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Abstract

Aligning Learning Objectives (LOs) in course
descriptions with educational frameworks such
as Bloom’s revised taxonomy is an important
step in maintaining educational quality, yet it
remains a challenging and often manual task.
With the growing availability of large language
models (LLMs), a natural question arises: can
these models meaningfully automate LO clas-
sification, or are non-LLM methods still suffi-
cient? In this work, we systematically compare
LLM- and non-LLM-based methods for map-
ping LOs to Bloom’s taxonomy levels, using
expert annotations as the gold standard. LLM-
based methods consistently outperform non-
LLM methods and offer more balanced dis-
tributions across taxonomy levels. Moreover,
contrary to common concerns, we do not ob-
serve significant biases (e.g. verbosity or po-
sitional) or notable sensitivity to prompt struc-
ture in LLM outputs. Our results suggest that
a more consistent and precise formulation of
LOs, along with improved methods, could sup-
port both automated and expert-driven efforts
to better align LOs with taxonomy levels.

1 Introduction and Motivation

Learning Objectives (LOs) define the knowledge
and competencies students are expected to acquire
through educational activities, for example: “By
the end of this course, students will be able to iden-
tify examples of symbolism in short stories and
incorporate symbolism in their writing” (from the
description of the course of literary studies). These
objectives provide a clear and measurable frame-
work for educators to evaluate student progress
and align course instruction with desired learning
outcomes (Mager and Peatt, 1962; Rodriguez and
Albano, 2017; Fink, 2003).

LOs are articulated in course descriptions, which
outline instructional activities, intended outcomes,
and assessment methods for the course. The devel-
opment of LOs follows the “Theory of Constructive

Alignment” (Biggs, 1996), ensuring that teaching
and assessment are directly aligned with the LOs.
This alignment allows educators to create a coher-
ent structure where every aspect of the course is
designed to support students in achieving the de-
sired outcomes (Wang et al., 2013b; Jaiswal, 2019).

Among various educational frameworks used for
constructive alignment, Benjamin Bloom’s taxon-
omy (Bloom et al., 1956), later revised by Ander-
son and Krathwohl (2001), is widely recognized
in higher education to guide the development and
assessment of LOs mentioned in the course descrip-
tion. The revised version defines six hierarchical
cognitive levels—Remember, Understand, Apply,
Analyze, Evaluate, and Create—which serve as a
guide for developing and assessing LOs. Bloom’s
taxonomy provides a structured approach to catego-
rizing LOs and ensures that they are appropriately
mapped to cognitive levels and aligned with the
intended educational goals (Arafeh, 2016; Dubicki,
2019). Furthermore, it facilitates the alignment
of classroom assignments and exams with the in-
tended cognitive levels (Sterz et al., 2019; Biggs
et al., 2022).

The mapping of LOs and Bloom’s taxonomy lev-
els is performed by educators, curriculum design-
ers, and assessment centers as part of quality assur-
ance processes, such as course accreditation (Rand-
hahn and Niedermeier, 2017; Kultusministerkon-
ferenz, 2017). However, manual LO mapping can
be time consuming, labor intensive, and error-prone
(Biggs, 1996; Reeves and Hedberg, 2003; Hussey
and Smith, 2008). Large language models (LLMs)
have shown promising capabilities in similar tasks,
such as data annotation and classification (see e.g.,
Tan et al., 2024b) that offer promising potential to
automate this process (Wang et al., 2024; Xu et al.,
2024). Yet, their reliability and robustness remain
open questions. In particular, they can be sensitive
to prompt formulation and other design choices,
and exhibit bias such as position bias, where out-
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puts are influenced by their placement in a list, and
verbosity bias, where longer responses are favored,
or a tendency to generate rationales that align with
previously provided labels, which may affect the
reliability of their outputs(Shen et al., 2023; Koo
et al., 2023; Wu and Aji, 2023; Stureborg et al.,
2024; Chen et al., 2024; Tan et al., 2024a; Choshen
et al., 2024). Moreover, it remains unclear whether
LLMs offer a substantial advantage over non-LLM
methods in this setting, or whether simpler, more
cost-effective methods may suffice.

This work investigates the effectiveness of both
LLM- and non-LLM-based techniques for automat-
ing LO-to-taxonomy mapping, and examines how
prompt and task design influence LLM behavior.
The key research questions are:

• RQ 1: How do LLM-based and non-LLM
methods compare in effectiveness when map-
ping LOs to Bloom’s taxonomy levels?

• RQ 2: To what extent do experiment design
choices influence the performance of LLM in
mapping LOs, and do these variations reflect
model bias or sensitivity to task framing?

2 Background and Related Work

2.1 Bloom’s Revised Taxonomy
Bloom’s cognitive process dimension defines six
ascending levels of complexity: (Anderson and
Krathwohl, 2001). Remembering involves recall-
ing or recognizing knowledge from memory, such
as definitions or facts. Understanding entails con-
structing meaning by interpreting, summarizing,
and explaining information. Applying involves
using learned material in new situations, often
through models or simulations. Analyzing requires
breaking concepts down into parts to understand
their relationships. Evaluating involves making
judgments based on criteria, exemplified by cri-
tiques or recommendations. Lastly, Creating is
about generating new ideas or products by reorga-
nizing elements in innovative ways, making it the
most complex cognitive process. Each taxonomy
level comes with a selection of verbs that define
the expected learning outcomes. Examples can be
found in Table 3 in the Appendix.

2.2 Pre-LLM Approaches to LO Mapping
Before LLMs, researchers explored methods such
as keyword dictionaries (Chang and Chung, 2009),
TF-IDF-based classifiers (Echeverría et al., 2013),

and supervised machine learning models (Waheed
et al., 2021; Mohammed and Omar, 2020). Most
of these efforts focused on short texts such as exam
or discussion questions, and while models showed
promise at lower cognitive levels like “Remember,”
performance dropped significantly for higher-order
categories. A notable large-scale study by Li et al.
(2022) introduced a dataset of over 21,000 manu-
ally labeled learning objectives and evaluated both
traditional and BERT-based classifiers, reporting
strong performance but relying on single-skill LOs.

2.3 LLMs for LO Mapping & Alignment in
the Educational Domain

LLMs are increasingly being integrated into ed-
ucational contexts. Research assessing GPT-4’s
mastery according to Bloom’s taxonomy in an-
swering psychosomatic medicine exam questions
demonstrated that while the model yielded an av-
erage score of 92 % in high-order cognitive lev-
els, it still encounters difficulties at low-order cog-
nitive levels such as “Remember” and “Under-
stand,” where it sometimes fails to recall specific
details or correctly interpret conceptual relation-
ships (Herrmann-Werner et al., 2024).

