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Abstract

As generative AI tools become increasingly in-
tegrated into educational research workflows,
large language models (LLMs) have shown sub-
stantial promise in automating complex tasks
such as topic modeling. This paper presents
a user study that evaluates AI-enabled topic
modeling (AITM) within the domain of P-20
education research. We investigate the ben-
efits and trade-offs of integrating LLMs into
expert document analysis through a case study
of school improvement plans, comparing four
analytical conditions. Our analysis focuses on
three dimensions: (1) the marginal financial
and environmental costs of AITM, (2) the im-
pact of LLM assistance on annotation time, and
(3) the influence of AI suggestions on topic
identification. The results show that LLM in-
creases efficiency and decreases financial cost,
but potentially introduce anchoring bias that
awareness prompts alone fail to mitigate.1

1 Introduction

Educators are increasingly turning to artificial in-
telligence to streamline research and administra-
tive workflows, particularly within P-20 contexts,
which cover education from Pre-K through gradu-
ate levels and workforce training. It has sparked
considerable interest in the potential of generative
AI tools to tackle complex analytical tasks (Kasneci
et al., 2023; Xu et al., 2024). Among these appli-
cations, topic modeling (TM)—a method for un-
covering hidden themes in unstructured text—has
become a prominent technique in P-20 research
over the past decade (Brookes and McEnery, 2019;
Daenekindt and Huisman, 2020; Sun et al., 2019;
Wang et al., 2017). In contrast to conventional text

1Code available here. The data are not publicly available
due to privacy restrictions but can be requested through the
Network for Educator Effectiveness (NEE) at the University
of Missouri and the Missouri Department of Elementary and
Secondary Education (DESE).

data analysis (CTDA), which often requires sub-
stantial human input and can be constrained by its
labor-intensive nature, subjectivity, and potential
for inconsistency, Artificial Intelligence-enabled
Topic Modeling (AITM), driven by sophisticated
LLMs like GPT-4 (OpenAI et al., 2024), holds
the potential for significant improvements in ef-
ficiency and scalability by automating or assist-
ing with these demanding procedures (Dell’Acqua
et al., 2023; Grossmann et al., 2023).

Implementing AITM offers several key bene-
fits, notably a reduction in the time required for
analysis and the potential for more consistent and
thorough topic identification. These efficiencies
can significantly influence research productivity
and, importantly, may lead to qualitatively differ-
ent research findings compared to CTDA due to
variations in identified themes. Nonetheless, the
rapid adoption of AITM raises important concerns
about potential drawbacks, such as financial costs
and environmental impacts associated with substan-
tial computational resource utilization. At present,
there is a lack of empirical research that compares
these costs to those of traditional methods, espe-
cially within the field of K12 educational research.

Another critical but underexplored concern with
AITM is the psychological phenomenon known
as anchoring bias—the tendency for humans to
rely excessively on initially presented information
when making subsequent judgments or decisions
(Nagtegaal et al., 2020). In contexts where humans
interact with AI-generated insights, anchoring bias
may skew human analysts’ judgments, thus, affect-
ing the final research outcomes (Zhao et al., 2024;
Choi et al., 2024).

Given these critical gaps, we investigate the
financial, environmental, cognitive, and analyti-
cal trade-offs of integrating AITM into P-20 re-
search. Our case study focuses on principal-written
school improvement plans (henceforth "Plans")
from a formal field-based principal evaluation sys-
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tem in hundreds of K12 districts in the Midwest
USA. We systematically evaluate four analytic con-
ditions: AI-Only , Human-Only, AI-Human, and
AI-Human-Deanchoring. Through this compara-
tive analysis, we address three research questions:

• RQ1: What are the marginal financial and
environmental costs of implementing AITM
in P-20 research?

• RQ2: What are the causal effects of different
analytic approaches on analysis time?

• RQ3: What are the causal effects of these
analytic approaches on the topics identified?

Preliminary findings suggest that AI analysis
significantly reduces costs and analysis time per
document compared to human analysis, although
AI-assisted methods vary slightly in terms of speed.
Additionally, when humans and AI were provided
with pre-specified topic lists, only minor differ-
ences emerged in the topics identified. Through
a thorough evaluation of these aspects, we aim to
offer an empirical understanding of AITM’s value
proposition for P-20 educational research.

2 Related Work

The field of topic modeling has seen significant
advancements, moving from traditional probabilis-
tic methods to more contemporary AI-driven tech-
niques. Early models, such as Latent Dirichlet Allo-
cation (LDA; Blei et al., 2003), conceptualized doc-
uments as combinations of topics, with each topic
characterized by a distribution of words. While
widely adopted, LDA and similar approaches of-
ten required substantial manual interpretation, as
they yielded clusters of words without clear seman-
tic labels (Gao et al., 2024b). Subsequent neural
network-based models, like BERTopic (Grooten-
dorst, 2022), improved the coherence of topics by
leveraging transformer embeddings that capture
richer contextual meaning. More recently, frame-
works leveraging large language models (LLMs),
such as TopicGPT (Pham et al., 2024), have fur-
ther enhanced the accessibility and interpretability
of topic modeling by generating human-readable
topic labels and summaries (Overney et al., 2024;
Gao et al., 2024a).

Within educational research, topic modeling has
proven to be a powerful tool for analyzing large-
scale textual data, such as curricula, school im-
provement plans, and scholarly literature. Stud-
ies have applied topic modeling to uncover latent

themes in educational leadership, policy discourse,
and reform strategies (Wang et al., 2017; Sun et al.,
2019; Daenekindt and Huisman, 2020). These
methods claim to significantly reduce the labor as-
sociated with traditional qualitative coding, making
large-scale analysis more scalable and helping to
address a fundamental impediment to research use
by educators: the amount of time it takes to con-
duct research (Drahota et al., 2016; Asmussen and
Møller, 2019).

