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Abstract

Understanding how linguistic topics are re-
lated to each another is essential for design-
ing effective and adaptive second-language
(L2) instruction. We present a data-driven
framework to model topic dependencies and
their difficulty within a L2 learning curricu-
lum. First, we estimate topic difficulty and
student ability using a three-parameter Item
Response Theory (IRT) model. Second, we
construct topic-level knowledge graphs—as di-
rected acyclic graphs (DAGs)—to capture the
prerequisite relations among the topics, com-
paring a threshold-based method with the statis-
tical Grow-Shrink Markov Blanket algorithm.
Third, we evaluate the alignment between IRT-
inferred topic difficulty and the structure of the
graphs using edge-level and global ordering
metrics. Finally, we compare the IRT-based
estimates of learner ability with assessments of
the learners provided by teachers to validate the
model’s effectiveness in capturing learner pro-
ficiency. Our results show a promising agree-
ment between the inferred graphs, IRT esti-
mates, and human teachers’ assessments, high-
lighting the framework’s potential to support
personalized learning and adaptive curriculum
design in intelligent tutoring systems.

1 Introduction

A key goal of Intelligent Tutoring Systems (ITS)
is to support personalized learning by answering
key questions: What does the student know? How
are they performing? What should they learn next?
Achieving this requires three components: a Do-
main Model (to represent subject knowledge), the
Student Model (to represent learner proficiency),
and the Instruction Model (to implement pedagogi-
cal strategy). Of these, the domain model is foun-
dational, as it informs both the student assessment
and the instructional choices. Prior work has ex-
plored domain modeling in many learning domains,
such as mathematics (Ritter et al., 2007; Arroyo
et al., 2014; Klinkenberg et al., 2011).

Beyond proficiency estimation, recent work em-
phasizes domain models that offer pedagogical
insights—such as relative topic difficulty and effi-
cient or optimal learning paths (Swamy et al., 2022;
Cohausz, 2022; Weidlich et al., 2022). These can
help teachers adapt instruction and improve learn-
ing outcomes. In this paper, we focus on modeling
relationships among fopics in language learning
using two approaches: predictive modeling and
causal modeling. The causal model aims to provide
an interpretable domain structure, while the predic-
tive model offers empirical estimates of learning
outcomes.

We collect data from real-world learners in our
language learning system, Revita (Katinskaia et al.,
2018; Katinskaia and Yangarber, 2018; Katinskaia
et al., 2017).! In Revita’s learning setting, learn-
ers complete exercises related to grammar topics
in the target language. These exercises are auto-
matically generated from texts that learners upload
themselves or select from a shared library of ma-
terials. The exercises are presented in the form of
multiple-choice or fill-in-the-blank (“cloze”) ques-
tions. Each question is associated with one or more
learning topics—a.k.a. linguistic constructs (Katin-
skaia et al., 2023)—and the learner’s answer is
graded according to its correctness in terms of each
topic. We collaborate with language teachers from
several universities and collect real data from lan-
guage learners.

The main goal of this paper is to explore the
domain model—using data from learners of Rus-
sian, one of several languages offered by the Revita
learning platform—which is based on the Russian
topics and their relationships. We highlight the
following contributions of this paper:

1. We present a simple causal modeling scheme
for the domain model and model topics with
a directed acyclic graph (DAG). The nodes
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in the graph represent topics, and the edges
represent the relationships between them.

2. We verify our graph structure with predictive
analysis: Bayesian network and hierarchical
item response theory (IRT) model.

The paper is organized as follows. In section 2
we outline relevant prior work. Section 3 describes
our topic inventory, the process of data collection
and performance aggregation by topic. Section 4
describes our approach to build the prerequisite
graph structures and the statistical models we use
to verify the graph structures. Section 5 shows
the experiment results. Section 6 concludes with
current directions of research.

2 Related Work

Several approaches for modeling learning have
been proposed. We briefly review two types of
models: (1) predictive models and (2) causal mod-
els.

