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Abstract

Recent advancements in natural language pro-
cessing, particularly large language models
(LLMs), are making the automated evaluation
of classroom discussions more achievable. In
this work, we propose a method to improve
the performance of LLMs on classroom discus-
sion quality assessment by utilizing in-context
learning (ICL) example retrieval. Specifically,
we leverage example re-ranking and label ratio
regulation, which forces a specific ratio of dif-
ferent types of examples on the ICL examples.
While a standard ICL example retrieval ap-
proach shows inferior performance compared
to using a predetermined set of examples, our
approach improves performance in all tested
dimensions. We also conducted experiments
to examine the ineffectiveness of the generic
ICL example retrieval approach and found that
the lack of positive and hard negative examples
can be a potential cause. Our analyses empha-
size the importance of maintaining a balanced
distribution of classes (positive, non-hard nega-
tive, and hard negative examples) in creating a
good set of ICL examples, especially when we
can utilize educational knowledge to identify
instances of hard negative examples.

1 Introduction

The automatic evaluation of classroom discussion
quality has emerged as a significant area of inter-
est within educational research. A wide range of
studies have established that the quality of class-
room discourse plays a pivotal role in facilitating
student learning and cognitive development (Desi-
mone and and, 2017; Wilkinson et al., 2015; Suresh
et al., 2019; Jacobs et al., 2022). Nevertheless,
large-scale assessment of classroom discussions
remains prohibitively resource-intensive and logis-
tically challenging. The development of automated
scoring systems offers a promising solution, en-
abling the generation of extensive datasets to in-
vestigate the mechanisms through which discourse

shapes student reasoning and understanding. Fur-
thermore, such systems hold the potential for inte-
gration into formative assessment practices, provid-
ing educators with actionable feedback to enhance
the effectiveness of classroom discussions.

Compared to pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019), large
language models (LLMs) have been shown to
be more reliable in scoring different dimensions
of classroom discussion quality, based on the In-
structional Quality Assessment (IQA) (Tran et al.,
2024a). Prior LLM approaches for classroom dis-
cussion assessment have ranged from using zero-
shot prompts (Wang and Demszky, 2023; Whitehill
and LoCasale-Crouch, 2024) that do not exploit
the few-shot learning capability of LLMs (Brown
et al., 2020), to utilizing few-shot prompts but
with a fixed set of examples for every input (Tran
et al., 2024a,b). Inspired by the advancement of
in-context learning (ICL) example retrieval (Wang
et al., 2024; Zhang et al., 2023), we attempt to au-
tomatically select few-shot examples based on a
given input.

Our work thus aims to improve the automated
scoring of classroom discussion quality with ICL
example retrieval. Utilizing LL.Ms for binary pre-
diction with a ‘target’ label (e.g., if we are identi-
fying if a label y is present in the current turn, the
target now is y), we define the types of examples
as follows. If an example has the same label as the
target label, it is a positive example, otherwise, it
is a negative example. A hard negative example is
a negative example that we expect will be difficult
for a model to distinguish from positive examples,
i.e., positive and hard negative examples are se-
mantically similar in the input space but represent
different classes in the output space. From a re-
trieval perspective, the hard negative examples are
often selected based on some quantitative metrics
such as their distance in the embedding space or
their ranking from a reward model (Wang et al.,
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Figure 1: Overview of the proposed method.

2024; Zhang et al., 2023). However, in the context
of classroom discussion, since we can leverage a
qualitative metric (i.e., domain knowledge about
the definition of the labels), we can identify hard
negative examples for the target label more reliably.
Specifically, based on the definitions of the labels,
for a target label A, we know that label A’ is closer
to A compared to other labels from a human per-
spective. Therefore, when finding hard negative
examples for A, we can quickly select instances
with label A’ as candidates without needing to cal-
culate any kind of ‘distance’ between them.

After experimenting with a generic ICL example
retrieval approach (LLM-R by Wang et al., 2024),
we found it is ineffective for classroom discussion.
We hypothesized that the problem is from 1) the
imbalance of positive/negative examples and 2) the
lack of hard negative examples, as we cannot con-
trol the retrieval process. The first hypothesis is
well-known in ICL learning as we need both posi-
tive and negative examples to learn effectively (Min
et al., 2022). The second hypothesis is from the ob-
servation that hard negative examples play a crucial
role in getting good prediction performance (Tran
et al., 2024a; Robinson et al., 2021). Moreover,
although we have domain knowledge about hard
negative examples based on the annotations of the
labels, the ICL retriever only relies on quantitative
metrics (e.g., higher-ranking examples) to identify
them. To address these issues, we proposed a 2-step
approach. First, we train a BERT-based re-ranker
to re-order the retrieved examples from LLM-R
(Wang et al., 2024). Second, we employ label ra-
tio regulation (LRR), which selects examples from
the sorted list while maintaining a specific ratio
of positive, non-hard negative, and hard negative
examples in the 10-example set used in the prompt
(Figure 1).

Our goal is to answer these research questions:

R, Does the proposed method help improve per-
formance?

RQ, Does ICL example retrieval have good cov-
erage of the label space (type of examples)?