As AI tools, particularly LLMs, become more
prominent in education research and practice, they
are being increasingly adopted for tasks such as
writing content, analyzing student responses, or
synthesizing research findings (Liu and Wang,
2024; Cambon et al., 2023; Jaffe et al., 2024).
However, effective adoption in educational con-
texts requires addressing the environmental and
financial costs of model training and inference
(Strubell et al., 2019; Hershcovich et al., 2022),
challenges around the reliability and interpretabil-
ity of model outputs (Mittelstadt et al., 2016; Sahoo
et al., 2024), and cognitive pitfalls such as automa-
tion and anchoring bias that may skew human judg-
ment during analysis (Goddard et al., 2012; Koo
et al., 2024; Echterhoff et al., 2024). This is partic-
ularly concerning in high-stakes domains like edu-
cation, where premature reliance on AI-suggested
outputs can limit critical thinking, reduce analyti-
cal diversity, and ultimately affect the integrity of
findings (Al-Zahrani, 2024; Sallam, 2023).

Furthermore, bias mitigation remains a press-
ing challenge. LLMs have been shown to inherit
and sometimes amplify social and cultural biases
(Resnik, 2024). Interestingly, emerging research
suggests that strategies such as structured group
discussions and collaborative review can counter-
act some of these effects, promoting more balanced
and reflective decision making in AI-assisted work-
flows (Horst et al., 2019; Rachael A. Hernandez
and Teal, 2013; Michaelsen et al., 2002).

3 Data

We use a proprietary dataset from the Network for
Educator Effectiveness (NEE), an educator eval-
uation system widely implemented across K–12
school districts in Missouri. This dataset spans
the academic years 2005–2006 through 2022–2023
and comprises de-identified, text-based portfolios
authored by school principals. These documents,
formally known as Building Improvement Plans
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Figure 1: The two elements extracted from the Building
Improvement Plans (BIPs) used in our goal-based study.

(BIPs) or School Improvement Plans, are submitted
annually as part of a standardized evaluation pro-
cess and are structured around seven performance
criteria (referred to as elements) evaluated by prin-
cipal supervisors using a consistent rubric.

For our study, we randomly selected 23 BIPs and
focused on two specific elements from each plan:
(1) the major objectives stated for school improve-
ment, and (2) the data principals planned to use to
measure progress toward those objectives (Figure
1). These elements are highly relevant to evaluat-
ing strategic goal-setting and progress tracking in
educational leadership and K12 school improve-
ment. The documents are entirely text-based and
machine-readable, making them ideal for qualita-
tive analysis via topic modeling.

4 Experimental Design

To investigate the integration of LLMs into educa-
tional research, we have adapted our methodology
from the user study conducted by Choi et al. (2024),
which examined the efficiency and precision of
LLMs in specialized tasks through a structured user
study focused on human-LLM interactions. Their
findings showed that while LLMs significantly in-
creased task speed, they also led users to anchor on
AI-provided suggestions. Informed by their find-
ings on anchoring bias, we expand on their experi-
mental framework by adding a novel treatment con-
dition: AI-Human-Deanchoring. This condition is
designed to reduce the over-reliance on LLM by
making participants explicitly aware of potential
anchoring effects in LLM-generated suggestions
(see Figure 2).

Our study is structured in two stages:
• Stage 1: Topic Discovery, in which participants

identify and curate a list of topics from a shared
set of BIPs.

• Stage 2: Topic Assignment, in which partici-
pants apply those topics to a new set of docu-
ments under controlled conditions.

Document A1 A2 A3 A4 A5 A6

Stage 1

D1–D11 T2 T3 T4 T2 T3 T4

Stage 2

D12–D15 T2 T3 T4 T2 T3 T4
D16–D19 T3 T4 T2 T3 T4 T2
D20–D23 T4 T2 T3 T4 T2 T3

Table 1: Document assignments for Stages 1 and 2. In
Stage 1, each analyst analyzed the full set of 11 docu-
ments (D1–D11) under a single assigned condition; ex-
perimental conditions are defined as T2: Human-Only,
T3: AI-Human, and T4: AI-Human-Deanchoring. In
Stage 2, analysts analyzed documents D12–D23, as-
signed in a balanced design across all experimental con-
ditions to ensure multiple annotations per document.

We designed the following four treatment condi-
tions:
1. AI-Only: Tasks were performed solely by the

LLM without human intervention, providing a
benchmark for AI performance.

2. Human-Only: Participants performed tasks with-
out any AI assistance, serving as the baseline
for human performance.

3. AI-Human: Participants received suggestions
from an LLM before performing tasks, allowing
us to assess the influence of AI assistance.

4. AI-Human-Deanchoring: Participants were
presented with LLM-generated suggestions with
explicit instructions to be skeptical of them due
to potential anchoring bias. By encouraging
participants to thoughtfully evaluate and adjust
AI-generated recommendations, we aim to im-
prove the trustworthiness and credibility of AI-
generated results.
To assign treatment conditions in the 12 school

improvement plans (BIPs) in stage 2, we used a
Latin square design (Montgomery, 2017). Each
of the six human participants was assigned a spe-
cific sequence of treatment conditions across dif-
ferent plans, ensuring a balanced and system-
atic distribution of the Human-Only, AI-Human,
and AI-Human-Deanchoring settings (see Table 1).
Analysts proceeded in the order of conditions T2
→ T3 → T4 in stage 2. Participants in the AI-
assisted settings (T3, T4) were provided with LLM-
generated topic annotations, while those in the
Human-Only setting (T2) worked independently
without any AI input. Analysts were unaware of the
condition until they accessed the designated docu-
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Figure 2: Overview of our Topic Modeling workflow and experimental settings. Stage-1: Topic Discovery involves
discovering latent topics within documents. Team discussion occurred at the end of Stage-1 in order develop the
Final Topic List. Stage-2 involves assigning topics to a different set of documents in all treatment conditions.

ment in Label Studio (Tkachenko et al., 2020) that
we used to conduct our user study. Each analyst
was asked to indicate whether each topic t from the
Final Topic List appeared in each paragraph/field
f of the assigned BIPs.

