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Abstract

Large language models (LLMs) are effective
in predicting the labels of unseen target in-
stances if instructed for the task and training
instances via the prompt. LLMs generate a text
with higher probability if the prompt contains
text with similar characteristics, a phenomenon,
called priming, that especially affects argumen-
tation. An open question in NLP is how to
systematically exploit priming to choose a set
of instances suitable for a given task. For stance
classification, LLMs may be primed with few-
shot instances prior to identifying whether a
given argument is pro or con a topic. In this pa-
per, we explore two priming strategies for few-
shot stance classification: one takes those in-
stances that are most semantically similar, and
the other chooses those that are most stance-
similar. Experiments on three common stance
datasets suggest that priming an LLM with
stance-similar instances is particularly effec-
tive in few-shot stance classification compared
to baseline strategies, and behaves largely con-
sistently across different LLM variants.

1 Introduction

Large language models (LLMs) have enabled a new
input paradigm in NLP by following instructions
that define the task to be solved: prompting. De-
signing optimal instructions for a given task is a
key challenge in this paradigm. A common tech-
nique in prompt engineering is to append a set of
few-shot instances to the instructions that are simi-
lar to the target instance. Although this technique
is widely used, research lacks a clear understanding
of what makes a set of examples effective for a tar-
get instance (Min et al., 2022). A mechanism that
helps to explain the effect of a prompt on the output
of an LLM is priming, which is the effect of a cer-
tain stimulus (prime) on processing a subsequent
stimulus (target) (Misra et al., 2020).

Priming influences human behavior by making
certain information more salient and accessible. Re-

search on argumentation in political science studies
how priming connects media exposure with voting
behavior. Media coverage highlights a candidate’s
topics and arguments to increase the chances that
voters elect the candidate (DellaVigna and Kaplan,
2007; Iyengar and Hahn, 2009). The way the topics
are presented with either positive or negative sen-
timent in news influences how the audience votes,
which is called affective priming (Kuehne et al.,
2011). For LLMs, appending a set of similar in-
stances to the target instance in a prompt can be
seen as priming for label voting.

Prompting research has shown that the choice
and order of training instances have a strong effect
on model performance. Among others, Liu et al.
(2022) find that semantically similar instances are
most effective in sentiment analysis, question an-
swering, and text-to-table generation. However, it
is unclear so far whether this finding generalizes to
tasks dealing with argumentation, such as stance
classification: classifying an argument as pro or
con towards a controversial topic (Somasundaran
and Wiebe, 2009).

In this paper, we study how to choose the best
training instances for few-shot priming in stance
classification. We investigate two alternative prim-
ing strategies: prompting an LLM with training
instances that are (a) semantically similar to the
instance to be classified or (b) stance-similar (e.g.,
pro electric cars and con fuel cars). While the first
builds on the idea of Liu et al. (2022) and semantic
priming, the second builds on affective priming.
We contrast both priming strategies to diversifi-
cation, which has been observed to foster better
performance in stance classification (Schiller et al.,
2024; Arakelyan et al., 2023).

To operationalize the priming strategies, we use
contrastive learning to quantify the similarity be-
tween training instances and a given target instance.
The first strategy, semantic-priming, returns the
k instances with the highest semantic similarity.
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The second, affective-priming, returns k in-
stances with the highest stance similarity. Finally,
the diversification strategy, distinct-k, groups
the training instances into k clusters according to
their semantic similarity and uses the most central
representative of each cluster as a prime. Figure 1
contrasts the three priming strategies.

We evaluate all priming strategies against ran-
dom sampling on three widely used stance classi-
fication datasets, IBMSC (Bar-Haim et al., 2017),
VAST (Allaway and McKeown, 2020), and Per-
spectrum (Chen et al., 2019). We employ four dif-
ferent LLMs in two manners: Llama2-7b (Zhang
et al., 2022) and Vicuna-7b (Chiang et al., 2023)
in prompting, as well as Alpaca-7b (Taori et al.,
2023) and Mistral-7b-instruct (Jiang et al., 2023)
in both prompting and instruction fine-tuning. Ac-
cording to our results, affective-priming shows
substantial improvements over random sampling
and diversification in prompting for Llama2-7b and
Vicuna-7b. semantic-priming is more effective
when the number of shots is low (up to 4).