R(@); How does the ratio of the ICL examples used
in the label ratio regulation influence the per-
formance?

Our contributions are three-fold. First, we show
that a standard ICL example retrieval approach,
despite being useful for other natural language pro-
cessing (NLP) tasks, is ineffective for classroom
discussion assessment. Further analyses suggest
that the lack of positive examples and hard nega-
tive examples can be causes for this poor perfor-
mance. Second, we propose an approach utilizing
re-ranking and label ratio regulation to comple-
ment the standard ICL example retrieval. It helps
improve performance and yields comparable re-
sults to a finetuned retriever without finetuning the
retriever. Third, we demonstrate that even with
re-ranking, the retrieval process fails to effectively
select hard negative examples, which emphasizes
the importance of label ratio regulation when the
domain knowledge of the classes (e.g., which class
is a hard negative example) is available.

2 Related Work

2.1 LLMs for Classroom Discussion Scoring

As generative LLMs such as GPT-4 (OpenAl et al.,
2024), Llama (Grattafiori et al., 2024), and Mistral
(Jiang et al., 2023) have outperformed PLMs in
many NLP tasks, there has been growing interest in
leveraging these LL.Ms for classroom discussions.

When predicting accountable talk moves in class-
room discussions, a finetuned LLM such as GPT-3
has consistently surpassed RoBERTa (Liu et al.,
2019) in precision (Kupor et al., 2023). However,
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since finetuning LL.Ms requires significant exper-
tise, extensive data, and substantial computational
resources, researchers have increasingly focused
on zero-shot and few-shot approaches that do not
require additional training. For instance, one study
examined the zero-shot capabilities of ChatGPT
in three tasks: scoring transcript segments using
classroom observation instruments, identifying key
strengths and missed opportunities in instructional
strategies, and providing actionable suggestions
for fostering student reasoning (Wang and Dem-
szky, 2023). The findings revealed that ChatGPT
struggled to score classroom transcripts using in-
struments like the Classroom Assessment Scoring
System (CLASS) or the Mathematical Quality of
Instruction (MQI) and offered repetitive feedback.

Research has also explored the application of
LLMs at more granular levels, such as sentence-
level or utterance-level analysis. While zero-shot
ChatGPT provided clear and detailed explanations
for its predictions, it performed significantly worse
than the smaller BERT model in three out of four
student talk move categories for the classification
task (Wang et al., 2023). Tran et al. (2024b) an-
alyzed three prompt-based factors: task formula-
tions, context length, and the presence of few-shot
examples and found that all of them can have im-
pacts on the final performance. Although the im-
portance of few-shot examples has been shown and
some prior work utilized few-shot prompting, they
had a fixed set of examples, which might not be
representative enough and might not have examples
relevant to the current input (Tran et al., 2024a,b).
Our work focuses on automatically retrieving a set
of examples based on the input to cover dynamic
scenarios in a classroom discussion.

2.2 ICL Example Retrieval for LLMs

In-context learning, the emergent capability of
LLMs that allows them to execute diverse tasks
by conditioning on a limited set of input-output
examples without requiring parameter updates or
finetuning, has been demonstrated in many LLMs
such as GPT-3 (Brown et al., 2020) or Llama (Tou-
vron et al., 2023). Various approaches have been
made to create better LLM prompts (Li and Liang,
2021; Le Scao and Rush, 2021; Hao et al., 2022).
Different from the standard retrieval-augmented
generation by using a dense retriever such as Col-
BERT (Khattab and Zaharia, 2020) to get addi-
tional information for LLLMs, there is an area of
research focused specifically on finding better ICL

examples to boost LLMs’ performance (Ye et al.,
2023; Li and Qiu, 2023; Li et al., 2023; Zhang et al.,
2023). Liu et al. (2022) demonstrated that ICL
performance can be enhanced by either using the
BM25 algorithm or by finetuning dense retrievers
with feedback from LLMs to retrieve relevant ex-
amples from a training set. Wang et al. (2024) pro-
posed an iterative training framework (LLM-R) to
retrieve ICL examples in 3 steps: 1) rank an initial
set of retrieved candidates based on the conditional
LLM log probabilities of the ground-truth outputs;
2) train a cross-encoder reward model to capture
the fine-grained ranking signals from LLMs; and 3)
train a bi-encoder dense retriever using knowledge
distillation. Our work falls into this area by propos-
ing a method to dynamically retrieve ICL examples.
However, we focus on the label ratio of the example
set, which has not been studied in prior work.

3 Dataset

We use videos of English Language Arts classes in
a Texas district to create our corpus. The videos
were recorded during the course of an online in-
structional coaching program (Correnti et al., 2021).
They were collected from 18 fourth-grade and 13
fifth-grade classes, whose teachers on average had
13 years of teaching experience. 61% of the student
population was considered low income, with the
following racial proportion: Latinx (73%), Cau-
casian (15%), African American (7%), multiracial
(4%), and Asian or Pacific Islander (1%).

