
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 818–829
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

GermDetect
Verb Placement Error Detection Datasets for Learners of Germanic

Languages
Noah-Manuel Michael

Kiel University, Germany
Leibniz Institute for Science and

Mathematics Education, Kiel, Germany
Linköping University, Sweden
michael@ipn.uni-kiel.de

Andrea Horbach
Kiel University, Germany

Leibniz Institute for Science and
Mathematics Education, Kiel, Germany

horbach@ipn.uni-kiel.de

Abstract

Correct verb placement is difficult to acquire
for second-language (L2) learners of Germanic
languages. However, word order errors and,
consequently, verb placement errors, are heav-
ily underrepresented in benchmark datasets of
NLP tasks such as grammatical error detection
(GED)/correction (GEC) and linguistic accept-
ability assessment (LA). If they are present,
they are most often naively introduced, or clas-
sification occurs at the sentence level, prevent-
ing the precise identification of individual er-
rors and the provision of appropriate feedback
to learners. To remedy this, we present Ger-
mDetect: Universal Dependencies-based (UD),
linguistically informed verb placement error
detection datasets for learners of Germanic
languages, designed as a token classification
task. As our datasets are UD-based, we are
able to provide them in most major Germanic
languages: Afrikaans, German, Dutch, Faroese,
Icelandic, Danish, Norwegian (Bokmål and
Nynorsk), and Swedish. We train multilingual
BERT (mBERT) models on GermDetect and
show that linguistically informed, UD-based
error induction results in more effective models
for verb placement error detection than models
trained on naively introduced errors. Finally,
we conduct ablation studies on multilingual
training and find that lower-resource languages
benefit from the inclusion of structurally related
languages in training.

1 Introduction

Correct verb placement is difficult to acquire for
L2 learners of Germanic languages. This is due to
the placement depending on different factors such
as finiteness and the clause type in which the verbs
occur. Example (1) illustrates a Dutch sentence
consisting of a single main clause.

(1) Hij
he
S

heeft
has
V2

een
a
O

hond
dog
O

gekocht.
bought
V

‘He has bought a dog.’

Two characteristics can be observed here: The fi-
nite verb heeft is placed in the second position
(V2) and the non-finite, participle verb gekocht is
placed clause-finally. Example (2), consisting of a
main and a subordinate clause, illustrates how the
verb placement changes: Here, the finite weet oc-
cupies the V2 position in the main clause, but both
the finite heeft and non-finite gekocht are placed
clause-finally in the subordinate clause, following
subject-object-verb (SOV) word order.

(2) Ik
I
S

weet
know
V2

dat
that
_

hij
he
S

een
a
O

hond
dog
O

heeft
has
V

gekocht.
bought
V

‘I know that he has bought a dog.’

These and other context-dependent changes in verb
placement in Germanic languages are not trivial for
L2 learners. Therefore, being able to provide accu-
rate feedback to learners about their verb placement
is crucial.

However, word order errors are heavily under-
represented in both GED/GEC shared task datasets
and LA datasets. If they are present, they are often
introduced naively, which means they do not rep-
resent the kinds of errors L2 learners are likely to
make. This leaves the capability of GED systems to
detect naturalistic word order errors underexplored.
Verb placement errors, as a subset of word order
errors, are even more poorly represented, which, in
the context of Germanic languages, is particularly
critical. Additionally, LA datasets are often for-
mulated as sentence-level binary classification or
pair-wise ranking tasks. This does not allow for lo-
cating errors within a sentence and therefore offers

818



af de nl fo is da nb nn sv
103

104

105

Language

N
um

be
ro

fS
en

te
nc

es

Figure 1: Number of sentences per language in Ger-
mDetect (log scale); language codes follow ISO 639-1.

little usability for providing feedback to learners.
To address this gap, we present GermDetect:

UD-based, linguistically informed verb placement
error detection datasets for learners of Germanic
languages that can serve as a new benchmark to
test GED systems’ capabilities in detecting nat-
uralistic verb placement errors. The token-level
classification design allows individual errors in
verb placement to be located, and the datasets
are available in most major Germanic languages:1

Afrikaans, German, Dutch, Faroese, Icelandic,
Danish, Norwegian (Bokmål and Nynorsk), and
Swedish. Figure 1 presents a brief overview of
the magnitude of our dataset, with a more detailed
breakdown in Appendix A. We make the datasets
and the code available at https://github.com/
noahmanu/gerlangmod.

In the following sections, we provide a brief
introduction to related work, followed by a descrip-
tion of our dataset creation algorithm. We then
present the results of different mBERT configura-
tions on our new benchmark.

2 Related Work

In this section, we introduce verb placement rules
in Germanic languages, briefly talk about the fre-
quency of verb placement errors in learner corpora,
present relevant GED/GEC/LA datasets and their
shortcomings with regard to the evaluation of word
order errors, and survey popular GED/GEC tools’
capabilities in detecting verb placement errors.

1Excluding English as English is the only modern Ger-
manic language that does not follow V2.

2.1 Verb Placement Rules in Germanic
Languages

Correct verb placement is challenging to acquire
for L2 learners of Germanic languages (Orgassa,
2009; Schimke and Dimroth, 2018; Westergaard
and Lohndal, 2019; Angantýsson, 2021). This is
due to the placement depending on different factors
such as finiteness and the clause type in which the
verbs occur.