Al Ghazali et al. (2024) conducted a case study
examining ChatGPT’s effectiveness in teaching
chemistry to eleventh-grade students, employing
Bloom’s taxonomy to categorize LOs and evaluate
student performance in answering course-related
questions. They found that, although the model
performed well in knowledge recall and reason-
ing skills, it struggled with maintaining student
engagement and achieving comparable outcomes
to traditional teaching methods. Meanwhile, Maity
et al. (2024) evaluated the efficacy of GPT-4 Turbo
in generating educational questions aligned with
Bloom’s taxonomy, revealing that while the model
can generate questions for high-order thinking
skills, its effectiveness varies between different
cognitive levels, and the model demonstrates diffi-
culties in crafting high-quality questions at more
advanced taxonomy levels, such as “Create”.

Our task of mapping LOs to Bloom’s taxonomy
is a multi-label classification problem. However,
unlike standard classification tasks typically ad-
dressed with LLMs (see, e.g., Niraula et al., 2024;
Reddy et al., 2024; Li et al., 2024), our problem
poses unique challenges that go beyond standard
tasks. While classification tasks typically rely on
detecting surface-level features or patterns in the
text, Bloom’s taxonomy requires an in-depth se-
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mantic understanding of the cognitive processes
implied by the LO. For example, distinguishing
between “Understanding” and “Applying” involves
subtle differences in the LO’s intents, such as
whether the task involves interpreting information
versus using it in a new context. Furthermore, the
hierarchical nature of Bloom’s taxonomy adds an
additional layer of complexity, as higher-order cate-
gories (e.g., “Evaluating” or “Creating”) often over-
lap with or build upon lower-order processes. This
requires not only a fine-grained contextual analysis,
but also a deep understanding of the underlying
pedagogical framework.

3 Task and Evaluation

To create a gold standard dataset of LOs mapped to
the corresponding levels of Bloom taxonomy, we
collected LOs from university course descriptions.
Given an LO like “Students should be able to recite
the key principles of Newton’s laws of motion and
analyze a given set of data to determine how well
it demonstrates Newton’s laws in action” (from a
Physics course), experts in pedagogy might map
this LO to both “Remember” and “Analyze” lev-
els (the data collection is described in Section 4).
These expert mappings were used to create the gold
standard dataset, and we report Krippendorff’s α
(Krippendorff, 2004) to measure agreement.

We then evaluate the reliability of automatic
methods in producing similar LO mappings as the
experts, using both non-LLM (as baseline) and
LLM-based methods. We compare the results from
both LLM and non-LLM methods against the gold
standard annotations and report the weighted F1
score as well as the different frequency distribu-
tions for each taxonomy level produced by the dif-
ferent methods.

The evaluation of LLM-based methods was addi-
tionally aimed at testing their robustness. We there-
fore present the LLMs with different formulations
of the task to examine whether any biases manifest
during the LO mapping process. With this goal, we
compute agreement and correlations between the
answers provided by LLM-based methods, model
confidence (by analyzing the log probabilities re-
trieved from the model), and semantic similarity
measures between the models’ generated rationales
to assess their consistency.

Subject No. Courses

Introduction to Psychology 4
Gerontology 4
Ancient Greek History & Literature 2
Literary Theory 6
Climate Change 4
Microeconomics 4
Introduction to Linguistics 4
Introduction to Anthropology 2
Animal Behaviorism 1
Blockchain 2
Political Philosophy 2

Table 1: Overview of collected course descriptions
across various academic subjects. Each course descrip-
tion contains one learning objective section.

4 Data Acquisition

4.1 Data Collection and Preprocessing
We collected a total of 35 LOs from course descrip-
tions1 from the websites of German universities,
comprising 25 bachelor-level and 10 master-level
course descriptions. These descriptions present a
diverse range of academic subjects and degree lev-
els, as shown in Table 1. Even though the language
of instruction was English, some of the course de-
scriptions were only available in German.

We focus on the “learning objective” section of
the course descriptions, which also exist interna-
tionally under different names such as “learning
outcomes” or “course objectives”. We translated
the course objectives from German into English
using the DeepL API2 and asked a bilingual per-
son to revise them to ensure the correctness of the
translations. The pre-processing of the collected
data involved basic text-cleaning tasks to ensure
consistent formatting.

4.2 Expert Annotation
We recruited five experts in higher education ped-
agogy to annotate the LOs. Each expert was pro-
vided with a combination of course titles and the
corresponding LOs, along with the six levels of
Bloom’s taxonomy. Their task was to identify and
select all relevant taxonomy levels as shown in Fig-
ure 1 (full task instructions are reported in Figure 3
in the Appendix). We collected demographic infor-
mation to evaluate the participants’ expertise and
familiarity with Bloom’s taxonomy. All experts
reported a high level of familiarity, with one with

1The dataset including the 35 LOs and their annotations
will be publicly released to support further research in this
domain.

2https://www.deepl.com/
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1–3 years of experience, two having 3–6 years of
experience, and two having more than 6 years of
experience.

Figure 1: Sample task presented to expert annotators
from the questionnaire.

We report Krippendorff’s α as a measure of inter-
annotator agreement, calculated across all Bloom’s
taxonomy levels for the entire set of LOs. Given
one LO and a pair of annotators, we define as cases
of agreement for each level all cases where both
annotators either selected that level or did not select
it, and as cases of disagreement all cases where one
annotator did select that level but the other one did
not. We obtained an α of 0.76. While this reflects a
reasonably high level of agreement, one annotator
noted a challenge with certain LOs:

“Many LOs focus more on the learning
process itself (e.g., imparting founda-
tional knowledge) rather than describing
the competencies students should have
achieved by the end of the learning unit.
As a result, some of the commonly used
verbs were not applied, making it some-
what difficult for me to classify them
within the taxonomy levels. I was also
uncertain about how to categorize the
verb ‘reflect’.”

This issue is evident in the example, “Knowledge
of basic literary categories and methods of inter-
pretation along with a familiarity with fundamental
questions of Greek literary history to deal criti-
cally with scientific questions and present their own

scientific results.” (Greek Literature I). While all
annotators agreed on “Remember”, four selected
“Analyze” and “Create”, three selected “Evaluate”,
two selected “Understand” and “Apply”. For com-
parison, a literature-related LO from the dataset
introduced by Li et al. (2022) reads: “A basic under-
standing of the main periods, styles, genres, intel-
lectual preoccupations and socio-historical trends
in German literature from the late eighteenth cen-
tury to the early nineteenth century.” This was
labeled as “Understand”, highlighting a key distinc-
tion that; although small in quantity, our dataset
includes more abstract, multi-layered objectives
that often span multiple levels of Bloom’s taxon-
omy, even challenging experts to reach consensus.

