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Abstract

Advances in Large Language Models (LLMs)
have sparked growing interest in their potential
as explainable text evaluators. While LLMs
have shown promise in assessing machine-
generated texts in tasks such as summarization
and machine translation, their effectiveness in
evaluating human-written content—such as stu-
dent writing in classroom settings—remains
underexplored. In this paper, we investigate
LLM-based specificity assessment of student
reflections written in response to prompts, us-
ing three instruction-tuned models. Our find-
ings indicate that although LLMs may under-
perform compared to simpler supervised base-
lines in terms of scoring accuracy, they offer
a valuable interpretability advantage. Specif-
ically, LLMs can generate explanations that
are faithful, non-repetitive, and exhibit high
fidelity with their input, suggesting potential
for enhancing the transparency and usability of
automated specificity scoring systems.

1 Introduction

Reflective writing is a fundamental skill that en-
hances learning by encouraging students to criti-
cally engage with course material and articulate
their thoughts. This process benefits both stu-
dents and instructors by fostering greater awareness
and facilitating meaningful classroom interactions
(Baird et al., 1991; Menekse, 2020). The quality of
written reflections is often assessed based on their
specificity (Menekse et al., 2011; Li et al., 2025),
which measures the level of detail and depth in
a given reflection. Table 1 shows student reflec-
tions written after a physics lecture, along with
human-assessed specificity scores, both from the
ReflectSumm corpus described in Section 3.

Automating specificity assessment is crucial for
delivering interventions to help students improve
the quality of their reflections (Knoth et al., 2020;
Wilhelm, 2021), e.g., by providing scaffolding feed-

Prompt: Describe what you found most confusing in
today’s class.

[Score 1] I thought that most of the topics explained were
relatively simple or I had previously learned them. I felt
confident in my understanding after the class session.
[Score 2] the class participation activity
[Score 3] Undirected vs directed was a bit confusing in
terms of how to read the chart
[Score 4] Finding the right problem to address.

Prompt: Describe what you found most interesting in
today’s class.

[Score 1] I found nothing interesting in class. Being Friday,
I could barely pay attention.
[Score 2] the review session
[Score 3] The part about bias in data labeling was thought
provoking
[Score 4] Writing the problem statement.

Table 1: Representative reflections for each specificity
score (1–4) across two prompts. This illustrates one

challenge of assessing specificity: long reflections may
lack substance (Score 1), while short ones may convey

detailed, content-specific insights (Score 4).

back which in turn can ultimately enhance learn-
ing outcomes (Menekse et al., 2025). More spe-
cific reflections can also provide instructors with
more reliable insights into student understanding
and needs (Menekse, 2020). Traditionally, speci-
ficity scoring has relied on supervised models (Ma-
gooda et al., 2022; Carpenter et al., 2020; Li and
Nenkova, 2015). However, collecting large anno-
tated datasets in educational contexts is resource-
intensive and not always feasible. Depending on
model type, the reasoning behind the scoring might
also not be explainable to students or instructors.

Advancements in Large Language Models
(LLMs) for evaluating natural language, commonly
referred to as the LLM-as-a-judge paradigm (Zheng
et al., 2023), have introduced new possibilities
for leveraging LLMs in educational applications.
These models can generate human-like judgments
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Research Question Key Finding Lessons

RQ1: LLM vs. Supervised Baselines
Retrieval-based few-shot improves
scoring

Selecting semantically similar in-context ex-
amples boosts accuracy over random or fixed
examples.

LLMs underperform supervised
models

Distill-BERT outperforms all LLMs, suggest-
ing a need for adaptation.

Chain-of-Thought (CoT) explana-
tions do not improve scoring

Generated explanations fail to enhance LLM-
based scoring.

RQ2: Self-Generated Explanations
Explanations are faithful to the input
and explanation vocabulary do not
fully overlap with the input reflection
vocabulary

Explanations do not contradict or repeat the
input, suggesting potential for interpretable
and supportive understanding of the scores.

High fidelity suggests explanations
are highly influencing the predictions

Misleading explanations can negatively affect
the scoring.

Table 2: Key findings of RQ1 and RQ2 .

without task-specific training, making them attrac-
tive for low-resource tasks such as reflection speci-
ficity assessment. Their generative capabilities in
addition suggest new possibilities for explainable
methods. This paper investigates whether LLMs
can serve as viable alternatives to traditional super-
vised models for assessing reflection specificity.

