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Abstract

In the study of argumentation, the schemes in-
troduced by Walton et al. (2008) represent a
significant advancement in understanding and
analyzing the structure and function of argu-
ments. Walton’s framework is particularly valu-
able for computational reasoning, as it facil-
itates the identification of argument patterns
and the reconstruction of enthymemes. De-
spite its practical utility, automatically iden-
tifying these schemes remains a challenging
problem. To aid human annotators, Visser et al.
(2021) developed a decision tree for scheme
classification. Building on this foundation, we
propose a means-end approach to argument
scheme classification that systematically lever-
ages expert knowledge—encoded in a decision
tree—to guide language models through a com-
plex classification task. We assess the effective-
ness of the means-end approach by conducting
a comprehensive comparison with a standard
multi-class approach across two datasets, ap-
plying both prompting and supervised learning
methods to each approach. Our results indi-
cate that the means-end approach, when com-
bined with supervised learning, achieves scores
only slightly lower than those of the multi-class
classification approach. At the same time, the
means-end approach enhances explainability
by identifying the specific steps in the decision
tree that pose the greatest challenges for each
scheme—offering valuable insights for refining
the overall means-end classification process.

1 Introduction

Argumentation is a crucial process in shaping our
understanding of the world and fostering critical
thinking. It plays a vital role in a range of contexts,
including debate, decision-making, and the pro-
cess of informing or changing beliefs. To classify
common patterns of argumentation, the schemes
developed by Walton et al. (2008) are of particu-
lar interest, as these schemes are extremely versa-
tile and allow for a range of use cases. They can

identify reasoning patterns within specific domains,
such as legal reasoning (Verheij, 2003), help in the
selection of argumentation strategies (Wachsmuth
et al., 2018), and also uncover patterns in reason-
ing synthesis applications (Baff et al., 2019). In
addition, the schemes can be used to reconstruct
missing parts of arguments (Feng and Hirst, 2011),
to train argumentation skills, or to enhance existing
debate systems such as those described by Rak-
shit et al. (2017); Le et al. (2018); Slonim et al.
(2021). Table 1 illustrates an example of such a
scheme, namely the ‘Cause to Effect’ scheme.1

Due to their fine nuances, the classification of Wal-
ton schemes is very challenging, even for people
with a background in linguistics (Macagno et al.,
2017). In addition, in a real life argumentation sce-
nario, many parts of the schemes are only hinted
and not explicitly mentioned (Dumani et al., 2021).
To help people classify arguments based on Walton
schemes, Visser et al. (2021) has developed the
Argument Scheme Key (ASK) - a decision tree that
guides users step by step through the annotation
process. This raises the question of whether such a
decision tree approach could be applied to language
models to improve argument classification.

In this paper, we explore how the ASK deci-
sion tree can enhance the effectiveness of argument
scheme classification. We refer to this approach
as means-end classification. Rather than requiring
the model to perform the complex task of scheme
detection in a single step, the means-end approach
decomposes the process into a guided sequence of
simpler subtasks. At each stage, the model exe-
cutes a straightforward task, such as identifying the
presence of a specific argument property. In addi-
tion to potentially improving classification scores,
this approach also boosts explainability: it enables
the analysis of each decision made during the pro-

1In Walton’s compendium (Walton et al., 2008), scheme
names frequently begin with the prefix ‘Argument from’. For
brevity, we omit this prefix throughout this work.
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Cause to Effect

Definition

Premise 1 Generally, if A occurs, then B will (might) occur.
Premise 2 In this case, A occurs (might occur).
Conclusion Therefore, in this case, B will (might) occur.

Examples

Dataset EthiX

Example 1 If entropy leads to universal randomness and randomness is the lack of all deterministic forces, then at
least one part of a wholly deterministic universe is false, meaning there must be something else
influencing the universe outside of determinism.

Example 2 The sensations felt when consuming marijuana and alcohol are very different. As such, they are not
interchangeable, meaning that people may use both.

Dataset USTV

Example 1 USA is in deep trouble. These countries, especially China, are giving incentives.
Example 2 NRA is protecting the Second Amendment. NRA are very, very good people. TRUMP is very proud of

the endorsement of the NRA.