4.1 Stage 1: Topic Discovery

We used the data from Stage 1 to examine how
topic lists were generated across different analytic
conditions. First, all six participants analyzed the
same set of 11 BIPs, working individually under
one of three assigned conditions: Human-Only,
AI-Human, or AI-Human-Deanchoring, with two
participants per condition.

Participants in the AI-Human and
AI-Human-Deanchoring conditions were pro-
vided with an LLM-generated topic list before
beginning their analysis, while only the latter were
explicitly warned about potential anchoring effects
(see Appendix A for the full instruction). Analysts
in the Human-Only condition received no AI input.

Each analyst independently reviewed all 11 BIPs
and recorded a preliminary list of topics. After this
individual phase, participants met in their respec-
tive condition groups for a 30-minute discussion
to consolidate their findings into a group-specific
topic list. Finally, all six analysts engaged in a
60-minute cross-condition discussion to synthesize
the Final Topic List, which was later used as the
reference framework in Stage 2. All individual and
group topic lists are included in Appendix B.

Results In Stage 1, we collected three topic lists:
from the Human-Only group, AI-Human group,
and AI-Human-Deanchoring group. The analysts
unanimously curated a final list of 13 topics after

reviewing all three.

Despite differences in conditions, we observed
moderate overlap: six of the 13 final top-
ics (46%) appeared in all three lists, though
not always as exact matches. For instance,
some themes were phrased differently across set-
tings, such as Educational Technology from the
AI-Human-Deanchoring list and Technology Inte-
gration from the Human-Only list which were con-
ceptually merged into a single topic, Technology
Use/Integration, in the final list. This highlights
how interpretive nuance plays a role in topic cura-
tion.

Comparing each user-generated list with the
AI-Only list revealed systematic differences. The
AI-Only list included 8 topics. The Human-Only
list had 15, with 4 overlapping (26.67%), while
AI-Human and AI-Human-Deanchoring lists iden-
tified 8 and 11 topics with 3 (37.5%) and
7 (63.64%) overlapping, respectively. The
Human-Only list had a more granular set of
topics tailored to the dataset, whereas the
AI-Only, AI-Human, and AI-Human-Deanchoring
lists tended to include broader, more generic
themes that echoed the LLM’s original suggestions.
This suggests that the presence of LLM suggestions
may have influenced annotators to propose fewer,
more AI-aligned topics. In contrast, the final topic
list—compiled after collaborative review—shared
only 4 of 13 topics (30.77%) with the AI-Only list.
This divergence suggests that discussion among an-
notators helped complement AI outputs by adding
nuanced topics that the model did not generate.
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Comparing Final Topic List and AI-Only
List

# of
Topics

Exact topic matches between Final Topic List &
AI-Only List

4

Topics Present (or Discovered) in the Final
Topic List, but not in the AI-Only List

5

Two or more topics from Final Topic List
subsumed under one broader AI-Only topics2

4

Topics completely discarded by the annotators
from AI-Only List

2

Total topics in Final Topic List 13

Table 2: The comparison of the AI-Only List with re-
spect to the Final Topic List shows that there are few
topics that the model has failed to cover in its overall
topic generation task.

However, 5 of the 13 topics in the final topic
list were not present in the AI-Only list at all (see
Table 2). These “missing” topics—such as Class-
room Environment and Attendence—often repre-
sented context-specific or nuanced areas that the
LLM failed to surface.

Additionally, annotators explicitly discarded two
LLM topics, Education and School Improvement
Planning, as overly broad. This further illustrates a
recurring pattern: while LLMs are helpful in iden-
tifying broad thematic content, they may struggle
with generating the fine-grained, action-relevant
topics that human experts prioritize in education
policy contexts. These findings are consistent with
prior work by Choi et al. (2024), which similarly
highlighted LLMs’ limitations in capturing nu-
anced, context-specific insights.

4.2 Stage 2: Topic Assignment
Participants used the Final Topic List to anno-
tate a new set of 12 BIPs, each segmented into
three paragraph-level fields. Participants were
randomly reassigned to one of the three human-
in-the-loop conditions. Those in AI-Human and
AI-Human-Deanchoring received LLM-generated
topic suggestions; those in Human-Only did not.
We recorded the time spent on each document to
facilitate an efficiency analysis.

Results Following Stage 2, we analyzed expert
annotations across three conditions: Human-Only,
AI-Human, and AI-Human-Deanchoring. Each
paragraph in the dataset was represented as a 14-
element vector—13 corresponding to topics from
the Final Topic List established in Stage 1, and

2Multiple Final Topic List entries (e.g., “Academic Assess-
ments” and “Academic Goals”) were grouped under a single
LLM topic (e.g., “Student Assessment and Achievement”)

Metric Human-
Only

AI-
Human

AI-Human-
Deanchoring

Avg Precision 0.68 0.84 0.83
Avg Recall 0.55 0.69 0.67
Avg Annotation
Speed (words/min)

73.75 71.15 89.91

Avg Annotator
Agreement with
AI-Only (%)

54.64 73.44 71.41

Avg
Inter-Annotator
Agreement (κ)

0.57 0.71 0.69

Table 3: Summary of Stage 2 results across the three
settings. Metrics include annotation speed (words per
minute), agreement with LLM outputs (%), and inter-
annotator agreement (Cohen’s κ). See Appendix C for
detailed results and metrics definitions.

one for “None”—indicating whether annotators as-
signed relevant topics. This structure allowed us to
assess the impact of LLM suggestions on annota-
tion behavior.

Participants used the Final Topic List to anno-
tate a new set of 12 school improvement plans
(BIPs), each segmented into three paragraph-level
fields. Each field was annotated independently by
five human analysts, resulting in 12 plans × 3 fields
× 5 analysts = 180 annotations. Additionally, each
field was annotated once under the AI-Only con-
dition, yielding 36 more entries, for a total of 216
topic-field-annotator combinations.