Finally, to create the gold standard annotations,
we selected for each LO the taxonomy levels where
at least three annotators agreed on a taxonomy level.
The distribution of selected taxonomy levels in the
gold standard labels is shown in Figure 2.

5 Automatic Methods for Mapping LOs
to Bloom’s Taxonomy Levels

5.1 Non-LLM Mapping Methods

For non-LLM methods, we made use of regular
expressions (regex), fuzzy matching3, the SpaCy
library (Honnibal et al., 2020), and semantic sim-
ilarity. We used Bloom’s identified set of measur-
able verbs that are linked to each taxonomy level to
help the LO mapping process (Bloom et al., 1956;
Anderson and Krathwohl, 2001), as shown in Table
3 in Section A of the appendix.

Figure 2: Distribution of gold standard annotations
across taxonomy levels.

As an initial step, we applied regex and fuzzy
matching to perform simple string matching of
these verbs to their corresponding taxonomy lev-
els. Every subsequent step aimed to address the
limitations of the previous approach. Next, we
used spaCy’s Part-of-Speech (POS)4 tagging and

3https://pypi.org/project/fuzzywuzzy/
4https://spacy.io/usage/linguisticfeatures#pos-tagging
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dependency parsing5 capabilities. We began by
segmenting the LOs into smaller sentence frag-
ments using spaCy’s Sentencizer6, which produced
159 segments from the 35 collected LOs. These
segments were not only used for spaCy and se-
mantic similarity methods but also all LLM-based
approaches. POS tagging was applied to identify
verbs in each segment, while dependency parsing
provided additional grammatical context, improv-
ing the accuracy of verb identification by analyzing
sentence structures. Following this, we applied
regex to match the identified verbs against a pre-
defined list of Bloom’s Taxonomy verbs for LO
mapping.

Finally, we used semantic similarity tech-
niques, comparing LOs directly with detailed de-
scriptions of Bloom’s taxonomy levels, as outlined
in Anderson and Krathwohl (2001), instead of rely-
ing solely on verb lists. The Sentence-BERT model
(Reimers and Gurevych, 2019)7 was employed to
measure semantic similarity between LO segments
and the taxonomy-level descriptions. For each seg-
ment, the model calculated similarity scores to de-
termine the best match.

5.2 LLM Mapping Methods
We utilized OpenAI’s GPT-4 model8 (OpenAI,
2023) and treated the model as an annotator. To
prompt the model, we were inspired by tasks typi-
cally presented to human annotators, including mul-
tiple choice selection, pairwise comparison, best–
worst scaling, binary annotation, ranking, and rat-
ing (Wang et al., 2013a; Bragg et al., 2018; Huynh
et al., 2021). We presented a variety of tasks: multi-
ple choice selection with paraphrase prompting and
rationale generation (MCS), pair-wise comparison
(PWC), best-worst scaling analysis (BWS) (Cohen,
2003; Louviere et al., 2015), binary annotation us-
ing a yes/no check with confidence analysis (BCA),
and rating using point-wise relevance rating with
confidence analysis (RCA), which is described in
the subsequent paragraphs. Refer to Appendix Sec-
tion D for the prompts used for each method.

To perform MCS, we collected paraphrases
of Bloom’s taxonomy levels from educational re-
sources (see Appendix Section C), resulting in four

5https://spacy.io/usage/linguisticfeatures#dependency-
parse

6https://spacy.io/api/sentencizer
7https://www.sbert.net/docs/usage-

/semantic_textual_similarity.html
8The temperature was set to zero for all LLM-based meth-

ods.

paraphrased versions for each level in addition to
the original descriptions from Anderson and Krath-
wohl (2001). Paraphrases aimed at ensuring that
the model’s selection was guided by the conceptual
meaning of each taxonomy level, rather than the
specific phrasing of the taxonomy descriptions. We
applied MCS to the segmented LOs described in
Section 5.1, providing each segment along with the
course title and one paraphrased version of Bloom’s
taxonomy level descriptions for each level. The
model was prompted to select the relevant category
out of the six taxonomy levels, and their descrip-
tions were provided as choices. We also asked
the model to provide a rationale, with the specific
prompt sequence varying according to the condi-
tions outlined below:

• Condition A: isolates the task of rationale
generation and the multiple-choice selection
of the relevant taxonomy levels.

• Condition B: The model first generated a ra-
tionale and then selected the relevant taxon-
omy levels based on that rationale.

• Condition C: The model was prompted to
choose relevant taxonomy levels first and then
generate a rationale based on its choices.

We employed the same prompt for all condi-
tions but altered the task sequence in Conditions
B and C, and separated rationale generation from
multiple-choice selection in Condition A Then, we
collected and normalized responses for each condi-
tion, removing any non-relevant values. Segments
of each LO were aggregated back into the original
LO, compiling selected taxonomy levels into a list
with removed repetitions.

Moreover, we compared PWC and BWS results.
PWC involved prompting the model to choose
from two taxonomy levels —which could still be
influenced by position bias, despite our efforts to
mitigate it by varying the sequence. We generated
unique pairs of taxonomy levels combined with
segments from the LOs. With 6 taxonomy levels,
we created 30 unique pairs (15 [A,B] and 15 [B,A]
pairs) for all 159 segments, leading to 4770 pairs
for evaluation. For BWS, we created 3-tuples from
the 6 taxonomy levels, resulting in 20 unique 3-
tuples per segment and 3180 distinct 3-tuples in
total. We prompted the LLM to select the most
and least relevant taxonomy level from the tuple.
For both methods, scores were calculated based on
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Category Method F1 score

non-LLM

regex 0.52
fuzzy matching 0.54
spaCy 0.45
semantic similarity 0.50

LLM

MCS (condition A) 0.67
MCS (condition B) 0.68
MCS (condition C) 0.68
PWC 0.60
BWS 0.69
BCA 0.66
RCA (short) 0.66
RCA (long) 0.68

Table 2: Weighted F1 scores for non-LLM and LLM
methods.

the frequency of choices. We then identified the
highest-scoring taxonomy level as the most relevant
for each segment and aggregated across sentences
to determine the most relevant levels for each LO.

Finally, the BCA method involved a binary rele-
vance evaluation of each taxonomy level for the LO
segments, whereas the RCA method required the
model to rate the relevance of each taxonomy level
on a scale from 1 (least relevant) to 5 (most rele-
vant). Additionally for both methods, we estimated
the model’s confidence in its decision by collecting
log probabilities from the “logprobs” parameter of
OpenAI’s Chat Completions API9. By calculating
linear probabilities from these logprobs, we eval-
uated the model’s confidence levels, with higher
scores indicating greater confidence. For BCA, we
only collected the taxonomy levels where the linear
probability was over 90 % for “Yes” answers.