Our findings contribute to research in three ways:
(1) We investigate for the first time the effect of af-
fective priming on large language models. (2) We
establish priming strategies as a central component
of approaches to few-shot stance classification. (3)
We advance the state-of-the-art on stance classifi-
cation on IBMSC and Perspectrum.1

2 Related Work

Prompting defines a task as instructions that an
LLM completes with the desired output. Few-shots
are exemplary instances of the task together with
their expected outputs that are added to the instruc-
tions. The selection of few-shots is decisive for
the performance of an LLM on the task. Gao et al.
(2021) show that prepending the input instance
with semantically similar instances to it is more
effective in four GLUE tasks (Wang et al., 2019)
than using random instances. Like us, they use
SBERT (Reimers and Gurevych, 2020) to encode
the instance to be classified and the few-shot in-
stances, but they do not investigate what similarity
is effective for a given task.

Liu et al. (2022) find that GPT-3 exploits similar
instances more than random ones, improving ef-
fectiveness on sentiment analysis and table-to-text
generation. Levy et al. (2023) use BM25 similar-

1Code available here: https://github.com/webis-de/
priming-strategies-for-stance-classification

ity to sample diverse instances for semantic pars-
ing, outperforming a sampling of similar instances.
We consider prepending instances that are similar
to the input instance to the instructions as prim-
ing. Instead of using vanilla similarity measures,
we propose a contrastive-learning-based similar-
ity measure to retrieve few-shot instances that are
motivated by priming theory.

Research on priming first investigated how expo-
sure to certain stimuli influences subsequent behav-
ior or cognition. Earlier studies show that people
more effectively recognize a string as a word after
being exposed to semantically similar ones (Meyer
and Schvaneveldt, 1971), known as semantic prim-
ing. In political discourse, the focused coverage
of topics associated with a candidate in the news
makes voters more likely to vote for them in elec-
tions. In contrast, affective priming utilizes the
(positive or negative) tone in which messages are
conveyed to shape the attitude towards a topic
(Sheafer, 2007; Kuehne et al., 2011). Following
these ideas, we contrast two priming strategies that
exploit semantic and stance similarity, respectively,
between the training and the target instances.

Studies show that the text generated by LLMs
can also be steered by priming. Misra et al. (2020)
find evidence that BERT is more likely to correctly
predict a masked target word in a sentence once
the sentence is prepended with a semantically simi-
lar prime. LLMs also adapt to the structure of the
prompt and generate text with similar syntax of
an input prime (Prasad et al., 2019; Jumelet et al.,
2024). While LLMs have been shown to be steered
by semantic and syntactic priming, their sensitivity
to positive and negative sentiment (affective prim-
ing) has not yet been explored.

Stance classification is the task of identifying the
polarity of an argument towards a topic among a
set of labels, such as pro or con (Somasundaran and
Wiebe, 2009; Reuver et al., 2024). Researchers pro-
pose approaches that integrate the context of the
target instance by learning topic representations
(Augenstein et al., 2016; Wei and Mao, 2019) or
retrieving related knowledge to the instance from
a knowledge graph (Liu et al., 2021). In contrast
to these approaches, our work shows that train-
ing instances with similar stances are helpful for
prompt-based stance classification.

Few-shot stance classification aims at settings
where only few training data is available (Allaway
and McKeown, 2020). Prompt-based approaches
either inject topic knowledge (Beck et al., 2023)
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Figure 1: Comparison of the three priming strategies (affective-priming, semantic-priming, and distinct-k).
The representation focuses either on stance or semantics. Sampling picks few-shots either by similarity or by
diversity. Prompting combines the (here, four) few-shots with the target instance (shown in red) to classify.

or use a stance label representation (Jiang et al.,
2022) in the prompt. Research on few-shots in
stance classification is limited to selecting diverse
instances. Arakelyan et al. (2023) proposed a di-
versification approach that outperforms the state
of the art on several stance classification datasets.
Schiller et al. (2024) analyze the effect of increas-
ing the count of topics in the training set against
increasing the size of samples per topic. Their ex-
periments illustrate that, for small LLMs such as
Ernie 2.0 (Sun et al., 2020), diversifying the train-
ing set in terms of topics improves performance on
unseen topics. In contrast to diversification-based
approaches, our study suggests that stance-similar
instances are most effective for prompting certain
LLMs (e.g., Vicuna-7b).

3 Approach

As discussed in the introduction, priming utilizes
existing associations between a pair of concepts,
called the prime and the target. It rests on invoking
an effect on the target by mentioning the prime.
Our priming approach to stance classification treats

a test instance as a target and retrieves k semanti-
cally similar or stance-similar instances as training
instances. The approach employs prompt-based
learning to prime an LLM with the retrieved k few-
shots to predict the stance of the target. In the
following, we start by describing our prompt-based
learning methods, which we employ for stance clas-
sification. Then, we present our priming strategies.