Predictive models focus on predicting with a set
of independent latent variables. When modeling
learning, these latent variables refer to the levels of
the student’s proficiency on various learning top-
ics. One approach is Item Response Theory (van
der Linden and Hambleton, 2013). ITS is not the
only application of IRT—it can be applied in many
settings, including stress testing, psychological and
medical testing, etc. Depending on the applica-
tion domain, the latent trait can be level of anxiety,
neurosis, authoritarian personality, etc. IRT has
an information-theoretic basis similar to “Elo” rat-
ings (Elo, 1978). The Elo formulas, originally de-
veloped for rating chess players, have been adapted
in the context of ITS (Pelanek, 2016; Hou et al.,
2019). The language-learning domain is more com-
plex than other domains where IRT is used, since
the learning topics to be mastered are relatively
much more numerous, and have complex relation-
ships among them.

With the rise of deep learning in recent
years, deep knowledge tracing (DKT) was pro-
posed (Piech et al., 2015), modeling the state
of learner knowledge with a recurrent neural
network—RNN (Hochreiter and Schmidhuber,
1997). Researchers have proposed several neural
network-based approaches (Zhang et al., 2017; Ab-
delrahman and Wang, 2019; Su et al., 2018; Liu
et al., 2019; Pandey and Srivastava, 2020; Song
et al., 2021). The benefit of applying neural net-
works is that they do not require human-engineered

features; despite the success of deep learning, they
suffer from a lack of interpretability (Jiang et al.,
2024).

Causal models describe the causal relationships
in a system. In our case, we consider the causal re-
lationship to be the prerequisite relationship among
topics or the learner’s knowledge states. The bene-
fit of using causal models is that they can provide a
more directly interpretable representation of the do-
main knowledge (Jiang et al., 2024). Some causal
models describe the domain as a directed acyclic
graph (DAG), which provides direct value from
the perspective of pedagogy. Researchers have ex-
plored the use of causal models in education with
Bayesian networks (Pardos and Heffernan, 2010)
or Markov Blanket (Jiang et al., 2024).

In the field of education, Knowledge Space The-
ory (KST) (Doignon and Falmagne, 2012) can
also be considered as a special graphical causal
model. KST is a mathematical framework for mod-
eling the learner’s knowledge, and represents the
learner’s current proficiency as a set of mastered
skills, which is referred as a knowledge state. Each
state contains a subset of the skills in the domain.
The student has mastered the domain when she
reaches the state containing all skills. KST models
not only the learner knowledge, but also learning
paths, starting from the empty set toward the full
set of topics. Various approaches are used to build a
knowledge space, from explicit elicitation of knowl-
edge from human experts to data-driven methods,
such as Formal Concept Analysis (FCA) (Ganter
and Wille, 2012).

3 Data

This work uses learner data collected in collabora-
tion with language teachers at several universities.
The dataset covers university students learning Rus-
sian as a second language (L2), whose levels range
from A1l to C2 on the CEFR scale (Little, 2007),
both as part of their university courses and as inde-
pendent study. Learners upload texts of personal
interest, or, if participating in a university course,
practice with texts selected or adapted for them by
their teachers. Based on the selected texts, the Re-
vita intelligent language tutoring system automat-
ically generates interactive exercises (Katinskaia
etal., 2023).2

Revita supports a variety of exercise types for
each language, including grammar, vocabulary, lis-
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Topics Examples

(1) Verb: II conjugation

Mpuri ckopo yeuum Bocxo/1. (We will see the sunrise soon.)

(2) Complex pronoun:
(3) Perfective vs. imperfective aspect

Ham nmy:xHO Koe 0 1yeM nioroBoputh. (We need to talk about something)
CTpaHbl CONIACOBAJIN TIPOEKT O OYAYIIUX OTHOIICHUSIX.

(The countries agreed on a draft on future relations.)