Table 1: Definition of the Cause to Effect’ scheme, accompanied by examples from the EthiX (Bezou-Vrakatseli
et al., 2024) and USTV (Visser et al., 2021) datasets. The definition used follows the version in Bezou-Vrakatseli
et al., which slightly adapts the original formulation by Walton et al. (2008). As shown, most of the arguments are
enthymemes, lacking a direct correspondence to the scheme definitions, and the two datasets display distinct styles
of argumentation.

cess, making it possible to identify where and why
the model’s classification succeeds or fails. The
contributions of this paper are:

(1) We conduct a comprehensive evaluation of
argument scheme classification by comparing the
traditional multi-class classification approach with
the means-end approach on two separate datasets.
Each approach is evaluated using both prompting-
based and supervised learning methods. Our results
highlight the key strengths and weaknesses of each
approach and offer insights into how the means-
end approach can be effectively applied to scheme
classification tasks.

(2) We assess the effectiveness of ASK decision
tree nodes using both prompting-based and super-
vised learning models. This novel analysis yields
valuable insights into the utility—and limitations—
of individual nodes in argument scheme classifi-
cation. It also reveals which schemes can be reli-
ably identified and to what extent. These findings
offer a deeper understanding of the classification
process, surpassing the explanatory power of tradi-
tional multi-class classification approaches.

2 Related Work

This section provides an overview of the diverse ap-
plications and methodological approaches to argu-
ment schemes within computational argumentation.

We explore the classification and analysis of these
schemes, their incorporation into datasets, and the
challenges in their annotation and automated gener-
ation. The concept of argument schemes suggests
that arguments can be organized based on diverse
characteristics, reflecting commonly used patterns
of argumentative reasoning (Macagno and Walton,
2015). This idea has ancient roots, tracing back to
the works of Aristotle, as discussed in (Macagno
et al., 2017). One of the most debated issues in this
context is how such schemes should be appropri-
ately classified, leading to the development of mul-
tiple approaches. The dialectical approach, high-
lighted by van Eemeren and Grootendorst (2003),
focuses on the abstract representation of arguments
within debates, while Wagemans (2016) organizes
arguments into three main distinctions, culminat-
ing in the periodic table of arguments. Other ap-
proaches, such as those by Kienpointner (1992)
and Grennan (1997), aimed to identify common
argumentative features. In this tradition, Walton
schemes are empirically developed in a bottom-up
manner (Walton, 1996; Walton et al., 2008), involv-
ing the selection and analysis of arguments from
varied domains. This method has led to the docu-
mentation of over 60 primary schemes and more
than 100 sub-schemes (Walton et al., 2008). An
initial approach to grouping schemes together was
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ID Which option applies to the argument?

ID-17 A: Conclusion is about a course of action
B: Conclusion is not specifically action-oriented

ID-32 A: Argument explicitly mentions values
B: Argument is not specifically value-based

ID-47 A: Argument relies on a causal relation
B: Argument does not specifically rely on causality

Table 2: Dichotomous questions from the ASK decision
tree.

Schema: Consequences

Schema: Values

Schema: Cause to Effect

A B17

Schema: Example

47

32A B

A B

Figure 1: Trimmed ASK decision tree for classifying
four argumentation schemes. Classification starts at the
root node (ID-17), where the user selects the option
that best matches the argument under analysis. Each
response directs the user to the next relevant question,
guiding them through the tree until the correct scheme
is identified. The options for each node are listed in
Table 2. The ID number assigned to each node corre-
sponds to the original node IDs in the ASK decision
tree from Visser et al. (2021). To correctly identify a
scheme as ‘Cause to Effect’ (see Table 1 for examples),
one must answer node ID-17 with ‘B’, node ID-32 with
‘B’, and node ID-47 with ‘A’.

first proposed by Walton et al. (2008) and later
refined by Walton and Macagno (2015).