To investigate verbosity bias in the RCA task,
we calculated the number of tokens in the five para-
phrases using spaCy’s tokenizer10. We identified
the longest (1014 tokens) and shortest (775 tokens)
paraphrases and prompted the model to rate the
taxonomy levels. Logprobs were collected for both
rating rounds to assess the impact of paraphrase
length on ratings. For this analysis, we only con-
sidered taxonomy levels for which the model gave
a rating of “5 (most related)”.

6 Results

6.1 Comparison with Expert Annotations

Weighted F1 scores for non-LLM and LLM meth-
ods are presented in Table 2. An example of the
mapping result can be found in Figure 11 and Table

9https://cookbook.openai.com/examples/using_logprobs
10https://spacy.io/api/tokenizer

4 in the appendix.

Non-LLM Methods: As a first comparison with
the gold standard, we compared the frequency of
the selected taxonomy levels (Figure 12 in the Ap-
pendix). This frequency analysis shows a greater
consensus between the human annotation and the
other methods only for the “Evaluate” level, with
high variability in other categories. This could be
attributed to the fact that evaluation often involves
more objective criteria and well-defined standards,
such as assessing the validity of arguments or the
accuracy of conclusions, which are less prone to
interpretation compared to other taxonomy levels.
Across all methods, “Apply” is the most frequently
selected taxonomy level, while in general, the re-
sults show a large variance between the methods.

Regex and fuzzy matching achieved slightly
higher F1 scores (0.52 and 0.54) than spaCy (0.45)
due to their wider word capture, including nouns
and adjectives, which inflates word frequency and
taxonomy levels. spaCy, which focuses on verbs,
is more selective and thus may miss some verbs,
resulting in fewer mappings and lower F1 scores.
The semantic similarity method (F1 = 0.50) offers
flexible matching by emphasizing descriptions but
can be less precise, leading to skewed results com-
pared to human annotations.

LLM Methods: The F1 scores for LLM meth-
ods demonstrate better performance than non-LLM
methods with BWS achieving the highest F1 score
(0.69). The observed improvements highlight the
potential of LLM-based approaches but also em-
phasize the need for deeper investigation into their
consistency and reliability.

The frequency analysis (Figure 13 in the Ap-
pendix) reveals a more uniform distribution of tax-
onomy levels across the LLM methods when com-
pared to non-LLM methods. However, when com-
pared to the gold standard, LLM methods show a
higher frequency of taxonomy levels across most
categories. The exception is the “Remember” level,
where the gold standard annotations have a higher
value, though the difference is not substantial. Con-
versely, the “Create” level exhibits a significant
variation: the gold standard has a markedly lower
frequency (3) compared to LLM methods (Avg.
29). This indicates a notable discrepancy in how
“Create” is represented in the gold standard versus
the other methods.

The frequency distributions for the different
methods are reported in Figures 14 (MCS), 15
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(PWC), 16– 17 (BWS) in the Appendix.

6.2 Consistency (LLM-Methods only)

MCS For the MCS method, we were interested in
evaluating how consistent the rationales produced
by the model were across different conditions and
paraphrases of the taxonomy levels.

We used Sentence-BERT to calculate semantic
similarity scores for the rationales provided for
each learning objective, comparing across various
paraphrases. The overall similarity score across all
paraphrases was 0.92, with Condition A achieving
a score of 0.94, while Conditions B and C each
scored 0.92. These results indicate that the para-
phrased wording has minimal influence on the out-
comes, suggesting almost no bias for all conditions
and paraphrases. For more details, refer to Table 5
in the Appendix.

PWC For the PWC method, we wanted to eval-
uate if the model showed a preference for levels
in a specific position. We observed an intra-pair
consistency of 86.79 % between the two different
versions of the same item with a Cohen’s Kappa
(Cohen, 1960) of 0.84. The model’s choices were
categorized into three types:

• “Left”: The model selected the taxonomy
level presented first in the pair.

• “Right”: The model selected the taxonomy
level presented second in the pair.

• “None”: The model either did not provide a
clear selection or returned a taxonomy level
that did not match any of the expected options.

Among 159 segments, the distribution between
“Left” (153 instances) and “Right” (154 instances)
was nearly equal, excluding “None” responses and
those not corresponding to the taxonomy levels,
and a χ2-test (Pearson, 1900) yielded a p-value of
0.95, suggesting no statistically significant posi-
tional bias in the model’s choices, meaning that po-
sition does not significantly influence the model’s
decision.

BWS For the BWS method, we were interested
in evaluating how consistent the choices for the
best and worst items in the 3-tuple were. After
performing Cronbach’s α as a proxy for internal
agreement within item triplets, which we used to
estimate the internal consistency of the model’s
preference orderings (Cronbach, 1951). Results

showed that the taxonomy levels like “Analyze”
and “Understand” exhibit high consistency (0.84
and 0.69, respectively), indicating strong agree-
ment in their classification. See Tables 6and 7 for
further qualitative in the Appendix.

BWS–PWC agreement The rank correlation be-
tween the BWS and PWC results reveals a lack of
substantial agreement between the two approaches.
The Spearman rank correlation coefficient (Spear-
man, 1904) is 0.169 with a p-value of 0.749, indi-
cating a very weak and statistically insignificant
positive correlation. Similarly, Kendall’s τ corre-
lation coefficient (Kendall, 1938) is 0.086 with a
p-value of 0.822, further suggesting minimal and
non-significant agreement between the rankings
produced by the two methods. Thus, these results
suggest that the BWS and PWC methods do not
produce comparable results, which is not entirely
surprising, as the two methods differ in their ap-
proach to evaluating taxonomy levels.

BCA The BCA method yielded strong overall
confidence in the model’s decisions, with an aver-
age linear probability of 0.956. In the subset of
predictions where the model exhibited low confi-
dence (with linear probabilities between 50 % and
60 %), the model produced “Yes” responses 56
times and “No” responses 44 times. Interestingly,
most of these low-confidence predictions are associ-
ated with high-order taxonomy levels like “Create”
and “Analyze,” suggesting that the model is less
confident when handling more complex cognitive
tasks. Moreover, the analysis of average confidence
across taxonomy levels reveals that the model ex-
hibits the highest confidence in its predictions for
“Evaluate” (98.43 %) and “Create” (96.59 %). In
contrast, while still high, the confidence for “Un-
derstand” (93.28 %) is slightly lower, reflecting the
challenges in these areas. See Appendix Tables 8–
10 in Section H.

RCA Finally, for the RCA method, we calcu-
lated the average linear probability for the short
and long descriptions, which were 85.76 % and
83.03 % respectively, with minimum values of 37 %
and 43 %. This indicates almost no difference in
the model’s decisions between the short and long
descriptions, with the average probability for the
shorter description being slightly higher. Our re-
sults suggest no substantial verbosity bias, which
may be attributed to the minimal difference in token
length and the consistent use of associated verbs
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with the taxonomies in both the shortest and longest
paraphrases. See Figures 18– 19 in the Appendix
Section I.