Annotators manually scored videos holistically,
on a scale from 1 to 4, using the /QA on 11 dimen-
sions (Matsumura et al., 2008) for both teacher and
student contributions. They were also scored us-
ing more fine-grained talk moves annotated at the
sentence level using the Analyzing Teaching Moves
(ATM) discourse measure (Correnti et al., 2021).
The final corpus consists of 112 discussion tran-
scripts that have been scored using both the IQA
and the ATM (see Appendix A for the statistics of
the scores). Thirty-two videos (29%) were double-
scored, showing good to excellent reliability for the
IQA (the Intraclass Correlation Coefficients (ICC)
range from .89-.98) and moderate to good reliabil-
ity for the ATM (ICC range from .57 to .85). Below
is a excerpt with annotated ATM codes:

Teacher: [Justin.]repeac [Tell me who’s
Justin?]pess

Student: [Justin is... Well, Via’s
boyfriend who stands up for August and
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is very nice to him. Even though he
saw him for the first time, he was kind
of shocked, but he kind of got used to

him-]Strong Explanation

IQA dimension scores. To compare with prior
work (Tran et al., 2024a), we focused on 4 of the
11 IQA dimensions, in which 2 of them focus
on teaching moves and 2 focus on student con-
tributions. They were previously chosen because
of their relevance to dialogic teaching principles
that emphasize collaboration and active participa-
tion in meaning-making. Furthermore, all four
scores are calculated based on the frequency of
their related ATM codes. The four dimensions
include: Teacher links Student’s contributions (T-
Link), Teacher presses for information (T-Press),
Student links other’s contributions (S-Link), Stu-
dent supports claims with evidence and explanation
(S-Evid). We define S-Evid as the higher score of
Student provides text-based evidence and Student
provides explanation. Descriptions of these dimen-
sions can be found in Appendix B.

Based on the definitions of the ATM codes (Ap-
pendix C), 2 IQA dimensions have hard negative
examples (e.g., have examples that are semantically
similar to the positive examples but have a different
label based on a notion of strength). For S-Link, a
positive example has Strong Link as the ATM label
while a hard negative example has Weak Link. A
similar rule applies to S-Evid (Strong Text-based
Evidence vs Weak Text-based Evidence; Strong Ex-
planation vs Weak Explanation).

Due to the small size of the data, we follow
Tran et al. (2024a) and use 2-fold cross-validation.
In each fold, half of the data (56 transcripts) is
considered as training data and the remaining data
(56 transcripts) is used for evaluation. We also
make sure that transcripts of the same teacher are
in the same fold to prevent data leakage.

4 Methods
4.1 ICL Example Retrieval for LLMs

We adopt the prompts from prior work (Tran et al.,
2024a) for our LLM. We utilize the predictive ap-
proach, which is the approach that yields the best
results in all 4 IQA dimensions (Predictive-1lm).
It is the BC-5turns-10s strategy described by Tran
et al. (2024a), utilizing the LLM as a binary classi-
fier by prompting it to determine whether an obser-
vation related to an IQA dimension is present in a
single turn (yes or no) (see Appendix D).

For our ICL example retriever, we use LLM-R
(Wang et al., 2024)!. It uses LLMs to rank the can-
didates based on the log-likelihood of the ground-
truth output, then trains a cross-encoder as a reward
model to mimic the preferences of LLMs, and fi-
nally distills that knowledge to a bi-encoder for
efficient inference. For a given input (a 5-turn di-
alogue excerpt), we retrieve the top 10 examples
from the training data and use them as few-shot
examples in the LLM prompt. We use separate re-
trievers (LLM-R) for teachers’ and students’ turns.
In other words, when predicting a teacher or stu-
dent’s turn, we will only try to retrieve examples
from a pool consisting of examples from the same
speaker role (student or teacher). For example, if
we are predicting if the last turn (given its 4 previ-
ous turns) is T-Press, the retriever will only try to
find examples (5-turn dialogue windows) by look-
ing at ones that end with a teacher’s turn.

Although LLM-R specializes in ICL example re-
trieval, it was trained on tasks different from class-
room discussions (e.g., sentiment, reading compre-
hension, closed-domain QA). Besides using off-
the-shelf LLM-R, we also fine-tune it on classroom
discussions. However, because our dataset is small,
finetuning an ICL example retriever on the training
set is ineffective. We instead use another classroom
discussion dataset, TalkMoves (Suresh et al., 2022),
to finetune LLM-R.

The TalkMoves dataset contains K-12 math
classroom transcripts, annotated for talk moves
based on accountable talk theory and dialog acts.
The dataset includes 567 transcripts, comprising
174,186 annotated teacher utterances, 59,874 an-
notated student utterances, and 1.8 million words
(15,830 unique). All of the transcripts are anno-
tated for 6 teacher talk moves (Keeping everyone to-
gether, Getting students to relate to another’s ideas,
Restating, Pressing for accuracy, Revoicing, and
Pressing for reasoning) and 4 student talk moves
(Relating to another student, Asking for more info,
Making a claim, and Providing evidence or reason-
ing). For finetuning the retriever, we use the same
binary prediction task as Predictive-llm. However,
we perform multiple binary predictions (yes/no)
for all possible talk moves in each turn and use
the definitions of these talk moves from the dataset
(Suresh et al., 2022). While these moves differ
from ATM codes, they share similarities and reflect

1https://github.com/microsoft/LMOps/tree/main/
1lm_retriever

755


https://github.com/microsoft/LMOps/tree/main/llm_retriever
https://github.com/microsoft/LMOps/tree/main/llm_retriever

a theoretical approach closely related to the one
behind ATM.