(4) Dative subject with predicative

Mrue meobxoaumo morosoputh ¢ BpadoM. (I need to talk to a doctor.

adjective, or with impersonal verb  Literally: [it is] necessary for me to talk to a doctor.)

Table 1: Examples of instances of fopics found in text (underlined). Candidates are words that will be chosen for

exercises about the topics (marked in bold).

tening comprehension, etc. It also provides con-
tinual diagnostic assessment. It assists the learn-
ers with contextualized feedback and hints depend-
ing on their answers. Exercise creation and hint
generation are built upon a linguistically-informed
domain model, which drives the personalized se-
lection and generation of exercises based on each
learner’s proficiency level. In this study, we focus
on learner data from grammar exercises in Russian,
which serve as the foundation for modeling topic
dependencies and estimating topic difficulty.?

3.1 Data collection

Topics: In this paper, we use the term fopic to
refer to specific language learning targets (also
known as “skills” in ITS and education literature)—
for example, particular patterns of nominal case
usage, verb conjugation classes, syntactic construc-
tions involving negation and tense, etc. These are
not simply individual grammatical features, such
as past tense or plural number, but rather combi-
nations that reflect in a meaningful fashion how
language is taught and learned. For instance, learn-
ers may work on mastering topics such as past
tense of a certain verbal paradigm, rather than past
tense in general.

To define these topics, we consulted with ex-
perts in language pedagogy and textbooks, to align
with real-life instructional goals. Table 1 shows
examples of topics and exercises that target them.

Exercises: All exercises are automatically gener-
ated by the Revita system, based on authentic texts
chosen by the teachers and learners from arbitrary
sources. The system creates a number of exercise
types; here we focus on fill-in-the-blank (“cloze’)
and multiple-choice exercises. In a cloze exercise,
the system hides certain words or phrases, and
shows the learner a hint—the lemma (dictionary
form) of the hidden word or phrase. The learner’s

3All learner data was anonymized prior to analysis in ac-
cordance with ethical research requirements and standards.

task is to enter the correct surface forms, based on
the context of the cloze. In a multiple-choice exer-
cise, the learner is given several options to choose
from, with the options generated automatically.

Learners are allowed multiple attempts for each
exercise. When an answer is incorrect, the system
provides hints on subsequent attempts to support
the learner. These hints gradually guide the learner
toward the correct answer—starting with general
guidance and becoming increasingly specific with
each additional attempt.

The exercise sequencing strategy follows a hy-
brid adaptive design. The system is designed
to model the learner’s state to select those exer-
cises that optimally match each learner’s current
proficiency—targeting an expected success rate of
50%, to keep the exercises appropriately challeng-
ing. This is in keeping with Vygotsky’s theory of
the Zone of Proximal Development, which states
that for optimal learning, the exercises must not
be too difficult too often (to avoid frustrating the
learner) and not too easy too often (to avoid boring
the learner) (Poehner, 2008). Alternatively, learn-
ers can manually select their own study paths using
a predefined lesson structure, organized from easier
to more difficult topics.

Assignment of credit and penalty: Each exer-
cise is associated with one or more topics. The
system evaluates the learner’s response to estimate
performance on each topic individually. A response
may be correct with respect to some topics but
incorrect with respect to others—for instance, a
learner might use the correct verb tense but the
wrong grammatical person. If the learner answers
correctly only after receiving hints, we apply a
slight penalty, proportionally distributed across the
topics linked to those hints. To assign credit and
penalty, the system uses several NLP components,
including a morphological analyzer, dependency
parser, and rule-based pattern matcher. These tools
compare the learner’s response with the correct an-
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Figure 1: Distribution of the number of unique topics
practiced by each student.

swer to determine the topic-level performance for
each exercise.