All Germanic languages covered in GermDetect
follow V2 in main clauses, which means that the
finite verb always occupies the second position.
Example (1) illustrates how in West Germanic lan-
guages, SOV is the default syntax pattern for all
other verbs, i.e., non-finite verbs are placed clause-
finally in main clauses. In subordinate clauses,
where V2 does not hold, all verbs follow SOV and
are therefore found at the end of the phrase. Ex-
ample (3) demonstrates by means of a Swedish
sentence that, in North Germanic languages, all
verbs follow SVO in main clauses.

(3) Han
he
S

har
has
V2

köpt
bought
V

en
a
O

hund.
dog
O

This masks the V2 constraint, as the surface word
order in main clauses often resembles that of canon-
ical SVO languages. Example (4) briefly presents
how, when an element other than the subject takes
the clause-initial position, V2 holds while the rest
of the main clause follows SVO.

(4) Kanske
maybe
_

har
has
V2

han
he
S

köpt
bought
V

en
a
O

hund.
dog
O

‘Maybe he has bought a dog.’

Additionally, all GermDetect languages form po-
lar questions by inversion, placing the finite verb
in the clause-initial position.2 Examples (5) and
(6) illustrate this structure for both German and
Faroese. Non-finite verbs follow the respective
default syntax patterns.

(5) Hat
has
V1

er
he
S

einen
a
O

Hund
dog
O

gekauft?
bought
V

‘Has he bought a dog?’

2In analogy to V2, we call this position V1.

819

https://github.com/noahmanu/gerlangmod
https://github.com/noahmanu/gerlangmod


Languages Main–Finite Main–Non-Finite Subordinate PolarQ–Finite PolarQ–Non-Finite

af, de, nl V2 SOV SOV V1 SOV

fo, is, da, nb, nn, sv V2 SVO SVO V1 SVO

Table 1: Overview of the most unmarked syntax patterns in the languages covered by GermDetect; distinction
between finite and non-finite verbs in main clauses and polar questions (PolarQ), and subordinate clauses.

Dataset Task % WOE Languages

Dale and Kilgarriff
(2011)

GEC < 7.5 en

Ng et al. (2013) GEC 0.0 en
Ng et al. (2014) GEC 2.4 en
Napoles et al.
(2017)

GEC N/A en

Bryant et al. (2019) GEC 1.6 en
Warstadt et al.
(2019)

LA N/A en

Warstadt et al.
(2020)

LA 19.4 en

Nielsen (2023) LA 50.0 da, fo, is, nb,
nn, sv

Volodina et al.
(2023)

GED N/A cs, de, en, it,
sv

Masciolini et al.
(2025)

GEC N/A cs, de, el, en,
et, is, it, lv,
ru, sl, sv, uk

Table 2: Percentage of word order errors (WOE) in dif-
ferent benchmark datasets; languages covered by Ger-
mDetect underlined.

(6) Hevur
has
V1

hann
he
S

keypt
bought
V

ein
a
O

hund?
dog
O

Table 1 summarizes the most unmarked syntax pat-
tern for both language groups, i.e., West Germanic
and North Germanic. With verb placement being
this complex in Germanic languages, learners are
prone to make errors when trying to acquire the
correct syntax patterns. However, learners typi-
cally do not make random errors in verb placement.
Instead, the errors they make are often influenced
by their previous language background. Therefore,
certain error types are less likely to occur than oth-
ers. Example (7) shows an unlikely example of an
error where the learner splits the noun phrase een
hond by misplacing a verb between the elements of
this constituent. This is unlikely because nominal
constituents are generally joint units, so this would
most likely be considered an error in any of the
languages the learner knows.

(7) *Ik
I

weet
know

dat
that

hij
he

een
a

heeft
has

hond.
dog

Example (8), in contrast, illustrates a more likely
error that could be produced by a first-language
English speaker.

(8) *Ik
I

weet
know

dat
that

hij
he

heeft
has

een
a

hond.
dog

It is evident that verb placement presents itself as
a very complex system of rules for L2 learners of
Germanic languages to acquire. Next, we briefly
show how this is reflected in real learner corpora.

2.2 Verb Placement Errors in Germanic
Learner Corpora

In the German part of the MERLIN corpus (Boyd
et al., 2014),3 which comprises texts from all CEFR
levels but is especially rich in texts from levels A2–
C1,4 34% of errors are annotated as “movement
errors”, i.e., errors corrected by placing a token
in a different position within the same sentence.5

Out of these, 12.1% involve the misplacement of a
verb.6 The vast majority of verb placement errors
in MERLIN are concentrated among the levels A2–
B2 (94.9%).

In the FalkoEssayL2 v2.4 corpus (Lüdeling et al.,
2008),7 which only comprises German L2 texts at
the levels B2–C2, movement errors make up 29.6%
of total errors. Out of these, 12.5% involve the
misplacement of a verb. This suggests that even at
advanced levels, learners continue to produce verb
placement errors at rates comparable to those at

3Accessible at: https://commul.eurac.edu/annis/
merlin/, last accessed: 2025/06/03.

4CEFR: Common European Framework of Reference for
Languages.

5We only count grammatical errors towards the total, i.e.,
spelling errors are excluded.

6Appendix B contains the queries with which we deter-
mined the number of total grammatical error occurences in
MERLIN and Falko, the number of movement errors, and the
number of movement errors involving the misplacement of a
verb.

7Accessible at: https://korpling.german.hu-berlin.
de/falko-suche/, last accessed: 2025/06/03.

