016).

One possible clue to this implicit internal repre-
sentation is provided by writers’ eye movement.
During text production writers frequently hesi-
tate, often very briefly, and look back within their
own text. These lookback eye movements typi-
cally involve “hopping around” between isolated
words and phrases rather than sustained reading
(Chukharev-Hudilainen et al., 2019; Torrance et al.,
2016). This eye movement is, however, targeted:
Words are not fixated at random, but tend to be
informationally rich. Previous work in cognitive
psychology has suggested that lookbacks may be
driven by the writer’s internal representation of the
emerging message (Torrance, 2016; Torrance et al.,
2016), but this hypothesis has not been systemati-
cally evaluated.

In this paper, we propose the use of eye-tracking
cues to enhance LLM performance in predicting
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text completion. If eye fixations cue content for
what the writer produces next, then lookback data
can help provide completion suggestions that align
more closely with the writer’s current thinking.
To test this hypothesis, we use keystroke and eye
movement data from human writers composing ar-
gumentative texts. We extract hesitation events:
pauses when writers stopped and looked back into
their text and then, without editing, continued writ-
ing (e.g., finishing the sentence that they were writ-
ing before the pause). We compare writers’ own
completions with LLM completions generated on
the basis of prompts that did and did not include
the words and sentences that the writers fixated on
during lookback. Increased overlap between LLM
and writer completions when prompts incorporate
information from lookbacks would be evidence
for the potential value of eye-movement-informed
message-level scaffolding of written composition.

The purpose of this paper is two-fold: First, we
evaluate whether the information on the writer’s
lookback fixations can enhance the alignment be-
tween the human and the LLM in the text comple-
tion task. Second, we investigate whether LLM
text completions with and without eye movement
data can provide evidence for the (cognitive) hy-
pothesis about the role of lookbacks in human text
production. This lays the necessary groundwork for
designing novel educational applications wherein
useful composition-level feedback can be provided
to students in real time, before the text is completed
by the student.

2 Related Work

Functions of reading during writing in humans.
Research in cognitive psychology suggests that
writers often look back at their own text during
pauses in production, particularly near sentence
boundaries. These fixations frequently involve lex-
ical processing rather than simple error-checking.
Most are not part of sustained reading sequences
but instead consist of gaze shifts among isolated
words via forward and backward saccades. These
lookbacks are thought to support the planning of
upcoming text rather than merely identifying mis-
takes in previously written content (Chukharev-
Hudilainen et al., 2019; Torrance et al., 2016).

Human–LLM Alignment. Recent efforts to en-
hance alignment between humans and large lan-
guage models (LLMs) in writing support systems
have focused on modeling writers’ intentions and

cognitive states (Zhang et al., 2024; Gero et al.,
2022). However, these internal intentions are of-
ten difficult to directly observe. Looking back into
existing text, in addition to supporting error mon-
itoring, is likely to support ongoing text produc-
tion, cuing both message and linguistic (lexical,
syntactic) form for what the writer will say next
(Chukharev-Hudilainen et al., 2019; Torrance et al.,
2016). Knowledge of what words and sentences
a writer fixates during these lookbacks, therefore,
may provides insight into the writer’s evolving men-
tal representation of their developing composition.

While some recent approaches have explored
aligning LLM-generated suggestions with user in-
tentions (Reza et al., 2025), most have not incorpo-
rated real-time behavioral signals. Our work builds
on this line of inquiry by explicitly integrating gaze-
based cues into prompting strategies, aiming to im-
prove alignment between LLM completions and
the writer’s unfolding mental model.

Eye-Tracking in NLP. Eye-tracking data has
also been leveraged to improve NLP models across
a variety of tasks. Prior studies show that incor-
porating gaze signals can enhance performance in
named entity recognition (Hollenstein and Zhang,
2019), text comprehension (Reich et al., 2022), and
question answering (Wang et al., 2024). More re-
cently, (López-Cardona et al., 2025) introduced
a reward model that uses eye-tracking data to
optimize Human–AI alignment. Advances in
LLMs have further spurred research into using
neural and behavioral signals for better alignment.
For instance, (Aw et al., 2023) demonstrate how
instruction-tuning can align LLMs with human
brain signals. In a similar vein, our study investi-
gates whether reading fixations can serve as mean-
ingful input for improving alignment between LLM
text completion responses and writers’ cognitive
processes.