Reflective writing poses challenges compared
to other educational scoring tasks. Unlike Au-
tomatic Essay Scoring (Foltz et al., 1999; Attali
and Burstein, 2004; Shermis and Wilson, 2024),
which typically assesses longer texts, reflective
writing is often concise and highly variable in
length, with reflections ranging from a single word
to multiple phrases or complete sentences (Kem-
ber et al., 2008). This variability poses a unique
challenge in distinguishing different levels of speci-
ficity: shorter reflections may lack sufficient con-
text, while longer ones can introduce ambiguity in
assessment. Table 1 presents two examples of re-
flections that contain multiple sentences yet receive
the lowest specificity score (1) due to vague or off-
topic content, as well as two shorter reflections that
achieve the highest specificity score (4) by provid-
ing concise, content-rich responses relevant to the
prompt. Also, while tasks such as Short Answer
Grading (Burrows et al., 2015), which is closer in
length and variability to reflections, primarily in-
volve assessing objective responses within a given
question context with reference answers, reflec-
tive writing is inherently subjective as it conveys
personal experiences and insights, further compli-
cating standardized assessment.

In this work, we extend prior research on leverag-

ing LLMs as judges for educational text evaluation
by focusing on reflection specificity. We investi-
gate this through two research questions: RQ1:
Can LLM-based specificity assessment improve
scoring reliability compared to supervised base-
lines? We explore two approaches to LLM-based
specificity assessment: (1) Standard Prompting:
LLMs are instructed to predict specificity scores
based on the input reflection. (2) Chain-of-Thought
(CoT) Prompting: LLMs are prompted to generate
a rationale before making a specificity judgment.
This technique, widely used in complex NLP tasks,
encourages models to engage in step-by-step rea-
soning, potentially leading to more consistent and
interpretable assessments. We investigate these
settings under both zero-shot and few-shot condi-
tions to assess their impact on model performance.
RQ2: Do self-generated explanations enhance
interpretability? We investigate whether gener-
ated explanations contribute to the transparency of
LLM-based specificity scoring, potentially making
the evaluation process more interpretable and infor-
mative for students and educators. Our key findings
are summarized in Table 2.1

Our contributions are twofold:

1. We evaluate the effectiveness of three open-
weight LLMs in scoring student specificity
under various zero-shot and few-shot settings.

2. We analyze the linguistic properties of the gen-
erated explanations and their role in interpret-
ing the output, aiming to assess whether these

1https://github.com/EngSalem/
Explainable-Reflection-Quality
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Score Specificity Meaning Definition
1 Vague Reflection implies "no confusing issue," e.g., "nothing" or "none for this class."

2 Non-specific Reflection does not include any statement(s) about course content but refers to
organizational aspects (e.g., homework, exams).

3 General Reflection includes statement(s) about course content but lacks specific details.

4 Specific Reflection includes specific and detailed statement(s) about course content.

Table 3: Rubric for evaluating reflection specificity based on decision tree from Luo and Litman (2016).

explanations are meaningful and potentially
useful for providing students with feedback
on their reflective writing.

2 Related Work

LLM-as-Judge LLMs have demonstrated correla-
tion with human evaluation of machine-generated
texts in tasks such as counter-narrative generation
(Zubiaga et al., 2024), text summarization (Fu et al.,
2024; Liu et al., 2023), multi-turn question answer-
ing (Zheng et al., 2023), and automatic persuasion
ranking (Elaraby et al., 2024). However, for more
nuanced human-written content, such as academic
reviews (Zhou et al., 2024) and essay scoring (Man-
sour et al., 2024; Stahl et al., 2024), LLMs (partic-
ularly without fine-tuning or alignment) still fall
short compared to human evaluators and domain-
specific supervised models trained on high-quality
annotated data. In this work, we investigate LLMs
as specificity evaluators for student reflections, a
distinct category of human-written text.
LLM-as-Judge in Educational Text Traditional
approaches to assessing student writing often rely
on surface linguistic features to enhance automatic
scoring models ranging from feature-based to hy-
brids with deep learning, including list ranking
(Uto et al., 2020) and neural-based methods (Jin
et al., 2018; Uto et al., 2020). Recent work has
explored leveraging LLMs as evaluators for educa-
tional text. Stahl et al. (2024) employed persona-
based zero-shot prompting for essay scoring, and
Hou et al. (2025) integrated linguistic features into
zero-shot evaluations; however, both studies found
limited improvements over traditional supervised
baselines. In contrast, Baral et al. (2024) showed
that a fine-tuned Mistral-7B model outperformed
other supervised models in math essay scoring.
Closely related to our work, Li et al. (2025) investi-
gated reflection specificity assessment, demonstrat-
ing that multi-LLM voting strategies outperform
single LLM scoring approaches. Building on these
developments, our work examines LLMs’ capabil-