3.1 Prompt-based Learning
We adopt two prompt-based learning methods for
language models: prompting and instruction fine-
tuning. Both methods use k ≥ 1 training instances
in a few-shot manner. Each instance contains a
topic, an argument, and a stance. We rely on greedy
decoding in both methods to let an LLM complete
the prompt with the most probable token, which is
the stance label. We use the following prompt to
describe the stance classification task (see Table 2
in the Appendix for the prompt template):

“Classify the stance of the following argument
on the given topic into: Pro or Con.”2

2For VAST, we add the label Neutral.
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Prompting Here, we simply append the learning
instances to the prompt without any fine-tuning.
We use this method for four large language models
(LLMs): Mistral-7b-instruct (Jiang et al., 2023),
Alpaca-7b (Taori et al., 2023), Vicuna-7b (Chiang
et al., 2023), and Llama2-7b (Touvron et al., 2023).

See Table 2 again for the format of the training
instances. In case the training instances exceed the
allowed input length of an LLM, we cut the last
part of each training instance.

Instruction Fine-tuning While prompting is ef-
ficient and easy to employ since no training is re-
quired, instruction fine-tuning pushes the use of the
prompt further in that the language model is fine-
tuned on instruction data. Following this method,
we fine-tune Alpaca-7b3 (Taori et al., 2023) and
Mistral-instruct-7b (Jiang et al., 2023) using LoRa
(Hu et al., 2022) on the k instances with an in-
struction prompt. The topic and argument are then
given in the input section of the prompt. For fine-
tuning both models, we used grid-search to find the
best hyperparameters on the validation sets of the
respective dataset, which we will introduce in Sec-
tion 4. Full hyperparameters of both models can be
found in Table 7 in the Appendix. We fine-tune the
models in two steps. First, we fine-tune the models
on all the training data of each dataset using the
aforementioned prompt without few-shots. Second,
we fine-tune the models with the aforementioned
prompt on the few-shots sampled by the priming
strategies from the training set.

3.2 Priming Strategies
In the following, we introduce two priming strate-
gies that exploit stance similarity and semantic sim-
ilarity between a target instance and the training
instances. Afterward, we describe baseline priming
strategies that are tailored to contrast the priming
strategies and to analyze the strengths and weak-
nesses of all strategies: distinct-k and random.
Our hypothesis is that training instances that are
similar to the target instance in terms of semantics
or stance are more effective than diverse or random
training instances. Figure 1 illustrates how each
of the three approaches represents, samples, and
prompts instances.

Affective priming Prompting an LLM with ar-
guments that hold similar stances to the target in-
stance provides the most consistent stimulus to

3We use the following Alpaca model on HuggingFace:
https://huggingface.co/wxjiao/alpaca-7b

it, inducing bias in line with the original idea of
priming. To this end, we train a contrastive learn-
ing embedding that captures the stance similar-
ity between the instances on the training set. For
training this embedding, we use SBERT (Reimers
and Gurevych, 2020) and use argument pairs on
the same topic with the same stance as positive
instances. Argument pairs on the same topic with
different stances are provided as negative instances.

For each instance, we concatenate the topic and
argument, separated by [SEP]. Among the pos-
sible models for SBERT4, we use the standard
model all-mpnet-base-v2. The priming strategy
then returns the k most stance-similar training in-
stances to a given test instance in terms of cosine
similarity. We make sure that this priming strategy
retrieves one instance per topic to maximize the
learning effect.

Semantic Priming This priming strategy as-
sumes that the instances most semantically similar
to a test instance should be chosen to prime the
LLM. Accordingly, we retrieve the most seman-
tically similar training instances for each test in-
stance. The similarity is calculated by embedding a
pair of training and test instances using the original
SBERT embeddings and calculating their cosine
similarity. Similar to our affective priming strategy,
we use the standard model all-mpnet-base-v2
among the available models for SBERT. In con-
trast to affective-priming, we select semanti-
cally similar instances while maintaining a bal-
anced stance distribution of the selected set.

Distinct-k This baseline priming strategy as-
sumes that a diverse selection of instances should
be chosen to prime the LLM. The rationale behind
this strategy is that since the training set is lim-
ited in size, it might not contain similar instances
for some target instances. Following this idea, we
cluster the instances in the training set into k clus-
ters. Then, we take the top 10 nearest arguments
to each cluster centroid as candidates according to
Euclidean distance.5 This allows us to ensure a bal-
anced stance distribution in the chosen instances.
To cluster the arguments, we first embed them with
SBERT and then apply agglomerative clustering
with Ward linkage and Euclidean distance. During
training, we sample one instance from each of the
cluster candidates.

4SBERT, https://www.sbert.net/
5For VAST, we took the top 50 instances since the class

distribution in VAST is skewed (See Table 3).
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Random To assess the impact of priming, we
compare all strategies to random sampling, which
takes a different random sample of size k from the
training as few-shots for each test instance.

