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Abstract

Analogies test a model’s ability to infer im-
plicit relationships between concepts, making
them a key benchmark for evaluating reason-
ing capabilities. While large language models
(LLMs) are widely evaluated for reasoning
in English, their abilities in Indic languages
remain understudied, limiting our understand-
ing of whether these models generalize across
languages. To address this gap, we introduce
a new Hindi Analogy Test Set (HATS),
comprising 405 multiple-choice questions
sourced from Indian government exams. We
benchmark state-of-the-art multilingual LLMs
using various prompting strategies and intro-
duce a grounded Chain of Thought approach
that leverages cognitive theories of analogical
reasoning. This approach improves model
performance on Hindi analogy questions. Our
experiments show that models perform best
with English prompts, irrespective of the
prompting strategy. Our test set addresses the
lack of a critical resource to evaluate LLM
reasoning capabilities in Hindi. The test set is
publicly available for research purposes here
https://github.com/Inequilazitive/
HATS-Hindi_Analogy_Test_Set.

1 Introduction

Self-supervised learning enabled language models
to learn the notion of similarity and relatedness.
However, abstraction and conceptualization as in
analogies, are still a challenge. Growing research
on common reasoning tasks including analogies
(Ushio et al., 2021; Czinczoll et al., 2022; Bhavya
et al., 2022), Winograd Schema Challenge (Liu
et al., 2022; Emami et al., 2018), figurative text
processing (Joseph et al., 2023; Bogireddy et al.,
2023), reflects the trend to teach and evaluate
LLMs on these tasks.
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Assessing reasoning abilities of LLMs in low-
resource languages remains challenging (Robin-
son et al., 2023), primarily due to the scarcity and
poor quality of available linguistic data (Khade
et al., 2024), as well as the need for improved eval-
uation methodologies (Valmeekam et al., 2022;
Wijesiriwardene et al., 2023; Bender and Koller,
2020). In this paper, we address this resource and
knowledge gap by:

e Introducing HATS, a test set of 405 of in-situ
semantic analogies curated from national and
state-level administrative examinations and
their preparatory material.

Benchmarking state-of-the-art multilingual
LLMs (see Sec 3.1) with diverse prompting
strategies to evaluate LLMs’ reasoning abili-
ties in Hindi.

Proposing a grounded Chain of Thought
prompting technique that leverages cognitive
theories of analogical reasoning and improves
model performance on Hindi analogy tasks
(see Sec 3.5.2).

Existing datasets of Hindi analogies are primar-
ily developed by translating English analogies and
comprise only syntactic relations (Abdou et al.,
2018; Grave et al., 2018). The translated analo-
gies are used to test the quality of Hindi word
embeddings (Gaikwad and Haribhakta, 2020) and
LLMs trained on Hindi corpus (Kakwani et al.,
2020). These datasets lack samples illustrating se-
mantic relations between concepts specific to the
Hindi language. This reflects the urgent need for
resources to evaluate common reasoning in LLMs
in the Indic language.

In this paper, we focus on proportional analogy
comprising four words of the form A: B :: C': D
that is, A is to B as C is to D. Prior works in-
troduced word-family based analogies exploiting
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syntactic relations such as singular-plural (Abdou
et al., 2018). We focus on semantic analogies.

2 HATS: Hindi Analogy Test Set

We scraped 405 analogy questions from national
and state-level administrative service examinations
and preparatory materials, including those for
UPSC, SSC, PSC, Clerk, Defense, Railway, and
Banking exams, using BeautifulSoup (Richardson,
2024). These analogies are designed to assess the
aptitude and reasoning abilities of candidates.

qiared (Bhopal): H€O TRl (Madhya
Pradesh) :: HET-A-T%R (Bhubaneshwar): ?

A TSR (Gujarat)

B 3147 (Odisha)

C ST (Rajasthan)

D 313UITIA UeLT (Arunachal Pradesh)

Correct Answer: I (Odisha), since -
TR (Bhubaneshwar) is its capital, just as
otaTel (Bhopal) is the capital of H&T TELT
(Madhya Pradesh).

. J

The original multiple-choice questions appeared
in varied formats. We standardized them to the A :
B :: X : Y structure and replaced Y with a ques-
tion mark for model input. We also provide four op-
tions that were originally provided with these ques-
tions in examinations (See above example).