3 Methodology

3.1 Data
Thirty undergraduate college students (22 women,
8 men, age range 18-22, mean age 19.7 years) com-
posed two texts each using the CyWrite text editor
(Chukharev-Hudilainen et al., 2019)2, while their
eye movements were recorded with an SR Research
EyeLink 1000 Plus system in a monocular remote
setup, calibrated using a 9-point procedure. Cy-
Write maps on-screen eye fixation coordinates to

2https://github.com/chukharev/cywrite
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corresponding in-text locations – i.e., the specific
words being fixated – accounting for scrolling, line
wrapping, and text edits. The writing task appeared
as the top paragraph in the editor, with participants
composing their responses below it. There was
no time limit for the writing tasks, the order of
tasks was counterbalanced across participants, and
a short break was provided between the two tasks
for each participant. Participants were not allowed
to consult any external sources. All texts were com-
posed in English, and all participants reported that
English was their first language.

CyWrite generates a time-aligned log file that
records the timestamp for every key press, key re-
lease, and eye fixation. Fixations are classified into
sustained reading (operationalized as sequences of
at least three consecutive eye fixations on words
within the same line of text progressing from left
to right) and fixating isolated words (defined as fix-
ations on text that are not part of sustained reading
sequences). For this study, we define hesitations
as pauses between successive keypresses during
which the participant engages in sustained reading.

3.2 Language Models

We generate responses for four LLMs, namely,
GPT-3.5, GPT-4, LLaMa3-8B and Mistral7B.
We use gpt-3.5-turbo (OpenAI, 2023) and gpt-
4.1 (Achiam et al., 2023) via the OpenAI API. The
exact number of parameters for the GPT models
have not been officially disclosed but gpt-3.5-turbo
is expected to have approximately 20 billion para-
maters (Singh et al., 2023). The responses are
generated at a temperature setting of 0.7. We use
Llama3-8B and Mistral-7B through ollama (Ol-
lama, 2023). LLaMa3-8B and Mistral-7B have 8
billion and 7 billion parameters, respectively. For
all the models, the number of tokens to be gener-
ated is dynamically defined to be approximately
equal to the number of tokens in the corresponding
completion.

3.3 Prompt Design

We first create a baseline prompt that consists of
the pretext, an instructional prompt, and the task
description provided to the student. The two task
descriptions are:

• Some people have said that finding and imple-
menting green technologies, such as wind or
solar power, should be the focus of our efforts
to avert climate crisis. To what extent do you

agree or disagree with this statement? Try to
support your arguments with appropriate evi-
dence from, for example, your knowledge of
scientific evidence, your own experience, or
your observations and reading.

• Some people have argued that animals should
be given similar rights to humans. To what
extent do you agree or disagree with this state-
ment? Try to support your arguments with
appropriate evidence from, for example, your
knowledge of scientific evidence, your own
experience, or your observations and reading.

To contrast the LLM responses with fixations
against those without fixations, we generate re-
sponses for a control condition where along with
the baseline prompt we provide the LLM with a
matched number of non-fixated non-stop words
from the pretext (if there are fewer non-fixated
words in the pretext than fixated words, we include
all non-fixated words). Thus, we generate LLM
responses in four conditions:

1. Baseline. Baseline Prompt only

2. Words. Baseline + fixated non-stop words

3. Sentences. Baseline + filtered fixated sen-
tences

4. Control. Baseline + a matched number of
non-fixated words

The prompts for each of the conditions are pre-
sented in Table 1.

3.4 Evaluation Metrics
To evaluate the performance of LLMs with and
without fixations, we establish similarity between
human and LLM-generated completions in each
of the four conditions on both semantic and token-
based (surface linguistic form) measures.

3.4.1 Semantic Similarity
We quantify the semantic similarity between hu-
man and LLM responses by computing the cosine
similarity between embedding vectors generated
from the completions using the text-embedding-
ada-002 model via OpenAI API (OpenAI, 2024).
This approach captures global semantic alignment
between the different completions.

3.4.2 Token-based Similarity
We calculate two token-based similarity metrics:
F1 Score and Jaccard Index.
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Condition Prompt

Baseline This was the task description provided to a student: <task_description >.
Please write a continuation of: <pretext >.

Words
This was the task description provided to a student: <task_description >.
We have identified the following key words as particularly important: <fixated words >.
Please write a continuation of: <pretext >.

Sentences
This was the task description provided to a student: <task_description >.
We have identified the following sentences as particularly important: <fixated sentences >.
Please write a continuation of: <pretext >.

Control
This was the task description provided to a student: <task_description >.
We have identified the following key words as particularly important: <non-fixated words >.
Please write a continuation of: <pretext >.

Table 1: Prompt for each condition

F1 Score: F1 score accounts for both precision
and recall, making it useful for evaluating word
overlap between the two texts. Precision mea-
sures the proportion of shared words in the second
text (W2), while recall measures the proportion of
shared words in the first text (W1).