ities in assessing student reflections, focusing on
how in-context examples influence predictions. Ad-
ditionally, we analyze the interpretability of LLM-
generated explanations, offering a novel perspec-
tive particularly valuable for building downstream
applications in high-stakes domains like education.
Evaluating Self-Generated Explanations Assess-
ing self-generated explanations has largely cen-
tered on their impact on model performance. Exist-
ing metrics, such as accuracy differences with and
without explanations (Hase et al., 2020a; Wiegr-
effe et al., 2021a) and information-theoretic mea-
sures (Chen et al., 2023), quantify how expla-
nation content influences predictions. Wiegreffe
and Marasovic (2021) proposed evaluation criteria
based on surface validity, grammatical correctness,
and alignment with the target label, including con-
trast with alternative labels. Expanding on this,
Joshi et al. (2023) introduced novelty, capturing the
introduction of new information, which proved use-
ful in human-AI collaboration tasks. These mea-
sures have since been extended to domains like
persuasiveness evaluation (Elaraby et al., 2024).
Despite these advancements, self-generated expla-
nations remain largely unexplored in educational
contexts beyond their role in enhancing automatic
scoring (Stahl et al., 2024). In this work, we exam-
ine their effectiveness not only in improving speci-
ficity scoring, but also for their potential to gener-
ate explanations that are faithful and non-repetitive
with input, and exhibit fidelity with scoring.

3 Datasets

For LLM evaluation, we utilize ReflectSumm2

(Zhong et al., 2024), a corpus of 17,509 reflections
aggregated by unique reflection per lecture from
24 STEM courses across 2 universities, written in
response to the prompts in Table 1. This dataset
was selected for its inclusion of high-quality anno-
tations of individual reflection specificity scores,

2https://huggingface.co/datasets/mse30/
ReflectSumm
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Score Count Ref. Length (Min / Mean / Max)
1 1,841 1 / 11.19 / 135
2 2,488 1 / 6.17 / 62
3 9,231 2 / 15.26 / 87
4 3,949 4 / 30.19 / 194

Table 4: Distribution of reflection specificity scores in
the ReflectSumm dataset, with reflection (ref.) length

in number of words statistics.

rated on a scale from 1 (vague) to 4 (specific)
using the rubric in Table 3. The annotations ex-
hibit substantial inter-annotator agreement, with
a reported pairwise Quadratic Weighted Kappa of
0.668 across 4 distinct annotators (trained college
students with backgrounds in the appropriate sub-
ject domains) (Zhong et al., 2024). Table 4 summa-
rizes the score distribution. The table also empha-
sizes the variability in reflection lengths across all
scores.

For both training supervised pre-LLM baselines
and as a reflection bank for LLM in-context prompt-
ing, we use the publicly available annotated re-
flections from the CourseMIRROR dataset3 which
is composed of 6680 reflections distributed as
1210, 2035, 2377, 1058 for scores 1 − 4, respec-
tively. Note that although annotated using the same
specificity rubric, the CourseMIRROR reflections
are from STEM course offerings that are disjoint
from those in ReflectSumm.

4 Experimental Settings

4.1 Included LLMs

We included 3 whitebox models which demon-
strated strong performance across NLP tasks,
as evaluated in the Chatbot Arena leaderboard
(Zheng et al., 2023)4: Llama3.1-8B-instruct
(Grattafiori et al., 2024), Mistral-8B-instruct
(Jiang et al., 2024), and Qwen-7B (Yang et al.,
2024). For efficient inference, we employed VLLMs
(Kwon et al., 2023). All experiments were con-
ducted with a decoding temperature set to 0, en-
abling greedy decoding to mitigate variability that
might stem from temperature sampling.

4.2 Prompting the LLMs (Zero-Shot)

Building on the reflection quality assessment of
Luo and Litman (2016), we prompt LLMs to assign
specificity scores on a scale from 1 to 4, consistent
with the guidelines provided to human annotators.

3https://engineering.purdue.edu/coursemirror/
4https://lmarena.ai/

The scoring rubric is adapted from the decision-tree
criteria described in Luo and Litman (2016), and
its definitions are presented in Table 3. This align-
ment enables a direct comparison between model
predictions and dataset reference annotations. Ap-
pendix A provides the prompts used for scoring.

4.3 Scoring Evaluation Metric

Given that our prediction is based on point-wise
scoring, we rely on Quadratic Weighted Kappa
(QWK) to report the model prediction agreement
with ground truth human annotations.

5 RQ1: LLM-based Assessment vs.
Supervised Baselines

These experiments evaluate the effectiveness of
LLM-based specificity assessment across a range
of settings to enable a comprehensive comparison.

5.1 Supervised Baselines

We include two supervised baselines. The first is
Finetuned-DistilBERT, where we fine-tune Distil-
BERT (Sanh, 2019) for specificity assessment fol-
lowing Magooda (2022). The model is initialized
from the Hugging Face checkpoint5 and trained on
the annotated reflections from the CourseMIRROR
dataset. We fine-tuned the model for 20 epochs
using 5-fold cross-validation, optimizing hyperpa-
rameters such as the learning rate and number of
training epochs. The checkpoint with the high-
est overall QWK score was selected for evaluating
specificity across the full ReflectSumm corpus.