We evaluated the LLM’s ability to replicate ex-
pert topic assignments using precision and recall,
with the Human-Only condition treated as ground
truth3. The AI-Only treatment achieved an average
precision of 0.68 and recall of 0.55 when compared
to Human-Only annotations, suggesting that while
AI outputs are often accurate, they miss nearly half
of expert-identified topics.

Annotators were significantly faster in the
AI-Human-Deanchoring condition (89.91 words /
min) than in the Human-Only (73.75 words/min) or
AI-Human (71.15 words/min) conditions. This may
reflect a tendency to anchor on LLM-generated sug-
gestions, even when warned, leading to faster—but
potentially less critical—annotation behavior.

Annotator agreement with AI-Only treatment
was highest in the AI-Human condition (73.44%),
followed by AI-Human-Deanchoring (71.41%),
and lowest in Human-Only (54.64%). These find-
ings suggest that LLM suggestions strongly influ-

3We consider the Human-Only annotations as the ground
truth because, typically, experts work independently without
AI-assistance. This makes the annotations the closest repre-
sentation of real-life expert results in our study.
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Source Reported Cost in the paper Standardized Cost (per 100 tokens)

Walther (2024) $0.001 per 100 input, $0.003 per 100 output $0.004 roundtrip
DeepLearning.AI (2024) $4 per million tokens (GPT-4o); $2 per million tokens

(Batch API)
$0.0002–$0.0004

Chen et al. (2023) $0.20–$300 per 10M tokens (GPT-J to GPT-4 Turbo) $0.000002–$0.003
Irugalbandara et al. (2024) 5×–29× cost reduction over GPT-4 $0.00014–$0.0008

Samsi et al. (2023) 3–4 Joules per token (LLaMA-65B) 0.000083–0.000111 kWh
Husom et al. (2024) 0.000083–0.0023 kWh per query (2B–70B) 0.000083–0.0023 kWh
Calma (2023) >10× increase in energy per query Relative 10× increase (qualitative only)

Table 4: Reported and standardized LLM inference costs from recent sources. All values in the third column are
standardized to cost per 100 tokens—monetary in USD and environmental in kilowatt-hours (kWh).

ence annotator decisions, and simple warnings are
not sufficient to mitigate anchoring effects.

Pairwise agreement (Cohen’s κ; Cohen, 1960)
between annotators was highest when both had
access to LLM suggestions (AI-Human: 0.71,
AI-Human-Deanchoring: 0.69), and lowest in the
Human-Only condition (0.57), reflecting a possible
anchoring effect in which annotators align more
closely—not with each other independently—but
around the AI-provided suggestions.

5 RQ1: Estimating AI Inference Costs

Methodology To evaluate the marginal cost of us-
ing LLMs in our topic modeling workflow, we syn-
thesized pricing and energy consumption data from
peer-reviewed literature, arXiv preprints, and blog
sources. For environmental costs, we reviewed
the literature that estimates kilowatt-hour (kWh)
usage and dollar-converted emissions per LLM in-
ference. To enable comparison across studies with
differing units and assumptions, we standardized
all monetary costs to U.S. dollars per 100 tokens
and converted energy-related figures to kilowatt-
hours (kWh) per 100 tokens using a conversion
factor of 1, kWh = 3.6 × 106 joules. While we
do not report pretraining costs—since our study
involves only inference—we present a plausible
range of energy costs based on similar LLM use
cases.

Results We synthesized recent estimates of both
the monetary and environmental costs of LLM in-
ference by reviewing peer-reviewed publications,
technical reports, and industry analyses. Table 4
summarizes the most relevant findings.

Our analysis shows that LLM inference costs
range from $0.0002 to $0.004 per 100-token
roundtrip, depending on the model, pricing tier,
and batching strategy (Walther, 2024; DeepLearn-
ing.AI, 2024; Chen et al., 2023). Models like
GPT-4 Turbo average around $0.004 per inference,

while batching can further reduce costs to as low as
$0.0002. Open-source alternatives offer additional
savings, with some deployments reporting cost re-
ductions of up to 29× (Irugalbandara et al., 2024).
Although not directly reporting numeric costs, the-
oretical analyses from Aryan et al. (2023) further
support these findings by emphasizing significant
potential for cost optimization through efficient de-
ployment strategies.

Environmental costs also scale significantly with
model size and usage. For example, generating 100
tokens with LLaMA-65B consumes approximately
8.3× 10−5− 1.1× 10−4 kWh (Samsi et al., 2023),
while inference across commercial models rang-
ing from 2B to 70B parameters consumes between
8.3×10−5 and 2.3×10−3 kWh per 100 tokens (Hu-
som et al., 2024). Although these values may ap-
pear small in isolation, they accumulate rapidly at
scale. As Calma (2023) note, the widespread in-
tegration of LLMs, such as their integration into
search platforms, could increase the energy foot-
print per query by more than tenfold, underscoring
the need for energy-efficient deployment strategies.

To contextualize these findings, we also consider
the cost of human-led topic modeling, which is ap-
proximately $48 per document per analyst (Carrell
et al., 2016; Dernoncourt et al., 2017). Compared
to this baseline, LLMs offer dramatic reductions in
marginal financial cost per query. However, these
monetary savings come with trade-offs: unlike hu-
man labor, LLM usage incurs measurable environ-
mental impact that scales rapidly with deployment.

Moreover, since our analysis draws from a
diverse and evolving set of sources, both cost
and energy estimates should be viewed as ap-
proximate benchmarks rather than fixed val-
ues. These results underscore the importance of
balancing cost-efficiency with sustainability when
adopting AITM in educational research.
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Setting Coef.
(s)

Std
Err

z p-value

Intercept
(Human-Only)

383.7 94.8 4.1 <0.001

AI-Human -1.6 132.8 -0.01 0.99
AI-Human-
Deanchoring

-126.4 132.8 -0.95 0.34

AI-Only -382.7 156.7 -2.4 0.015

Random Effects (Annotator): Variance = 849.67

Table 5: Linear mixed-effects model predicting an-
notation time (in seconds) across LLM support con-
ditions with Human-Only as the reference category.
The AI-Only condition significantly reduced anno-
tation time, while partial AI support (AI-Human,
AI-Human-Deanchoring) showed no statistically sig-
nificant speed gains.