7 Discussion

Non-LLM Methods: While prior research of-
ten assumes LLMs to outperform traditional NLP
approaches, we include non-LLM baselines not
merely for benchmarking but to reveal the types
of errors these simpler systems make—especially
regarding verb ambiguity and lack of contextual
awareness. This diagnostic perspective is critical
for understanding what specific challenges remain
unsolved even by LLMs. Regex and fuzzy match-
ing struggled with morphological and contextual
variability (e.g., “design” fitting multiple taxonomy
levels), while spaCy’s reliance on shallow parsing
made it error-prone for compound objectives or
those relying on deverbal nouns. Sentence-BERT,
although semantically flexible, failed to resolve in-
ferential tasks, such as distinguishing whether “crit-
ical thinking” corresponds to “Analyze” or “Eval-
uate.” These shortcomings underscore the limits
of surface-level pattern recognition and basic lexi-
cal and semantic-level similarity in tasks requiring
pedagogical reasoning.

LLM Methods: LLMs showed better ability
to parse complex and implicit learning objec-
tives, yet their strengths were uneven across tax-
onomy levels. Consistency analyses revealed high
agreement for levels like “Understand” and “An-
alyze”—potentially due to clearer linguistic cues.
However, lower agreement and confidence were
found in “Remember” and “Create,” suggesting dif-
ficulty in anchoring either very low-level recall or
high-level generative tasks. This could reflect both
model limitations and ambiguities in how LOs are
written by instructors.

The PWC and RCA methods further confirmed
the model’s capacity to make consistent selections
across different input formats, highlighting its relia-
bility in both comparative and scalar evaluation
tasks. In BCA, however, decreased confidence
in “Create” and “Analyze” responses aligns with
the annotation difficulties experts also expressed,
pointing to shared challenges between human and
machine reasoning in higher-order cognitive do-
mains. For the BCA method, the model generally
exhibited more difficulty with high-order taxonomy
levels such as “Create” and “Analyze”. The MCS
approach showed no significant differences in the

consistency of the rationale generated by the model
were observed across different conditions. Com-
pared to the gold standard, the observed discrep-
ancies in the representation of “Create” highlight
the need for more robust modeling and annotation
practices for both ends of the taxonomy spectrum.

Bias and Robustness: Despite concerns raised
in previous work regarding LLM susceptibility
to framing-related biases, our results suggest that
GPT-4 demonstrates a notable degree of robust-
ness—though the presence of bias in other LLMs
cannot be ruled out by this experiment alone.
Specifically, we found no significant positional bias
in pairwise comparisons (PWC). The nature of the
taxonomy levels used in our study may have mit-
igated positional bias due to the clear distinctions
between taxonomy descriptions. We also found
no meaningful evidence of verbosity bias when
comparing short and long taxonomy descriptions
(RCA), which may be attributed to the minimal
token length differences in the descriptions used.
The model’s decisions remained stable across para-
phrased prompts (MCS), further supporting its con-
sistency. While not immune to uncertainty, particu-
larly in assigning high-order categories like “Cre-
ate”, the model’s behavior appears more influenced
by the inherent complexity of certain taxonomy
levels than by superficial prompt features. This
contrasts with non-LLM methods, which exhibited
more deterministic errors stemming from lexical
surface features and lacked the inferential flexibil-
ity.

8 Conclusion

We analyzed various methods for mapping LOs to
Bloom’s taxonomy levels, focusing on expert anno-
tations compared to non-LLM and LLM techniques.
non-LLM methods struggled with verb matchings
and context-specific mappings. LLM methods gen-
erally demonstrated better performance and more
uniform results. However, further improvement is
necessary to address the challenges of LLM meth-
ods in automating the LO mapping process. Over-
all, we found that the LLM results from GPT-4
show minimal evidence of prompt-induced bias.
These findings suggest that LLMs hold consider-
able promise in streamlining curriculum alignment
tasks in educational settings, although careful de-
sign and validation remain essential to ensure ped-
agogical reliability.
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Limitations

Firstly, utilizing LLMs, particularly closed-source
models such as OpenAI’s GPT-4, can be costly
and lack transparency. Methods like BWS and
PWC require multiple generations per item, which
can become expensive at scale. Additionally,
LLMs are susceptible to biases, including posi-
tion bias, verbosity bias, and rationale-conditioning
bias—where generating a rationale after a label
may reinforce prior decisions. While our results
did not show strong effects from these biases, we
cannot entirely rule out their influence, especially
since our study only examined GPT-4.

This reliance on a single LLM is a key limitation.
GPT-4 was selected due to its strong performance
and availability, but our findings may not generalize
across other models. Future studies should repli-
cate this analysis using different LLMs to assess
robustness and uncover potential model-specific
biases.

We also observed substantial but imperfect inter-
annotator agreement among experts, reflecting the
inherent ambiguity and interpretive nature of map-
ping LOs to Bloom’s taxonomy. This suggests that
ambiguities may originate from how LOs are writ-
ten, and that more consistent instructional design
practices could help. Mapping should ideally be
integrated early in the curriculum development pro-
cess, with educators selecting or revising LOs in
alignment with desired cognitive levels.

Future work should also incorporate larger and
more diverse datasets to enable broader generaliza-
tion and better assessment of model behavior, and
extend the study to additional languages such as
German, whose linguistic structures may present
unique challenges for LO classification.

Finally, while our evaluation focused on quan-
titative measures, integrating qualitative assess-
ments—such as expert think-aloud protocols or
post-task interviews (Creswell, 2009)—could offer
deeper insights into both human and model rea-
soning. We encourage future research to explore
hybrid workflows where LLMs and human experts
collaborate to improve both mapping accuracy and
pedagogical relevance.