4 Experiments

The proposed priming strategies stimulate large lan-
guage models to tackle stance classification using
semantic and stance similarity. In the following
experiments, we compare the priming strategies on
different stance classification datasets.

4.1 Data
For evaluation, we require data with sufficient and
representative coverage of topics to assess the ro-
bustness of our approach on unseen topics. Hence,
we choose the following datasets:

IBMSC This dataset contains 2,394 arguments
that are labeled as pro or con with respect to 55 con-
troversial topics (Bar-Haim et al., 2017). The
dataset is split into a training set and a test set
that covers 25 topics and 30 topics, respectively.
The distribution of the stance labels in the test set is
almost balanced, with 48% of the arguments being
con and 52% arguments being pro.

VAST This dataset contains 15,956 comments
labeled as pro, con, or neutral with respect to
5,630 topics (Allaway and McKeown, 2020). We
choose the VAST zero-shot setting, which ensures
a disjoint topic selection between the training and
test sets.

Perspectrum This dataset contains 11,822
claims on 907 topics that have been posted on the
debate portal debate.org (Chen et al., 2019). Sim-
ilar to IBMSC, the claims are labeled with pro or
con with respect to the topic, and mostly have a
balanced distribution. Details of the splits for the
three datasets can be found in Table 3.

4.2 Baselines
To contrast few-shot prompting and instruction fine-
tuning with standard fine-tuning, we further com-
pare to the majority class found in the training set,
and we fine-tune DeBERTa (He et al., 2020) on the
training set to predict the stance of the argument.
For the latter, we concatenate the argument and
the topic and provide them as input for training
(hyperparameters can be found in Table 4 in the
Appendix). Moreover, we report the performance
of several state-of-the-art approaches from related

work on the datasets as available (Allaway and
McKeown, 2020; Barrow et al., 2021; Arakelyan
et al., 2023; Hanley and Durumeric, 2023; Zhang
et al., 2025).

Finally, to contrast the few-shot approaches,
we fine-tune Alpaca-7b and Mistral-7b-instruct
on all training data. We combine all four mod-
els considered for prompting and the two mod-
els considered for instruction fine-tuning with all
four prompting strategies (random, distinct-k,
semantic-priming, and affective-priming).
We compare the affective-priming strategy
against a baseline (Stance-similarity) that uses
the majority label of the k most similar training
instances to the target instance as returned by
affective-priming. We take 16 instances for
IBMSC and Perspectrum, and 12 for VAST.6

4.3 Results

Table 1 lists the results of the experiment for the
prompting and instruction fine-tuning approaches.
The performance in all experiments is averaged
over five seeds (including the follow-up analyses
discussed below). At the bottom of the table is the
performance of Alpaca-7b and Mistral-7b-instruct
after fine-tuning them on the training set.

The results show that fine-tuning Mistral-7b-
instruct on all training data yields the best classi-
fication performance, outperforming other models
on this task. This shows the substantial impact of
instruction fine-tuning on stance classification. In
most cases, the priming strategies show consistent
enhancement over the baseline priming strategies
in prompting, which we discuss first.

The affective-priming strategy outperforms
other priming strategies across all models on
IBMSC and VAST, except for Mistral-7b-instruct.
The performance of affective-priming is also
higher than that of Stance-similarity in all
cases (except Mistral-7b-instruct and Vicuna-7b
on VAST). This indicates the advantages of us-
ing stance-similar instances to prime LLMs com-
pared to relying solely on contrastive-learning sim-
ilarity measures in few-shot classification. The
performance of Mistral-7b-instruct is higher when
prompted with diverse instances. In contrast, a con-
sistently substantial improvement can be observed
on VAST, where Llama2-7b and Alpaca-7b out-
perform the random priming strategy with 0.261

6Notice that we use for VAST multiples of 3, since it is
annotated with three labels, which allows us to maintain a
balanced stance distribution.
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IBMSC VAST Perspectrum

Approach Strategy Pro Con F1 Pro Con Neu F1 Pro Con F1

Fine-tuning Majority .681 0 .341 0 0 .525 .175 .693 0 .350
DeBERTa .717 .681 .699 .665 .679 .903 .749 .830 .809 .819
Allaway and McKeown (2020) – – – – – – .670 – – –
Barrow et al. (2021) – – .834 – – – – – – –
Arakelyan et al. (2023) – – .862 – – – .543 – – .789
Hanley and Durumeric (2023) – – – .695 .711 .905 .771 – – –
Zhang et al. (2025) – – – .770 .794 – .825 – – –