Various datasets have been created to support re-
search on Walton schemes. The Araucaria dataset,
for instance, includes arguments from various me-
dia and institutional sources (Katzav et al., 2004;
Reed, 2006; Moens et al., 2007). The dataset by
Visser et al. captures the dynamics of the 2016 pres-
idential debates (Visser et al., 2021), while the Re-
CAP dataset focuses on German education policy
(Dumani et al., 2021). Further, datasets like those
curated by Macagno (2022) and Bezou-Vrakatseli
et al. (2024) expand the scope to argumentative
tweets and ethical debates, respectively. A signifi-
cant challenge in this field is achieving high levels
of annotator agreement. Studies such as those by
Lindahl et al. (2019) have revealed inconsistencies
in annotation, underscoring the need for clearer
guidelines. The use of decision trees for scheme
annotation has been shown to significantly improve
annotator agreement (Visser et al., 2021; Macagno,
2015, 2022).

Walton schemes are used to analyze various ar-

eas, such as newspapers (Lindahl et al., 2019), elec-
tions (Hansen and Walton, 2013) or student work
(Duschl, 2007). They are also used to analyze
paralogisms in student work (Rapanta and Wal-
ton, 2016a). Automated generation of arguments
aligned with specific schemes has been explored
in works like those by Saha and Srihari (2023) and
the NLAS-multi corpus (Ruiz-Dolz et al., 2024a),
showcasing the potential for synthetic argument
generation. Several methods have been developed
to classify schemes in texts (Bezou-Vrakatseli et al.,
2024). Feng and Hirst (2011) analyze the five most
common arguments from the Araucaria dataset to
construct decision trees based on argumentative
structural and linguistic features. The approach of
Moens et al. (2007) leverages the same dataset to
detect arguments using a multinomial naive Bayes
classifier and a maximum entropy model. Song
et al. (2014) develop protocols for annotating Wal-
ton schemes and their associated critical questions.
Furthermore, Bezou-Vrakatseli et al. (2024) uti-
lizes a range of BERT-based classifiers for auto-
mated scheme classification, while Lawrence and
Reed (2016) leverages argumentation schemes to
identify argumentative structures. Similarly, Green
(2018) utilizes logic programs and schemes to mine
arguments in biomedical research articles, building
on earlier work (Green, 2015). Walton schemes are
utilized across various domains to analyze content
from newspapers, election campaigns, and educa-
tional settings, highlighting their adaptability and
relevance in real-world applications (Lindahl et al.,
2019; Hansen and Walton, 2013; Duschl, 2007;
Rapanta and Walton, 2016a).

3 Multi-Class and Means-End
Approaches

Humans often struggle with annotating argumen-
tation schemes, partly because many schemes rely
on implicit assumptions (enthymemes), and some
schemes such as consequences require multiple
steps of reasoning (Macagno and Walton, 2015).
To simplify the annotation process for schemes,
Visser et al. (2021) developed a binary decision tree
that systematically guides annotators through the
annotation task. Rather than classifying the argu-
ment directly, annotators make a series of choices
between two characteristics of the argument at each
step. For instance, one choice might involve deter-
mining whether the conclusion of the argument is
about a course of action. Each decision narrows
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down the classification path by determining the
next characteristic to be evaluated. An illustration
of this classification procedure is provided in Fig-
ure 1.

Instead of relying on a human annotator, a lan-
guage model can follow the steps outlined in the de-
cision tree—a method we refer to as the means-end
approach for argument classification. In contrast,
traditional multi-class classification presents the
model with an argument—optionally enriched with
contextual information—and requires it to select
the appropriate argumentation scheme from a pre-
defined set. The means-end approach, by contrast,
decomposes the classification task into a sequence
of smaller, more manageable decisions. At each
step, the model identifies a specific characteristic
of the argument, which then determines the sub-
sequent step in the classification sequence. This
procedure is guided by external expert knowledge
structures, such as decision trees. The approach
is inspired by the means-end analysis problem-
solving technique, in which an agent incrementally
selects and applies actions to achieve a goal, based
on an information gain heuristic (Newell and Si-
mon, 1995). Note that this approach is different
from merely breaking a problem into smaller steps;
it also encodes a specific sequence for how the clas-
sification should be performed. The correctness of
this sequence is ensured by the expert knowledge
employed.

A key advantage of the employed step-wise de-
composition is enhanced explainability: unlike the
multi-class approach, which often operates as a
black box, the means-end method allows for de-
tailed analysis of each individual decision. This
not only helps identify sources of classification
errors but also makes it easier to refine specific
steps within the classification process. Moreover,
this approach is not limited to the domain of ar-
gumentation and can be applied to other complex
classification tasks that benefit from codified expert
knowledge.