Assignment of credits and penalties is one of
the main challenges in our work on assessment.
Most statistical approahes, such as IRT, have a clear
definition of an ifem, and a clear credit standard—
right/wrong answer given by the learner in response
to the item. The classic example of an item in IRT
is a test question, e.g., in mathematics: it is dichoto-
mous and unambiguous, with a clear judgment of
the answer—correct or incorrect. Our major chal-
lenge is that our topics are not judged directly, as
test items are in other learning domains. It is chal-
lenging to determine the credit and penalty for each
topic based on the learner’s answer, because the
link from exercise to topic is one-to-many. This
one-to-many nature of the link makes the standard
of credit less clear. To tackle this problem, a more
sophisticated approach is required to assign credit
and penalty. We also face another common prob-
lem in language learning and assessment: ambi-
guity. A substantial proportion of exercises admit
more than one possibly correct answer, leading to
the problem of determining grammatical correct-
ness (Katinskaia and Yangarber, 2021, 2023, 2024).
The quality of our NLP components directly im-
pacts the accuracy of the assessment, and therefore
the quality of our learning data.

3.2 Data pre-processing

We have collected over 470K student exercise
attempts, each with credit and penalty assigned.
These exercises were completed by 1,639 unique
students. These exercises span over 200 detailed
grammatical constructs (Katinskaia et al., 2023),
which we group into a smaller set of learning topics
that align with pedagogical learning targets, as de-
scribed above. From this, we derive over 80 distinct
topics to be used for modeling and construction of
prerequisite graphs.

0 m m = =]
40 50 60 70 80
Number of Co-occurring Topics

Figure 2: Distribution of counts of co-practiced topics,
based on shared student activity. Each value on the X-
axis indicates with how many other topics each topic
was co-practiced. The Y-axis shows how many topics
have the given co-practiced count.

Each exercise is associated with one or more lin-
guistic topics. To enable topic-level analysis, we
“explode” (i.e., multiply out) the data, so that each
exercise attempt is represented multiple times—
once per each topic linked to the exercise. This
allows us to track student performance separately
for each topic. The number of “exploded” data
points—pair-wise records linking between student
and topic—is approximately 990K.

The histogram in Figure 1 shows the distribution
of unique topics practiced per student. Most stu-
dents engage with 25 to 50 distinct topics, with a
concentration around 30. Since learners tend to fo-
cus on topics appropriate to their proficiency level,
we expect considerable overlap in practiced topics
among students of similar levels. This local overlap
is useful for constructing prerequisite graphs, as it
provides aligned performance patterns across com-
parable learners without requiring complete topic
coverage by each individual.

We next check what topics are co-practiced with
other topics—i.e., which topics have been prac-
ticed together with other topics by at least one
student. Figure 2 shows how many topics are co-
practiced with other topics. In fact, most topics
are co-practiced with 80 or more other topics, indi-
cating a highly interconnected curriculum, where
students tend to practice multiple topic combina-
tions. This highlights the dense overlap in student
exposure across topics, which is a useful signal for
data-driven construction of dependency graphs.

Figure 3 shows the distribution of students that
have engaged with each topic. While some topics
are widely practiced by hundreds of learners, others
are encountered by only a few students, indicating
potential variation in topic popularity, curriculum
coverage, or personalized learning paths. This vari-
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Figure 3: Distribution of the number of students per
topic.

ability may impact both topic-level estimation and
the structure of the prerequisite graph.

We have also collected data from over 50 stu-
dents who completed 100 or more exercises each,
and who have teacher-assigned CEFR levels. This
subset provides a valuable reference for evaluat-
ing student ability and topic difficulty. Overall,
the dataset’s size and structure support both robust
probabilistic modeling of learner proficiency and
detailed analysis of topic interdependencies.

4 Methodology

4.1 Prerequisite graph construction

To represent the prerequisite structure of the top-
ics, we construct a DAG (Chickering, 2002) over
learning topics, where each node represents a topic.
Directed edges in this graph indicate prerequisite
relationships inferred from empirical student per-
formance patterns. Specifically, a directed edge
from topic A to topic B, denoted A — B, means
that mastery of topic A is likely a prerequisite for
success on topic B.

