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Abstract

Argument Mining (AM) aims at detecting argu-
mentation structures (i.e., premises and claims
linked by attack and support relations) in text.
A natural application domain is political de-
bates, where uncovering the hidden dynamics
of a politician’s argumentation strategies can
help the public to identify fallacious and propa-
gandist arguments. Despite the few approaches
proposed in the literature to apply AM to po-
litical debates, this application scenario is still
challenging, and, more precisely, concerning
the task of predicting the relation holding be-
tween two argument components. Most of AM
relation prediction approaches only consider
the textual content of the argument component
to identify and classify the argumentative rela-
tion holding among them (i.e., support, attack),
and they mostly ignore the structural knowl-
edge that arises from the overall argumentation
graph. In this paper, we propose to address
the relation prediction task in AM by com-
bining the structural knowledge provided by a
Knowledge Graph Embedding Model with the
contextual knowledge provided by a fine-tuned
Language Model. Our experimental setting is
grounded on a standard AM benchmark of tele-
vised political debates of the US presidential
campaigns from 1960 to 2020. Our extensive
experimental setting demonstrates that integrat-
ing these two distinct forms of knowledge (i.e.,
the textual content of the argument component
and the structural knowledge of the argumen-
tation graph) leads to novel pathways that out-
perform existing approaches in the literature on
this benchmark and enhance the accuracy of
the predictions.

1 Introduction

Argument Mining (AM) is the subfield of Natu-
ral Language Processing (NLP) that deals with
automatically extracting argument structures (e.g.,
premises, claims, support and attack relations) from
text (Lawrence and Reed, 2019; Arora et al., 2023).
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Argumentation graphs are then built where the iden-
tified argument components are the nodes of the
graph and the edges represent support and attack
relations among the components. Extracting argu-
ment structures has key applications in political
scenarios (Menini et al., 2018; Visser et al., 2020a;
Goffredo et al., 2022; Mancini et al., 2022) as mak-
ing explicit the underlying argumentation graph
of a political debate can unveil underlying strate-
gies, inconsistencies, persuasive tactics and logical
fallacies in the arguer’s statements.

AM includes two main sub-tasks: (i) the identi-
fication of argument components, such as claims
and premises, and their boundaries; (ii) the predic-
tion of the relation, e.g., support or attack, holding
between these components. In literature, differ-
ent approaches showed promising results on the
two tasks (Lippi and Torroni, 2016; Niculae et al.,
2017; Stab and Gurevych, 2017; Mayer et al., 2021;
Morio et al., 2022; Mushtaq and Cabessa, 2023).

The performance of AM models deteriorates
when applied on political debates (Ruiz-Dolz et al.,
2021; Goffredo et al., 2023b), given the complex-
ity of the argumentation proposed in this context.
The task of relation prediction, particularly when
applied to political debates, has proven to be par-
ticularly challenging due to the small number of
manually annotated resources for this task (Had-
dadan et al., 2019b; Visser et al., 2020a,b) and the
lack of standard baselines against which to com-
pare (Gemechu et al., 2024). Most existing meth-
ods in the literature predict the relations between
argument components based solely on the textual
content of the argument, ignoring the structure of
the whole argumentation graph and the connections
of the involved premises and claims towards other
argument components in the graph. To address
this challenging issue, recent approaches proposed
frameworks that incorporate structural knowledge
to achieve better results in the AM task (Khatib
et al., 2020; Yuan et al., 2021). Their results are
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highly encouraging, providing even stronger sup-
port for leveraging technologies that combine struc-
tural knowledge with AM techniques. In this paper,
we answer the following research questions:

RQ1: Can structural knowledge contained in
Knowledge Graphs be profitably employed in chal-
lenging tasks such as argument relation prediction?

RQ2: If so, can we integrate Knowledge Graph
models with existing AM models to improve the
state-of-the-art (SOTA) on the argument relation
prediction task?

Our proposal consists in taking a different per-
spective on the argument relation prediction task,
by integrating the structural information of the
underlying argumentation graph into the classi-
fication task. We evaluated our novel approach
on a standard challenging benchmark in the AM
field for political debates, i.e., the ElecDeb60t020
dataset (Goffredo et al., 2023b). This dataset is,
to the best of our knowledge, the largest avail-
able dataset of political debates manually annotated
with argument components and relations.

More precisely, our approach leverages struc-
tural knowledge in the form of a Knowledge Graph
(KG), i.e., a structured representation of facts
through entities, relationships, and semantic de-
scriptions. Entities represent either word objects or
abstract concepts, while relations represent the con-
nections between entities. To leverage the knowl-
edge contained in the KG, we employ Knowl-
edge Graph Embedding Models (KGEMs) (Bordes
etal., 2013; Yang et al., 2015; Dettmers et al., 2018;
Wang et al., 2021a), which are models designed
to efficiently capture the semantics and the struc-
ture of a KG by mapping its entities and relations
to a lower-dimensional vector space. The best-
performing KGEM is integrated with a fine-tuned
Language Model (LM) to improve the predictions
on the argument relation classification task using a
Machine Learning (ML) classifier.