Contrastive Learning Stance-similarity .617 .569 .593 .544 .505 .879 .643 .770 .744 .757

Prompting Llama2-7b random .741 .670 .705 .514 .403 .301 .409 .733 .746 .740
distinct-k .728 .681 .705 .499 .415 .259 .391 .755 .758 .756
semantic-priming .763 .535 .649 .500 .404 .173 .359 .783 .732 .757
affective-priming .704 .770 .737* .649 .539 .852 .670* .784 .774 .779*

Alpaca-7b random .686 .768 .727 .538 .542 .128 .393 .752 .799 .775
distinct-k .701 .744 .722 .547 .552 .055 .385 .758 .800 .780
semantic-priming .732 .733 .733 .532 .537 .122 .397 .800 .815 .808*

affective-priming .737 .739 .738 .612 .681 .836 .710* .749 .797 .770

Mistral-7b-instruct random .805 .837 .821 .556 .537 .605 .566 .826 .836 .831
distinct-k .863 .871 .867* .563 .553 .615 .577 .849 .840 .845
semantic-priming .856 .857 .857* .514 .522 .465 .501 .839 .833 .836
affective-priming .858 .866 .862* .529 .54 .639 .570 .844 .841 .843

Vicuna-7b random .788 .762 .775 .545 .483 .329 .453 .812 .807 .809
distinct-k .813 .746 .779 .536 .477 .389 .467 .818 .808 .813
semantic-priming .803 .692 .747 .537 .498 .275 .437 .807 .774 .790
affective-priming .833 .811 .822* .560 .565 .564 .563* .818 .811 .815

Instruction Alpaca-7b random .820 .801 .810 .581 .599 .779 .653 .842 .856 .849
fine-tuning distinct-k .807 .817 .812 .481 .648 .785 .638 .829 .849 .839

semantic-priming .824 .810 .817 .487 .640 .771 .633 .848 .860 .854
affective-priming .758 .701 .730 .529 .676 .820 .675 .853 .830 .842

Mistral-7b-instruct random .920 .908 .914 .539 .558 .642 .641 .896 .882 .889
distinct-k .901 .940 .902 .568 .630 .823 .674 .913 .902 .908
semantic-priming .928 .920 .924 .579 .603 .798 .660 .907 .896 .902
affective-priming .912 .910 .911 .638 .655 .885 .726 .890 .904 .897

Alpaca-7b (all training) .796 .817 .806 .569 .636 .790 .665 .830 .849 .839
Mistral-7b-instruct (all training) .911 .927 .919 .643 .685 .835 .720 .941 .932 .936

Table 1: Accuracy and macro F1-score of our prompting and instruction fine-tuned approaches with each priming
strategy on IBMSC, Perspectrum, and VAST in comparison to the fine-tuned approaches. “–” indicates that the
corresponding entry is not reported. Bold values indicate the best effectiveness in the few-shot settings. Significant
enhancements relative to random sampling with a p-value less or equal to 0.01 are denoted by an asterisk (*).

and 0.317, respectively. This substantial improve-
ment raises the question of what type of priming
instances are actually chosen. Therefore, we ana-
lyzed the instances in the test set of VAST that are
labeled correctly with Alpaca-7b when combined
with affective-priming and wrongly when com-
bined with the other priming strategies. We ob-
serve that about 91% of these instances are neu-
tral instances for which the affective-priming
strategy selected 97% neutral priming training in-
stances. This suggests the substantial impact of
consistency between the stance of the training in-
stances and the test instance in prompting.

On Perspectrum, affective-priming yields

the best performance across the priming strate-
gies for Llama2-7b and Vicuna-7b. As with the
other datasets, Mistral-7b-instruct is most effec-
tive when combined with distinct-k, slightly
beating affective-priming (0.002 higher). How-
ever, affective-priming outperforms both
semantic-priming and random sampling.

For instruction fine-tuning, we can observe that
semantic-priming is the most effective among
the priming strategies on IBMSC. Using this
strategy with Alpaca-7b and Mistral-7b-instruct
yields better performance than fine-tuning them
on the training set of IBMSC. On the other
hand, affective-priming outperforms random
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Figure 2: Macro F1-score of Mistral-7b-instruct per priming strategy (semantic-priming, affective-priming,
distinct-k, and random) over the few-shots k for the three datasets: (a) IBMSC, (b) VAST, and (c) Perspectrum.

for Alpaca-7b and Mistral-7b-instruct on VAST
with an enhancement of 0.022 and 0.085, respec-
tively. The performance of the semantic-priming
strategy exceeds the performance of random on Per-
spectrum with a difference of 0.005 to 0.013 for
Alpaca-7b and Mistral-7b, respectively. By compar-
ing these results to those of the prompting method,
we observe that priming instances are less effective
than training instances in the standard instruction
fine-tuning learning method. Hence, we can con-
clude that our priming strategies are effective when
applied to prompting approaches.