We explore multiple methods for constructing
the prerequisite graph. The first is a threshold-
based approach, in which a directed edge A — B
is added if a statistically significant fraction of
students consistently perform better on topic A
than the same students perform on topic B. This
approach focuses solely on relative performance
outcomes across topics. By aggregating student-
specific accuracy rates, the method infers likely
learning dependencies under the assumption that
prerequisite topics are easier for students to master
than their dependents.

The second method is Grow-Shrink Markov
Blanket (GS-MB) approach to learn topic depen-
dencies based on statistical conditional indepen-
dence tests (Margaritis and Thrun, 2000). We first
identify potential neighbors of a target topic by

evaluating unconditional correlations (grow phase),
then we remove far neighbors by testing for condi-
tional independence given the remaining set (shrink
phase) until reaching the actual Markov blanket of
the topic. The resulting undirected dependencies
are then converted into directed edges using edge
orientation heuristics.

To ensure that the resulting prerequisite graph
is a valid directed acyclic graph (DAG), we apply
data-driven postprocessing to eliminate cycles and
resolve bidirectional edges. If a cycle is detected,
we iteratively remove the weakest edge within the
cycle—where “weakness” is determined using sta-
tistical evidence such as a low agreement ratio or
minimal co-occurrence frequency across student
performance data. Unlike the traditional Grow-
Shrink approach proposed by Margaritis and Thrun
(2000), which attempts to reverse and reinsert re-
moved edges followed by directional propagation
heuristics, our method permanently removes low-
confidence edges without reorientation. This sim-
plification focuses on preserving only the most sta-
tistically supported links while enforcing global
acyclicity. For bidirectional dependencies (i.e.,
both A — B and B — A), we retain only the
edge with the stronger statistical support, ensuring
a consistent and interpretable prerequisite structure.

4.2 IRT Modeling of Student Performance

We use a probabilistic model to estimate student
ability and topic difficulty based on their exercise-
performance data. Specifically, we apply the three-
parameter logistic (3PL) Item Response Theory
(IRT) model (Baker, 2001). In 3PL, each student
has an ability parameter 6,, and each topic has
two parameters: difficulty 3;, and discrimination
ay. We also take into account the factor of luck
as guessing parameter g. The probability that a
student s answers topic ¢ correctly is modeled as:

cut ~ Bernoulli (g + (1 — g) - 0 (o (8s — Br)))

where o(+) is the sigmoid function.

We assume a fixed guessing parameter g = 0.01
for cloze-style exercises, which approximates the
probability of answering correctly by chance. For
multiple-choice exercises, g is determined dynami-
cally based on the number of answer options.

To estimate the posterior distributions of the
model parameters, we perform fully Bayesian in-
ference via Markov Chain Monte Carlo (MCMC)
(Gilks et al., 1995), using the No-U-Turn Sampler
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Figure 4: Posterior distributions of topic difficulty () estimated by the IRT 3PL model. X-axis is estimated topic
difficulty. Each curve represents the density for a different topic.

(NUTS) (Hoffman and Gelman, 2014) as imple-
mented in PyMC (Patil et al., 2010; Salvatier et al.,
2016).

NUTS is a gradient-based sampling algorithm
that extends Hamiltonian Monte Carlo (HMC) by
adaptively deciding how many steps to simulate
on each iteration, based on the gradients of the
log-posterior. It dynamically simulates forward
and backward trajectories in the parameter space,
stopping when a “U-turn” is detected, and then se-
lects a new sample from the visited states using
a probability distribution. The posterior samples
of 5 and « for each topic capture both the param-
eter estimates (mean) and their associated uncer-
tainty (standard deviation), enabling more detailed
downstream analysis and validation of the graph
structure.