4 Experiments and Evaluation

Our experiments are designed to address two pri-
mary objectives. First, we evaluate whether the
means-end approach—guided by the ASK decision
tree—offers improved results over the traditional
multi-class classification approach for argument
scheme classification. Second, we conduct a de-
tailed analysis of the means-end approach to de-

termine which decision points are most effective
and where the classification process is most suscep-
tible to errors, all while providing a high level of
explainability.2

4.1 Dataset and Decision Tree

For argument scheme classification, we utilize two
datasets: EthiX (Bezou-Vrakatseli et al., 2024) and
the US2016G1tvWALTON dataset (referred to as
USTV) (Visser et al., 2021). The EthiX dataset
consists of 686 arguments extracted from ethical
debates on Kialo3, spanning 22 topics and covering
eight distinct argumentation schemes. The USTV
dataset includes 505 arguments in total, spanning
38 argumentation schemes. Its content is sourced
from the first head-to-head debate of the 2016 U.S.
general election and was transformed into the Argu-
ment Interchange Format (Chesñevar et al., 2006).
A key advantage of these two datasets is that the
human annotators applied the same ASK decision
tree logic from Visser et al. (2021) that we uti-
lize for the means-end classification approach. To
facilitate the classification process and ensure a suf-
ficient amount of training data, we focus on four
schemes that are included in both the EthiX and
USTV datasets. For the means-end approach, we
simplify the original ASK decision tree by retain-
ing only the three nodes necessary to differentiate
between the four considered schemes. This refine-
ment removes questions related to not-considered
schemes while preserving the consistency and in-
tegrity of the remaining ones. Although the orig-
inal annotators had to answer a greater number
of questions, those included in the reduced tree
are answered identically to the original process,
allowing for a meaningful comparison between hu-
man and machine judgment. Figure 1 presents
the modified decision tree, used in our means-end
experiments. A summary of the refined dataset,
along with key statistics, is provided in Table 3.
We split the datasets in a 70/10/20 ratio for training,
validation and testing, respectively. Minor adjust-
ments were made to ensure that each scheme was
represented in every split. For the EthiX dataset
specifically, we ensured that every combination of
scheme and topic appeared in each split. Addition-
ally, we made sure that the test set for each dataset
contained at least 11 distinct arguments for each
scheme.

2All our code is available at: https://github.com/
webis-de/Argmining-25

3https://www.kialo.com/
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Datasets

Argument Schemes EthiX USTV Σ

Name Walton-ID DT-Depth # % # % # %

Example 6 3 120 24.0 81 44.0 201 29.4
Values 19 2 118 23.6 15 8.2 133 19.5
Cause to Effect 28 3 87 17.4 48 26.1 135 19.8
Consequences 33 1 174 34.9 40 21.7 214 31.3

Σ 499 184 683

Table 3: Overview of the four schemes and their frequency in the EthiX (Bezou-Vrakatseli et al., 2024) and USTV
(Visser et al., 2021) datasets. The second column, labeled ‘Walton-ID’, shows the canonical scheme numbers as
defined by Walton et al. (2008). The ‘DT-depth’ column (Decision Tree Depth) indicates the number of decisions
required in the trimmed ASK decision tree to correctly identify each scheme (see Figure 1).

Multi-Class Means-End
EthiX USTV EthiX USTV

PR SV PR SV PR SV PR SV

Macro F1 0.63 0.72 0.44 0.44 0.44 0.68 0.33 0.38
Micro F1 0.65 0.72 0.48 0.50 0.45 0.68 0.35 0.45

Table 4: Macro and Micro F1 scores are reported for
multi-class and means-end approaches using two classi-
fication methods: few-shot prompting (PR) with GPT-
4o-mini and a supervised training approach (SV) with
BERT. Results are presented for the EthiX and USTV
datasets.