The main contributions of our work are summa-
rized as follows:

* We combine KGEMs with SOTA models in
AM, leveraging fine-tuned LMs to improve
SOTA results on the argument relation predic-
tion task.

* We perform extensive experiments over sev-
eral KGEMs to reveal the structural informa-
tion contained in argumentation graphs.

Our hybrid approach, in its best-performing
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configuration, achieves a 0.73 Macro F1-Score
for the argument relation prediction task, out-
performing SOTA approaches on the challenging
standard benchmark ElecDeb60t020 (Haddadan
et al., 2019a; Goffredo et al., 2023b). Our results
show the importance of strategies that take into
account structural information when dealing with
NLP tasks over graph-based information, such as
argument-based debates.

Furthermore, our method does not depend on
joint training or new complex models, as previous
approaches in the literature (Li et al., 2021; Saadat-
Yazdi et al., 2023), and it represents a resource-
efficient approach building on KG-based models.

The rest of the paper is organized as follows:
Section 2 discusses the related work, while Sec-
tion 3 illustrates the methods and the experimental
setting. Section 4 and Section 5 present our find-
ings and the error analysis. Section 6 summarizes
the key outcomes.

2 Related Work

In more recent developments, pre-trained trans-
formers like BERT have been increasingly adopted
for tasks such as argument recognition, rela-
tion prediction, and premise/conclusion identifi-
cation within political debates. These models
leverage their deep contextual understanding to
achieve significant improvements over earlier meth-
ods (Poudyal et al., 2020; Ruiz-Dolz et al., 2021).

The behavior of transformer-based models in
predicting argument relations has been investigated
in multiple approaches in the literature. In (Ruiz-
Dolz et al., 2021), the authors applied various
transformer-based models, including BERT, XL-
Net, RoBERTa, DistilBERT, and ALBERT, to clas-
sify four types of relations in the IAT labeling
schema: inference (RA), conflict (CA), rephrase
(MA), and no relation. Their approach achieved a
macro Fl-score of 0.70 on the 2016 US Political
Debates dataset (US2016). More recently, multi-
modal AM techniques have gained attention. A
study on the 2020 US Political Debates (US2020)
explored the integration of audio and transcript fea-
tures to improve AM tasks (Mestre et al., 2021).
The study on the M-Arg multi-modal dataset found
that audio-only and multi-modal models performed
with high accuracy and F1 scores in the argument
relation classification task; However, the classifica-
tion of support and attack relations remains chal-
lenging, with the highest F1 scores reaching only



0.24 and 0.21, respectively.

While initial approaches overlooked the impor-
tance of structural information, recent research un-
derscores its critical role (Yuan et al., 2021; Morio
et al., 2022). Structural knowledge—such as the
relationships between different components of an
argument—plays a crucial role in understanding
the connections within arguments. Studies demon-
strated that constructing an argumentation knowl-
edge graph supports complex tasks like argument
synthesis and question answering (Khatib et al.,
2020). Their approach integrates various sources
of information to enrich argument analysis.

Further innovations include the use of KGs to
facilitate reasoning through argumentation paths.
Graph Convolutional Networks (GCNs) have been
employed to learn concept representations within
KGs, coupled with a transformer-based encoder
to model the paths between concepts (Yuan et al.,
2021). Following this research line, some recent
approach introduced the use of a Commonsense
Transformer (COMET) to find inference chains
connecting argumentative units (Saadat- Yazdi et al.,
2023). Their proposed algorithm, ARGCON, dy-
namically generates these chains using the com-
monsense knowledge encoded in COMET, offering
a novel approach to understanding argumentation.
Another related study developed a topic-specialized
KG by extracting evidence and identifying argu-
ments at the sentence level (Li et al., 2021). Their
hybrid model integrates topic modeling with la-
tent Dirichlet allocation (LDA) and word embed-
dings to leverage both structured and unstructured
data. Gemechu et al. (Gemechu and Reed, 2019)
propose to combine structural and distributional
techniques to achieve robust, domain-independent
performance in the relation prediction task. Their
model was tested on various datasets, including
the US2016G1tv corpus, where it achieved an F-
score of 0.64 in the classification of relations within
political debates.