Precision =
|W1 ∩W2|

|W2|

Recall =
|W1 ∩W2|

|W1|
The F1 Score, which balances precision and

recall, is calculated as:

F1 Score = 2× Precision × Recall
Precision + Recall

Jaccard Index: Jaccard Index is a set-based mea-
sure that quantifies the overlap between two texts
by comparing the size of their intersection with
their union. This metric focuses on shared words
without considering their relative frequency. It is
defined as:

Jaccard Similarity =
|W1 ∩W2|
|W1 ∪W2|

4 Approach

In this section, we present our approach to data
extraction and LLM response generation. The ap-
proach is outlined in Figure 1.

4.1 Extract Hesitation Events
The first step in our approach is to obtain valid
hesitation events from human text production data.
We defined hesitations as inter-keypress intervals
where writing is interrupted by a pause, during

which the writer engages in sustained reading. At
the time of hesitation, we extract the span of text
between the start of the current paragraph and the
cursor location. We call this the pretext. In Figure
2, | represents the cursor location at the time of
hesitation. We discard all hesitations where the
pretext is empty.

Once we have a valid hesitation, we traverse
the log file to extract the human completion of the
pretext. To this end, we consider all keystrokes
following the hesitation until the writer types a
sentence-final punctuation symbol (./?/!). The
completion is valid so long as the writer does not
edit or delete any portion of the pretext at any point
during the completion process. Valid human com-
pletions serve as the gold standard for comparison
against the LLM-generated completions. However,
we discard all invalid completions. We define a
hesitation event as a valid hesitation followed by a
valid completion. The process of extracting hesita-
tion events is outlined in Algorithm 1.

Algorithm 1 Extract Hesitation Events
1: function GETHESITATIONS(data)
2: for i in data do
3: if len(data[i].pretext) > 0 then
4: if sustained reading in data[i] then
5: for j from i+1 to len(data) do
6: if data[j] starts data[i] then
7: if data ends in {.,?,!} then
8: Extract en

4.2 Extract Fixations
Once we have a set of valid hesitation events
en(pretext, completion), we extract, from the avail-
able eye-tracking data, all eye fixations on the text
that occurred during each hesitation event. We
include both sustained reading fixations, and fixa-
tions on isolated words. We apply the following
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Figure 1: Overview of EyeLLM Approach

Going back on the original 
question of putting the focus on 
creating these different efforts to 
help with the climate crisis, I do 
believe that it is important to aim 
our goals to reach |

(a)

|

(b)

|

(c)

Figure 2: Example showing the extraction of pretext, fixations, and completion. (a) The writer pauses (hesitates)
during text production. | indicates their cursor location at the point of hesitation. Everything between the start of
the current paragraph and | is the pretext. (b) The writer fixates on the highlighted points as shown in the scanpath.
Words containing eye fixations are fixated words. (c) The writer continues to produce text (highlighted in green).
This is the completion.

Model Similarity Scores

Semantic F1 Jaccard

Control Baseline Words Sentences Control Baseline Words Sentences Control Baseline Words Sentences

GPT-3.5 .8075 .8066 .8086* .8090* .1483 .1484 .1511* .1480 .0823 .0824 .0841* .0821
GPT-4 .8078 .8056* .8089 .8101* .1332 .1336 .1347 .1347 .0732 .0735 .0742 .0744

LLaMa3 .7945 .7958* .7958 .7959 .1356 .1360 .1364 .1360 .0749 .0752 .0754 .0753
Mistral7B .7935 .7919* .7950* .7945 .1228 .1244 .1262* .1236 .0673 .0682 .0693* .0678

Table 2: Average similarity scores across all LLMs. The highest score for each LLM is highlighted in bold. * marks
scores that are significantly different from Control, p < 0.01.
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filtering criteria:

1. We only include lookback fixations, i.e. fixa-
tions on the text before the cursor at the time
of the hesitation.

2. We exclude fixations on words from the NLTK
list of stop words, to ensure that only fixations
on semantically important words are included.

3. For the Sentences condition, we identify fix-
ated sentences as sentences that contain valid
fixations on at least three words.

The process of extracting fixations is outlined in
Algorithm 2. We only consider hesitation events
that have at least 1 fixated word and at least 1 fix-
ated sentence. After this filtering process, we get
822 valid hesitation events. The mean number of
fixated words across all valid hesitation events is
11.11 (median 8), and the mean number of fixated
sentences is 1.90 (median 1).