6 RQ2: Measuring Impact on Annotation
Time

Methodology We used the data from stage 1 of
the study to analyze annotation time.

For each human analyst, the total annotation time
is calculated as:

timea =
11∑

p=1

timeap + 90 minutes

Here, timeap denotes the time spent by analyst a on
Plan p, and the additional 90 minutes accounts for
two structured group discussions—one 30-minute
within-treatment session and one 60-minute cross-
treatment session.

In total, we collected 77 person-by-document
entries: 6 human analysts × 11 Plans = 66 human
entries, plus 11 entries from the AI-Only condition
(1 AI × 11 Plans). To estimate the impact of treat-
ment on time-on-task, we fit a linear mixed-effects
model:

timeap = Treatmentap + ϕa + εap

where, timeap is the annotation time recorded
by analyst a for Plan p, Treatmentap is a fixed
effect with four levels: Human-Only, AI-Only,
AI-Human, and AI-Human-Deanchoring, with
Human-Only as the reference category. ϕa is a ran-
dom intercept for each analyst (6 humans + 1 AI),
which accounts for analyst-specific baseline dif-
ferences and increases the precision of estimates,
helping us isolate the impact of the treatment more
reliably. εap is the residual error term.

Results Table 5 presents the results of this
analysis. The baseline annotation time in the

Human-Only condition was approximately 384 sec-
onds. The AI-Human condition showed virtu-
ally no difference in speed (Coef = -1.6 s, p =
0.99) relative to the Human-Only condition. The
AI-Human-Deanchoring condition was faster by
about 126 seconds relative to the Human-Only con-
dition, but this difference was not statistically sig-
nificant (p = 0.341). Notably, the AI-Only condi-
tion led to a statistically significant reduction of ap-
proximately 383 seconds (p = 0.015), representing
a 6.4-minute decrease relative to the Human-Only
condition. The random effect variance for annota-
tors was estimated at 849.67, suggesting meaning-
ful variability in baseline annotation speed between
individuals. Some annotators were consistently
faster or slower than others, regardless of treatment
condition.

The AI-Only condition significantly reduces
annotation time compared to Human-Only, sug-
gesting that full AI support accelerates expert
decision-making. However, partial AI support
(i.e., AI-Human or AI-Human-Deanchoring) does
not lead to statistically significant time savings.
This indicates that the participants may have spent
additional time reviewing and deliberating on the
suggestions generated by the LLM. Rather than
simply accepting AI outputs, Annotators have re-
portedly felt compelled to cross-check or validate
these suggestions against their own judgment, lead-
ing to more careful and possibly slower decision-
making. This extra layer of comparison may
have introduced hesitation or cognitive load, off-
setting any potential efficiency gains from hav-
ing AI support. In contrast, participants in the
Human-Only condition could rely solely on their
intuition and expertise, resulting in a more stream-
lined workflow. This indicates that annotators may
not gain measurable speed advantages unless they
fully offload the task to the AI.

7 RQ3: Measuring Impact on Topic
Identification

Methodology To evaluate how treatment condi-
tion influenced topic identification, we analyzed the
Stage 2 annotation dataset described in Section 4.
Each observation is a binary outcome indicating
whether topic t was assigned to field f of plan p by
annotator a. We fit the following multilevel linear
probability model:

Pr(topicfpat = 1) = treatment+ ηp + εfpa
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Outcome Human-
Only
(reference)
Coef (SE)

AI-Only
Coef (SE)

AI-Human
Coef (SE)

AI-
Human-
Deanchoring
Coef (SE)

Joint Test
of Treat-
ments
(p-value)

Plan RE
Variance
(SE)

Academic Assessments 0.1979
(0.0715)

-0.0313
(0.0770)

0.0114
(0.0673)

0.0615
(0.0673)

0.6496 0.0344
(0.0171)

Academic Goals 0.3541
(0.0776)

-0.0763
(0.0906)

-0.0519
(0.0793)

-0.0105
(0.0793)

0.8054 0.0349
(0.0185)

Attendance 0.3098
(0.0877)

-0.1153
(0.0769)

-0.0360
(0.0674)

-0.0266
(0.0674)

0.5063 0.0654
(0.0297)

Behavioral Goals 0.1824
(0.0668)

-0.0435
(0.0717)

-0.0148
(0.0628)

0.0176
(0.0628)

0.8538 0.0301
(0.0150)

Classroom Management 0.0326
(0.0159)

-0.0326
(0.0242)

-0.0337
(0.0210)

-0.0140
(0.0210)

0.3577 0.0004
(0.0005)

College and Career Readi-
ness

0.0505
(0.0394)

0.0051
(0.0408)

0.0078
(0.0357)

-0.0093
(0.0357)

0.9682 0.0110
(0.0054)

Curriculum 0.1067
(0.0556)

-0.0233
(0.0588)

-0.0090
(0.0515)

0.0390
(0.0515)

0.7016 0.0213
(0.0105)

Graduation 0.0167
(0.0159)

-0.0167
(0.0243)

-0.0009
(0.0212)

0.0009
(0.0212)

0.8886 0.0004
(0.0005)

Instruction 0.0674
(0.0335)

-0.0674
(0.0439)

-0.0246
(0.0383)

0.0056
(0.0383)

0.3472 0.0047
(0.0029)

Parent/Community En-
gagement

0.1982
(0.0699)

-0.0871
(0.0669)

-0.0418
(0.0585)

-0.0193
(0.0585)

0.6048 0.0383
(0.0179)

Professional Development 0.2266
(0.0786)

-0.0877
(0.0732)

-0.0348
(0.0641)

0.0550
(0.0641)

0.2369 0.0497
(0.0231)

Technology Use Integra-
tion

0.0756
(0.0636)

-0.0478
(0.0257)

-0.0223
(0.0226)

0.0122
(0.0226)

0.0935 0.0455
(0.0189)

Classroom Environment
or Culture

0.1059
(0.0463)

-0.0503
(0.0510)

-0.0185
(0.0446)

-0.0491
(0.0446)

0.6521 0.0139
(0.0070)

Table 6: Coefficients (with SEs) from multilevel linear probability models estimating the impact of treatment
on topic identification, relative to the Human-Only baseline. Joint tests assess whether all AI-based treatments
collectively differ from the baseline. No statistically significant differences were observed across any treatment,
indicating that topic identification remained stable despite varying levels of AI assistance.