Ethics Statement

To conduct human evaluations, we recruited five
experts in higher education pedagogy, who were
employed by one of our institutions and did not
receive additional payment for the task. They took

part in the annotations voluntarily and could with-
draw at any time. We did not collect personal or pri-
vate information from the participants and ensured
the confidentiality and anonymity of the annotators’
responses.
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A Verbs Associated with Bloom’s Taxonomy Levels

Remember Understand Apply Analyze Evaluate Create

arrange
define
describe
duplicate
identify
label
list
match
memorize
name
order
outline
recognize
relate
recall
repeat
reproduce
select
state

explain
summarize
paraphrase
describe
illustrate
classify
convert
defend
describe
discuss
distinguish
estimate
explain
express
extend
generalized
give example(s)
identify
indicate
infer
locate
paraphrase
predict
Recognize
rewrite
review
select
summarize
translate

use
compute
solve
demonstrate
apply
construct
apply
change
choose
compute
demonstrate
discover
dramatize
employ
illustrate
interpret
manipulate
modify
operate
practice
predict
prepare
produce
relate
schedule
show
sketch
solve
use
write

analyze
categorize
compare
contrast
separate
apply
change
discover
choose
compute
demonstrate
dramatize
employ
illustrate
interpret
manipulate
modify
operate
practice
predict
prepare
produce
relate
schedule
show
sketch
solve
use
write

create
design
hypothesize
invent
develop
arrange
assemble
categorize
collect
combine
comply
compose
construct
create
design
develop
devise
explain
formulate
generate
plan
prepare
rearrange
reconstruct
relate
reorganize
revise
rewrite
set up
summarize
synthesize
tell
write

Judge
Recommend
Critique
Justify
Appraise
Argue
Assess
Attach
Choose
Compare
Conclude
Contrast
Defend
Describe
Discriminate
Estimate
Evaluate
Explain
Judge
Justify
Interpret
Relate
Predict
Rate
Select
Summarize
Support
Value

Table 3: Sample possible verbs associated with Bloom’s taxonomy levels from Anderson and Krathwohl (2001).
The six categories—Remember, Understand, Apply, Analyze, Evaluate, and Create—are ordered from lower- to
higher-order cognitive processes, with the first three considered lower-order and the last three higher-order thinking
skills.

B Expert Annotation Task and Results
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Figure 3: Annotation instruction presented to the experts. Example learning objectives are adapted from various
instructional design resources and author-generated.
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Figure 4: This figure shows the frequency of selection of the six categories in Bloom’s taxonomy by the five
annotators. Categories like “Remember” and “Understand” show more consistency across annotators, indicating
higher consensus in assigning these levels. However, categories like “Create” and “Apply” show notable differences,
suggesting interpretive variability in assigning LOs to these levels. The differences may reflect subjective biases or
varying interpretations of the taxonomy levels, especially for categories that require high-order thinking skills (e.g.,
“Create”). This variability could indicate areas where further discussion is needed among annotators to reach a more
uniform understanding.
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Figure 5: An example of high disagreement among expert annotators, driven by the complexity of the LO description
provided by the educator for the course.
The learning objective blends several cognitive processes across Bloom’s taxonomy levels, making it challenging to
determine the primary focus. “Acquisition of basic historical knowledge” aligns with Remembering, as it involves
recalling historical facts and foundational knowledge. “Working technique” suggests Applying, since students are
expected to practice and use specific methods in new contexts. “Analytical methodologies” leans toward Analyzing,
as it requires breaking down examples of Greek language and literature into components, such as themes and
structures, to better understand their function and meaning. Also, “focusing on the evolution of socio-political
contexts” could be interpreted as Understanding (interpreting historical changes) or Evaluating, as it necessitates
assessing the relationship between literature and its socio-political background.
Moreover, The connection between “historical knowledge” and “analytical methodologies” suggests a progression
from lower-order skills (e.g., Remembering and Understanding) to higher-order skills (e.g., Analyzing and
Evaluating. However, the LO does not specify which skill is prioritized, leading to annotators interpreting it
differently based on their perspective. Finally, the inclusion of historical knowledge, literary analysis, and socio-
political evolution adds a level of interdisciplinary complexity, as these dimensions often require varied cognitive
processes to address.

C Paraphrases of Bloom’s Revised Taxonomy

• Source: Anderson and Krathwohl (2001)

– Remember: Remembering involves locating knowledge in long-term memory that is consistent
with presented material and retrieving relevant knowledge from long-term memory.

– Understand: Understanding involves constructing meaning from instructional messages, in-
cluding oral, written, and graphic communication. This includes changing from one form of
representation to another, finding a specific example or illustration of a concept or principle,
determining that something belongs to a category, abstracting a general theme or major points,
drawing a logical conclusion from presented information, detecting correspondence between
two ideas, objects, and the like, and constructing a cause-and-effect model of a system.

– Apply: Applying involves carrying out or using a procedure in a given situation. This includes
applying a procedure to a familiar or unfamiliar task.

– Analyze: Analyzing involves breaking material into its constituent parts and determining
how the parts relate to one another and to an overall structure or purpose. This includes
distinguishing relevant from irrelevant parts or important from unimportant parts of presented
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material, determining how elements fit or function within a structure, and determining a point
of view, bias, values, or intent underlying presented material.

– Evaluate: Evaluating involves making judgments based on criteria and standards. This involves
detecting inconsistencies or fallacies within a process or product, determining whether a process
or product has internal consistency, and detecting the appropriateness or effectiveness of a
procedure for a given problem.

– Create: Creating involves putting elements together to form a coherent or functional whole,
reorganizing elements into a new pattern or structure, coming up with alternative hypotheses
based on criteria, devising a procedure for accomplishing some task, and inventing a product.

• Source: http://www.nwlink.com/~donclark/hrd/bloom.html

– Remember: Remembering means recalling or retrieving previously learned information.
– Understand: Understanding means comprehending the meaning, translation, interpolation, and

interpretation of instructions and problems. State a problem in one’s own words.
– Apply: Applying means using a concept in a new situation or unprompted use of an abstraction.

Applies what was learned in the classroom into novel situations in the workplace.
– Analyze: Analyzing means separating material or concepts into component parts so that its

organizational structure may be understood. Distinguishes between facts and inferences.
– Evaluate: Evaluating means making judgments about the value of ideas or materials.
– Create: Creating means building a structure or pattern from diverse elements. Put parts together

to form a whole, with emphasis on creating a new meaning or structure.

• Source: https://www.coloradocollege.edu/other/assessment/how-to-assess-learning/
learning-outcomes/blooms-revised-taxonomy.html

– Remember: Remembering is retrieving, recalling, or recognizing relevant knowledge from
long-term memory.

– Understand: Understanding is demonstrating comprehension through one or more forms of
explanation.

– Apply: Applying is using information or skill in a new situation.
– Analyze: Analyzing is breaking material into its constituent parts and determining how the

parts relate to one another and/or to an overall structure or purpose.
– Evaluate: Evaluating is making judgments based on criteria and standards.
– Create: Creating is putting elements together to form a new coherent or functional whole;

reorganizing elements into a new pattern or structure.

• Source: https://quincycollege.edu/wp-content/uploads/Anderson-and-Krathwohl_
Revised-Blooms-Taxonomy.pdf

– Remember: Remembering is recognizing or recalling knowledge from memory. Remembering
is when memory is used to produce or retrieve definitions, facts, or lists, or to recite previously
learned information.

– Understand: Understanding is constructing meaning from different types of functions be
they written or graphic messages or activities like interpreting, exemplifying, classifying,
summarizing, inferring, comparing, or explaining.