3 Methodology

In this Section, we detail our methodology and ex-
perimental setting. The dataset we used for this
work is presented in Section 3.1, and the KGs gen-
erated from this dataset are shown in Section 3.2.
The tested KGEMSs are described in Section 3.3,
and the tasks and metrics used to assess the models
can be found in Section 3.4.
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3.1 Dataset

The ElecDeb60to20 dataset (Goffredo et al., 2023b)
used in our experiments is a collection of televised
political debates in the US from 1960 to 2020. The
dataset consists of 44 debates featuring 64 speakers.
It has been annotated with the two basic argument
components - claim and premise - and with argu-
ment relations such as support (positive relation),
attack (negative relation) and equivalent (rephras-
ing or restatement) (Cabrio and Villata, 2018).

The dataset comprises 38,667 argument com-
ponents linked 26,230 times using the previously
described relations. Among the arguments, 25078
are classified as claims, while 13589 are identi-
fied as premises. Regarding the relations, 21689
are annotated as support, 3835 as attack, and 706
as equivalent. There is a visible imbalance in the
dataset: the claims are higher than the number of
premises due to the tendency of candidates to make
claims during political speeches without provid-
ing the necessary facts to support them (Haddadan
et al., 2019c). Furthermore, the support relation
is dominant between the relations and the equiva-
lent relation is severely under-represented. For this
reason, previous studies on this dataset (Goffredo
et al., 2022) ignored the equivalent relation. The
dataset mainly consists of isolated argumentation
subgraphs, reflecting the debates’ structure. The
moderator introduces a topic (e.g., minimum wage),
allows discussion, and then shifts to a new topic
(e.g., relations with Cuba), repeating this process.

For training, the dataset split was 80% for train-
ing, 10% for validation and 10% for testing.

3.2 Knowledge Graph Generation

In order for the KGEMs to handle the dataset, each
debate was transformed into a series of triples (4, r,
t) where the head entity / and tail entity ¢ represents
argument components, either claims or premises,
and r represents the relation of support, attack or
equivalence between those components'.

In addition to the arguments and their types
(claim or premise), the dataset included informa-
tion about the speaker and the year of the argument.
We integrated this data and created various KG
combinations, each containing different types of in-
formation. Different ad hoc relations were created
to connect these additional nodes to the graph: we
created the relations says, year, and type to connect

'"Typically, a premise supports a claim, with 4 as the

premise and ¢ as the claim #. However, a claim can also serve
as a premise to support another claim.



Ref. Dataset #nodes #edges Josupport Y%attack %equivalent Y%type Y%speaker Y%year
(i) basic 29,791 26,100 80% 15% 5% - - -
(ii) + year node 29,835 56,064 38% 7% 1% - - 54%
(iii) + speaker node 29,855 57,868 37% 7% 1% - 55% -
(iv) + type node 29,793 63,227 34% 6% 1% 59% - -
(v) + type and year nodes 29,837 93,191 23% 4% 1% 40% - 32%
(vi) + type and speaker nodes 29,857 94,995 23% 4% 1% 39% 33% -

(vii) + year and speaker nodes 29,899 87,832 25% 4% 1% - 36% 34%

(viii) + type, year and speaker nodes 29,901 124,959 17% 3% 0.5% 30% 25.5% 24%

Table 1: Statistics for different KG permutations. Each row represents a unique permutation incorporating various

nodes and their effects on graph structure.

Ref. Dataset #nodes #edges Yosupport %attack %equivalent Y%type %speaker %year
(ix) modified argument nodes 37,127 26,103 83% 15% 2% - - -
(x) + speaker node 37,191 64,787 33% 6% 1% - 60% -
(xi) + year node 37,171 63,425 34% 6% 1% - - 59%
(xii) + speaker and year nodes 37,235 102,109 21% 4% 1% - 38% 36%

Table 2: Statistics for KG permutations with dual-role argument nodes (claim and premise), including node, edge,

and relation distributions.

the speaker, year, and type nodes to the appropri-
ate argument nodes. We believe that this inclusion
will increase the graph’s size, decrease the num-
ber of isolated clusters, and ultimately improve the
models’ performance (see Table 1 for details).

As mentioned earlier, an argument can function
as both a claim and a premise, depending on the
context. Instead of creating a single node with the
type information and linking it to the argument
node via a new relationship, we explored an alter-
native approach: generating two separate nodes
for each argument—one representing its role as a
premise and the other as a claim. To differentiate
these nodes, we constructed their labels by con-
catenating the argument text with its correspond-
ing type. For example, the argument It’s what we
are can serve as a claim or as a premise. There-
fore, we generate two distinct entities: It’s what we
are_claim and It’s what we are_premise. We argue
that this new strategy reflects the dynamic nature
of arguments, where their role changes according
to their relationships with other arguments. We ex-
pect that this improved representation will enhance
the model’s capacity to handle context-dependent
argument roles (see Table 2).