5 Analysis

To further understand the priming strategies, we
analyze the performance of the priming strate-
gies for the most effective model in prompt-
ing, that is, Mistral-7b-instruct. Figure 2 shows
its performance with the four strategies for a
range of k values on the three datasets. As
seen, affective-priming converges to higher
performance at k = 8 few-shots for IBMSC
and Perspectrum and at k = 12 for VAST. This
might indicate that affective-priming is most
effective when the stance of the test instance
is repeated and consistent in the training in-
stances. In contrast, semantic-priming outper-
forms affective-priming on all datasets for k ∈
{2, 3, 4, 6} and saturates afterward, suggesting that,
for few instances, semantic associations between
the training and test instances are more effective.

Our experiments indicate that the priming
strategies consistently enhance the performance
of prompting methods on IBMSC and VAST.
Still, they perform moderately on Perspec-
trum compared to diversification and random
on all models except Llama2-7b. We can ob-
serve that affective-priming results in signifi-
cantly better performance on IBMSC and VAST.

On Perspectrum, however, the performance of
affective-priming varies across models and is
even subpar to random for Alpaca-7b. This raises
the question of which properties of Perspectrum re-
sult in this varied performance and to which extent
the priming effect is observable on this dataset.

As a first inquiry, we investigated the distribution
of the similarities between the instances and tar-
get instances sampled with affective-priming
in Perspectrum for k = 16. We observed that the
sampled priming instances are very similar to the
target instances, with a minimum value of 0.87, a
mean of 0.99, and a maximum of 1. In compari-
son, the distribution of the similarity distribution
for VAST has a minimum value of 0.44, a mean
value of 0.79, and a maximum of 0.98.7

Since sampling instances with lower similarity
results in better performance on VAST, we inves-
tigate whether sampling with lower similarities
might result in better performance on Perspectrum.
For this goal, we rerun the prompting experiments
on Perspectrum while limiting the similarity be-
tween the prime and the target instance with a
maximum threshold for affective-priming and
semantic-priming. We choose thresholds that
constitute increasing 10% percentiles of the sim-
ilarity distribution for affective-priming and
semantic-priming.

Figure 3 shows the performance of the four mod-
els in terms of macro F1-score after limiting the
similarity to the selected percentiles. For example,
a percentile with a value of 90 means that only the
training instances whose similarity score to the tar-
get instances among the 90% least similar can be
selected to prime the model. We also plot the per-
formance of distinct-k and random to provide a

7The distribution of the similarity distribution for IBMSC
has a minimum value of 0.40, a mean value of 0.81, and a
maximum of 0.99.
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Figure 3: Macro F1-score of Llama2-7b, Alpaca-7b, Mistral-7b-instruct, and Vicuna-7b on Perspectrum with
limiting the sampled instances with increasing percentile thresholds. A percentile indicates a maximum similarity
threshold applied only to affective-priming and semantic-priming. A percentile of 90 means that we only
sample the 90% least similar with the priming strategies.

basis to compare the priming strategy.
The figure shows that the higher the stance simi-

larity of the prime to the target, the better the per-
formance of the models. However, this increasing
performance depends largely on the model. For ex-
ample, by taking the first 10% instances to prompt
Llama2-7b with affective-priming, which are
the least stance-stance similar, we achieve an
F1-score of 0.648. In comparison, Llama2-7b
achieves an F1-score of 0.784 when sampling from
the 90% least stance-similar instances. A sim-
ilar but less steep increase can be observed for
semantic-priming where Llama2-7b achieves an
F1-score of 0.739 at the percentile 10 and an F1-
score of 0.764 at the percentile 90. We also ob-
serve a small drop (around 0.005 points) in the
performance for both priming strategies from the
percentile 90 to the percentile 100. This might indi-
cate that instances that are very similar to the target
instances are not the best for priming the model.

According to this analysis, the effect of
affective-priming on Vicuna-7b and Mistral-
7b-instruct is lower than Llama2-7b but is still a
substantial increase. For example, the performance
of Vicuna-7b increases from 0.783 at the percentile
10 to an F1-score of 0.815 when considering all the
training instances (percentile 100). Both Vicuna-7b
and Mistral-7b-instruct show a drop in performance
at higher percentiles (the percentile 90 for Vicuna-
7b and 100 for Mistral-7b-instruct).