4.3 Comparing Graph Structure with IRT
Difficulty

We assess the extent to which the structure of the
prerequisite graph agrees with IRT-inferred topic
difficulty. Intuitively, if topic A is a prerequisite for
topic B, then A should be easier (i.e., have lower
B) than B. To evaluate this alignment, we use three
complementary metrics.

Edge Agreement Score (EAS) measures the
proportion of edges in the graph that follow the
expected difficulty order. For each edge A — B,
we check whether 54 < Bp. The EAS is calculated
as the fraction of such edges over all edges in the
graph. A perfect score of 1.0 indicates that all
edges point from an easier to a harder topic.

Weighted Direction Score (WDS) refines this
idea by incorporating the size of the difficulty gap.
Rather than using a hard threshold, we score each
edge A — B using a sigmoid-transformed differ-
ence between the difficulties of topics A and B:

o(Ba, B8) =1/(1+ 6—(ﬂs—ﬁA))

This yields higher scores when Sp is much

greater than 54, and values near 0.5 when the differ-
ence is small or uncertain. WDS offers a smoother
estimate that rewards clear hierarchical structure.

Kendall’s Tau, originally introduced by Kendall
(1938), is designed to measure the ordinal asso-
ciation between two ranked variables. We use it
to compare the global ordering of topics implied
by the graph with the ranking induced by the IRT-
inferred difficulty estimates. This is done by com-
puting a topological sort of the graph to obtain a
linear topic ordering, which is then correlated with
IRT’s § values using Kendall’s Tau. A high Tau
value indicates strong agreement: topics that ap-
pear earlier in the graph tend to be easier than those
ranked later.

Together, these metrics offer both local and
global perspectives on how well the learned DAG
structure matches the IRT-inferred difficulty land-
scape.

S Experiments and Results

5.1 IRT Estimations

Figure 4 shows the posterior density of all topic
difficulty estimates. The IRT model estimates topic
difficulty values ranging from -3.31 to 1.16, giving
a total range of 4.47 on the X-axis. Of 83 topics,
38 have standard deviations below 0.05, and 55 are
below 0.10, meaning that their difficulty estimates
are quite stable. For 95% confidence intervals (CI),
50 topics (~60% of all topics) have interval widths
under 0.30, which is about 6.7% of the full diffi-
culty range. For 17 topics (20% of all topics), the
estimated CI width is under 0.10—only 2.2% of
the full range. These statistics suggest that many
topics are estimated with high confidence, and they
are reliable enough to be used for comparison with
the topic graph.

Figure 5 illustrates the relationship between un-
certainty in topic difficulty (standard deviation of
5) and topic discrimination (mean of «). Topics
with higher discrimination « tend to show lower

742



10 a_std
.I I-Izcg”" ° ® o005
° [ ° f ® o10
09 (] (] @ o1s
° ° Qe ® 0.20
- [ (] 0.25
]
08
8 ¢ o ©
c
s
g o7
£ ™
]
5 06 a
@)
|
g
5 05
=
04
03 °

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Std(B) — Difficulty Uncertainty

Figure 5: Correlation between uncertainty in the diffi-
culty of a topic—std(8)—and discrimination parame-
ter of the topic—mean a—for each topic. Each point
represents a topic. Marker color and size indicate the
uncertainty in o.

uncertainty in their estimated difficulty, indicating
more stable and informative estimates. In contrast,
topics with lower discrimination show greater un-
certainty in 3, as well as higher variability in «, as
indicated by larger, lighter-colored markers. This
pattern suggests that strongly discriminative topics
provide more reliable signals for modeling.

A detailed heatmap of the correctness of the stu-
dent responses by topic and student ability quan-
tiles (Q1 = lowest, Q5 = highest) is shown in Ap-
pendix Figure 9 and 10. In the heatmap, topics
are ordered by their IRT-estimated mean difficulty
B. The color of each cell shows the average cor-
rectness rate, and the number of student-topic in-
teractions. As expected, higher-ability students
(Q4-Q5) perform better, particularly on the more
difficult topics, reinforcing the validity of the esti-
mated difficulty scores.