To improve the models’ prediction (Drance et al.,
2023), we provided sentence embeddings built with
Sentence-Bert (SBERT) (Reimers and Gurevych,
2019) as a starting point for the entities of the argu-
ment nodes (the only nodes containing sentences).
SBERT, a refined version of BERT, is capable of
producing embeddings that capture the semantic
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relationships within and between sentences, provid-
ing a robust foundation for representing arguments.

3.3 Knowledge Graph Embedding Models

We used three KGEMs from different categories.
TransE (Bordes et al., 2013) (translational): rep-
resents entities and relations in a continuous vector
space, translating a head entity by a relation to
approximate the tail entity; DistMult (Yang et al.,
2015) (semantic matching): uses a bi-linear func-
tion to score triples, with each relation interacting
multiplicatively with the embeddings of its enti-
ties; ConvE (Dettmers et al., 2018) (neural net-
work based): employs Convolutional Neural Net-
work (CNN) to model complex relationships and
extract semantic information from the KG. In order
to choose the KGEM and KG permutation that will
best serve our goal, each KGEM is thoroughly as-
sessed on several tasks on each KG’s permutation.

3.4 Tasks & Evaluation metrics

We evaluated the KGEM on all permutation of the
KG (Table 1 and 2) in different tasks (Wang et al.,
2021a; Yan et al., 2022). Link prediction involves
predicting the missing head h or tail ¢ entity in a
triple (7,7, t) or (h,r,?). A variant, relation pre-
diction, focuses on predicting the missing relation
7 in a triple (h, ?,t). During evaluation, each test
triple (h, 7, t) is perturbed by replacing the head h
with every other entity h, and the resulting triples
are ranked based on their scores. The goal is to
rank the original triple highest. The same process



applies for predicting ¢ and r. Link deletion re-
volves around identifying triples with erroneous
head entities (ﬁ, r, t) or inaccurate tail entities (h,
r, t). Triple classification and relation classifica-
tion are the task of determining whether a triple is
true (plausible) or false based on a given threshold.
For triple classification, the evaluation protocol
uses a dataset composed of 50% original triples
and 50% corrupted triples, created by randomly
permuting the head h, tail ¢, and relation . For
relation classification, the evaluation uses a dataset
containing all original testing triples along with
two permutations of each triple’s relation r with in-
correct relations. For both tasks, each triple’s score
is compared against the predefined threshold: if the
score exceeds the threshold, the triple is classified
as true; otherwise, it is classified as false.

To determine the predefined threshold, we calcu-
late the median of the scores of a test dataset having
50% noise (i.e., a dataset containing 50% corrupted
triples) and the median of the scores of a noise-free
test dataset. Let v represent the test dataset with
50% corrupted triples and r represent the noise-
free test dataset. The threshold is calculated using
Equation 1 (Faralli et al., 2023).

median(l/) + median(r)
2

Hits@Qk, & € {1,3,5,10}, Mean Rank (MR),
and Mean Reciprocal Rank (MRR) are used to
evaluate link prediction, relation prediction, and
link deletion (Cao et al., 2022). Triple and relation
classification, a binary classification tasks, were
evaluated using Accuracy, FI1-Score, Macro F1I-
Score, and Positive and Negative F1-Score (Powers,
2011).

threshold = median(v) +

(D

3.5 Implementation Details

All experiments on the KGEMs were conducted us-
ing PyKEEN 1.8.0 (Ali et al., 2021) on Python 3.8
with an Nvidia V100 32GB GPU. For the combined
architecture we also used the Hugging Face Trans-
formers (Wolf et al., 2019) and the scikit-learn li-
brary (Pedregosa et al., 2011). We release dataset
and code: https://github.com/deborahdore/
political-debates-graph-analysis.

4 Evaluating KGEMs for relation
prediction on argumentation graphs

In this Section, we answer to RQ1, showing how
KGEMs can be successfully employed in the chal-
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lenging task of relation prediction for argumenta-
tion graphs. Our benchmark is composed of two
parts: in each we evaluated TransE, DistMult and
ConvE (Section 3.3) using link prediction, link
deletion and triple classification (Section 3.4) on
all permutation of the KG (Section 3.1).

First benchmark. The first part involved the
evaluation of all kinds of triples, including the one
containing information related to the speaker, year
and type of argument. As a random baseline we
tested the model on a random composition of the
KG, consisting of 50% erroneous triples and 50%
correct triples for each permutation. Table 3 re-
ports the result of link prediction, link deletion
and triple classification on KG permutation setting
(i). All KGEMs where hyper-tuned using the de-
fault search grid of the PYKEEN library (Ali et al.,
2021). The random baselines were constructed
using the default hyper-parameters of the library.
The study documented in Table 3 shows that the re-
sults are similar to the baseline and, in some cases,
poorer.