This analysis corroborates the observation that
certain large language models can be steered by
affective-priming. It also shows that the ef-
fect of affective-priming largely depends on
the model. We observe that taking highly stance-
similar instances to the target instances results in
some cases in subpar performance on Perspectrum.
This might explain the moderate performance of
the priming strategies on Perspectrum compared to

IBMSC and VAST.

6 Discussion

This section discusses possible reasons for the var-
ied performance of affective-priming across
models and gives practical recommendations for
selecting few-shots for stance classification.

Among the four models, our experiments demon-
strate that Llama2-7b and Vicuna-7b are most sus-
ceptible to affective-priming across datasets in
the prompting setup. Vicuna-7b is fine-tuned from
Llama2-7b on ChatGPT conversations. Since both
models are susceptible to affective-priming,
the datasets on which Llama2-7b was pre-trained
might be one cause for the models’ susceptibility to
affective priming. Datasets that contain opin-
ionated information, such as news or online forums,
might include certain associations that are triggered
by the few-shots in the prompt.

Another possible reason for the difference in
performance of affective priming across the
models is the models’ architecture. Possible design
choices that can affect the sensitivity to affective
priming are the attention mechanism or the activa-
tion function. Whilst our experiments are compre-
hensive in terms of the studied model architectures,
a systematic study of the effect of the model ele-
ments on the sensitivity to priming is beyond the
scope of this paper.

Finally, the model developer’s application of
alignment methods such as Reinforcement Learn-
ing from Human Feedback (RLHF) or other fine-
tuning steps might make the model more or less
susceptible to priming. While none of the four
models are aligned using RLHF, all models except
Llama2-7b are instruction fine-tuned. The data or
method used for fine-tuning the three instruction
fine-tuned models might be one source for the var-
ied performance of the models.
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Practical Recommendations Our experiments
illustrate the merit of selecting instances that are
stance-similar to the input instance for few-shot
stance classification. In addition, our experiments
demonstrate the benefit of diversifying the training
instances in terms of topic, which resonates with
the work of Arakelyan et al. (2023); Schiller et al.
(2024). A combination of both techniques can be
realized by first sampling an initial training set on
diverse topics and then selecting from this sample
stance-similar instances for an input instance. Such
a careful selection of few-shots requires datasets
that are diverse and representative in terms of topic
and stance. A first investigation of the topic distri-
bution of existing argument corpora can be found
in the work of Ajjour et al. (2023).

7 Conclusion

In this paper, we have investigated what makes a
set of training instances effective in few-shot stance
classification. By modeling the task in an instance-
specific way, we have proposed two alternative
priming strategies: one that retrieves semantically
similar training instances to the target instance and
one that retrieves instances with a similar stance
to it. We have utilized the training instances as
few-shots both in a prompting approach and by
instruction fine-tuning the LLMs.

Our experiments on three datasets demonstrate
the effectiveness of the priming strategies when
compared to choosing random or diverse instances
for two models, Llama2-7b and Vicuna-7b. They
also suggest that the priming effect is larger in
prompting than in instruction fine-tuning. In ad-
dition to advancing the state of the art on stance
classification, our work gives indications on the ex-
tent to which LLMs can be affected by priming. It
also provides evidence that consistency among the
training instances and between the training and the
test instance is an important property of effective
few-shots in prompting LLMs.

Future research may investigate more informed
ways to sample effective priming instances (e.g., us-
ing meta-learning). While retrieval strategies have
yielded promising effectiveness in our experiments,
their success is bound to the availability of compre-
hensive training datasets. In case of data scarcity
(indicated by the low similarity of the retrieved in-
stances), generating priming instances for an input
instance is a fruitful research direction to follow.

8 Limitations

In this paper, we have explored priming strategies
for few-shot stance classification that take the se-
mantic similarity and stance similarity between
arguments into account. One of the limitations of
the study is that we fixed the order of the instances
for all priming strategies. In our experiments, we
sorted the sampled instances alphabetically by their
topics in all settings. This factored out the effect
of the order of the instances on the effectiveness of
a model. The gained comparability comes at the
cost of guiding the order of the instances in a more
supervised way.

Another limitation of our priming strategies is
the incurred cost of computation for the instruc-
tion fine-tuning approaches. For example, the
strategy semantic-priming samples for each ar-
gument those instances that are most semantically
similar and then fine-tunes Alpaca-7b or Mistral-
7b-instruct on this subset. This increases the com-
putational complexity of the approach, since fine-
tuning for each test argument takes notable time.
Running Alpaca-7b or Mistral-7b-instruct on the
VAST dataset took 16 GPU hours on NVIDIA
A100. Nevertheless, we expect future approaches
to these problems to be more efficient by speeding
up the optimization process or applying techniques
such as continual learning.
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9 Appendix

Hardware We ran our experiments on NVIDIA
A100 with 80 GB. The instance has eight 8-core
CPU, each of which has access to 32 GB RAM.