The second baseline is Nearest Neighbors (NN)
Retrieval. Given a target reflection, we retrieve
semantically similar reflections from an annotated
reflection bank Rbank and estimate its specificity
score based on the most frequently occurring speci-
ficity label among its nearest neighbors. We
use the CourseMIRROR dataset as the reflection
bank. This method is used as a comparable base-
line to LLMs with nearest neighbor in-context
examples (Section 5.2). For each reflection in
the ReflectSumm evaluation set, we generate a
dense embedding using the all-MiniLM-L6-v2
model from the sentence-transformers library
(Reimers and Gurevych, 2019). This maps reflec-
tions into a shared vector space, enabling semantic
similarity comparisons. We compute the cosine
similarity between each reflection in ReflectSumm
and the annotated reflections in CourseMIRROR

5distilbert/distilbert-base-uncased
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(Rbank), and retrieve the top-n most similar reflec-
tions. For efficiency, we use the Faiss library
(Johnson et al., 2019) for fast approximate nearest-
neighbor search. The specificity score of a reflec-
tion is determined using a mode-based voting mech-
anism from its nearest neighbors’ specificity labels.

5.2 Prompting with In-Context Examples

We explore three in-context learning strategies,
ranging from fixed demonstrations (Brown et al.,
2020) to selection-based strategies that draw from
pre-existing demonstrations (Min et al., 2022).
(1) Fixed In-Context Examples: A fixed set of
manually curated examples is used as in-context
demonstrations across all runs. These examples
are drawn from annotated student reflections in
Luo and Litman (2016) and remain unchanged dur-
ing prompting. Since the examples provided in
the original paper focused primarily on confusing
prompts, we supplemented them with additional re-
flections written in response to interesting prompts
from the Rbank set. Each specificity score is repre-
sented by an equal number of examples to ensure
balanced coverage.6 This prompting method serves
as a baseline for few-shot in-context learning.
(2) Random In-Context Examples: For each in-
stance, n examples are randomly sampled from the
annotated reflection bank Rbank. This approach as-
sesses the variability in model performance based
on arbitrary example selection.
(3) Nearest-Neighbor In-Context Examples:
Similar to the nearest-neighbor retrieval baseline,
the top-n semantically similar reflections from
Rbank are retrieved for each input reflection. These
nearest neighbors serve as in-context demonstra-
tions.

Table 5 shows that none of the included LLMs
were able to match the performance of the
DistillBERT baseline (0.658 QWK) in either zero-
shot or any of the few-shot settings. This highlights
the limitations of LLMs in specificity assessment
when compared to dedicated supervised models.
Among the LLMs, Mistral-8B-instruct consis-
tently achieved the highest QWK agreement across
both zero-shot and few-shot settings. The best per-
formance (0.624 QWK) was obtained when paired
with nearest-neighbor retrieval, indicating that re-
trieving semantically similar reflections enhances
the model’s ability to assess specificity by provid-
ing more contextually relevant examples. However,

6Fixed in-context examples are provided in Appendix B.

increasing the number of in-context examples neg-
atively impacted performance across all models
and few-shot settings. This suggests that excessive
context may introduce conflicting information or di-
vert the model’s attention away from the specificity
criteria. Also, both fixed and randomly sampled in-
context examples performed worse than zero-shot
prompting, implying that arbitrarily chosen exam-
ples introduce noise rather than meaningful guid-
ance. These findings underscore the importance of
carefully curating in-context examples when lever-
aging LLMs for specificity scoring. This limitation
further reinforces the challenge of deploying LLMs
for automated assessment in educational settings
without access to high-quality annotated datasets.

5.3 Chain-of-Thought (CoT) Prompting

Instead of directly instructing the model to assign
a specificity score to a given reflection, we em-
ploy Chain-of-Thought (CoT) prompting (Wei et al.,
2022) to encourage the model to generate a ratio-
nale before providing its final assessment. This
approach aims to enhance the reliability and in-
terpretability of the model’s scoring process by
explicitly incorporating reasoning. To implement
CoT prompting, we modify the original scoring
prompt by introducing a zero-shot CoT instruc-
tion (Kojima et al., 2022) that prompts the model
to generate a brief explanation before assigning a
score. Specifically, we refine the commonly used
CoT instruction, Let’s think step by step,
proposed by Kojima et al. (2022), by prompting
Mistral-8B-instruct to generate an alternative
phrasing that better aligns with the specificity eval-
uation task. The final instruction used in our exper-
iments is: Think critically, consider all
aspects, and then decide.