1 Link 1 Link 1 Triple
Ref. Model Prediction Deletion Classification
Hits@10 Hits@10 Macro F1

TransE 0.095 0.004 0.489
Baseline 0.038 0.004 0.643

(i) DistMult 0.056 0.005 0.494
Baseline 0.011 0.005 0.526
ConvE 0.008 0.001 0.327
Baseline 0.0007 0.002 0.401

Table 3: Benchmark results for link prediction, deletion,
and triple classification tasks, compared to a random
baseline on setting (i) of the KG..

We hypothesize that the large number of isolated
components makes it difficult to correctly train the
KGEMs. Interestingly, in certain cases, the random
baseline generates more interconnected graphs than
the original, leading to improved KGEM perfor-
mance. Figure 1 demonstrate that adding connec-
tions in the KG positively impacts the performance
of the KGEMs for some configuration in the triple
classification task with respect to the basic KG (i).

Second benchmark. During the second part of
our benchmark, our evaluation will be directed to-
ward those triples (h,r,t) whose relation r falls
under support, attack or equivalent while still train-
ing the model with all kinds of triples.

Table 4 assesses TransE, DistMult, and ConvE
using only triples of interest throughout the eval-
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Figure 1: Comparison of the Macro F1-Score for triple classification across five KG permutations using TransE,
DistMult, and ConvE.

uation, with and without pretrained embeddings  the complex relationships found in argumentation
built using SBERT, for the basic permutation of the ~ graphs from political debates.

KG (i). Our results indicate that KGEMs perform vari-

ably depending on the dataset and on the task: in

1 Link 1 Link 1 Triple

Ref. Model Prediction Deletion Classification tasks inVOlVing all types of triples the models gen-
Hits@10  Hits@10  Macro F1 erally performed at or above baseline levels, par-
TransE  0.089 0.004 0.610 . PR .
Baseline 0,003 0.004 0,656 ticularly when graph connectivity improved. This
0 DistMult 0,009 0.005 0283 suggests that the models can capture complex rela-
Baseline  0.040 0.003 0.523 tionships when the graph provides sufficient struc-
ConvE 0.026 0.004 0.402 : :
Basoline 0,001 0.001 0433 tural information. ngever, When we .concentrated
TransE 0.038 0.006 0.658 only on argumentation-specific relations such as
() with _Baseline 0027 0.004 0.604 support, attack, and equivalent, performance fell.
pre-trained  DistMult 0017 0.002 0.509 The use of pre-trained embeddings (e.g., SBERT)
embeddings Baseline 0.007 0.002 0.544 . dth of £ del h
ComvE  0.0003 0.004 0570 improve the pe ormance of some models, such as
Baseline  0.0003 0.001 0.424 DistMult and ConvE, in these focused tasks. This

shows how models can better represent relational
dynamics in argumentation graphs by incorporat-
ing semantic enrichment from outside sources.

Table 4: Performance of KGEMs on argument-specific
triples with and without pre-trained embeddings, com-
pared to random baselines on KG setting (i).

Despite these challenges, the models’ ability

Based on our observations, the performance ley- 0 outperform random baselines in a range of
els are lower when evaluating only triples of inter- ~ configurations, as well as their improvement
est compared to all triples. This discrepancy is due with more structured and enriched data, indicate
to models focusing their attention across various ~ that KGEMs are a viable tool for reasoning over
types of triples, causing an incomplete evaluation ~ Political argumentation graphs. However, their

of the specific triples of interest and a subsequent ~ aPplicability in this domain may necessitate
drop in performance. accurate preprocessing, such as improving network

Figures 2a and 2b present the results of the connectivity or adding additional semantic data.

triple classification task, before and after using

pre-trained embeddings, respectively. The archi-  Error Analysis. To analyse the recurrent misclas-
tectural differences among KGEMs can be the  sifications, we chose the three most promising con-
reason for their diverse performances. DistMult  figurations with pre-trained embeddings: (xi), (viii),
and ConvE, with their more intricate architectures,  and (vii) (see Tables 1 and 2). Those configurations
seem to make good use of pre-trained embeddings, = were chosen due to having the highest score av-
which enables them to identify subtle connections  erage in all task among all three models. During
in complex political debates. On the other side, the error analysis, the models were evaluated on
TransE’s more straightforward design might find it  tasks closer to the AM domain such as relation
difficult to make the most of the enriched embed-  prediction and classification. Our goal was to as-
dings, which could lead to an oversimplification of ~ sess each model’s ability to predict and classify
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(b) Evaluation of the triple classification of argumentation-specific triples incorporating pre-trained embeddings during training.