Here, topicfpat is 1 if topic t was identified by
analyst a in field f of plan p, and 0 otherwise. The
model includes treatment as a fixed effect (with
Human-Only as the reference condition) and ηp as
a random intercept for each plan. This structure
captures the hierarchical nature of the data while ac-
counting for differences in topic prevalence across
plans. εfpa accounts for the residual error.

We tested several alternative model specifica-
tions, including crossed and nested analyst effects,
but these did not improve model fit or alter the re-
sults meaningfully. Thus, we retained the simpler
formulation, which allows us to isolate the effect of
treatment condition on topic identification behavior
across annotators.

Results The results of the regression is given
in Table 6. We used Human-Only as the refer-
ence condition and computed coefficients for each
AI-based treatment: AI-Only , AI-Human, and
AI-Human-Deanchoring. Each row in Table 6
presents the estimated probability of a topic being
identified under each treatment, along with stan-
dard errors and joint significance test results.

For the topic Academic Assessments, the base-
line Human-Only coefficient is 0.1979. Com-
pared to this, the AI-Only coefficient is about
3 percentage points lower, the AI-Human coef-
ficient is 1.1 percentage points higher, and the
AI-Human-Deanchoring coefficient is 6.2 percent-
age points higher, respectively.

When comparing the Human-Only and
AI-Human conditions reveals minimal differences
across topics, with coefficients typically within ±5
percentage points and no statistically significant
deviations. This suggests that introducing AI sup-
port does not substantially shift topic identification
patterns, and expert judgments remain largely
consistent with the Human-Only baseline.

Next, examining the AI-Only and AI-Human
conditions relative to the Human-Only baseline, we
find that human analysts working with AI sug-
gestions tend not to diverge far from the original
AI-Only outputs. Instead, the AI-Human estimates
tend to fall between the AI-Only and Human-Only
values, implying that humans may be partially influ-
enced— or anchored— by AI suggestions in their
decision-making.
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A similar pattern holds when comparing
AI-Human and AI-Human-Deanchoring, each rela-
tive to the Human-Only baseline. Despite the pres-
ence of explicit deanchoring warnings, the esti-
mates in these two conditions show minimal devia-
tion from each other when considered through their
differences from the baseline. In some cases, the
deanchoring estimates are numerically closer but
not statistically different to the AI-Human ones than
to the Human-Only baseline. This indicates that, in
this context, explicit instructions to critically evalu-
ate AI suggestions had limited observable effect.

However, the joint significance test (p = 0.6496)
does not indicate statistically significant differences
between the treatment groups. This pattern holds
across most topics. Joint significance tests across
all 13 outcomes yielded p-values greater than 0.05,
suggesting that the combination of effects from the
three AI-based treatments does not reflect a sys-
tematic deviation from the Human-Only condition.
In other words, there was no consistent pattern
across the three AI conditions that significantly
distinguished them from the Human-Only baseline.

The findings suggest that while human annota-
tors may incorporate AI input into their judg-
ments, they are not significantly over-relying
on it compared to the Human-Only condition.
Deanchoring prompts offered limited additional
benefit in mitigating potential anchoring effects.
Topic identification remained stable across all
treatment conditions, indicating that different
approaches to incorporating AI did not produce
meaningful divergence in these results.

8 Conclusion

This study examined how AI-enabled topic mod-
eling (AITM) can be integrated into educational
research workflows, focusing on its financial, en-
vironmental, cognitive, and analytical trade-offs.
Our findings show that while LLMs provide clear
efficiency benefits, especially by speeding up an-
notation and lowering costs, these gains come with
important risks. In both stages of human-in-the-
loop annotation, we found evidence of anchoring
bias: human analysts who saw LLM suggestions
were more likely to stick with them, even when
explicitly cautioned. However, when we looked
at topic-level outcomes, we did not find statisti-
cally significant differences in which topics were
identified across the treatment conditions. This
suggests that while anchoring may shape how an-

notators approach the task, for example, in how
quickly they work or how much they agree with AI,
it doesn’t necessarily change the final set of topics
they choose.

As institutions consider scaling up AI-based
analysis, the trade-off between speed and depth
becomes harder to ignore. AI can definitely help ef-
ficiency and cost reduction, but human judgment is
still crucial, especially for subtle, context-specific
details that models tend to miss. Relying only on
AI might make things more efficient, but it also
risks losing the kinds of insights that matter most
for real-world decisions. A balanced approach,
where AI helps with the heavy lifting, but humans
stay in the loop, seems like the best way to get both
speed and substance.