820

https://commul.eurac.edu/annis/merlin/
https://commul.eurac.edu/annis/merlin/
https://korpling.german.hu-berlin.de/falko-suche/
https://korpling.german.hu-berlin.de/falko-suche/


Tool Languages Verb Placement Large-Scale Eval

GermDetect af, de, nl, fo, is, da, nb, nn, sv af, de, nl, fo, is, da, nb, nn, sv ✓

Grammarly en / ✗

LanguageTool en, de, nl, da, sv, +21 others de ✓

ProWritingAid en / ✓

Quillbot en, de, nl, +3 others de, nl ✗

Table 3: Overview of grammar checking tools with language support, verb placement error detection capabilities,
and large-scale evaluation capabilities.

earlier stages, highlighting the pedagogical value
of providing targeted feedback on such errors.

In the Icelandic Child Language Error Corpus
and the Icelandic L2 Error Corpus (Ingason et al.,
2021; Glisic and Ingason, 2022), there are two des-
ignated error categories for verb placement errors
related to V2 violations.8 This indicates that verb
placement is not trivial not only in L2 learning but
also in first-language acquisition.

However, verb placement errors as a subset of
word order errors are heavily underrepresented in
all relevant benchmark datasets as we will point
out in the following section.

2.3 Word Order Errors in GED/GEC/LA
Benchmark Datasets

In recent years, several shared tasks have been or-
ganized in the field of GED/GEC. Additionally, LA
tasks have been developed to test language mod-
els’ linguistic capabilities. Table 2 presents the
most prominent benchmark datasets from all three
domains covering Germanic languages and the per-
centage of word order errors they contain.

All of the datasets have in common that word
order errors typically only make up a very small
fraction of the errors present within them, or no
information about the distribution of word order
errors is provided at all. Germanic languages other
than English have only recently seen their repre-
sentation increase. However, with the exception of
the ScaLA dataset (Nielsen, 2023), no information
is available about the presence and distribution of
word order errors in the datasets containing sub-
sets of the languages covered by GermDetect. This
leaves the capabilities of language models in de-
tecting erroneous word order underexplored.

This situation is especially critical in the context
8Both corpora are accessible at: https://github.

com/icelandic-lt/iceErrorCorpusSpecialized/, last
accessed: 2025/06/03. Verb placement errors are annotated
with the error code v3.

of Germanic languages, whose successful acqui-
sition depends on mastering their complex verb
placement rules. Verb placement errors, as a subset
of word order errors, are consequently even more
poorly represented in the datasets, thus limiting the
development of GED systems capable of reliably
detecting and providing feedback on such errors.
Moreover, in the only Germanic dataset where in-
formation about the presence of word order errors
is available – the ScaLA dataset – such errors were
introduced using a naive corruption strategy that
swaps adjacent tokens.9 As a result, the dataset
neither specifically targets verb placement errors
nor reflects the kind of word order errors that natu-
rally occur in learner language. Thus, it provides
little insight into whether language models can de-
tect naturalistic word order errors that could be
produced by L2 learners.

2.4 Survey GED/GEC Tools

While numerous writing assistants claim to provide
feedback on grammatical errors, few are suitable
for detecting verb placement errors in Germanic
languages other than English. Among those capa-
ble of handling word order errors to some extent,
many lack API access, which complicates large-
scale evaluation.

Table 3 presents an overview of the most popu-
lar tools, the languages they support, and whether
word order errors, particularly those involving verb
placement, are among the phenomena they claim
to be able to identify and provide feedback on. As
the table shows, two of the most popular tools –
Grammarly and ProWritingAid – do not support
any of the relevant languages covered by GermDe-
tect. While Quillbot claims to handle syntax errors
in German and Dutch, and LanguageTool does so

9To ensure the corrupted sentences are indeed ungram-
matical, Nielsen (2023) enforces a variety of part-of-speech
restrictions prohibiting certain token swaps.

821

https://github.com/icelandic-lt/iceErrorCorpusSpecialized/
https://github.com/icelandic-lt/iceErrorCorpusSpecialized/


ik weet dat hij een hond heeft gekocht
PRON VERB SCONJ PRON DET NOUN AUX VERB

ROOT

nsubj

ccomp

det

mark

nsubj

obj

aux

Figure 2: Dependency tree for the Dutch sequence “ik
weet dat hij een hond heeft gekocht”; blue arc indicates
where our algorithm splits verb phrases; orange arc
indicates where our algorithm aggregates noun phrases
into impermeable units.

ik weet dat hij een_hond heeft gekocht
PRON VERB SCONJ PRON NOUN AUX VERB

ROOT

nsubj

mark

nsubj

obj

aux

Figure 3: Dependency tree for the Dutch sequence
“ik weet dat hij een hond heeft gekocht”; verb-headed
phrases are aggregated as verbal heads plus their depen-
dencies; noun-headed phrases are impermeable units.

for German, our manual evaluation on 100 Ger-
mDetect test sentences for each of the two lan-
guages found that their feedback on verb place-
ment errors was largely unreliable, inaccurate, or
incomplete.10 This highlights that effective tools
for providing feedback on verb placement in Ger-
manic languages are unavailable as of today. To
remedy this, in the following section, we present
our linguistically informed corruption algorithm
that can introduce verb placement errors into any
UD-annotated Germanic language subject to V2
verb placement.

10A locally hosted server of LanguageTool’s Python wrap-
per (Version 6.5; available at https://pypi.org/project/
language-tool-python/, last accessed: 2025/06/03)
flagged none of the 132 verb placement errors present in the
German test sentences as word order errors; via their respec-
tive GUIs, LanguageTool was able to identify 41 and Quillbot
was able to identify 38 out of 132 verb placement errors. For
Dutch, Quillbot was able to identify 37 out of 130 verb place-
ment errors. We counted errors as correctly identified even
when they were not explicitly flagged as syntax errors, as
long as the tool highlighted the relevant part of the sentence –
whether as a missing or superfluous word or verb, or with a
vague message such as “something is wrong” in combination
with the appropriate error correction suggestion, among other
generic error types.