Figure 2: Comparison of triple classification performance across different KG configurations and the effect of
pre-trained embeddings. The figure shows Macro F1-Scores for TransE, DistMult, and ConvE.

relations individually. Based on the analysis pre-  alent relation. This made its overall performance
sented in Table 5, DistMult was selected as the  less reliable compared to DistMult. DistMult, on
best model for the next part of the work due to its  the other hand, showed a more balanced perfor-
more balanced performance across various tasks ~ mance across the different settings of the KG. It
and settings. performed particularly well in setting (xi), achiev-

ing the highest relation classification F1-Macro

1 Relation T Support 1 Attack 1 Equivalent 1 Relation . .

Ref. Model Prediction Prediction Prediction Prediction ~Classification score among all models. Its performance in (xi)

Hits@1 Hits@1 Hits@1 Hits@1 Macro F1 . i1s ,
TamE 0605 0652 0433 0.099 0.685 demonstrated its ability to handle the dataset’s com-

(xi) DistMult 0715 0827  0.206 0.070 0.740 ; ; o
o oo 0000 Pt 0504 plexity effectively, making it the preferred model
TransE 0749 0823 0453 0.113 0.649 for the next phase of the work.
(viii) DistMult 0153 0010 0990 0.000 0.366
ComE 0149 0003 0997 0.014 0.59
TransE 0747 0838 0.341 0.155 0.657 . .
(vii) DistMult  0.660 0.775 0.122 0.056 0.595 5 Integl‘atlng KGEMs with LMs to
ConvE 0259 0165 0836 0.014 0.615

enhance relation prediction

Table 5: Analysis of biases in predicting argumenta- . .
tion relations (support, attack, equivalent) using TransE, 11 order to address RQ2 (i.e., how to integrate
DistMult, and ConvE. KGEMs on existing AM models to improve the

SOTA on the argument relation prediction task),

Although ConvE performed well in predicting  we merged the tasks of relation classification and
argument relations, especially for the atfack rela-  prediction. DistMult achieved a Macro F1-Score
tion, it exhibited a significant bias by completely = of 60%, with a precision of 66% and a recall of
ignoring this relation in certain cases. Additionally, = 60%. Previous research (Haddadan et al., 2019a)
ConvE showed inconsistent results in triple classi-  identified RoBERTa (Liu et al., 2019) as the high-
fication, with its Macro F1-Score averaging around  est performing LLM for the argument relation pre-
50%, which indicated a lack of robustness in this  diction task on the ElecDeb60to20 dataset with a
task. TransE, while consistent in its predictions, = 60% Macro F1-Score. To integrate the DistMult
suffered from skewed results due to dataset imbal- and RoBERTa (Goffredo et al., 2023a) models, we
ance, especially in the classification of the equiv-  tested different approaches, such as weighting the

80



predictions of DistMult and RoBERTa based on
their respective Macro F1-Scores and employing a
classifier to combine DistMult and RoBERTa’s out-
puts. In this last approach, DistMult and RoBERTa
are integrated using a classifier, which receives
as input two features containing the prior models’
predictions and returns a final prediction, as visual-
ized in Figure 3. All tested classifiers were hyper-
tuned using the scikit-learn library (Pedregosa et al.,
2011) using the basic grid search approach.

oz

! [ ICompl, SUPPORT, Comp2] |

Relation
Prediction

. [ Final |
@ Classifier 4’{ Relation'
A — mstton
3

Prediction

¥ Fine-TunedLLM

[ [Comp1. ATTACK, Comp2] |

Figure 3: Proposed framework combining the LLM and
KGEM, integrating predictions via a binary classifier to
determine argument relations.

During inference, the arguments whose relation
is to be predicted are given as input individually
to the LLM and the KGEM. The LLM receives
the concatenation of the arguments, Component
1 and Component 2, and outputs the most likely
relation (either support, attack or no-relation if it
determines there is no relation). On the other hand,
because the KGEM scores triples, it is given two
triples: one with relation support and one with
relation attack®. The triple with the highest score
above the threshold is chosen as the proper one.
If no triples exceed the threshold, the no-relation
label is passed to the classifier.

The classifier is a machine learning (ML) model
that has been trained to distinguish between the
right predictions of the LLM and KGEM, as well
as those that are incorrect. It returns a final relation.
We selected various ML models and we evaluated
them using cross-validation on a dataset composed
of the predictions of DistMult and RoBERTa on
their original dev and test set.

According to the findings, combining both mod-
els resulted in a 8% improvement in the state of
the art for the prediction of relations between argu-
ments in political debates using the ElecDeb60t020
dataset. The best performing classifier is a Random
Forest Classifier (RFC) (see Table 6).