Figure 6 shows how the estimates of student
ability 0 vary across CEFR levels assigned by the
teachers. The correlation between CEFR grade and
IRT-estimated ability is moderate, with a Spearman
coefficient of 7 = 0.473, indicating that as CEFR
level increases, IRT-based ability estimates also
tend to rise.

Figure 7 shows the relationship between the num-
ber of exercises completed by each student and
the uncertainty in their estimated ability, measured
as the posterior standard deviation of 6. There
is a strong negative correlation (r = —0.758,
p < 0.001), indicating that students who complete
more exercises tend to have more confident (lower-
variance) ability estimates. This supports the in-
tuitive notion that additional observations reduce

posterior uncertainty in the IRT model.

Figure 8 shows a strong negative relationship be-
tween the number of students who practiced a topic
and the uncertainty in that topic’s IRT difficulty es-
timate. Topics attempted by more students tend to
have significantly lower standard deviation in their
5 values, suggesting higher confidence in the esti-
mated difficulty. This trend is quantitatively sup-
ported by a Spearman correlation of » = —0.899
(p < 0.001), confirming that broader student cov-
erage leads to more stable parameter estimates.

5.2 Graph construction

We construct two types of topic prerequisite graphs
to capture learning dependencies. The first, a
threshold-based graph, connects topics where a
consistent performance advantage suggests one
precedes the other. The second, built using the
Grow-Shrink Markov Blanket algorithm, identifies
conditional dependencies between topics based on
statistical independence tests.

The threshold-based graph includes 83 nodes
and 173 edges, resulting in a wide and dense struc-
ture with many inferred prerequisite links. In con-
trast, the GS-MB graph is sparser, with 80 nodes
and 86 edges, forming a deeper and narrower hier-
archy. Both graphs are processed to remove cycles
and bidirectional edges, ensuring they are valid di-
rected acyclic graphs (DAGs). Visualizations of
both graphs can be found in the Appendix (Fig-
ures 11 and 12).*

Both graphs offer useful perspectives. When
we manually examine their qualitative plausibil-
ity from a linguistic standpoint, we find that the
threshold-based graph often aligns more intuitively
with expected topic relationships in Russian, sug-
gesting that threshold-based edges may capture
pedagogically meaningful dependencies more ef-
fectively than the GS-MB structure. We will ex-
plore this in further depth in future work.

5.3 Graph vs. IRT estimations

Two approaches are evaluated for constructing
topic prerequisite graphs: a threshold-based
method and the Grow-Shrink Markov Blanket algo-
rithm. Both produce DAGs, which are evaluated for
alignment with the IRT-inferred topic difficulties
using three metrics: Edge Agreement Score (EAS),

“Both of these graphs are too large to fit into the paper;
please see the complete graph of threshold-based approach
here and GS-MS approach here.
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Graph Uncertainty Filter EAS WDS Kendall’s Tau
Threshold-based (G gag1) og < 0.05 1.000 0.869 0.240

o3 < 0.10 0.604 0.609 0.220
GS-Markov Blanket (Ggag2) 03 < 0.05 0.523 0514 0.050

oz < 0.10 0.505 0.502 0.014

Table 2: Agreement between graph structure and IRT-estimated topic difficulty. EAS: Edge Agreement Score. WDS:
Weighted Direction Score. Kendall’s Tau compares topological sort with IRT difficulty rank.

Weighted Direction Score (WDS), and Kendall’s
Tau.

Table 2 summarizes the results under two topic
uncertainty thresholds—og < 0.05and og < 0.1—
which correspond to subsets of 30 and 50 topics,
respectively. The threshold-based graph consis-
tently shows stronger alignment with IRT diffi-
culty estimates, achieving perfect edge agreement
(EAS =1.00), high directional consistency (WDS =
0.869), and a moderate Kendall’s Tau of 0.240 un-
der stricter filtering. Even with relaxed thresholds,
it maintains relatively strong scores across all three
metrics. In contrast, the GS-MB graph produces
lower EAS, WDS, and notably near-zero Kendall’s
Tau values (i.e., 0.050 and 0.014), indicating that
its topological structure does not match the global
difficulty ranking well.