3 Dataset Creation

Here, we briefly present the UD datasets as a ba-
sis for GermDetect, we present our preprocessing
steps, and we describe our data corruption algo-
rithm in detail.

3.1 Universal Dependencies
As the basis for our datasets, we use the UD Tree-
banks (Version 2.15; Zeman et al., 2024), including
all available datasets for each of the GermDetect
languages. Appendix A summarizes the datasets
and their sizes after removing sentences without
verbs.

Figure 2 illustrates how sentences are annotated
for dependency relations in UD. Our algorithm cur-
rently operates both on the part-of-speech (POS)-
tag level and the dependency arc level, but tokens
are typically annotated with more linguistic infor-
mation. We remove common punctuation tokens
and lowercase all characters to ensure that models
trained on GermDetect data cannot fall back on
any orthographic information when determining
the (in)correctness of verb placement and have to
rely on their syntactic understanding only. This is
especially relevant for sentences that begin with
verbs, as the initial capitalization can reveal their
original position. If such verbs are moved to an-
other part of the sentence, the capitalization may
serve as an unintended signal of misplacement.

3.2 Corruption Algorithm
Given a dependency parse tree T for a sentence
S = {w1, w2, . . . , wn}, we define an aggregation
procedure to extract syntactic substructures cen-
tered around full verbs and nouns. The algorithm
proceeds as follows:

Step 1 - Aggregation of Verb-Headed Phrases.
Identify all tokens v ∈ S such that POS(v) =
VERB. These serve as the roots of verb-headed
phrases.11

For each full verb v, construct a verb-headed
phrase Vv ⊆ S defined as:

• Vv includes the full verb v itself,

• Plus all tokens in S that are recursively gov-
erned by v – i.e., all descendants of v in the
subtree rooted at v,
11Due to inconsistent annotations, some UD treebanks use

the VERB POS-tag for adjectives derived from verbs. We
implemented a number of additional checks to prevent these
tokens from heading their own verb-headed phrases.

822

https://pypi.org/project/language-tool-python/
https://pypi.org/project/language-tool-python/


• With the constraint that no token is included if
the dependency path from it to v passes through
another full verb (cf. verb phrase splitting in
Figure 2).

This ensures that each verb-headed phrase captures
the local syntactic scope of a full verb, while nested
verbs and their subtrees are aggregated indepen-
dently.

Step 2 - Aggregation of Noun-Headed Phrases
within Verb-Headed Phrases. Identify all to-
kens n ∈ Vv such that POS(n) = NOUN. These
serve as the roots of noun-headed phrases within
verb-headed phrases.

For each noun n, construct a noun-headed
phrase Nn ⊆ Vv defined as:

• Nn includes the noun n itself,

• Plus all tokens in Vv that are recursively gov-
erned by n – i.e., all descendants of n in the
subtree rooted at n,

• With the constraint that no token is included if
the dependency path from it to n passes through
another noun.

Each noun phrase Nn is treated as an imperme-
able unit: During any subsequent processing, i.e.,
the data corruption, the tokens in Nn must remain
contiguous and in their original order. No external
tokens may be inserted into the span of a noun-
headed phrase.

Step 3 - Output. The final output is a collection
of verb-headed phrases {Vv1 , Vv2 , . . . , Vvi}, each
rooted at a full verb. Within each Vv, zero or more
noun phrases {Nn1 , Nn2 , . . . , Nnj} ⊆ Vv are iden-
tified as impermeable subunits. This structure sup-
ports the linguistically-informed manipulation of
the sentence while preserving core syntactic bound-
aries. Figure 3 illustrates how, with the help of
UD’s dependency structure, we are able to isolate
syntactic structures that often correspond to main
and subordinate clauses. This allows us to inject
the data with more targeted corruptions, which aim
to reproduce learner errors more closely.

Step 4 - Corruption of Verb-Headed Phrases.
Each extracted verb-headed phrase Vv is corrupted
by permuting the positions of a randomly selected
subset of its verb tokens. Specifically:

• Identify all verb tokens τ ∈ Vv such that
POS(τ) ∈ {VERB,AUX}. Each such token is

selected for permutation with a probability of
roughly p = 0.5, resulting in the dataset contain-
ing approximately as many correctly placed as
incorrectly placed verbs.

• The selected verb tokens may be relocated to
any position within Vv, either before or after any
other token, provided that the relative order of
all non-verb tokens is preserved.

• Noun-headed phrases Nn ⊆ Vv remain con-
tiguous and untouched; verb tokens may move
around them but not split them.

• If Vv = Vv1 , i.e., it is the first verb-headed phrase
in the sentence, no verb token may occupy the
first position in Vv, unless a verb originally lo-
cated in this position remains in it. This con-
straint is imposed to avoid the accidental genera-
tion of valid polar question syntax, which would
undermine the goal of synthetically generating
syntactically perturbed structures.

• All verb tokens that are moved from their orig-
inal positions are automatically labeled as syn-
tactically incorrect (F), enabling the generation
of training data for GED models. This labeling
strategy is justified by the relatively rigid verb
placement rules found in Germanic languages,
as explained earlier. Verbs that remain in their
original position are labeled as correct (C), all
non-verb tokens are labeled as other (O).