Limitations

While this study offers important insights into the
use of LLMs for topic modeling in educational re-
search, it is essential to acknowledge its limitations.
First, our analysis is based on a relatively small
sample of 23 school improvement plans from a sin-
gle state, which may limit the generalizability of
our findings to other contexts. Second, our study
focused on a specific type of text document. While
these documents are relevant to educational lead-
ership and policy, the findings may not be directly
transferable to other forms of educational text, such
as student essays, teacher evaluations, or policy
documents. Third, our investigation of anchoring
bias relied on a single de-anchoring intervention.
While this allowed us to isolate the effect of such
prompts, future research could explore the efficacy
of other de-biasing techniques, such as structured
protocols or collaborative decision-making strate-
gies. Finally, the rapidly evolving nature of LLM
pricing and energy consumption means that these
figures of our cost analysis should be interpreted as
indicative rather than definitive.
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A AI-Human-Deanchoring Warning

To address the anchoring bias minimally, we intro-
duced a new treatment AI-Human-Deanchoring.
Similar to the AI-Human setting, the
AI-Human-Deanchoring group also received
the results generated by AI (i.e., AI-Only list)
paired with the following prominently displayed
instructions:

This document has annotations suggested by
the LLMs. It will be your task to decide
whether these annotations are correct or
not. Delete or modify annotations as you
see fit. However, we have found evidence of
anchoring bias when annotators receive LLM
suggestions. Anchoring bias is a cognitive
bias where an individual relies too heavily
on an initial piece of information (the
“anchor”) when making decisions. This means
that the initial suggestions provided by
the LLM might disproportionately influence
the final labels you create, potentially
reducing the diversity and originality of
the Final Topic List. It is important for
you to be aware of this bias and make
conscious efforts to critically evaluate
and adjust your topics and suggestions to
ensure the annotations are accurate and
unbiased. We ask you to be extra critical
while annotating these documents.

Our intention was to observe how experts re-
act to the awareness of anchoring bias from LLM
suggestions and whether they adjust their behavior
accordingly. We also aimed to evaluate if merely
knowing about the bias was effective enough to
help annotators de-anchor.
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B Stage 1: All topic lists

B.1 AI-Only topic list

Topic Name Topic Definition

Education This topic encompasses various aspects of the educational process, including
instructional strategies, curriculum development, assessment methods, profes-
sional development for educators, student performance tracking, and educational
objectives and goals alignment with standards.

Student Assessment and Achievement This topic covers the processes and methodologies involved in evaluating stu-
dent performance, including standardized testing, reading assessments, and other
forms of academic evaluation. It also includes strategies for improving student
achievement levels in core subjects like math, ELA, and science.

Professional Development This topic involves the continuous education and skill development of teachers
and educational staff, including the implementation of best teaching practices,
collaboration among educators, and the use of technology and data to enhance
teaching effectiveness.

Curriculum and Instruction This topic focuses on the design, implementation, and evaluation of educational
curricula and instructional materials. It includes the alignment of curriculum with
educational standards, the development of instructional strategies to meet diverse
learning needs, and the integration of technology into the learning environment.

School Improvement Planning This topic covers the strategic planning processes schools undertake to improve
academic performance and operational efficiency. It includes setting and aligning
goals with educational standards, data-driven decision-making, and the implemen-
tation of interventions and supports to meet educational objectives.

Behavioral Interventions and Supports This topic addresses strategies and programs designed to improve student behavior
and create positive school environments. It includes the implementation of Positive
Behavior Interventions and Supports (PBIS), discipline management strategies,
and efforts to increase student engagement and accountability.

Parent and Community Engagement This topic involves strategies and practices for involving parents and the com-
munity in the educational process. It includes parent-teacher communication,
community partnerships to support student achievement, and stakeholder involve-
ment in school decision-making processes.

Educational Technology This topic covers the use of technology in educational settings, including the
implementation of digital tools and resources to support teaching and learning,
the use of assessment technologies, and the training of educators in effective
technology integration.

Table 7: AI-Only topic list for stage 1. We generated the list using GPT-4o-mini model using chatGPT API.
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B.2 Final topic list after stage 1

Topic Name Topic Definition

Academic Assessments This topic includes mandated annual state assessments like MAP and other district
and school level assessments to evaluate academic progress.

Academic Goals This topic covers the strategic planning processes schools undertake in aligning
goals with educational standards and the implementation of interventions and
supports to meet educational objectives in core subjects like math, ELA, and
science.

Behavioral Goals This topic addresses strategies and programs designed to improve student behavior
and create positive school environments. It includes the implementation of Positive
Behavior Interventions and Supports (PBIS), discipline management strategies,
and efforts to increase student engagement and accountability.

Classroom Management This topic covers how teachers develop and implement procedures to maximize
instructional time/space/transitions/activities for efficiency in the classroom.

Classroom Environment/Culture This topic covers how all members of the school community (administrators,
teachers, and students) develop and implement pro-social behaviors inside and
outside of academic instruction. This can include social-emotional learning (SEL)
and fostering of pro-social attitudes and behaviors.

Curriculum This topic covers what teachers do to plan, design, and develop materials to
promote learning. This can include collaboration through professional learning
communities (PLCs) as long as it is specifically around curriculum design.

Instruction This topic covers what teachers do to deliver instruction during active academic
time with students in the classroom. This includes instructional strategies and
also collaboration in professional learning communities (PLCs) as long as it is
specifically about how teachers engage with students in academics, instructional
strategies, academic press, critical thinking, or formative assessment.

Professional Development This topic involves the continuous education and skill development of teachers
and educational staff, including evaluation of teachers, classroom observation,
and collaboration around improving what teachers do to work with students.

Parent/Community Engagement This topic involves strategies and practices for involving parents and the com-
munity (including school boards) in the educational process. It includes parent-
teacher communication, community partnerships to support student achievement,
and stakeholder involvement in school decision-making processes.

Technology Use/Integration This topic covers the use and integration of technological tools, resources, and
materials.

College and Career Readiness (CCR) This topic covers college and career readiness (CCR) of students including Career
& Technical Education credit hours and employment, military, and college place-
ment.

Graduation This topic involves the matriculation between grades and completed secondary
state requirements. This is often expressed in the graduation rates of students.

Attendance This topic involves the attendance rates and percents of students.