Algorithm 2 Extracting Fixations
1: function GETFIXATIONS(data, hesitation_events, n)
2: for hesitation in hesitation_events do
3: Extract fixations for current hesitation
4: Remove fixations on stop words
5: Store sentences with ≥ n fixated words
6: if valid fixations found then
7: Append to results
8: end if
9: end for

10: return results

4.3 Response Generation

After extracting fixation data for all hesitation
events, we prompt several LLMs to generate com-
pletions. The full experimental setup is already
described in Section 3.

5 Results

We run each model for 10 iterations. The results
for all the models averaged over all iterations are
presented in Table 2. We answer the following two
research questions:

• RQ1: Does incorporating information about a
writer’s lookback fixations improve the align-
ment between human and LLM-generated text
completions?

• RQ2: How do different LLMs compare across
conditions with and without lookback fixa-
tions?

5.1 RQ1: Impact of Lookback Fixations on
the Similarity Scores

We perform inferential hypothesis testing to assess
whether prompting condition had a statistically sig-
nificant effect on similarity scores. In our analy-
sis, we treat each similarity measure as a depen-
dent variable. We fit linear mixed effects models
(LMERs) with prompting condition (Control, Base-
line, Words, Sentences) as the fixed factor. As
detailed above, we generate completions 10 times
for each hesitation event. LMERs therefore include
random by-event intercepts and slopes for prompt-
ing condition.

First, we perform the analysis separately for each
LLM. We fit LMERs for each measure (semantic
similarity, F1, Jaccard), resulting in a total of 12
series of nested LMERs. In each series, we first
fit an intercept-only model (M0), and then add the
prompting condition fixed effect (M1). We com-
pare model fit using the likelihood ratio test. We
adopt a conservative significance threshold p < .01
to guard against Type I errors. When M1 signifi-
cantly improves model fit over M0, we evaluate the
fixed-effect coefficients in M1 to determine which
prompting conditions show significant differences
from the Control.

The results are shown in Table 2 and Figure 3.
As expected, the Control condition does not out-
perform Baseline for F1 and Jaccard scores. For
semantic similarity, however, Control provides sig-
nificant performance gains over Baseline for GPT-4
and Mistral7B. This suggests that providing addi-
tional input to the LLM (even if it is unrelated to
the eye-tracking signal) can improve human-LLM
alignment in text completion.

Crucially, introducing eye-tracking signals (via
Words and Sentences conditions) yields modest but
statistically significant improvements over Control
in all LLMs except LLaMa3. In terms of semantic
similarity, Sentences generally outperform Words,
except in Mistral7B. For token-based metrics (F1
and Jaccard), Words tend to perform better than
Sentences, with GPT-4 being the exception.

To assess the overall effect of prompting condi-
tion across LLMs, we examine differences of av-
erage similarity scores between Control and other
conditions (Table 3). To test for significance of
these differences, we fit one LMER per similarity
metric using data from all LLMs, treating LLM
as a fixed effect, and including its interaction with
prompting condition. Due to LMER convergence
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issues, we simplify the random effects structure
by removing the random by-event slopes. We then
perform Tukey-adjusted pairwise comparisons of
estimated marginal means across prompting con-
ditions. We find that, for semantic similarity, all
pairwise differences across conditions are statisti-
cally significant (p < .0001) except between Sen-
tences and Words (p = .426). For F1 and Jaccard,
Words significantly outperform all other conditions
(p < .01), while differences among the remaining
conditions are not significant (p > .15).

These findings support our hypothesis that in-
cluding fixation-based information in prompts im-
proves human–LLM alignment. Although LLM
responses vary in sensitivity to the eye-tracking sig-
nal, overall we find that providing LLMs with fix-
ated sentences enhances semantic alignment, while
providing fixated words enhances both semantic
and token-level alignment with human text comple-
tions.

Metric Change relative to Control

Control Baseline Words Sentences

Semantic .8008 -.0008* +.0013* +.0016*
F1 Score .1350 +.0006 +.0021* +.0006
Jaccard .0744 +.0004 +.0013* +.0005

Table 3: Performance changes across prompting con-
ditions, relative to the Control. Bold values indicate
improvements. * indicates significant change (p < .01).
Averages computed across all models.

5.2 RQ2: Differences among LLMs in
Performance Across Prompting
Conditions

To assess whether differences between LLMs are
statistically significant, we extend the inferential
tests from Section 5.1 by fitting a series of nested
linear mixed-effects models (LMERs) for each sim-
ilarity measure, using data from all four LLMs. We
begin with a baseline intercept-only model (M0),
then sequentially add the fixed effect for prompt-
ing condition (M1), the fixed effect for LLM (M2),
and finally the interaction between condition and
LLM (M3). Due to convergence issues, we remove
by-event slopes from the random effects structure.