We evaluated our approach using other LMs:

The equivalent relation is not included because prior work
excluded it due to its under representation in the dataset. We
adopted the same approach when integrating our method into
the architecture.
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Integration Method Input Type 1 Macro F1
RndomTores SR e
Moos g i
Gradient Boosting Roé’éﬁ%ﬁt;t‘sgg&ul ¢ 0.683
Decision Tree Rogé?%?;i?éﬁzi&ul ¢ 0.680

MultiLayer Perceptron RO;E?%?;ZI:&E&M ¢ 0.677

Support Vector Machine Roé’lgzi’ifgﬁr:]grizg/lul i 0.653

onthei P1- Mo Seore NA 0.649

K-Nearest Neighbors RO;E?;?;Z?];Z&HI ¢ 0.642

and DistMult

DistMult (Single Model) ~__ t:“:(’etzfli;ig :t’t)ack 0.604

RoBERTa (Single Model)  Concatenated arguments 0.603

Gaussian Naive Bayes Predictions from 0.573

RoBERTa and DistMult

Table 6: Comparison of classifiers integrating ROBERTa
and DistMult predictions for argument relation classifi-
cation.

DeBERTa-V3 (He et al., 2021), BERT (Devlin
et al., 2019), DistilBERT (Sanh et al., 2019) and
XLM-RoBERTa (Conneau et al., 2020). DeBERTa-
V3 emerged as the best model for the relation pre-
diction task, surpassing RoBERTa with a Macro
F1-Score of 69% in classifying relations between
argument components (see Appendix A).
Following the same approach used with
RoBERTa, we combined DeBERTa-V3 with Dist-
Mult using a classifier. The highest-performing
classifier was a Convolutional Neural Network
(CNN). In this case, the classifier received three
input features: the predictions from DeBERTa-V3
and DistMult, and the concatenated head h and
tail £ arguments. This new combination achieved
a 73% Macro F1-Score (see Table 7). This rep-
resents a 13% improvement over DistMult alone
and a 4% improvement over DeBERTa-v3. Fur-
ther analysis shows that DistMult and DeBERTa
align well, predicting the same relations in 69.68%
of cases. When all three models—DistMult, De-
BERTa, and the classifier—agree, the prediction is
correct 69.63% of the time. The classifier disagrees
more often with the transformer model (16%) than
with the KGEM (14%), while simultaneous dis-
agreement with both occurs in only 0.06% of cases.
Figure 4 shows that both DistMult and
DeBERTa-V3 excel at predicting the absence of
a relation (no relation), with DistMult performing
best for this class. However, both models often mis-
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Figure 4: Confusion Matrix of DistMult, DeBERTa-V3 and the CNN classifier.
Integration Method Input Type TMacroF1 - ferent approaches on this task using subsets of the
. Concatenated arguments and .
Convoglst?;élrlkNeural predictions from %eBERTa_V:; 0.734 ElecDeb60t020 dataset, like US2016 and US2020.
N Models based and DistMult Our work extensively evaluate our hybrid approach
verage of Models base: i A
on their F1-Macro Score NA 0.709 on the entire dataset, outperforming these compet-
9
DeBERTa-v3 (Single Model) ~ Concatenated t 0.694 . . . .
eBERTa-v3 (Single Model)  Concarenated arguments ing approaches and standard baselines in classi-
Support Vector Machine . 0.665 . .
PP DeBP;RT;jV? andelstMult fying relations between arguments. These results
redictions from - . . .
AdaBoost DeBERTa-v3 and DistMult 0.652 make explicit the value of incorporating relational
Gaussian Naive Bayes | bredictions from ¢ 6og insights from knowledge graphs into AM tasks, par-
DistMult (Single Model) WitEv:(; [:f);l::) ith,:tzt)mk 0.604 tlcula.rly in domains as complex as political debate.s.
Random Foreat Predictions from 0585 By bridging the strengths of KGEMs and LMs, this
DeB%RngVS a“deIStM““ study sets a new benchmark for argument relation
. . redictions Ifrom
Gradient Boosting DeBERTa-v3 and DistMult 05> prediction in highly challenging datasets.
.. Predictions from
Decision Tree DeBERTa-v3 and DistMult 0.579
. Predictions from .
MultiLayer Perceptron DeBERTa-v3 and DistMult 0.579 6 Conclusion
K-Nearest Neighbors Predictions from 0.578

DeBERTa-v3 and DistMult

Table 7: Comparison of classifiers integrating
DeBERTa-v3 and DistMult predictions for argument
relation classification.

classify support as no relation. While DeBERTa-
V3 handles support better than DistMult, the CNN
Classifier outperforms both, achieving better bal-
ance. For attack, DeBERTa-V3 outperforms Dist-
Mult and the CNN. Overall, the CNN Classifier
has the best balance across most classes, combin-
ing strengths and reducing misclassification.