Implementation Details We used the following
models on Hugging Face in our experiments:

• Llama-2-7b-hf

• Alpaca-7b

• Mistral-7b-instruct-v0.2

• Vicuna-7b-v1.5

For optimizing the models, we used grid-search
on the hyperparameters in Table 6. The hyperpa-
rameter values we used to optimize DeBERTa are
listed in Table 5. As an optimizer for our models
we always used AdamW.

Ethical Considerations Our research illustrates
that systematically using instances with a certain
stance in the prompt entices certain models to out-
put content with a consistent stance. We do not
see any ethical consequences of our research, given
that we simply explored the behavior of existing
LLMs under such priming. However, we stress
that priming can be used maliciously by injecting
polarized content in the prompt to force the model
to generate a certain output. In particular, we point
to two aspects here:

First, while safeguards might suppress direct ma-
licious prompts, priming can be used to steer the
model to invoke the generation of certain outputs
in an implicit way. The consequences of priming
might be more decisive for high-stakes tasks such
as content moderation, where certain content is fil-
tered. Hence, detecting and countering malicious
usages of priming is an important research direc-
tion in the area of LLM safety.

And second, malicious usages can also inject as-
sociated priming instances and targets in the train-
ing data to increase the chances of certain associa-
tions later by the LLM. Linking priming instances
and targets as preparation for priming allows even
higher control over the output of the model. De-
tecting and filtering such injected associations is
an open research challenge, given the sheer size of
data that is used for pre-training LLMs.

22

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/wxjiao/alpaca-7b
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/lmsys/vicuna-7b-v1.5


Given are the following arguments
On the topic {training topic}, the argument {training argument} has the stance
{training stance}.
Classify the stance of the following argument on the given topic into Pro or Con:
On the topic {test topic}, the argument{test argument} has the stance

Table 2: The template for the few-shot stance classification using prompt-based methods. The second line stands for
the few-shot instances and is populated with the sampled instances only in prompting. Notice that for Alpaca-7b,
we change how instances are formatted to adhere to its template.

Dataset Split Instances Topics Pro Con Neutral

VAST Training 13,477 4,641 5,327 5,595 2,555
Validation 1,019 389 321 350 348
Test 1,460 600 451 490 519

IBMSC Training 604 10 340 264 -
Validation 435 15 285 150 -
Test 1,355 30 700 655 -

Perspectrum Training 6,978 541 3,599 3,379 -
Validation 2,071 139 1,047 1,024 -
Test 2,773 227 1,471 1,302 -

Table 3: Distribution of instances across VAST, IBMSC, and Perspectrum datasets.

Hyperparameter IBMSC VAST Perspectrum

Batch size 8 64 8
Epochs 1 15 15
Learning rate 10−4 10−5 10−5

Table 4: Hyperparameters for DeBERTa for the datasets: IBMSC, VAST, and Perspectrum.

Hyperparameter Value

Batch size [4, 8, 16, 32, 64]
Learning rate [10−4, 10−5, 3× 10−5, 10−6, 10−7]

Table 5: The value range for each hyperparameter used to optimize DeBERTa.
candidates.

Hyperparameter Value

Batch size [4, 8, 16, 32, 64]
Learning rate [10−3, 10−4, 3× 10−4, 10−5, 2× 10−5, 10−6, 10−7]
Early stopping threshold [10−1, 2× 10−1, 3× 10−2, 3× 10−4, 10−5, 2× 10−5, 10−6, 3× 10−7]

Table 6: The value range for each hyperparameter used to optimize Alpaca-7b and Mistral-7b-instruct.

IBMSC VAST Perspectrum
Hyperparameter Alpaca Mistral Alpaca Mistral Alpaca Mistral

Batch size 4 8 64 32 4 32
Epochs 140 50 50 110 110 110
Learning rate 3× 10−4 2× 10−4 5× 10−5 2× 10−4 3× 10−4 2× 10−4

Early stopping 1 1 1 1 1 1
Early stopping threshold 0 5× 10−2 10−2 3× 10−7 3× 10−7 10−6

Warmup steps 100 100 100 100 100 100
Cutoff len 256 8192 2048 8192 2048 8192
Lora rank 8 8 8 8 8 8
Lora dropout 0.05 0.05 0.05 0.05 0.05 0.05
Lora alpha 16 16 16 16 16 16

Table 7: Hyperparameters for Alpaca-7b and Mistral-7b-instruct models across the three datasets.
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