4.2 Re-ranking and Label Ratio Regulation

In this section, we propose a method that uses re-
ranking and forces a specific label ratio in the exam-
ple set to improve ICL performance for classroom
discussion quality assessment.

Re-ranking. Re-ranking is a popular approach in
retrieval tasks. The initial retrieval process is gen-
erally designed to be fast, often prioritizing speed
over perfect accuracy. As a result, in ICL example
retrieval, the first batch of examples retrieved can
be broad, including both highly relevant and some-
what irrelevant information. Re-ranking addresses
this by filtering and reordering these examples ac-
cording to refined relevance scores, reducing noise
and irrelevant information. In the first step, we
re-rank the top-100 retrieved examples to get a set
of examples ordered by their usefulness. We exper-
iment with 2 re-ranking methods.

LLM as a re-ranker: We use a Llama3 model
as the scorer. Specifically, for a given input and a
retrieved example, we ask a yes/no question if the
example can help answer the given question and
use the probability of “yes” as the score.

BERT as a re-ranker: We train a BERT-based
model as a cross-encoder reward model that gives
higher scores to good ICL examples. We first cre-
ate the necessary training data to train the BERT
model. To do this, from our available training data
(Section 3), for each instance (a turn), we retrieve
the top-K using the LLM-R retriever (either trained
or not trained). We then employ Llama3 to obtain
the rankings. The ranking score is calculated as
log p(y|z, x;, y;) where x is the given input, y is the
gold answer, x; and y; are an in-context learning
example retrieved and its label. For a training ex-
ample (x, y), we first sample one positive example
(z, yT) from the top-ranked candidates and Ny,q
negative examples (z; ,y,; )fV:"f" from the bottom-
ranked candidates. The reward model takes as input
the concatenation of (z,y,z",y™) and produces
a score s(z,y, ", yT) for the positive example,
and s(z,y,x; ,y; ) for the negatives. The training
objective is to minimize the cross-entropy loss:

es(@yatyt)

£reward = - log

S m? 71.+7 + Nﬂeg S z?y’x77y7
e(y y)+zl:16( 11)

Label Ratio Regulation (LRR). Thinking that
the lack of hard negative examples and the imbal-
ance of positive/negative examples can be potential

causes for the poor performance of the off-the-shelf
retrieval setting, we want to ensure that this will not
happen. To do so, we make sure the 10-example set
follows a specific label ratio of positive, negative,
and hard negative (if applicable) examples. For a
fair comparison, we force the ratio to mimic the
ratio from the fixed setting (defined in Tran et al.
(2024a)). Although the ordering of few-shot ex-
amples is also a non-trivial factor (Ye et al., 2022),
it is not what we focus on. Therefore, we fix the
order of the chosen examples. For T-Press and T-
Link, from top to bottom, we want 5 positive and
then 5 negative examples. Similarly, for S-Link
and S-Evid, we will see 4 positive, 4 easy negative,
and 3 hard negative examples, respectively, from
top to bottom of the example set. To do so, given
the ranked list of examples, we pick from top to
bottom until the predetermined label ratio is satis-
fied and skip examples that violate the label ratio if
added. For instance, if we already have 5 positive
examples for T-press, we will ignore the remaining
positive examples in the list and only pick an ex-
ample if it is a negative one as we go down the list.

S Experimental Setup

To make it comparable to prior work without ICL
example retrieval from Tran et al. (2024a), we use
LLama3-8B (Grattafiori et al., 2024) as the LLM
for classroom discussion assessment 2.

We use 3 baselines to test the effectiveness of
the proposed method:

fixed: In this setting, we use a set of 10 fixed
examples for each fold in the cross-validation. We
follow prior work to pick those 10 examples for
the LLM prompts (Tran et al., 2024a). This setting
is also used as a baseline for comparison with ap-
proaches that utilize ICL example retrieval. One
thing to note is that using this sampling method,
we will have a fixed ratio of positive, easy negative,
and hard negative examples in the 10-shot example
set.

retrieved: In this setting, we use LLM-R (Wang
et al., 2024) to find the top-10 examples from the
training data. Then, we use those 10 examples for
few-shot prompting.

mixed: In this setting, we construct a set of top-5
retrieved examples and 5 examples from the fixed
set. For the 5 examples from the fixed set, we pri-

2https: //huggingface.co/meta-1lama/Llama-3.
1-8B
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oritize hard-negative examples first. In addition,
prior work has shown that lacking hard negative
examples is detrimental to the performance (Tran
et al., 2024b). Therefore, we decide to select harder
negative examples from the fixed set, as we can-
not guarantee that they exist in the retrieved set.
Specifically, for S-Link and S-Evid, we pick 3 hard
negative examples, 1 positive example, and 1 non-
hard negative example. For T-Press and T-Link, we
pick 3 positive and 2 negative examples. Then, we
choose the remaining 5 examples from the retrieved
ones based on the descending order of cosine sim-
ilarity between them and the input embedded by
LLM-R.