3 Benchmarking LLMs on HATS
3.1 Models

We evaluated three state-of-the-art multilingual
LLMs: Aya-expanse-8B (Dang et al.,, 2024),
Llama-3.1-8B (Grattafiori et al., 2024), and
Gemma-2-9B (Team et al., 2024). These mod-
els were selected for their strong performance on
multilingual and general-purpose language under-
standing benchmarks, and their accessibility for
academic research (Cohere For Al Team, 2024).

3.2 Task A: Find the Most Likely Answer

We create a low-demand (i.e., forced-choice over a
fixed set of answer options) task similar to (Hu and
Frank, 2024) by presenting the model with an anal-
ogy truncated at the last colon (A : B :: X : ). We
select the most likely option as the answer using di-
rect probability measurement. Since we avoid met-
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alinguistic judgment, we chose non-instruct vari-
ants of models for this task.

We measured the accuracy of the models using
normalized success rates (see Table 1). LLaMA
outperforms Aya by 7.46% and Gemma by 6.85%.
Overall, model performance in this setting remains
suboptimal.

3.3 Prompt Design and Evaluation for
Generation-Based Tasks

This section outlines the shared design principles
and evaluation methodology used across Tasks
B and C, both of which involve analogy com-
pletion using LLMs. The tasks differ in their
prompting strategies but rely on a common struc-
ture, a system and user prompt template where we
present the task-specific instructions and incom-
plete analogy with multiple-choice options. For
these instruction-centric task settings, we utilize
instruction-tuned model variants (see Appendix A
for model specifications and prompt details).
Setting: To assess the impact of language on
reasoning, prompts are evaluated under three con-
figurations: (i) Hindi-only (both system and user
prompts are in Hindi), (ii) English-only (both sys-
tem and user prompts are in English), and (iii)
Mixed (English system prompt and Hindi user
prompt).
Evaluation: To mitigate positional bias in
multiple-choice evaluations, we apply a cyclic ro-
tation of the answer options. For a question with
n options (typically n = 4). we generate n vari-
ants, each with the options shifted in position. The
model answers all n variants, and the final answer
is determined by majority voting across its n re-
sponses. A question is marked correct only if the
majority-selected answer matches the ground truth;
otherwise, it is considered incorrect. Detailed re-
sults are discussed in Section 3.6.

3.4 Task B: 0—Shot Prompting

Recent surveys and empirical studies highlight
zero-shot prompting as a standard baseline for
LLM evaluation, often used to benchmark mod-
els before exploring few-shot or fine-tuned set-
tings.(Li, 2023). In the experiments carried out
by (Reynolds and McDonell, 2021), the authors
show that well-crafted zero-shot prompts can, in
fact, surpass the performance of few-shot prompts.

This baseline setting mimics the original exam-
style format of the test set. For this task all the
instructions were presented in the system prompt.



Model Llama 3.1-8B

Aya Expanse—8B

Gemma 2-9B

46.17

Accuracy

42.96 43.20

Table 1: Accuracy (%) on Task A across all HATS samples. Each score represents the percentage of instances
where the model correctly identified the answer option with the highest predicted likelihood.

Sys + User ‘ Prompting

aya-expanse-8B  Llama-3.1-8B-instruct

gemma-2-9b-it

0-Shot 62.71 67.90 73.08
HitHi 0-Shot CoT 62.71 67.40 74.81
Grounded 0-Shot-CoT 60.74 64.93 75.31
Grounded FS-CoT 56.04 62.96 76.54
0-Shot CoT 63.70 64.69 76.05
En+Hi Grounded 0-Shot-CoT 61.23 64.93 75.80
Grounded FS-CoT 59.50 65.67 75.31
0-Shot 65.67 71.85 78.77
0-Shot CoT 65.43 66.91 78.52
En+En Grounded 0-Shot-CoT 65.43 74.56 79.75
Grounded FS-CoT 61.72 74.07 77.28
FS Translate-CoT 62.46 72.83 77.04

Table 2: Accuracy (%) across prompting strategies grouped by language setting. CoT = Chain-of-Thought, FS =
Few-Shot. Best scores per setting are bolded. Refer to Section A.2.1 for prompt details. Accuracy is calculated

only for valid analogies.

Mixed setting was not evaluated separately, as the
prompt content is equivalent to English only in
practice.

3.5 Task C: Chain of Thought Prompting

Prior work shows that prompting the model
to reason step-by-step enhances LLM perfor-
mance (Brown et al., 2020; Wei et al., 2023; Zhang
et al., 2025).

3.5.1 0—Shot Chain of Thought

For this task we have taken a similar approach to
(Kojima et al., 2023), and appended “Let’s think
step by step” at the end of the prompt.