4.2 Experiments Overview

For each classification approach, we employ
two distinct methods. The first is prompt-
ing, which leverages a large language model—
specifically, GPT-4o-mini (2024-07-18) (OpenAI,
2023). Prompting enables us to provide the model
with the same natural language instructions used by
human annotators, making it particularly suitable
for executing decision trees designed for human
reasoning. The second method is supervised learn-
ing, in which we fine-tune a conventional BERT-
based classifier (Devlin et al., 2019) on the training
data. These two methods also incorporate different
model architectures. GPT-4o-mini processes text
unidirectionally, from left to right, predicting each
token based solely on the preceding tokens. In con-
trast, BERT’s bidirectional architecture allows it
to consider both the preceding and following con-
text around every token simultaneously, enabling a
holistic understanding of the text.

In the multi-class approach using prompting, the
model receives an argument along with a list of
argumentation schemes and is tasked with select-
ing the most appropriate scheme. The prompt also

includes definitions of all the schemes (for an exam-
ple, see Table 1), adapted from Bezou-Vrakatseli
et al. (2024) and based on the original formulations
in Walton et al. (2008). Similarly, the means-end
approach combined with prompting provides the
model with an argument paired with a characteriza-
tion derived from the ASK decision tree, where the
model’s task is to determine which characterization
best applies to the argument. In all prompting-
based methods, we employ a few-shot learning
strategy by including example instances. To mini-
mize randomness and encourage precise, controlled
outputs, we set the temperature to 0.2 and the top-p
value to 0.1 across all tasks. In the multi-class ap-
proach using supervised learning, a single classifier
is trained to differentiate among the four argumen-
tation schemes. In contrast, the supervised learning
means-end approach trains a separate binary clas-
sifier for each of the three nodes in the decision
tree. As a result, nodes deeper in the tree receive
fewer training examples, since each node—except
the root—handles only a subset of the full set of
arguments. Table 4 presents the macro and micro
F1 scores for both the multi-class and means-end
classification approaches. The detailed results for
the multi-class classification methods are shown in
Table 5. Table 6 reports the scores for the means-
end approach, along with the accuracy of the corre-
sponding decision tree nodes. To ensure consistent
evaluation across argument schemes, classification
approaches, and datasets, we sample 10 arguments
per scheme from each dataset. The same set of ar-
guments is used across all experiments to compute
the reported scores.

5 Discussion

Classifying arguments remains a particularly chal-
lenging task, as reflected in our results. First, we
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Multi-Class

EthiX USTV

Prompting Supervised Prompting Supervised
Scheme Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Example 1.00 0.40 0.57 0.75 0.60 0.67 0.33 0.10 0.15 0.67 0.60 0.63
Values 0.64 0.70 0.67 0.73 0.80 0.76 0.73 0.80 0.76 0.0 0.0 0.0
Cause to Effect 0.62 0.50 0.56 0.78 0.70 0.74 0.40 0.40 0.40 0.36 0.80 0.50
Consequences 0.59 1.00 0.74 0.67 0.80 0.73 0.38 0.60 0.46 0.67 0.60 0.63

Table 5: Overview of multi-class classification results for Precision (‘Pre.’), Recall (‘Rec.’), and F1 on the EthiX
and USTV datasets. ‘Prompting’ refers to the few-shot approach using the GPT-4o-mini model, while ‘Supervised’
denotes the fine-tuned BERT-based classifier.

Means-End

Prompting Supervised

DT-Nodes DT-Nodes

ID-17 ID-32 ID-47 Scheme classification ID-17 ID-32 ID-47 Scheme classification

Dataset Scheme Acc. Acc. Acc. Pre. Rec. F1 Acc Acc Acc Pre. Rec. F1

EthiX

Example 0.80 0.80 0.70 0.43 0.60 0.50 0.90 0.90 0.60 0.55 0.60 0.57
Values 0.80 0.60 0.44 0.40 0.42 0.90 0.70 0.70 0.70 0.70
Cause to Effect 1.00 0.80 0.60 0.50 0.50 0.50 1.00 0.90 0.70 0.67 0.60 0.63
Consequences 0.30 0.43 0.30 0.35 0.80 0.80 0.80 0.80

USTV

Example 0.60 0.60 0.60 0.22 0.20 0.21 1.00 1.00 0.90 0.36 0.90 0.51
Values 0.40 0.50 0.33 0.20 0.25 1.00 0.0 0.0 0.0 0.0
Cause to Effect 0.90 0.80 0.50 0.50 0.30 0.38 1.00 1.00 0.60 0.50 0.60 0.55
Consequences 0.70 0.37 0.70 0.48 0.30 1.00 0.30 0.46