To test the performance of the proposed method,
we experimented with 2 re-ranking methods: using
LLama3 as the LLM re-ranker and using a fine-
tuned BERT re-ranker. To highlight the importance
of each component (LRR and re-ranking), we re-
port the performance from utilizing both re-ranking
and label ratio regulation in combination and from
using each component separately.

To compare the performances between non-
finetuned and finetuned retrievers, we finetune
a new LLM-R on another classroom discussion
dataset (TalkMoves from Suresh et al., 2022) and
repeat the experiments.

Quadratic Weighted Kappa (QWK) is used as
the main evaluation metric. It is a common met-
ric for quantifying inter-rater reliability that penal-
izes disagreements proportional to the degree of
disagreement, which is vital in contexts where a
greater distance between scores is meaningful.

6 Results and Discussion

RQ;: Effectiveness of the proposed method. Ta-
ble 1 shows the macro average over 2-fold cross-
validation of QWK scores in various settings, in-
cluding the 3 baselines and the proposed method
for both non-finetuned and finetuned retrievers.
The standard ICL example retrieval is not effec-
tive. When using a non-finetuned LLM-R, we ob-
serve that relying solely on retrieved examples (row
2) is worse than the fixed baseline (row 1). This
implies that using ICL retrieval is ineffective in
this case, despite helping to improve performance
in previous work on other domains (Wang et al.,
2024; Zhang et al., 2023). On the other hand, the
mixed settings (row 3), where we combine exam-
ples from the retriever with the fixed set, are the
baselines that achieve the best performance in all

IQA dimensions. This suggests that the retrieved
examples are still useful to some extent.

Our proposed method with BERT as the re-
ranker achieves the best performance in all 4 IQA
dimensions (row 7) for both non-finetuned and fine-
tuned retrievers. Although finetuning the LLM-
R boosts the performance of the retrieved setting
(row 2), the proposed method performs compara-
bly for both non-finetuned and finetuned settings
of the LLM-R retriever (row 7), suggesting that
finetuning the retriever on a new domain, which is
computationally expensive, is not necessary. Our
hypothesis for this minimal gain is that the Talk-
Moves data consists of math discussions, which
contain math-specific lexicons not present in En-
glish Language Art discussions from our dataset.
Additionally, the TalkMoves dataset is skewed to-
wards sixth-grade to eighth-grade students, while
our data only has discussions from fourth-grade
and fifth-grade students.

As a re-ranker, although LLama3 shows equal
or better performance over the retrieved setting in
T-Link and T-Press (row 5 vs 2), it is inferior to the
fixed setting in S-Link and S-Evid (row 5 vs row 1).
On the other hand, using BERT as a re-ranker with
label ratio regulation achieved the best results in
all dimensions. With this combination, we are now
able to outperform the mixed setting despite using
only retrieved examples. This implies that for this
task, using an LLM such as Llama3 as a judge for
re-ranking is not a reliable method in comparison
with finetuning a PLM such as BERT.

The LRR is shown to be essential for improved
performance as removing it leads to decreases in
QWK (rows 6 and 8 compared to the previous
rows). The drop in performance in S-Link and S-
Evid is larger than the drop in T-Link and T-Press.
The former 2 dimensions (S-Link and S-Evid) have
hard negative examples based on the coding man-
ual, which suggests that LRR is more important
when hard negative examples are available for the
target dimension. With only re-ranking, we can per-
form similarly or worse than the retrieved setting.
For instance, using a Llama3 re-ranker without
LRR is worse than vanilla retrieval (row 6 versus
2). On the other hand, with LRR, we consistently
outperform the retrieved setting, with or without
using a re-ranker (row 4, 5, 7 versus 2)*. Moreover,
when the retriever is finetuned, if we have to pick

3Two-tailed t-test on 2-fold cross-validation.
*Except for S-Link with finetuned retriever.
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D Settin Non-finetuned Retriever Finetuned Retriever
g T-Link T-Press S-Link S-Evid | T-Link T-Press S-Link S-Evid

1 | fixed 0.65 0.73 0.64 0.79 0.65 0.73 0.64 0.79
2 | retrieved 0.62 0.71 0.62 0.75 0.66 0.73 0.66 0.80
3 | mixed 0.68 0.76 0.67 0.81 0.72 0.77 0.71 0.82
4 | LRR only 0.63 0.72 0.65 0.79 0.68 0.76 0.65 0.81
5 | Llama3 +LRR | 0.65 0.72 0.62 0.76 0.68 0.75 0.63 0.77
6 w/o LRR 0.61 0.70 0.56 0.68 0.65 0.72 0.60 0.70
7 | BERT + LRR 0.72 0.80 0.73 0.83 0.73 0.81 0.73 0.83
8 w/o LRR 0.66 0.78 0.64 0.77 0.66 0.78 0.65 0.77