– Apply: Applying is carrying out or using a procedure through executing or implementing.
Applying relates to or refers to situations where learned material is used through products like
models, presentations, interviews, or simulations.

– Analyze: Analyzing is breaking materials or concepts into parts, determining how the parts
relate to one another or how they interrelate, or how the parts relate to an overall structure or
purpose. Mental actions included in this function are differentiating, organizing, and attributing,
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as well as being able to distinguish between the components or parts. When one is analyzing,
he/she can illustrate this mental function by creating spreadsheets, surveys, charts, or diagrams,
or graphic representations.

– Evaluate: Evaluating is making judgments based on criteria and standards through checking
and critiquing. Critiques, recommendations, and reports are some of the products that can be
created to demonstrate the processes of evaluation. In the newer taxonomy, evaluating comes
before creating as it is often a necessary part of the precursory behavior before one creates
something.

– Create: Creating is putting elements together to form a coherent or functional whole; reor-
ganizing elements into a new pattern or structure through generating, planning, or producing.
Creating requires users to put parts together in a new way, or synthesize parts into something
new and different creating a new form or product. This process is the most difficult mental
function in the new taxonomy.

• Source: https://www.allencountyesc.org/Downloads/BloomsVerbsAlphabetized.pdf

– Remember: Remember previously learned information.

– Understand: Demonstrate an understanding of the facts.

– Apply: Apply knowledge to actual situations.

– Analyze: Break down objects or ideas into simpler parts and find evidence to support general-
izations.

– Evaluate: Make and defend judgments based on internal evidence or external criteria.

– Create: Compile component ideas into a new whole or propose alternative solutions.
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D Custom Prompts for Different LLM Methods

1 prompt = f"""
2 Given the following learning objective: "{LO segments

appear here}",
3 compare it against the Bloom 's Taxonomy level

descriptions provided below.
4
5 {Bloom 's taxonomy descriptions and paraphrases appear

here}
6
7 ** Instructions :**
8 1. First , provide a very brief reasoning for the

identified level.
9 The reasoning should not exceed three sentences and

should only
10 be based on the content of the learning objective

provided.
11 2. Then , return the identified taxonomy levels as a list

of strings.
12 """

Figure 6: Prompt used in the MCS method for condition B for identifying the appropriate Bloom’s Taxonomy levels.
We employed the same prompt for all MCS conditions but altered the task sequence in Conditions B and C, and
separated rationale generation from multiple– choice selection in Condition A.
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1 prompt = f"""
2 **Task :**
3 For each learning objective:
4 - Compare the sentence against the taxonomy options.
5 - Select the most relevant taxonomy level to the

sentence in each pair.
6 - Only choose one taxonomy level from the pair.
7 - If no taxonomy level matches the sentence given ,

return 'None ' but do not provide an explanation.
8
9 ** Example :**

10 - Learning Objective: "List the steps of the
scientific method ."

11 - pairs: {{'Remember ': 'Recall facts and basic
concepts ', 'Understand ': 'Explain ideas or
concepts ', 'Evaluate ': 'Justify a decision or
course of action '}}

12 - Output: 'Remember '
13
14 ** Input :**
15
16 Learning Objective: "{LO segments appear here}"
17 Taxonomy Options: "{ Taxonomy level pairs will appear

here}"
18
19 Which one is the most relevant taxonomy level to the

learning objective?
20 Answer:
21 """

Figure 7: Prompt used in the PWC method for selecting the most relevant Bloom’s Taxonomy level.
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1 prompt = f"""
2 **Task :**
3 For each learning objective:
4 - Compare the sentence against the taxonomy options.
5 - Select the taxonomy level that is the most related to

the sentence.
6 - Select the taxonomy level that is the least related to

the sentence.
7 - Do not provide an explanation.
8
9 ** Example :**

10 - Learning Objective: "List the steps of the scientific
method ."

11 - Taxonomy Options: {{'remember ': 'Recall facts and
basic concepts ', 'understand ': 'Explain ideas or
concepts ', 'evaluate ': 'Justify a decision or course
of action '}}

12 - Output: {{'most ': 'remember ', 'least ': 'evaluate '}}
13
14 **Input :**
15
16 Sentence: "{LO segments appear here}"
17 Taxonomy Options: "{ Taxonomy level tuples appear here}"
18
19 What are the most and least related taxonomy levels to

the given sentence?
20 Answer:
21 """

Figure 8: Prompt used for selecting the most and least related Bloom’s Taxonomy levels in BWS method.
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1 prompt = f"""
2 **Task :**
3 For each learning objective:
4 - Compare the sentence against the taxonomy description

provided.
5 - Rate how relevant is the taxonomy description to the

learning objective on a scale of 1 to 5, where 1 is
the least relevant and 5 is the most relevant.

6 - Only use whole numbers from 1 to 5. Do not use
fractions or decimal values.

7 - Do not provide an explanation.
8
9 ** Example :**

10 - Learning Objective: "List the steps of the scientific
method ."

11 - Taxonomy level: {{'remember ': 'Recall facts and basic
concepts '}}

12 - Answer: 5
13
14 **Input :**
15
16 Learning Objective: "{LO segments appear here}"
17 Taxonomy level: "{ Taxonomy levels appear here}"
18
19 Rate the relevance of the taxonomy level to the given

learning objective (1 to 5):
20 Answer:
21 """

Figure 9: Prompt used in the RCA method for rating the relevance of taxonomy descriptions. The same prompt is
used for short and long descriptions of the taxonomy levels.
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1 prompt = f"""
2 **Task :**
3 Compare the sentence to the provided taxonomy

description. Determine if the taxonomy level and its
description accurately describe the sentence provided
.

4 Answer with "Yes" if the taxonomy level and description
accurately describe the sentence.

5 Answer with "No" if the taxonomy level and description
do not accurately describe the sentence.

6 Do not provide explanations , just the "Yes" or "No"
answer.

7
8 ** Example :**
9

10 Sentence: "The student can recall key terms and concepts
from the lesson ."

11 Taxonomy Level and description: "Remember: it refers to
recalling information ."

12 Is the description accurate for the sentence?
13 Answer: Yes
14
15 **Input :**
16
17 Learning Objective: "{LO segments appear here}"
18 Taxonomy level: "{ Taxonomy levels appear here}"
19
20 Is the description accurate for the sentence?
21 Answer:
22 """

Figure 10: Prompt used in the BCA method.
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E Results from non-LLM and LLM Methods Compared to Gold Standard Annotation

Figure 11: An example of expert annotations for a course LO description, mapped to Bloom’s revised taxonomy
levels by five expert annotators. The corresponding mappings by non-LLM and LLM-based methods are presented
in Table 4.
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Category Method Remember Understand Apply Analyze Evaluate Create
Non-LLM SpaCy ✓ ✓ ✓ ✓

Regex ✓ ✓ ✓ ✓
Fuzzy ✓ ✓ ✓ ✓ ✓
Semantic Similarity ✓ ✓ ✓ ✓

LLM BWS ✓ ✓ ✓ ✓
PWC ✓ ✓ ✓ ✓ ✓
Short Rating ✓ ✓ ✓
Long Rating ✓ ✓ ✓
Binary Combinations ✓ ✓ ✓ ✓ ✓ ✓
MCS: Condition A ✓ ✓ ✓ ✓ ✓
MCS: Condition B ✓ ✓ ✓ ✓
MCS: Condition C ✓ ✓ ✓ ✓

Table 4: Comparison of non-LLM and LLM-based methods in mapping the same course learning objective to
Bloom’s revised taxonomy levels. Check marks indicate the taxonomy levels identified by each method.