Table 6: Overview of two classification method for the Means-End approach. ‘Prompting’ refers to the few-shot
prompting method using the GPT-4o-mini model, while ‘Supervised’ denotes the fine-tuned BERT-based classifier.
‘DT-Nodes’ represents the nodes in the ASK decision tree that an argument must pass through to be correctly
classified. The node IDs correspond to those listed in Table 2. The Accuracy (‘Acc.’) columns indicate the
proportion of the 10 arguments per scheme that were correctly identified at the respective decision nodes. Accuracy
is computed by tracing each argument’s correct path through the decision tree and recording the decision at each
node. The Precision (‘Pre.’), Recall (‘Rec.’), and F1 columns represent overall classification performance, with each
argument’s scheme determined by following the decision tree logic. The evaluation is conducted on the EthiX and
USTV datasets.

observe that the supervised learning method con-
sistently outperforms LLM prompting. The limi-
tations of large language models in classification
tasks stem from the nature of their pretraining,
which often does not sufficiently prepare them for
domain-specific or fine-grained distinctions with-
out additional adaptation. It is unlikely that an
LLM has encountered highly specialized tasks—
such as argument scheme classification using a
means-end approach—during its training, which
limits its effectiveness in this context. In contrast,
the supervised learning approach benefits from ex-
plicit fine-tuning on the relevant argument schemes
and datasets, resulting in substantially improved

scores. Classification scores on the EthiX dataset
are consistently higher than those on the USTV
dataset, regardless of the approach or methods used.
This disparity can be attributed to the nature of the
USTV arguments, which are especially difficult
to interpret without a clear understanding of the
specific speech context in which they were made.
In particular, the notably weak scores of the su-
pervised method on the ‘Values’ scheme in the
USTV dataset can be attributed to the extremely
limited number of training examples available for
that category. In contrast, the prompting method
achieves better results for this scheme, leveraging
the extensive pre-training of large language mod-
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els. However, due to the high complexity of the
arguments in the datasets and the small sample size
used for the comparison, these results should be
interpreted with caution.

As shown in Table 4, a comparison of the multi-
class and means-end approaches indicates that,
despite comparable overall F1 scores, the multi-
class approach achieves marginally higher results.
Nonetheless, the scores for the means-end ap-
proach remain solid, especially given the reduced
amount of training data available for nodes deeper
in the classification tree. Examining the scores for
individual schemes reveals varying results. For
the Ethix and ‘Consequences’ schemes, the super-
vised means-end approach achieves the highest F1

score among all compared configurations (Table 6).
In the same configuration, the ‘Example’ scheme
produces the lowest F1 score. A similar variation
in scheme scores is observed in the multi-class
approach (Table 5). This suggests that some ar-
gument schemes (e.g., ‘Consequences’) are easier
to classify than others. A key challenge in clas-
sification arises from the nature of the arguments
themselves: they are often highly enthymematic,
containing implicit or omitted components. In con-
trast, arguments associated with certain schemes
may be more explicit, leading to higher classifica-
tion scores.

One of the key advantages of the means-end
approach is its explainability, as illustrated in Ta-
ble 6. Here, differences appear notably at the
root node ID-17. For most schemes—except
‘Consequences’—the prompting method classifies
this node correctly. However, since this node is
intended to distinguish ‘Consequences’ from other
schemes, it is not an appropriate choice at this point.
In contrast, the supervised learning method shows
better accuracy in detecting ‘Consequences’ argu-
ments. We also observe that node ID-47 consis-
tently struggles to differentiate between the ‘Ex-
ample’ and ‘Cause to Effect’ schemes across both
prompting and supervised learning methods in both
datasets. This kind of insight underscores a key ad-
vantage of the means-end approach: when specific
decision points in the tree underperform, human
experts can intervene to refine the relevant nodes,
thereby enhancing the overall system (Visser et al.,
2021). Additionally, the means-end approach of-
fers flexibility by allowing adaptation to the granu-
larity of the classification task. If the objective is
to classify broader categories of argument schemes
rather than individual ones, the decision tree can

be truncated at a desired depth—for example, by
omitting node ID-47. In doing so, the classifica-
tion process can be adjusted dynamically without
requiring further training.