Table 1: Quadratic Weighted Kappa (QWK) scores of the two retrievers. For each IQA dimension (T-Link, T-Press,
S-Link, S-Evid), italic numbers represent the best baseline results. Bold numbers highlight the best retriever results.
All numbers are statistically significant compared to their counterparts in the mixed baseline (p < 0.05).°

Non-finetuned LLM-R Finetuned LLM-R

IQA

% wlo hard negative ‘

0/272/0/24.3
0/227/0/720.8

Avg

S-Link 3/1.2/32/1.5
S-Evid 3/19/3.1/2.1

Avg

3/15/33/1.7
3/1.7/34/20

% wlo hard negative

0/23.3/0/20.7
0/20.5/0/19.1

Table 2: Presence of hard negative examples in the fixed, retrieved, mixed setting and an approach utilizing BERT
re-ranking without LRR. We report the average number of hard negative examples included in the 10 examples
(Avg) and the percentage of test instances where the few-shot examples in the prompt do not have any hard negative
example. In each cell, from left to right, the 4 numbers represent the statistics for fixed, retrieved, mixed settings,

and from an approach utilizing BERT re-ranking without LRR.

only one component, using LRR is usually better
than using a re-ranker (row 4 versus rows 6 and 8).
This suggests that we should always enforce the
label ratio in the example set.

RQ;: Issues in the label ratio of retrieved exam-
ples from automatic ICL example retrieval.

The lack of hard negative examples and skew
in the ratio of positive and negative examples can
be potential causes for the low performance of ex-
ample retrieval. Noticing that directly using the
retrieved examples is not an effective way to im-
prove the performance of LLM-based classroom
discussion quality assessment, we hypothesize the
potential causes and do analyses to test them. Com-
pared to the fixed and mixed settings, one thing
we could not control in the retrieved setting is the
distribution of the examples. We can think of two
causes for the poor performance using the retrieved
setting: 1) the lack of hard negative examples and
2) the lack of positive examples.

Missing hard negative examples in the few-shot
example set will have a negative influence (Tran
et al., 2024a). Table 2 shows the presence of hard

negative examples in the fixed, retrieved, mixed set-
tings, and an approach using BERT ranking without
LRR for S-Link and S-Evid (the only two dimen-
sions that have hard negative examples according
to the definitions in the coding manual). We can
see that the retrieved setting has fewer hard neg-
ative examples on average compared to the fixed
and mixed settings. We also only witness cases in
which the example set has no hard negative exam-
ples in the retrieved setting. With only a BERT
re-ranker, these numbers barely change as we only
see small increases in the average number of hard
negative examples and decreases in the number
of cases without any hard negative example com-
pared to the retrieved setting (4th number versus
2nd number) in each cell. This aligns with one
of our previous observations from Section 6 that
removing LRR results in bigger decreases in QWK
for S-Link and S-Evid compared to the other two
dimensions. This implies that re-ranking alone still
does not guarantee the presence of hard negative
examples in the set of 10 few-shot examples for
prompting. However, with domain knowledge of
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Non-finetuned LLM-R

Finetuned LLM-R

IQA

Avg % without positive Avg % without positive
T-Link 5/3.7/4.7/4.2 0/68/0/1.2 5/33/35/35 0/53/0/23
T-Press 5/7.3/54/6.1 0/0.0/0/0.0 5/68/52/55 0/0.0/0/0.0
S-Link 4/32/3.8/3.5 0/62/0/0.0 4/38/43/4.1 0/0.0/0/0.0
S-Evid 4/59/5.1/5.5 0/23/0/0.0 4/56/49/43 0/3.1/0/1.2

Table 3: Presence of positive examples in the fixed, retrieved, mixed setting, and an approach with only BERT

re-ranking (no LRR), with the same notations as Table 2.
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Figure 2: Results of T-Press and T-Link from different
label ratios with N positive examples for BERT+LRR.

hard negative examples (i.e., knowing that Weak
Link is a hard negative example label for Strong
Link, which represents S-Link), even with auto-
mated retrieval, we can ensure that hard negative
examples are in the set.

Looking at the presence of positive examples
(xi, y; = y) in Table 3, we see that the retrieved
settings (2nd numbers of the cell) tend to include
more positive examples in the 10-example set for
T-Press and S-Evid while having fewer positive
examples for T-Link and S-Link. Although they
are rare, there are still cases in which we have no
positive examples in the 10-example set for the re-
trieved setting, which never happens for the fixed
and mixed settings. The BERT re-ranking (4th
number) helps decrease the number of cases with-
out any positive examples, and it makes the average
number of positive examples retrieved in each IQA
dimension closer to the fixed and mixed settings.
RQ3: The ratio of different types of examples
does matter. We conduct additional experiments
on our best model (BERT+LRR) by varying the
ratios by changing the number of positive examples,
negative examples, and hard negative examples (if
they are available) to see if certain label ratios yield
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Figure 3: Results of S-Link and S-Evid from differ-
ent label ratios with N hard negative examples for
BERT+LRR.

better results. Specifically, for T-Press and T-Link,
because there is no hard negative example for these
two dimensions, we record the performance with
the N positive examples (N = 0 to 10) and 10-N
negative examples. For S-Link and S=Evid, we
pick N (N = 0 to 10) hard negative examples and
equally split the remaining 10-N examples into
positive examples and non-hard negative examples
(@if 10-N is odd, we have 1 more positive example).