These results suggest that while GS-MB could
be effective at capturing local conditional depen-
dencies, it falls short in representing an overall
difficulty hierarchy—a strength more consistently
captured by the threshold-based method.

6 Conclusion

In this work, we present a unified framework for
modeling topic difficulty and learning dependen-
cies in second-language acquisition, leveraging

large real-world learner data from thousands of
students. Using probabilistic modeling and graph-
based structure learning, we analyze over 470K
student exercise attempts spanning more than 80
topics. Our aim is twofold: (1) to estimate topic-
level difficulty and learner ability using a Bayesian
IRT model, and (2) to construct interpretable pre-
requisite graphs that reveal topic hierarchies poten-
tially useful for improving learning.

We compare two graph construction methods:
a threshold-based approach that aggregates rela-
tive performance gaps across students, and a Grow-
Shrink Markov Blanket (GS-MB) method based
on statistical conditional independence tests. Three
evaluations using Edge Agreement Score (EAS),
Weighted Direction Score (WDS), and Kendall’s
Tau show that the threshold-based method aligns
more closely with the IRT-inferred topic difficul-
ties. This supports the hypothesis that prerequisite
topics tend to be easier than their dependents, and
suggests that simple, data-driven heuristics can re-
veal meaningful pedagogical structures.

Our findings also demonstrate that model con-
fidence is strongly influenced by the volume and
diversity of learner data. Students who have com-
pleted more exercises tend to have lower uncer-
tainty in their ability estimates; topics practiced by
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Ability Uncertainty vs. Number of Exercises
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Figure 7: Relationship between number of exercises completed and ability uncertainty (standard deviation of 0).

Each point represents a student.

more learners show lower variability in their diffi-
culty estimates. These patterns highlight the value
of large-scale learner data in stabilizing the param-
eter estimates and guiding curriculum analysis.

Moreover, the estimated IRT abilities exhibit
a correlation with teacher-assigned CEFR levels,
providing external validation for the model and sup-
porting its use in real-world learner assessment. We
further explore several aggregate statistics, includ-
ing topic-topic co-occurrence and student-topic in-
teraction distributions, to explore coverage patterns
and the implications for curriculum design.

In summary, this study contributes a robust
methodology for combining statistical modeling
and graph structure learning in an educational set-
ting. The approach offers practical tools for curricu-
lum designers and language educators to identify
learning gaps, and to evaluate learner proficiency.
In future work, we will explore extending the
model to dynamic learning sequences, fine-grained
topic representations, and multilingual adaptation,
to further enhance intelligent language tutoring sys-
tems.

Limitations

Our results at present have several limitations that
may affect the generalizability and precision of the

results.

The dataset primarily consists of learners at the
A2, B1, and B2 levels, with relatively few samples
from C-level students and very limited representa-
tion of pre-Al and Al learners. As a result, the
inferred difficulty hierarchy and student ability es-
timates may not fully reflect the learning needs or
patterns of beginners and advanced learners.

The distribution of labeled performance data is
imbalanced: 78.4% of responses are correct, while
only 21.6% are incorrect. This skew may reduce
the model’s sensitivity to detecting subtle topic-
level challenges, and can introduce bias in esti-
mating both the topic difficulty and discrimination
parameters.

Addressing these gaps—through more di-
verse learner sampling and more balanced task
evaluation—would improve the robustness of fu-
ture modeling efforts.
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Figure 10: Heatmap of correctness per topic (Part 2); continuation of the heatmap showing remaining topics.
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Figure 11: Prerequisite graph constructed using the threshold-based method.
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Figure 12: Prerequisite graph constructed using the Grow-Shrink Markov Blanket method.
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