Table 6 demonstrates that prompting
Mistral-8B-instruct (the best performing LLM
from Section 5.2) to generate self-explanations
before assigning specificity scores does not
improve QWK performance. Across most settings,
CoT prompting either slightly lowers or maintains
performance compared to standard prompting,
with exceptions for 3-shot with random examples
and 10-shot with random and nearest neighbor
examples. However, this gain does not surpass
the best-performing settings. Our findings thus
suggest that CoT self-generated explanations offer
limited utility in improving scoring performance.
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Supervised Baselines (QWK) Best QWK

Distill-BERT 0.658 0.658
Nearest Neighbor – – 0.410 (3-shot) 0.473 (5-shot) 0.506 (10-shot) – – – 0.506

LLM-Based Models (QWK) Best QWK

Model Zero-Shot Few-Shot (Fixed 4-shot per score) Few-Shot (Random) Few-Shot (Nearest Neighbor)

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Llama3.1-8B-instruct 0.552 0.515 0.546 0.549 0.504 0.601 0.595 0.578 0.601
Mistral-8B-instruct 0.595 0.522 0.532 0.553 0.575 0.624 0.605 0.575 0.624
Qwen-7B 0.559 0.485 0.519 0.540 0.456 0.600 0.597 0.569 0.600

Table 5: Quadratic Weighted Kappa (QWK) results for specificity assessment across various few-shot settings on
the full ReflectSumm benchmark. The rightmost column highlights the best QWK result within each model group.

Shaded cells indicate the best score per model row, and bolded values represent group-level best performance.

Retrieval Method No-CoT (QWK) CoT (QWK)

Zero-shot 0.595 0.556
Few-shot (Fixed) 0.522 0.522

Few-shot (Random)

3-shot 0.532 0.576
5-shot 0.553 0.532
10-shot 0.575 0.588

Few-shot (Nearest-Neighbor)

3-shot 0.624 0.607
5-shot 0.605 0.602
10-shot 0.575 0.587

Table 6: QWK scores for Mistral-8B-instruct
comparing No-CoT (repeated from Table 5) vs. CoT
prompting. Italicized rows indicate settings improved

by including CoT prompting. Underlined numbers
represent best performing non-CoT and CoT settings.

5.4 RQ1 Summary
As summarized in Table 2, our evaluation of 3
instruction-tuned LLMs in zero-shot, few-shot, and
CoT settings shows that reflection specificity as-
sessment using LLMs lags behind using supervised
models, with nearest-neighbor in-context learning
offering the best LLM scoring performance.

6 RQ2 Analyzing Self-Generated
Explanations

Although self-generated explanations did not im-
prove specificity assessment, we explore whether
they offer added interpretability benefits beyond
those of traditional supervised models. To system-
atically assess the quality of these explanations as
interpretability tools, we examine three key dimen-
sions. Two are adapted from free-text rationale
evaluation criteria (Wiegreffe and Marasovic), fo-
cusing on surface-level linguistic qualities: vocab-
ulary overlap (to capture repetition or label leak-
age) and faithfulness (to assess alignment with
the input). We also incorporate fidelity analysis
(Wachsmuth et al., 2017; Gilpin et al., 2018) to

evaluate whether the model’s predictions are truly
guided by its own chain-of-thought, thus reflecting
internal consistency in reasoning.

6.1 Vocabulary Overlap Analysis
LLMs often leak the predicted label within ex-
planations (Wiegreffe et al., 2021b; Hase et al.,
2020b), raising concerns that generated rationales
may merely restate the expected output rather than
provide meaningful reasoning. Similarly, Elaraby
et al. (2024) demonstrated that, in assessing ar-
gument quality through pairwise ranking, LLM-
generated explanations often exhibit redundancy
by merely restating the input argument, rendering
the self-generated explanations meaningless. We
extend this analysis, investigating whether explana-
tions contain excessive lexical overlap with the in-
put reflections, thereby reducing their utility in pro-
viding a meaningful interpretibility for the scores.
We leverage the formula in Ye and Durrett (2022)
which was mainly used for ensuring that explana-
tions are relevant to the input. Let a reflection R
consist of a sequence of words R = (r1, . . . , rn)
and a generated explanation E consist of a se-
quence of words E = (e1, . . . , em), where n and
m are the respective word lengths. We quantify
lexical overlap V as:

V(E,R) =
|E ∩ R|
|E|

A higher value indicates greater redundancy be-
tween the explanation and the input reflection.

6.2 Faithfulness Analysis
Prior work (Ye and Durrett, 2022) highlights that
self-generated explanations may be unfaithful to
the input, introducing hallucinated or contradicting
information. To assess whether an explanation E
remains faithful to its reflection R, we utilize an
off-the-shelf entailment model. Specifically, we
use a pretrained RoBERTa model (Liu et al., 2019)
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fine-tuned on the MNLI dataset (Williams et al.,
2018)7. We frame this as a natural language infer-
ence (NLI) task, where the reflection serves as the
premise and the corresponding explanation as the
hypothesis. An entailment model is then used to
predict whether the explanation entails, contradicts,
or is neutral with respect to the input reflection. We
compute the percentage of contradictions across all
explanations.