Example (9) illustrates how misplacing a verb in
the first position is not permitted by our algorithm.
This is to avoid generating well-formed polar ques-
tions that would be incorrectly labeled as ungram-
matical (cf. Table 1).12

(9) ik weet | dat hij een_hond heeft gekocht
weet ik* | dat hij een_hond heeft gekocht

Example (10) showcases all possible corruptions
when we reduce the number of verbs in the sub-
ordinate clause of our running example to one, re-
sulting in ik weet dat hij een hond heeft “I know
that he has a dog”. There are 5 positions that heeft
can theoretically take. One of them corresponds to
the correct placement, while the last corruption in

12In addition to the standard *left asterisk indicating linguis-
tically unacceptable examples, we use the asterisk on the right*
side to indicate examples not permitted by our algorithm.

823



the example is not permitted due to the imperme-
able noun-headed phrase constraint. If a verb in
the phrase is selected to be permuted, a permitted
position is randomly chosen.

(10) ik weet | dat hij een_hond heeft
ik weet | *heeft dat hij een_hond
ik weet | *dat heeft hij een_hond
ik weet | *dat hij heeft een_hond
ik weet | *dat hij een heeft hond*

Finally, example (11) illustrates what a labeled cor-
rupted sentence could look like if we reintroduced
the second verb. Note that the relative order of
non-verb tokens always remains the same but the
relative order of verb tokens to one another can
change.

(11) ik
O

weet
C

|
|

*dat
O

gekocht
F

hij
O

heeft
F

een
O

hond
O

The GermDetect algorithm makes it possible to in-
sert errors that specifically target verb placement
while making sure to exclude misplacements that
are unlikely, such as breaking up noun phrases, or
that would result in a well-formed sentence despite
the change of verb placement, such as in polar ques-
tions. The full extent of our dataset is summarized
in Appendix A.

4 Benchmark Results

In this section, we present our experimental setup
and analyze the results of evaluating various
mBERT configurations trained on GermDetect.

4.1 Experimental Setup
Following the creation of the GermDetect dataset,
we train and evaluate multiple mBERT models us-
ing various training dataset configurations and their
combinations (Devlin et al., 2019). We use mBERT
as our base model primarily due to computational
constraints and methodological considerations. All
experiments are conducted locally on a MacBook
Pro with an Apple M4 Pro chip and 24 GB of RAM
(macOS 15.4.1), which makes training larger mod-
els such as XLM-R impractical (Conneau et al.,
2020). In addition to its lighter memory footprint,
mBERT’s relatively lower performance ceiling pro-
vides a clearer basis for analyzing the impact of

training data composition. Specifically, we com-
pare training on the target language alone with
training on the target language and related Ger-
manic languages, as explained in Section 4.3. Since
stronger models like XLM-R often achieve robust
performance regardless of training data composi-
tion, they may obscure more subtle transfer effects
that are easier to detect with a smaller model. This
choice also supports the growing emphasis on en-
vironmentally responsible NLP, as smaller models
require significantly less energy to train and deploy.

To implement our approach, we add a
BertForTokenClassification head to mBERT
and fine-tune the sequence tagger using Hugging
Face’s Trainer API. Appendix C summarizes the
parameters we use to train our models. For each
input sentence, the model generates one of three la-
bels for each token: O for tokens that are not verbs,
and C (correct) or F (false) for verb tokens, depend-
ing on whether their placement in the sentence is
correct or incorrect.

We retain the original dataset splits provided
by UD for training, development, and testing, and
we do not make any further modifications beyond
removing sentences without any verb tokens, as ex-
plained in Section 3.1. During training, the models
are evaluated based on their loss on the develop-
ment set. At inference time, in line with earlier
works in GED (Bell et al., 2019; Yuan et al., 2021;
Volodina et al., 2023), the models are evaluated
using the macro-averaged F0.5 score, which we
compute exclusively over the C and F categories.
This metric places greater emphasis on precision
than recall, which aligns with standard practice
in intelligent computer-assisted language learning
applications where false positives, i.e., flagging
correct structures as incorrect, are especially unde-
sirable as they risk demotivating learners.

4.2 Monolingual Baseline Configurations
Table 4 presents the F0.5 performance results for
different configurations of the mBERT model on
the GermDetect test data.

We evaluate three baseline configurations:
target, random, and adjacent. The target con-
figuration trains models exclusively on GermDetect
data from the target language. The random config-
uration trains models on data in which half of the
verbs assume any position within a sentence other
than their original position, while the other half
remain in their original positions. This corruption
strategy represents generic verb placement errors,

824



mBERT Configuration F0.5 Score by Language

af de nl fo is da nb nn sv

random 0.74 0.80 0.72 0.63 0.74 0.76 0.80 0.79 0.79
adjacent 0.71 0.67 0.69 0.68 0.64 0.72 0.74 0.75 0.75
target 0.82 0.94 0.88 0.72 0.82 0.85 0.90 0.89 0.86

all 0.88 0.94 0.89 0.85 0.84 0.90 0.93 0.92 0.91
all-balanced 0.86 0.94 0.89 0.79 0.83 0.88 0.92 0.91 0.90
west 0.87 0.93 0.88 – – – – – –
west-balanced 0.84 0.94 0.88 – – – – – –
north – – – 0.84 0.83 0.89 0.92 0.91 0.90
north-balanced – – – 0.78 0.83 0.86 0.92 0.91 0.89
island – – – 0.82 0.83 – – – –
island-balanced – – – 0.75 0.83 – – – –
mainland – – – – – 0.88 0.91 0.90 0.89
mainland-balanced – – – – – 0.87 0.92 0.90 0.89

Table 4: Macro-averaged F0.5 performance scores (computed over the C and F categories only) of different
configurations of the mBERT model across the Germanic languages covered by GermDetect; models ablate the
influence of training classifiers based on different data corruption strategies and by combining the training data of
structurally related groups of languages; balanced indicates that the target language sets the upper limit for how
many sentences of each language are used to train the classifier.

i.e., linguistically uninformed verb placement er-
rors. For the adjacent configuration, half of the
verbs switch positions with one of their adjacent
tokens (both left and right swaps are equally fre-
quent), approximating the word-order error induc-
tion mechanism described in Nielsen (2023), but
applied to verbs only.