438



Fi
gu

re
12

:F
re

qu
en

cy
di

st
ri

bu
tio

n
of

ta
xo

no
m

y
le

ve
ls

fo
rn

on
-L

L
M

m
et

ho
ds

an
d

th
e

go
ld

st
an

da
rd

an
no

ta
tio

ns
.

439



Fi
gu

re
13

:F
re

qu
en

cy
di

st
ri

bu
tio

n
of

ta
xo

no
m

y
le

ve
ls

fo
rL

L
M

m
et

ho
ds

an
d

th
e

go
ld

st
an

da
rd

an
no

ta
tio

ns
.T

he
fig

ur
e

ill
us

tr
at

es
ho

w
di

ff
er

en
tm

et
ho

ds
(e

.g
.,

B
W

S,
PW

C
)a

lig
n

w
ith

th
e

go
ld

st
an

da
rd

ac
ro

ss
va

ri
ou

s
ta

xo
no

m
y

le
ve

ls
.

440



F Results from Multiple Choice Selection with Paraphrase-Consistency Prompting and
Rationale Generation

Figure 14: Frequency count of taxonomy levels per conditions. The frequency counts reveal that “Understand” is
the most common taxonomy level across all conditions, while “Create” is the least frequent. There are notable
variations in the frequencies of other taxonomy levels: for instance, “Apply” is more frequent in Condition B, and
“Analyze” shows a higher frequency in Condition C.

Condition Full Agreement Ratio Partial Agreement Ratio

Condition A 0.23 0.92
Condition B 0.46 0.95
Condition C 0.76 0.98

Table 5: Agreement analysis for conditions A, B, and C. We present the model’s average alignment consistency
score, highlighting cases of full agreement (where the model’s choice of taxonomy levels is identical across all
paraphrases) and partial agreement (where the model’s choice is consistent in at least three of the five paraphrases)
as detailed here. The results indicate that the selection-reasoning bias—where rationales tend to align with an initial
label—is supported by the data. In Condition C, where the rationale is based on an initial selection, there is a higher
alignment in taxonomy levels across paraphrases. Conversely, Conditions A and B show lower full agreement
ratios, suggesting that without an initial selection to base the rationale on, the agreement among paraphrases is less
consistent.
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G Results from PWC vs. BWS Annotations

Figure 15: Frequency distribution of taxonomy levels in pair-wise analysis

Figure 16: Best-worst frequency counts across taxonomy levels.
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Figure 17: Best-Worst scaling scores: “Analyze” and “Understand” are the most preferred or relevant taxonomy
levels, as reflected by their high positive scores.

Taxonomy Level Consistency Score

Remember 0.21
Evaluate 0.54
Understand 0.69
Apply 0.62
Create 0.20
Analyze 0.84

Table 6: Cronbach α’s measure of internal consistency scores for taxonomy levels

Taxonomy Level Mean Rank

Remember 6.0000
Understand 2.0025
Apply 2.9975
Analyze 1.0000
Evaluate 4.0000
Create 5.0000

Table 7: Sensitivity Analysis (Mean Ranks): This analysis assesses the stability of rankings across various samples
or iterations. The mean ranks reflect the relative significance assigned to each taxonomy level by the model, where a
higher score indicates lower significance. “Analyze” and “Understand” are ranked as the most important, while
other levels show varying degrees of relevance.

H Results from Binary Annotations
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Threshold Yes_Count Total_Count Yes_Percentage

80 274 872 31.42 %
85 267 853 31.30 %
90 248 821 30.21 %
95 227 775 29.29 %

Table 8: Threshold Variation Analysis: The analysis demonstrates how varying confidence thresholds impact the
proportion of “Yes” responses. As the threshold increases from 80 to 95, the percentage of “Yes” responses slightly
declines from 31.42 % to 29.29 %. This suggests that higher thresholds may reduce the model’s overall affirmative
responses, potentially filtering out less confident predictions.

Taxonomy Average Correct Binary Rate

Analyze 0.459119
Apply 0.371069
Create 0.176101
Evaluate 0.232704
Remember 0.157233
Understand 0.572327

Table 9: Comparison with Multi-Class Classification for Bloom Taxonomy: The model’s performance varies
significantly across different Bloom’s taxonomy levels. For example, “Understand” has the highest average correct
binary rate at 57.23 %, while “Remember” and “Create” are much lower, at 15.72 % and 17.61 %, respectively. This
indicates that the model is better at aligning with high-order thinking skills such as “Understand” and “Analyze” but
struggles more with “Create” and “Remember.”

Taxonomy Level Average Confidence

Remember 96.07
Understand 93.28
Apply 94.20
Analyze 95.47
Evaluate 98.43
Create 96.59

Table 10: Comparison across D different taxonomy levels: The analysis of average confidence across taxonomy
levels reveals that the model exhibits the highest confidence in its predictions for “Evaluate” (98.43 %) and “Create”
(96.59 %). In contrast, while still high, the confidence for “Understand” (93.28 %) is slightly lower.

I Results from Rating Annotations
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Figure 18: The logprob values for the short descriptions are relatively consistent across ratings, without any clear
trend, suggesting that the model’s confidence in its rating wasn’t strongly influenced by its rating when using short
descriptions.

Figure 19: For the short descriptions, the most frequent ratings are at the extremes: 1 and 5. The high frequency of
1s indicates that many learning objectives were poorly aligned with the taxonomy level when only a short description
was provided. On the other hand, there is also a significant cluster at 5, suggesting that some objectives were still
rated highly despite the brevity of the descriptions. While for long descriptions there is still a notable peak at 1,
indicating poor alignment for some objectives, the second peak is at 4, and there is a considerable amount of ratings
at 5. The peak at 4, with a significant tail towards 5, indicates that the detailed descriptions helped many objectives
align better with the taxonomy level.
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