Model comparisons are conducted using likeli-
hood ratio tests. For semantic similarity, succes-
sive models significantly improve the fit (M3 >
M2 > M1 > M0, all p < .0001). The signifi-
cant interaction term in M3 for semantic similarity

indicates that the effect of prompting condition
varies by LLM–that is, not only do the LLMs dif-
fer overall, but the way they respond to different
prompting conditions also differs significantly, but
only with respect to the semantic metric. On the
other hand, for Jaccard and F1, M3 does not pro-
vide further improvement of model fit over M2

(p = .018; p = .044, respectively). This suggests
no evidence for the condition-LLM interaction for
the token-based metrics.

Pairwise comparisons between LLMs reveal sig-
nificant differences throughout (all p < .0001 with
Tukey adjustment), with the exception of the dif-
ference between GPT-3.5 and GPT-4 for semantic
similarity (p = .157).

We present an overview of descriptive statistics
for different similarity measures below.

Semantic Similarity: As shown in Figure 3a,
GPT models consistently outperform LLaMa and
Mistral in the semantic alignment across all con-
ditions. With eye-tracking cues, all models show
small relative improvements compared to the Con-
trol condition (between +.13% and +.29%), but
only some of these improvements are statistically
significant.

F1 Score: Figure 3b presents model comparisons
based on the F1 score. Interestingly, GPT-3.5
outperforms all other models across all prompt-
ing conditions, showing the strongest token-level
alignment with human completions. GPT-4 and
LLaMa3 are closely comparable, while Mistral7B
consistently underperforms relative to other mod-
els. Across prompting conditions, F1 score changes
show greater variability. From Control to Words,
only Mistral7B and GPT-3.5 show significant im-
provement (by +2.77% and +1.89%, respectively).
GPT-4 and LLaMa3 show smaller improvements
that do not reach significance threshold. All
changes from Control to Sentences (ranging from
+1.13% to -0.98%) are not statistically significant.

Jaccard Index: As shown in Figure 3c, Jaccard
scores generally follow trends seen in F1 scores.
From Control to Words, all models improve (be-
tween +0.67% and +2.97%), but only GPT-3.5 and
Mistral7B show significant improvements. The
shift to Sentences shows mixed changes (between
+1.64% and -0.74%), none of which reach signifi-
cance.

Overall, both GPT models show greatest seman-
tic alignment with student text completions, while
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(a) Semantic Score

(b) F1 Score

(c) Jaccard Index

Figure 3: Scores of different models across prompting
conditions with 95% confidence intervals.

GPT-3.5 clearly leads on token-based similarity
metrics. Eye-tracking cues are not sufficient to sig-
nificantly change the relative performance of any
two LLMs on any of the measures investigated.

6 Summary and Conclusion

To our knowledge, this paper is the first to investi-
gate the impact of word- and sentence-level look-
back fixation signal captured during writing pauses
on LLM-generated text completions.

We first asked whether the eye-tracking cues
improve the human-LLM alignment in the text
completion task. By comparing different prompt-
ing conditions, we demonstrated that the addition
of both the words and the sentences that a writer
fixates resulted in small, but statistically signifi-
cant improvement in the semantic alignment be-
tween LLM-generated text completions and what
the writer themselves actually wrote. Adding fix-
ated words (but not sentences) improves perfor-
mance on token-based similarity metrics. This
provides tentative (but, to date, best-available) evi-
dence of the role of lookback in text planning and,
again tentatively, suggests value in incorporating
lookback data in intelligent, real-time tools for sup-
porting and training written composition skills.

We then asked how different LLMs compare
across prompting conditions. We found that GPT
models outperform smaller open-source models on
semantic metrics, while GPT-3.5 offers substantial
advantages in token-based similarity. For semantic
(but not token-based) metrics, significant statistical
interaction between LLM and prompting condition
suggests that different LLMs react differently to
the eye-tracking signal.

Relative performance gains, while statistically
significant, were small (in single-digit percent)
across LLMs and similarity metrics. It remains to
be seen whether improvements on this scale have
practical value for developing educational technolo-
gies that support written composition. At the very
least, they highlight the need for further research
into how lookback information can be used to re-
fine prompts.

Limitations

One limitation of our study lies in the scope of the
data collected, which includes responses from 30
students. Nonetheless, we extracted 822 valid hes-
itation events across 60 composition sessions, re-
inforcing the robustness of our findings. Secondly,
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while the variation in scores across conditions is
statistically significant, it is relatively small and
its practical significance will depend on the use
case. Lastly, we do not present a complete end-
to-end tool for providing LLM-generated writing
assistance. However, this work establishes a strong
foundation for future development in that direction.
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