As shown in the results, the target configu-
ration significantly improves performance across
all languages compared to both the random and
adjacent configurations, indicating that training
directly on GermDetect data effectively enhances
the detection of naturalistic verb placement errors.

4.3 Ablation of Multilingual Configurations

Next, we assess the effects of training models on
configurations that include structurally related lan-
guages.

For the all configuration, one model is trained
on all available data. Similarly, the west, north,
island, and mainland configurations each include
all data from the languages within their respective
groups.13 In the balanced configurations, the num-
ber of sentences from each language is capped at
the level of the target language, ensuring that the
target language contributes at least as many sen-

13West Germanic: af, de, nl. North Germanic: fo, is, da, nb,
nn, sv. Island Scandinavian: fo, is. Mainland Scandinavian:
da, nb, nn, sv.

tences as any other included language. This means
that, e.g., in the north-balanced configuration
with Faroese as the target language, if the Faroese
dataset contains X sentences, then each of the other
North Germanic languages can contribute at most X
sentences to the training set, ensuring that Faroese
is not underrepresented in the training data.

The results demonstrate that training on all avail-
able data yields the best-performing models, consis-
tent with the expectation that more data generally
improves performance. However, training solely
on West Germanic data yields performance scores
nearly equivalent to those obtained by using all
data when tested on West Germanic languages, a
trend also observed among North Germanic lan-
guages. Furthermore, training exclusively on main-
land Scandinavian languages results in only a mi-
nor performance reduction in these languages, com-
pared to training on all North Germanic languages.
These observations suggest that, while incorporat-
ing more diverse data is generally beneficial, the
models effectively exploit structural similarities
among related languages, achieving performance
scores close to the best-performing configurations.
Balancing the representation of languages within
the training sets does not provide additional ben-
efits; thus, it is preferable to utilize all available
data.

825



It is equally unsurprising that German benefits the
least from the inclusion of related languages in
training, as it is by far the most well-represented
language in GermDetect. Similarly, Icelandic and
Dutch also exhibit only minor performance im-
provements. In contrast, Afrikaans and Faroese –
being the languages with the least available data
– benefit the most from the inclusion of data from
related languages in training.

5 Conclusion

We have introduced GermDetect: UD-based,
linguistically informed verb placement error de-
tection datasets for learners of Germanic lan-
guages, designed as a token classification task. As
our datasets are UD-based, we can provide them in
most major Germanic languages: Afrikaans, Ger-
man, Dutch, Faroese, Icelandic, Danish, Norwe-
gian (Bokmål and Nynorsk), and Swedish. Unlike
existing resources, GermDetect targets a specific
and pedagogically relevant error type that is under-
represented in current benchmark datasets and goes
undetected by most existing GED/GEC tools. Our
results show that multilingual models trained on
data corrupted by the GermDetect algorithm out-
perform models trained on naively corrupted data.
Furthermore, while training on all data consistently
yields the highest performance, models trained on
structurally related languages perform nearly as
well – demonstrating the benefits of typological
similarity. Crucially, the amount of available train-
ing data strongly influences the degree to which
models benefit from multilingual training: high-
resource languages such as German, Icelandic, and
Dutch see marginal improvements, whereas low-
resource languages such as Afrikaans and Faroese
benefit substantially. These findings highlight the
importance of both linguistic structure and data
quantity in training robust GED/GEC models and
suggest that targeted, linguistically informed error
induction can support the development of systems
capable of providing fine-grained feedback on com-
plex syntactic phenomena such as verb placement
in Germanic languages.

Limitations

In its current implementation, the verb placement
error generation algorithm is subject to several lim-
itations. It assumes UD sentences to be grammati-
cally well-formed and their annotations to be accu-
rate. However, this is not always the case, as data

quality can vary and annotation practices can differ
across datasets. To address this, future iterations of
the algorithm should include more robust checks
to ensure that all tokens are treated correctly, even
in the presence of inconsistent or imperfect anno-
tations. Another limitation lies in the assumption
that every corruption introduced by the algorithm
results in an incorrect sentence. In theory, how-
ever, some corruptions can still yield well-formed
or acceptable constructions. Although restrictions
are currently in place to prevent the generation of
polar question syntax, and the relatively rigid word
order of Germanic languages minimizes the num-
ber of such cases, they are not entirely eliminated.
A manual inspection of 100 German sentences re-
vealed an error rate of 2.9% in which verbs were
incorrectly labeled. For Dutch, this error rate was
2.1%. Future developments should aim to reduce
these accidentally grammatically sound relocations
of verbs even further. In the Dutch sentences we
manually checked, we also noticed that, for very
long sentences, the algorithm sometimes did not re-
store the correct order of the extracted verb-headed
phrases. This affected the soundness of the respec-
tive sentence in 4% of the sentences we checked.
In a future iteration, it should be examined whether
this was caused by an algorithmic shortcoming or
by insufficient data and annotation quality.