This study shows KGEMs can enhance AM
methods for argument relation prediction, par-
ticularly in political debates. While KGs have
previously been applied in AM tasks, what is
particularly novel in this work is their applica-
tion to political debates using the ElecDeb60to20
dataset. This dataset’s diverse argumentation styles
and topics present a challenging scenario for in-
tegrating KGEMs and LMs in this field. Other
studies (Gemechu and Reed, 2019; Mestre et al.,
2021; Ruiz-Dolz et al., 2021) have proposed dif-
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This paper introduces a novel hybrid framework
for predicting relations between argument compo-
nents in argumentation graphs, combining struc-
tural insights from KGEMs with contextual under-
standing from fine-tuned LMs. We showed that
KGEMs, despite their traditional use in KG’s tasks,
achieve competitive performance in argument re-
lation prediction. Our experiments with DistMult
demonstrate that structural knowledge alone cap-
tures meaningful relational patterns, achieving a
Macro F1-Score of 0.60 on the challenging stan-
dard ElecDeb60t0o20 benchmark for AM.

Integrating KGEMs with LMs significantly en-
hances the prediction accuracy. Using classifiers
like Random Forests and CNNs to combine predic-
tions, our approach achieved SOTA performance.
Notably, we improved the Macro F1-Score to 0.68
with RoBERTa and further to 0.73 with DeBERTa-
V3, representing a significant gain over prior SOTA
methods (Goffredo et al., 2023a).

Our ensemble method integrates multiple mod-
els, highlighting the value of combining structural
and contextual knowledge to improve AM tasks in
complex domains like political debates.



Limitations

Our approach has been tested on the
ElecDeb60to20 dataset, which consists of
U.S. presidential debates only. While this dataset
is well-suited for our current study, it does not
guarantee that the model will perform equally well
on other types of debates, argumentative genres,
or in different domains or languages. However, it
is worth noticing that ElecDeb60to20, and more
generally the political debates scenario, represent
one of the most challenging argumentation data to
test AM models against. The model’s effectiveness
may also be compromised by varying strategic
communication styles across different countries
or cultural contexts. We recognize the need for
additional experiments across diverse datasets
to assess and potentially improve the model’s
adaptability.

Lastly, while our method separates the train-
ing of KGEMs and LLMs, it does not fully lever-
age the potential benefits of integrated approaches.
In future work, we plan to explore hybrid train-
ing approaches, such as KEPLER (Wang et al.,
2021b), that concurrently optimize KGEMs and
language modelling objectives, with the aim to fur-
ther strengthen the alignment between argument
structure and content.
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A LMs integration with KGEMs

To validate our approach, we conducted a com-
parative evaluation of several LMs to determine
the most compatible with our architecture. Specifi-
cally, we evaluated DeBERTa-V3 (He et al., 2021),
BERT (Devlin et al., 2019), DistilBERT (Sanh
et al., 2019) and XLM-RoBERTa (Conneau et al.,
2020). Results are reported in Table 8.

Model Method Macro F1 Score
DeBERTa seq-class 0.69
BERT sent-class 0.66
XLM-RoBERTa seq-class 0.63
DistilBERT seq-class 0.58

Table 8: Macro F1-Score of several LMs for the AM
Relation Prediction Task

We integrated DeBERTa-V3 into our architec-
ture due to its superior performance compared to
other models.

B Hyperparameters

This section details the optimal hyperparameters
identified for the models employed in this study.
These configurations were determined through ex-
tensive experimentation and validation to achieve
the best performance for each model.

B.1 RoBERTa

Following the methodology outlined by Goffredo
et al. (2023a), RoBERTa was fine-tuned with a
learning rate of 6e~°, a batch size of 8, and a maxi-
mum sentence length of 64 sub-word tokens per in-
put example. The model was trained for 15 epochs.

B.2 DeBERTa-V3

The DeBERTa-V3 model achieved optimal perfor-
mance with a learning rate of 4e~°, a batch size
of 16, and a maximum sentence length of 255 sub-
word tokens. It was fine-tuned over 3 epochs.

B.3 DistMult

The DistMult model’s optimal configuration was
obtained after 165 epochs. It used a learning rate
of 1.35¢2, a batch size of 128, an embedding
dimension of 160, and a margin ranking loss with
a margin of 2.99.

B.4 Random Forest Classifier (RFC)

The RFC achieved its best performance using 50
estimators, the Gini criterion, a minimum of 2 sam-
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ples required to split an internal node, and a mini-
mum of 1 sample per leaf.

B.5 Convolutional Neural Network (CNN)

The CNN was evaluated using cross-validation
with 30 epochs for each fold, a learning rate of
le~3, an embedding dimension of 100 for the tex-
tual features, and a batch size of 32.