6.3 Fidelity Analysis
Fidelity evaluates whether LLM-generated explana-
tions genuinely influence the model’s predictions
(Gilpin et al., 2018). Following the counterfac-
tual reasoning methodology introduced by Wachter
et al. (2017), we assess fidelity by introducing mis-
leading explanations and measuring the percent-
age of predictions that are affected. Specifically,
we consider a set of generated explanations E for
which the model’s predictions align with human-
labeled specificity scores. Rather than manually
creating corrupted explanations, we generate a mis-
leading set Emislead by prompting GPT-4o to rewrite
each original explanation to justify an incorrect
rubric score.8 The final fidelity F (E) is:

F (E) =

∑
ri∈R

I
[
M(ri, e

mislead
i ) ̸= scorelabeled(ri))

]

|R|
where M(ri, ei) is the model’s predicted speci-
ficity score for reflection ri given explanation ei,
and scorelabeled(ri) is the ground truth label. 0 ≤
F (E) ≤ 1, where 0 indicates that LLMs do not rely
on explanations while 1 refers to LLMs fully utiliz-
ing explanations in predicting scores. We sampled
100 explanations per score category (400 in total)
from the Mistral-8B-instruct CoT outputs. For
each original explanation and its misleading coun-
terpart, we re-prompted Mistral to generate new
predictions. Fidelity was then measured based on
whether the model’s prediction deviated from the
original ground truth. Table 7 presents an example
of a corrupted explanation9.

6.4 RQ2 Findings
Table 8 summarizes the self-explanation analyses.
On average, explanations exhibited a vocabulary

7https://huggingface.co/roberta-large-mnli
8We set the temperature to 0.7 to encourage diverse gener-

ations. The full prompt is in Appendix C Table 13.
9The prompt used for generating predictions is included in

Appendix C Table 14.

Reflection:
I didn’t know which equations went into which sections of
the WDM.

Ground Truth Specificity Label: 3

Original Explanation:
The reflection mentions specific equations and a specific
section of the WDM (Worked Distributed Model), which
indicates a specific understanding of the course content.
However, it does not provide detailed explanations or ex-
amples of the confusion, which is why it scores a 3.

Corrupted Explanation:
The reflection explicitly mentions specific equations and
a particular section of the WDM (Worked Distributed
Model), demonstrating a clear and detailed understand-
ing of the course content. The mention of specific equa-
tions and sections indicates a precise engagement with the
material, which aligns with a more detailed and specific
reflection. Therefore, it deserves a score of 4.

Table 7: Example of a corrupted explanation for
specificity assessment. Gray text indicates the modified

portion of the original explanation used to steer the
LLM toward a different score.

Figure 1: Confusion matrix between original labels and
corrupted labels after misleading explanations.

overlap of 23.55% with their corresponding reflec-
tions, suggesting that the model does not simply
replicate the input text—contrary to findings in
argument quality tasks where smaller instruction-
tuned models often repeated the input (Elaraby
et al., 2024). Examples in Table 9 illustrate that
high-overlap cases (71.11%) and low-overlap cases
(8.88%) primarily reflect restatements of key con-
cepts rather than superficial repetition.

Faithfulness analysis shows that only 5.48% of
explanations were predicted to contradict their cor-
responding reflections, indicating high alignment.
As shown in Table 10, even explanations flagged as
contradictions often did not exhibit explicit conflict,
suggesting potential entailment model errors due
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Average Vocabulary Overlap (%) ↓ Contradiction Rate (%) ↓ Fidelity in % F (E)× 100 ↑

23.55± 14.23 5.48 93.00

Table 8: Self-explanation analysis results for Mistral-8B-instruct+CoT. (↑) means that higher values
correspond to better explanation quality, while (↓) means that lower values correspond to better quality.

Vocabulary Overlap

High Overlap Example

Reflection:
What I found most interesting in today’s lecture was the
conceptual questions. The sled question tricked me a
little so it was interesting to see what the answer was
and why.
Explanation:
The reflection mentions a specific aspect of the lecture
conceptual questions and provides a detailed explana-
tion of why it was interesting the sled question tricked
me a little so it was interesting to see what the answer
was and why.
Overlap Percentage: 71.11%
Specificity Scores: annotated: 4 predicted: 4

Low Overlap Example

Reflection:
Cramer’s rule and matrices.
Explanation:
The reflection mentions Cramer’s rule and matrices,
which are specific topics from the course content. How-
ever, it does not provide any details about what was
confusing or needed more explanation, so it falls into
the ’general’ category.
Overlap Percentage: 8.88%
Specificity Scores: annotated: 3 predicted: 3

Table 9: Vocabulary overlap analysis between
reflections and explanations. Highlighted text indicates

overlapping segments.

to surface-level lexical differences (e.g., "specific
tools" vs. "general statement").

Finally, fidelity analysis on our random sample
yielded a score of 93.00%, confirming that the
model strongly conditions its predictions on the
provided explanations. As discussed in Section 5.3,
this reliance may partially explain the observed
performance degradation under chain-of-thought
(CoT) prompting. Figure 1 shows how corrupted
explanations lead to prediction shifts, causing orig-
inally correct predictions—referred to in the fig-
ure as "True Labels" (i.e., those aligned with the
ground truth)—to become incorrect.