Figure 2 shows the results for T-Press and T-Link
with various positive/negative ratios. We observe
that increasing the number of positive examples
helps improve the performance to a certain point.
Specifically, we see noticeable improvements until
N=3, then it starts to slow down. However, af-
ter N=5 positive examples, the QWK begins to go
down as N increases. This suggests that we should
have a balance between positive and negative exam-
ples, which is reasonable, as having too many exam-
ples of a certain perspective (positive or negative)
can create biases in that direction for the LLMs.
Similarly, for S-Link and S-Evid, the performances
are boosted until N=3 hard negative examples are
selected and then they quickly drop (Figure 3). This
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time, the downward trend after N=4 is more notice-
able compared to Figure 2, implying that having too
many hard negative examples causes more harm
than good. In other words, although hard negative
examples are essential for high performance, we
should keep room for positive and non-hard nega-
tive examples. Overall, these observations suggest
that we should be cautious when selecting a label
ratio for the example set, and having a balanced
split between the possible labels (positive, non-hard
negative, and hard negative) is a safer choice, as the
dominance of a label tends to result in decreased
performance.

7 Conclusions

This work proposes a simple but effective ICL ex-
ample retrieval method that utilizes example re-
ranking and label ratio regulation (LRR) to im-
prove few-shot LLM performance in automated
classroom discussion assessment. The results show
that our fully automated example retrieval and se-
lection approach outperforms the baselines in all
tested IQA dimensions. Additionally, the perfor-
mance of a non-finetuned example retriever (LLM-
R) is comparable to that of a retriever finetuned
on a similar domain dataset, suggesting that skip-
ping the finetuning process of the retriever is viable.
Further analyses show that the lack of positive and
hard negative examples can be the reason for the
poor performance of the traditional ICL example
retrieval approaches. We also observe that even
with re-ranking, both finetuned and non-finetuned
retrievers fail to select enough hard negative ex-
amples to make the few-shot prompting effective,
which highlights the importance of label ratio reg-
ulation in maintaining the presence of hard neg-
ative examples. Finally, we investigate the influ-
ence of the ratio of positive, non-hard negative, and
hard negative examples, demonstrating that having
an excessive number of any category hurts perfor-
mance. We would like to explore the proposed
method with a more advanced prompting method,
such as Chain-of-thought (Wei et al., 2022), in the
future.

Limitations

While our method uses Label Ratio Regulation
(LRR) to maintain a specific ratio, it treats each
potential example separately when selecting the
top-10. This independent selection might not be
ideal, as the chosen examples can interact with each

other. Exploring combinatorial optimization and
sequential decision-making techniques could lead
to improvements.

Another limitation of our study is the lack of
analysis on the influence of the size of the example
pool on the performance. Because our training set
is small, the relevance and diversity of the candi-
date examples can be a hindrance to the generic
ICL example retrieval baseline. If we have a bigger
example pool with more diversity, the LRR might
become unnecessary.

The proposed approach involves several compo-
nents, which people might find too complex and
counterintuitive, potentially hindering the ease of
LLM usage for downstream tasks. Additionally, the
experiments are conducted on a single and small
dataset. As a result, the generalizability of the find-
ings is weakened.

Furthermore, we only use the smallest version
of LLama3. Utilizing a bigger LLM (e.g., LLama3-
70B) might yield higher results and undermine the
effectiveness of ICL example retrieval.

Last but not least, our experiments are grounded
on a binary classification task and the assumption
that hard negative examples can be identified based
on the definitions of the labels.
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A Data statistics

The transcripts have an average length of 3,421 to-
kens, with a median length of 3,537 tokens. The
shortest transcript contains 1,986 tokens, while the
longest reaches 6,393 tokens. Table 4 presents the
statistics for the four key IQA dimensions high-
lighted in this work.

B Description of IQA Dimensions

Descriptions of the 4 focused IQA dimensions can
be found in Table 5.

C Description of ATM codes

Descriptions of the relevant ATM codes can be
found in Table 6.

D Prompts

Figure 4 contains the prompt used for the binary
prediction of a target IQA adopted from Tran et al.
(2024a), where {IQA description} is from the sec-
ond column in Table 5.
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IQA Distribution | Avg Score Relevant ATM code Hard negative ATM Code
T-Link | [69, 23,9, 11] 1.66 Recap or Synthesize S Ideas n/a
T-Press | [8, 13, 11, 80] 3.46 Press n/a
S-Link | [84, 7,10, 11] 1.54 Strong Link Weak Link
S-Evid | [38.17.9, 48] 2 60 Strong Text-based E\./idence Weak Text-based E\./idence
Strong Explanation Weak Explanation

Table 4: Data distribution and mean (Avg) of 4 focused IQA rubrics for Teacher (") and Student (5) with their
relevant ATM codes and hard negative ATM code (if available). An IQA rubric’s distribution is represented as the
counts of each score (1 to 4 from left to right) (n=112 discussions).