Additionally, while keeping noun phrases intact
represents a step toward introducing linguistically
informed errors, further restrictions could be added
– for instance, preserving additional syntactic struc-
tures or avoiding verb placements that would mis-
represent subordinate clause boundaries, such as
placing verbs in front of subjunctions. Future ver-
sions of the algorithm could also take further ad-
vantage of the rich linguistic information already
present in UD annotations to better approximate a
wider range of learner phenomena. Another issue
arises when the root of a sentence is not a verb but
a noun, which can occur in some UD treebanks
when the main clause contains a copula verb. In
such cases, the corresponding noun phrase is cur-
rently not impermeable. Moreover, although the
current implementation provides feedback on the
position of verb placement errors, it does not yet
explain why a given verb placement is correct or
incorrect. Providing this type of explanatory feed-
back in the form of a feedback message would
offer more meaningful support to learners. Lastly,
it goes without saying that it would be desirable
to evaluate our models on actual learner data once

826



natural learner data annotated for verb placement
errors become available.

Ethics Statement

We do not see any major ethical concerns in the
context of this work. As always, to promote di-
versity, it would be desirable to extend the cover-
age of our datasets to more Germanic languages,
in particular, lower-resourced ones, minority lan-
guages, and regional language varieties such as
Luxembourgish, Frisian, Yiddish, Low German,
Swiss German, etc. As our algorithm operates on
UD data, this would be implementable as soon as
sufficient UD-annotated data for these languages
become available. Of course, implementing an API
demonstration of our trained verb placement er-
ror detection tools is a natural next step to ensure
that language learners can directly benefit from the
models we developed.

Acknowledgments

This research was supported by TrustLLM funded
by Horizon Europe GA 101135671. We would like
to thank Marco Kuhlmann and Marcel Bollmann
for their support and guidance during the earlier
stages of this project.

References
Ásgrímur Angantýsson. 2021. English-like V3-orders

in matrix clauses in Icelandic. Working Papers in
Scandinavian Syntax, 106:17–46.

Samuel Bell, Helen Yannakoudakis, and Marek Rei.
2019. Context is key: Grammatical error detection
with contextual word representations. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 103–
115, Florence, Italy. Association for Computational
Linguistics.

Adriane Boyd, Jirka Hana, Lionel Nicolas, Detmar
Meurers, Katrin Wisniewski, Andrea Abel, Karin
Schöne, Barbora Štindlová, and Chiara Vettori. 2014.
The MERLIN corpus: Learner language and the
CEFR. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC‘14), pages 1281–1288, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation, pages 242–249, Nancy, France.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Isidora Glisic and Anton Ingason. 2022. The Nature of
Icelandic as a Second Language: An Insight from the
Learner Error Corpus for Icelandic. CLARIN Annual
Conference, pages 23–33.

Anton Karl Ingason, Þórunn Arnardóttir, Lilja Björk
Stefánsdóttir, and Xindan Xu. 2021. The Icelandic
Child Language Error Corpus (IceCLEC) Version
1.1. CLARIN-IS.

Anke Lüdeling, Seanna Doolittle, Hagen Hirschmann,
Karin Schmidt, and Maik Walter. 2008. Das Lern-
erkorpus Falko. Deutsch als Fremdsprache, 2:67–73.

Arianna Masciolini, Andrew Caines, Orphée De Clercq,
Joni Kruijsbergen, Murathan Kurfalı, Ricardo Muñoz
Sánchez, Elena Volodina, and Robert Östling. 2025.
The MultiGEC-2025 Shared Task on Multilingual
Grammatical Error Correction at NLP4CALL. Uni-
versity of Tartu Library.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 229–234, Valencia,
Spain. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

827

https://www.academia.edu/93892661/English_like_V3_orders_in_matrix_clauses_in_Icelandic
https://www.academia.edu/93892661/English_like_V3_orders_in_matrix_clauses_in_Icelandic
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/W19-4410
https://aclanthology.org/L14-1488/
https://aclanthology.org/L14-1488/
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/W11-2838/
https://aclanthology.org/W11-2838/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3384/ecp1893
https://doi.org/10.3384/ecp1893
https://doi.org/10.3384/ecp1893
http://hdl.handle.net/20.500.12537/133
http://hdl.handle.net/20.500.12537/133
http://hdl.handle.net/20.500.12537/133
https://hdl.handle.net/10062/107166
https://hdl.handle.net/10062/107166
https://aclanthology.org/E17-2037/
https://aclanthology.org/E17-2037/
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701


Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12, Sofia, Bulgaria. Association for
Computational Linguistics.

Dan Nielsen. 2023. ScandEval: A benchmark for Scan-
dinavian natural language processing. In Proceed-
ings of the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 185–201, Tórshavn,
Faroe Islands. University of Tartu Library.

Antje Orgassa. 2009. Specific Language Impairment
in a Bilingual Context: The Acquisition of Dutch
Inflection by Turkish-Dutch Learners. Ph.D. thesis,
University of Amsterdam. Published by UtrechtLOT.

Sarah Schimke and Christine Dimroth. 2018. The in-
fluence of finiteness and lightness on verb placement
in L2 German: Comparing child and adult learners.
Second Language Research, 34(2):229–256.

Elena Volodina, Christopher Bryant, Andrew Caines,
Orphée De Clercq, Jennifer-Carmen Frey, Elizaveta
Ershova, Alexandr Rosen, and Olga Vinogradova.
2023. MultiGED-2023 shared task at NLP4CALL:
Multilingual grammatical error detection. In Pro-
ceedings of the 12th Workshop on NLP for Computer
Assisted Language Learning, pages 1–16, Tórshavn,
Faroe Islands. LiU Electronic Press.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Marit Westergaard and Terje Lohndal. 2019. Verb Sec-
ond Word Order in Norwegian Heritage Language:
Syntax and Pragmatics. Georgetown University
Press.

Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and
Christopher Bryant. 2021. Multi-class grammatical
error detection for correction: A tale of two systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8722–8736, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Daniel Zeman et al. 2024. Universal Dependencies
2.15. LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Univer-
sity.

A Dataset Specifications

Language Dataset Split # Sents # C # F # O

af AfriBooms
Train 1,300 2,617 2,615 25,341
Dev 192 404 402 3,966
Test 425 776 776 7,637

de

GSD
Train 9,710 9,728 9,726 129,050
Dev 613 697 694 6,730
Test 648 737 737 7,740

HDT
Train 104,322 120,674 120,674 1,391,353
Dev 12,234 14,105 14,104 159,956
Test 12,758 14,497 14,497 167,172

LIT Test 1,784 2,657 2,656 27,315

PUD Test 738 1,053 1,052 10,864

nl

Alpino
Train 11,604 14,167 14,165 132,951
Dev 697 777 775 8,536
Test 557 827 827 7,947

LassySmall
Train 10,389 14,063 14,060 167,415
Dev 1,252 1,790 1,788 19,352
Test 1,272 1,719 1,718 19,241

fo

FarPaHC
Train 1,015 2,284 2,283 13,993
Dev 292 728 726 5,676
Test 299 760 760 5,845

OFT Test 1,203 770 770 6,869

is

GC
Train 3,908 6,707 6,706 58,746
Dev 495 941 938 7,972
Test 529 860 861 7,755

IcePaHC
Train 32,505 62,068 62,066 475,106
Dev 4,579 12,379 12,375 94,062
Test 4,965 11,982 11,983 95,484

Modern
Train 2,659 5,660 5,660 45,435
Dev 383 745 746 6,141
Test 432 883 882 7,620

PUD Test 995 1,484 1,481 14,091

da DDT
Train 3,989 6,186 6,188 55,403
Dev 518 825 823 7,167
Test 532 803 803 6,870

nb Bokmaal
Train 14,120 19,775 19,773 171,489
Dev 2,178 2,966 2,966 25,653
Test 1,810 2,526 2,526 21,095

nn Nynorsk
Train 12,718 18,464 18,461 177,112
Dev 1,685 2,429 2,425 22,475
Test 1,337 1,858 1,858 18,115

sv

LinES
Train 3,008 4,672 4,669 39,408
Dev 989 1,562 1,559 13,327
Test 969 1,438 1,437 11,969

PUD Test 992 1,343 1,341 14,502

Talbanken
Train 3,909 4,769 4,768 47,995
Dev 478 709 708 7,263
Test 1,140 1,573 1,571 14,798

Total 275,607 381,884 381,816 3,795,723

Table 5: Datasets per language and number of sentences
(# Sents) as well as number of labels per data split.

B MERLIN and Falko Search Queries

Examples (12), (13), and (14) show the queries
we used when looking for all errors, movement
errors, and movement errors involving verbs in both
MERLIN and Falko, respectively. Table 6 shows
the exact error numbers. We show the MERLIN
queries. The Falko queries are essentially equal
with only minor differences in category names.

828

https://aclanthology.org/W13-3601/
https://aclanthology.org/W13-3601/
https://aclanthology.org/2023.nodalida-1.20/
https://aclanthology.org/2023.nodalida-1.20/
https://dare.uva.nl/search?identifier=fcb25af7-3eab-4539-afc2-5c1dcb0b32fd
https://dare.uva.nl/search?identifier=fcb25af7-3eab-4539-afc2-5c1dcb0b32fd
https://dare.uva.nl/search?identifier=fcb25af7-3eab-4539-afc2-5c1dcb0b32fd
https://doi.org/10.1177/0267658317723071
https://doi.org/10.1177/0267658317723071
https://doi.org/10.1177/0267658317723071
https://aclanthology.org/2023.nlp4call-1.1/
https://aclanthology.org/2023.nlp4call-1.1/
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.2307/j.ctvfxv99p.12
https://doi.org/10.2307/j.ctvfxv99p.12
https://doi.org/10.2307/j.ctvfxv99p.12
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.18653/v1/2021.emnlp-main.687
http://hdl.handle.net/11234/1-5787
http://hdl.handle.net/11234/1-5787


(12)

TH1Diff!=/(CHA)|(CHA\x2FSPLIT)/

(13)

TH1Diff=/(MOVS)|(MOVT)|(MOVS\x2FCHA)|
(MOVT\x2FMERGE)|(MOVS\x2FSPLIT)|
(MOVT\x2FCHA)/

(14)

TH1Diff=/(MOVS)|(MOVT)|(MOVS\x2FCHA)|
(MOVT\x2FMERGE)|(MOVS\x2FSPLIT)|
(MOVT\x2FCHA)/
& tok_pos=/(VAFIN)|(VAIMP)|(VAINF)|
(VMFIN)|(VMINF)|(VVFIN)|(VVIMP)|
(VVINF)|(VVPP)|(VVIZU)|(VAPP)/
& #1_=_#2

Errors / Corpus MERLIN Falko

All grammatical errors 14,366 8,535
Movement errors 4,880 2,526
Movement errors with verb 591 315

Table 6: Movement errors across MERLIN and Falko
corpora.

C Model Training Parameters

Hyperparameter Value

Number of training epochs 3
Training batch size 16
Evaluation batch size 16
Weight decay 0.01
Learning rate 5e-5
Checkpoint saving strategy Per epoch
Evaluation strategy Per epoch
Max number of saved checkpoints 1
Metric for best model selection Evaluation loss
Load best model at end True

Table 7: Model training parameters.

829