6 Conclusion

There are several compelling reasons why auto-
mated classification of Walton schemes is valu-
able. First, an automated classifier enables large-
scale analysis of argumentation patterns across di-
verse domains, such as legal reasoning, online de-
bates, and news articles. Second, once a scheme
is classified, it becomes possible to identify cor-
responding critical questions as provided by Wal-
ton et al. (2008), facilitating the detection of er-
rors in argumentation. These critical questions can
also serve as commonplace arguments (Bilu et al.,
2019). Third, schemes support enthymeme recon-
struction, the training of argumentation skills and
critical thinking (Figueras and Agerri, 2024), and
the enhancement of existing debate systems (Ra-
panta and Walton, 2016b). Reliable scheme iden-
tification poses a significant challenge for human
annotators due to the high cognitive load involved
(Bezou-Vrakatseli et al., 2024). Additionally, while
multi-class classification proves more effective for
scheme detection, the means-end approach delivers
comparable results with only a slight decrease in
scores. To this end, the means-end approach of-
fers significant advantages by providing valuable
insights into the classification process, highlighting
potential sources of error, and clearly identifying
which specific argument characteristic are incon-
sistently recognized. Our findings confirm that au-
tomatically detecting argument schemes continues
to be a challenging task. Additionally, our results
show that the supervised training approach lever-
aging BERT surpasses the prompting method in
performance across both multi-class and means-
end approaches.

For future work, several directions are promis-
ing. One avenue is to further fine-tune the decision
tree nodes, particularly those deeper in the tree that
have fewer training examples. In this context, sup-
plementary datasets—including synthetically gen-
erated arguments—may prove valuable. Another
promising direction is the exploration of alternative
datasets that feature more formal argumentation
(Saha and Srihari, 2023; Ruiz-Dolz et al., 2024a).
Hybrid methods for argument scheme classifica-
tion deserve further investigation. For example,
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the vast knowledge contained in large language
models might be used to create contextual informa-
tion that enhances a fine-tuned classifier based on
the means-end framework—thus effectively merg-
ing the advantages of prompting and supervised
learning techniques. Additionally, alternative de-
cision tree structures—such as those proposed by
Macagno (2015) and Macagno (2022)—or other
classification frameworks could be employed to fur-
ther improve classification scores within the means-
end approach.

7 Limitations

The effectiveness of the means-end approach de-
pends on the quality of the underlying decision
tree. For the approach to be practical, each node’s
task must be clearly defined, precise, and easily
interpretable. This enables annotators or language
models to make accurate decisions without rely-
ing on extensive prior knowledge. However, when
tasks are overly complex or ambiguous, the over-
all effectiveness of the approach declines. As a
result, designing an effective decision tree poses a
significant challenge, even for experts.

Ideally, a well-optimized decision tree would po-
sition nodes that classify frequently used schemes
closer to the root, reducing the expected external
path length. However, the ASK decision tree is
imbalanced. For example, identifying an argument
as the frequently used ‘Example’ scheme (see Ta-
ble 3) requires correctly answering three successive
decisions. The more decisions that must be made,
the higher the risk of misclassification. This struc-
tural imbalance is also evident in the original ASK
tree presented by Visser et al. (2021).

Both datasets largely consist of enthymemes,
containing implicit premises or conclusions. In
the EthiX dataset, arguments are drawn from Kialo
debates; however, the specific context—such as
whether an argument supports or attacks another—
is not explicitly provided. In the USTV dataset,
arguments originate from a televised debate, where
many points rely on prior context and earlier topics
that are not directly present within the arguments
themselves. In such cases, contextual understand-
ing and enthymeme reconstruction are essential
for accurate classification by both human annota-
tors and language models. This absence of explicit
context makes the classification task particularly
challenging. A markedly improved outcome is
observed when classifying arguments that strictly

follow the semi-formal Walton scheme definitions,
as demonstrated by Ruiz-Dolz et al. (2024b), with
near perfect F1 scores. Lastly, it should also be
considered that, due to the limited available data,
only 10 arguments could be tested per scheme and
dataset, which restricts the generalizability of the
results.
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