In sum (and as summarized for RQ2 in Table
2), the overlap and faithfulness analyses along
with the example generations suggest that LLMs
can potentially generate meaningful interpreta-

Faithfulness Analysis

Contradiction Example

Reflection:
I was confused about how to use a calculator to solve
matrices.
Explanation:
The reflection mentions a specific tool (calculator) and a
specific topic (solving matrices), but it does not provide
any details about the confusion or what was unclear.
It is a general statement about the confusion without
specific details.
Entailment Model (RoBERTa-NLI) Decision: Con-
tradiction
Specificity Scores: annotated: 3 predicted: 3

Entailment Example

Reflection:
The circuits and how they decide evenly.
Explanation:
The reflection mentions ’circuits’ and ’how they decide
evenly’, which are specific topics from the course con-
tent. However, it lacks detailed explanation or specific
examples, making it a general reflection.
Entailment Model (RoBERTa-NLI) Decision: Entail-
ment
Specificity Scores: annotated: 2 predicted: 3

Table 10: Faithfulness analysis of reflections and
explanations based on entailment model predictions.

tions for their scores. Their personalized nature
in fact makes them potentially well-suited for
integration into reflection writing systems such
as CourseMIRROR(Magooda et al., 2022), where
scaffolding helps students identify missing details
and improve reflection specificity. For example,
CourseMIRROR provides fixed prompts based solely
on predicted specificity scores (e.g., "Sounds good,
can you please tell us why it is confusing?"), while
dynamically produced explanations can potentially
convey a deeper, reflection-specific understanding,
identifying underlying concepts that contribute to
specificity. Finally, the fidelity analysis highlights
that the CoT explanations not only accompany but
also influence the model’s final predictions, rein-
forcing their reliability as interpretability tools.
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7 Conclusion and Future Work

In this study, we systematically analyzed the poten-
tial of LLMs as explainable specificity evaluators
for student-generated reflections, evaluating three
instruction-tuned models in zero-shot and few-shot
settings against supervised baselines. Our findings
reaffirm prior research that LLM-based evaluation
of educational texts still lags behind supervised
models, with nearest-neighbor retrieval offering
only marginal improvements in alignment with hu-
man annotations. Chain-of-thought prompting does
not enhance specificity assessment either, suggest-
ing that self-generated explanations do not mean-
ingfully influence model decision-making. How-
ever, we extend prior analyses by focusing on eval-
uating generated self-explanations, an emergent
capability that is underexplored in the context of ed-
ucational text assessment. Our analysis reveals that
self-explanations can enhance interpretability by
providing faithful justifications for model’s scores
and to the input reflections.

Future work should explore alignment tech-
niques—including fine-tuning with annotated cor-
pora and self-alignment strategies—to improve the
utility of LLMs in student specificity assessment.
Additionally, the role of self-generated explana-
tions should be further investigated for their poten-
tial to deliver automated, personalized feedback to
students, enhancing both the interpretability and
pedagogical value of LLM-based evaluation.
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Limitations

This work focuses on instruction-tuned LLMs with
comparable parameter sizes, allowing for a con-
trolled comparison; however, this design choice

may limit the generalizability of our findings. Fu-
ture research should explore models of varying
scales to better understand the impact of model size
on specificity assessment performance. Moreover,
our analysis is restricted to a particular genre of
reflective writing—short student reflections written
in response to structured prompts. Expanding the
evaluation to include other forms of reflective writ-
ing, such as longer essays or open-ended journal
entries, would offer a more comprehensive under-
standing of LLM capabilities across diverse con-
texts. Lastly, our examination of generated explana-
tions was limited to surface-level properties, includ-
ing use of an off-the-shelf entailment model not
designed for reflections. Additionally, we did not
analyze the correlation between self-explanations
and other black-box explanation methods, such as
LIME (Ribeiro et al., 2016) and SHAP (Lundberg
and Lee, 2017). Future work could incorporate
human-centered studies to evaluate the effective-
ness of these explanations in delivering personal-
ized feedback to students based on their reflections.

Ethical Considerations

This study uses publicly available, anonymized
student reflection data from the ReflectSumm and
CourseMIRROR datasets. All experiments were con-
ducted in accordance with data usage terms, and
no personally identifiable information was used.
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A Prompts for specificity evaluation

Table 11 shows the exact prompt used in our exper-
iments. The prompt includes few-shot examples,
which are only included in the case of few-shot
specificity scoring.

Scoring Prompt

Background:
A group of students in a classroom were asked to describe
what they found interesting or confusing in a lecture.

Task:
You will be given the original prompt to the students, fol-
lowed by a single reflection written by a student. Your task
is to score the reflection from 1 to 4 based on the given
specificity rubric.