Table 8: Stage 1 Final Topic List curated by the participants.
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B.3 All Group-Specific Topic List

Human-Only List AI-Human List AI-Human-
Deanchoring List

Final Topic List AI-Only List

State Assessment School Assessment
and Achievement

Student Assessment
and Achievement

Academic
Assessments Student Assessment

and Achievement
Localized Assessment

School Assessment
and Achievement

Student Assessment
and Achievement

Academic Goals

Data-Driven
Decisionmaking

Behavioral Goals/
Classroom
Management

Behavioral
Interventions and

Support

Behavioral
Interventions and

Supports

Behavioral Goals Behavioral
Interventions and

Supports

Student Support Data-Driven
Decisionmaking

Classroom
Management

Classroom
Management

Student/ Teacher
Relationships

Classroom Culture/
Environment

Classroom
Environment/ Culture

Localized Curriculum Curriculum and
Instruction Curriculum Curriculum

Curriculum and
InstructionCollaboration

Teaching Strategies Curriculum and
Instruction Instruction Instruction

Teacher Evaluation
Components

Collaboration

Professional
Development

Professional
Development

Professional
Development

Professional
Development

Professional
Development

Instructional Coach

Stakeholder
Engagement

Parent and
Community
Engagement

Parent and
Community
Engagement

Parent/Community
Engagement

Parent and
Community
Engagement

Technology
Integration

Educational
Technology

Technology
Use/Integration

Education
Technology

College, Career,
Readiness

College and Career
Readiness (CCR)

Graduation/
Matriculation Rate

Graduation

Attendance Attendance

District Alignment Education Education

School Improvement
Planning

School Improvement
Planning

Table 9: Comparison of topic lists generated across conditions in Stage 1. Entries are grouped to show thematic
overlap and consolidation across all lists. Struckthrough entries indicate topics that annotators collectively decided
to discard during the final discussion phase.
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C Stage-2 Detailed Results:

We provide computation details for the metrics re-
ported in Table 3. For the analysis, each paragraph-
level field was encoded as a 14-dimensional binary
vector: 13 dimensions correspond to the presence
or absence of each topic from the Final Topic List,
and the final slot indicates a “None” label (no topic
assigned). These vectors were used for computing
precision, recall, and agreement metrics.

Annotators precision recall

A1 0.57 0.5
A2 0.71 0.67
A3 0.77 0.47
A4 0.70 0.44
A5 0.65 0.65

Avg 0.68 0.55

Table 10: For each annotator in Stage 2, the precision
and recall percentages of the AI-Only annotations over
these documents when measured against the annota-
tions of experts acting under the Human-Only condition.
Also, the averages of these LLM precision and recall
percentages.

Average Precision and Recall To evaluate how
closely LLM-generated annotations align with
human judgment, we compute precision and re-
call by comparing the LLM-assigned topics to
those assigned by human annotators under each
treatment condition (Human-Only, AI-Human, and
AI-Human-Deanchoring).

Using the Human-Only condition as ground truth,
we found that the LLM achieved an average preci-
sion of 0.68 and a recall of 0.55. This means that
while 68% of LLM predictions aligned with expert
judgments, nearly half of the expert-identified top-
ics were not captured by the model. Thus, the LLM
shows reasonable accuracy, but limited coverage in
replicating full expert insight.

Human-
Only

AI-
Human

AI-Human-
Deanchoring

Average
Annotation Speed
(words/min)

73.75 71.15 89.91

Average Annotator
Agreement with AI
(%)

54.64 73.44 71.41

Table 11: Comparison of average annotation speed
(words per minute) and average Human-AI agreement
across the three conditions.

Average Annotation Speed To understand how
LLM support affects efficiency, we calculated an-
notation speed in words per minute (wpm). For
each document field, we divided the number of
words by the time each annotator took to com-
plete it, then averaged these speeds by condi-
tion. As shown in Table 11, annotators in the
Human-Only condition averaged 73.75 wpm. This
dipped slightly in the AI-Human condition to 71.15
wpm, but surprisingly jumped to 89.91 wpm in the
AI-Human-Deanchoring condition—even though
those annotators were explicitly warned about bias.
The results suggest that having AI suggestions,
even with cautionary prompts, may encourage an-
notators to move faster—possibly by relying on the
AI’s suggestions rather than thinking through every
decision from scratch.

Average Annotator Agreement with AI To as-
sess how closely human annotators aligned with
LLM-generated suggestions, we calculated the per-
centage of topic assignments that matched the
AI-Only output. For each annotator–field pair, we
compared the human-assigned topics to the AI’s
and computed the overlap. These agreement scores
were then averaged within each condition (see Ta-
ble 11).

Agreement varied by condition. In the
Human-Only setting—where annotators had no AI
support—the average agreement with the AI was
54.64%. This jumped to 73.44% in the AI-Human
condition, suggesting that access to AI suggestions
substantially influenced annotator decisions. In
the AI-Human-Deanchoring condition, agreement
remained similarly high at 71.41%, even though
annotators were explicitly warned about potential
bias. This suggests that simply cautioning annota-
tors may not be enough to counter the influence of
LLM outputs.

Inter-Annotator Agreement. To assess how
consistently annotators applied the topic labels,
we used Cohen’s κ(Cohen, 1960), a standard mea-
sure for inter-rater agreement on categorical deci-
sions. Because each document field was annotated
by a pair of analysts within the same condition
(see Table??), we were able to compute pairwise κ
scores for each condition and then average them.

The results (Table 12) show that annotators
aligned more closely when LLM suggestions were
available. Agreement was highest in the AI-Human
condition (κ = 0.71) and nearly as high in the
AI-Human-Deanchoring setting (κ = 0.69). In
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Agreement
between

Human-
Only

AI-
Human

AI-Human-
Deanchoring

Avg per
Annota-

tor

A1 and A4 0.48 0.72 0.79 0.66
A2 and A5 0.65 0.69 0.59 0.64

Avg per
Condition

0.57 0.71 0.69

Table 12: Agreement between annotator pairs across dif-
ferent treatment conditions. We report annotator agree-
ment Cohen’s κ for each pair per setting. The average
agreement per annotator pair is higher for the settings
with LLM suggestions, implying towards a potential
anchoring effect.

contrast, agreement dropped in the Human-Only
condition (κ = 0.57), where annotators worked in-
dependently. These findings suggest that LLM sup-
port—regardless of deanchoring prompts—tends
to guide annotators toward similar decisions, po-
tentially reflecting a convergence effect around AI-
generated suggestions.
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