IQA Dimen- | IQA Dimension’s Description
sion
T-Link: Did Teacher support Students in connecting ideas and positions to build coherence in the discussion
Teacher links | about a text?
Student’s 4: 3+ times during the lesson, Teacher connects Students’ contributions to each other and shows how
contribution ideas/ positions shared during the discussion relate to each other.
3: Twice. ..
2: Once... OR The Teacher links contributions to each other, but does not show how ideas/positions
relate to each other (re-stating).
1: The Teacher does not make any effort to link or revoice contributions.
T-Press: Did Teacher press Students to support their contributions with evidence and/or reasoning’!
Teacher 4: 3+ times, Teacher asks Students academically relevant Questions, which may include asking Students
presses to provide evidence for their contributions, pressing Students for accuracy, or to explain their reasoning.
Students 3: Twice. ..
2: Once. .. OR There are superficial, trivial, or formulaic efforts to ask Students to provide evidence for
their contributions or to explain their reasoning.
1: There are no efforts to ask Students to provide evidence for their contributions or to ask Ss to explain
their reasoning.
S-Link: Did Students’ contributions link to and build on each other during the discussion about a text?
Student links | 4: 3+ times during the lesson, Students connect their contributions to each other and show how ideas/po-
other’s sitions shared during the discussion relate to each other.
contributions | 3: Twice. ..
2: Once... OR the Students link contributions to each other, but do not show how ideas/positions relate
to each other (re-stating).
1: The Students do not make any effort to link or revoice contributions.
S-Evid(a): Did Students support their contributions with text-based evidence?
Student 4: 3+ times, Students provide specific, accurate, and appropriate evidence for their claims in the form of
provides references to the text.
text-based 3: Twice. ..
evidence 2: Once. .. OR There are superficial or trivial efforts to provide evidence.
1: Students do not back up their claims.
S-Evid(b): Did Students support their contributions with reasoning?
Student 4: 3+ times, Students offer extended and clear explanation of their thinking.
provides 3: Twice. ..
explanation 2: Once. .. OR There are superficial or trivial efforts to provide explanation.
1: Students do not explain their thinking or reasoning.

Table 5: IQA dimensions and their definitions. For each IQA dimension, the italic line is {IQA description} used in
the prompt in Appendix D.
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Code

Definition

| Example

Press

T asks the same S follow-up Questions (i.e., uptake/push-
back Q’s, request for text-based evidence and explana-
tion).

Why did you say that?
Where is the evidence?
How else might Salva feel?

Recap or Syn-
thesize S Ideas

T links multiple Ss’ ideas or positions. T synthesizes
multiple responses.

What I hear you saying is that the char-
acter has changed from the beginning of
the book which is similar to Ana’s idea
that the character has matured.

Weak Link

Ss attempt to link contributions to each other, but do
not show how ideas/positions relate to each other. The
S might simply be revoicing or repeating another S’s
contribution.

“I disagree with Ana”... without explain-
ing why or which aspect of Ana’s state-
ment S disagrees with.

Strong Link

Ss connect their contributions to each other and show
how ideas/positions shared during the discussion relate
to each other. Ss elaborate, challenge, or build on each
other’s ideas.

I’m not sure what Ana says is right be-
cause I don’t see where in the text it says
that. ..

Weak Text-
Based Evidence

Ss provide inaccurate, incomplete, inappropriate, vague,
or trivial evidence from/reference to text

Naya lived a hard life because in the
chapters about her, we learn that she has
to do a lot of things for her family.

Strong  Text-
Based Evidence

Ss provide accurate, appropriate, specific evidence
from/reference to text that supports claim

On page 59, in the last paragraph it says,
“I have talked to the others here,’” uncle
Jake said. ‘“We believe that the village of
Loun-Ariik was attacked and probably
burned your family.” Uncle paused and
looked away.”

Weak Explana-
tion

S provides a brief or circular explanation that basically
repeats or restates the response or relies on evidence to
speak for itself.

I think that they didn’t catch the fish be-
cause, , Tim hasn’t caught any fish and
Tim and Tom haven’t caught any fish
lately.

Strong Explana-
tion

Ss provide an elaboration/justification of their answer or
of the evidence they selected to support their answer.

Yeah, it is. The cause is, he didn’t get
the little girl’s advice so, the effect of
that is the calabash broke.

Table 6: ATM codes and their definitions

Prompt for binary prediction

Given a dialogue between a teacher and students in a classroom, in the last turn, {IQA description}?

# Example 1

Dialogue: {Example Excerpt 1(5-turn)}
Answer (yes or no): {Example Answer 1}

# Example 10

Dialogue: {Example Excerpt 10 (5-turn)}
Answer (yes or no): {Example Answer 10}

# Input

Dialogue: {Dialogue}
Answer (yes or no):

Figure 4: Prompt templates for binary prediction.
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