Rubric:
Score 1 (vague): Reflection implies "no confusing issue,"
e.g., "nothing" or "none for this class."
Score 2 (non-specific): Reflection does not include any
statement(s) about course content but refers to organiza-
tional aspects (e.g., homework, exams).
Score 3 (general): Reflection includes statement(s) about
course content but lacks specific details.
Score 4 (specific): Reflection includes specific and detailed
statement(s) about course content.

Few-Shot Reflection Examples (Only in case of few-
shot):
{reflections_with_scores}

Input Example:
{ "prompt": "{prompt}", "reflection":
"{reflection}" }

Output Format:
Return only the score in a valid JSON format:
{ "score": "1, 2, 3, or 4" }

Table 11: Specificity scoring prompt with rubric and
in-context examples.
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B Fixed reflections examples

Table 12 shows examples of fixed reflections in-
cluded in the prompt for the fixed in-context re-
flection experiments.

C Prompts for fidelity analysis

Table 13 presents the prompt used to generate mis-
leading explanations by corrupting the original ex-
planation that supported the correct score.

Table 14 presents the modified prompt used to
compute final fidelity. The prompt incorporates
corrupted explanations as part of the input and in-
structs the model to output only the predicted score.
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Score Score Meaning Reflection Example Prompt
Type

1 Vague Not sure if I understand Confusing
1 Vague Elephant stampede in a rainstorm. Confusing
1 Vague teacher bringing chocolates to class Interesting
1 Vague Made some kind of sense Interesting
2 Non-specific size of print and colors are hard to read Confusing
2 Non-specific I tried to follow along but I couldn’t grasp the concepts. Plus it’s hard to

see what’s written on the white board when the projector shines on it
Confusing

2 Non-specific Examples were interesting Interesting
2 Non-specific lzw compression and expansion Interesting
3 General I didn’t understand the attractive and repulsive force graphs from the third

slide
Confusing

3 General The repulsive/ attraction charts Confusing
3 General the history of founder of student distribution was interesting Interesting
3 General the transformations between random variables was interesting Interesting
4 Specific Part III on worksheet in class, comparing metals. I was confused about

why each metal was selected
Confusing

4 Specific computing length, edges and atomic packing factor for FCC Confusing
4 Specific Learning the where the n-1 degrees of freedom coming in the sample

variance distribution was very interesting
Interesting

4 Specific the process of deciding among differen population estimators was quite
interesting

Interesting

Table 12: Fixed reflections for in-context specificity scoring.
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Corrupted Explanation Generation Prompt

Background:
Students in a classroom were asked to reflect on a lecture
by describing what they found interesting or confusing.

Task:
You will be provided with:

• The original prompt given to the students.

• A reflection written by a student.

• A specificity score assigned to the reflection based
on a predefined rubric.

• An explanation justifying this score.

Your goal is to generate an alternative explanation that
supports a different specificity score for the same reflec-
tion. The new explanation should maintain a similar style
to the given justification but justify a different score.

Rubric:
Score 1 (vague): Reflection implies "no confusing issue,"
e.g., "nothing" or "none for this class."
Score 2 (non-specific): Reflection does not include any
statement(s) about course content but refers to organiza-
tional aspects (e.g., homework, exams).
Score 3 (general): Reflection includes statement(s) about
course content but lacks specific details.
Score 4 (specific): Reflection includes specific and detailed
statement(s) about course content.

Input:
{ "prompt": {prompt}, "reflection":
{reflection}, "explanation": {explanation},
"label": {label} }

Instructions:

• Construct a new explanation that justifies a differ-
ent specificity score than the original label.

• Maintain a logical structure and tone similar to the
provided explanation.

• Output only the alternative explanation.

Table 13: Prompt for generating corrupted explanations
to support alternative specificity scores while

maintaining logical tone and style.

Score with Predefined Explanations

Background:
A group of students in a classroom were asked to describe
what they found interesting or confusing in a lecture.

Task:
You will be given the original prompt provided to the stu-
dents, followed by a reflection written by a student. Your
task is to score each reflection from 1 to 4 based on the
given specificity rubric.

Rubric:
Score 1 (vague): The reflection implies "no confusing is-
sue", e.g., responses like "nothing" or "none for this class."
Score 2 (non-specific): The reflection does not mention
course content (e.g., lecture slides, in-class activities, or
discussion) but refers to class organization or assignments
(e.g., homework, exams).
Score 3 (general): The reflection mentions course content
but lacks detailed or specific statements.
Score 4 (specific): The reflection includes both course
content and specific, detailed statements.

Input:
{ "prompt": {prompt}, "reflection":
{reflection} }

Explanation:
{explanation}

Instruction:
Therefore, determine the score based on the explanation
and reflection. Answer with the score only.

Table 14: Prompt for scoring reflections based on
predefined explanations, using the specificity rubric.
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