3.5.2 Grounded 0-Shot Chain of Thought

We build on the (Wang et al., 2023) approach
to guide the model’s reasoning by presenting a
fixed sequence of steps to solve analogies in the
prompt. The steps are grounded in cognitive theo-
ries of analogical reasoning. Drawing on the (Min-
nameier, 2010) framework, the prompt integrates
abductive structure identification, inductive con-
cept mapping, and adequacy-based evaluation.

3.5.3 Grounded Few Shot Chain of Thought

Previous works use few shot examples for prompt
based grounding (Mialon et al., 2023). In this
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task we use the same prompt as in section 3.5.2
with 5 worked out examples. We guided Claude-
3.7-Sonnet" to generate Hindi examples, solved us-
ing our Grounded CoT instructions. The exam-
ples were verified and corrected by an expert of the
Hindi language.

3.5.4 Few Shot Chain of Thought (with
Translation)

Following the benchmark results, which showed
LLMs performed best in English-only settings
(see Table 2), we explored whether a translation-
based approach could further improve performance
on Hindi analogy tasks. Specifically, we im-
plemented a three-step Chain of Thought (CoT)
prompting strategy in English (see Sec 3.3):

¢ Translation: Convert the Hindi analogy and
options into English.

e Solution: Solve the analogy using the method
in Section 3.5.2.

e Mapping: Identify the correct Hindi option
based on the English solution.

*https ://www.anthropic.com/news/
claude-3-7-sonnet
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We included 5 worked out examples in the prompt.
The examples were created using the process de-
scribed in Section 3.5.3 with updated instructions.

3.6 Results

The accuracy scores are presented in Table 2.
Prompts in English-only settings consistently led
to the highest overall performance. Transitioning
from baseline 0—Shot CoT to Grounded 0—Shot
CoT resulted in an average improvement of +0.27
points across all models and settings. Gemma
was the top performer, achieving the highest accu-
racy of 79.75% with Grounded 0—Shot Chain-of-
Thought prompting (see Sec 3.5.2) in the English-
only setting. LLaMA also performed best with
Grounded 0—Shot CoT in the English-only set-
ting, reaching an accuracy of 74.56%. In con-
trast, Aya was the weakest performer, with its high-
est score being 65.67%, obtained using 0—Shot
prompting (see Sec 3.4) in the English-only set-
ting. Some models struggled to follow instructions
in Hindji, resulting in better performance with sim-
pler 0—Shot CoT prompts compared to the more
complex Grounded CoT setup.

4 Discussion

Gemma consistently outperformed other models
by an average margin of 11.46 points across all
tasks and exhibited minimal performance drop
across different prompt settings. All models per-
formed best when both system and user prompts
were in English. Chain-of-Thought (CoT) reason-
ing boosted accuracy, especially in Few-Shot set-
tings.

e While models reliably identified analogical
pairs (A : B), they often failed to transfer the
relation correctly to (C : D), highlighting lim-
itations in structured reasoning.

In the translation task, models like aya—
expanse—9b and LLaMA-3.1-8B—IT fre-
quently mistranslated critical terms. For
example, the analogy Tel : HIell 3¢ :
? (Flower : Garland :: Brick : ?) was
misinterpreted as Flower : Garland :: Eat
: 2, confusing g (Brick) with ”Eat” due to
phonetic similarity. This error was consistent
across all 10 sampled failures.

Models occasionally defaulted to ”I don’t
know” or ”None of the above,” even when cor-
rect options were available.
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e See Table A6 for model response languages
across different task settings.

5 Conclusion

We introduced a test set HATS comprising 405
semantic analogies in Hindi. The benchmarking
code and prompts for all tasks will be made pub-
licly available. We designed five tasks to eval-
uate LLMs reasoning abilities in the Hindi lan-
guage. These tasks assessed the reasoning abili-
ties of LLMs in natural language and the usabil-
ity of translation in creating low-resource language
resources. Our experiments reveal the subpar per-
formance of state-of-the-art LLMs when tested on
HATS, highlighting the need to evaluate multilin-
gual models on native language resources to better
gauge their usability for non-English languages.

Limitations

In this study, we utilized smaller versions of the
model (8B to 9B) due to resource and hardware
constraints, and we anticipate models with higher
parameters to perform better.

Ethics Statement

The test set is built from publicly available national
level QPs and preparatory material. This ensures
that the data is free from (a) anonymity concerns,
(b) obscenities and (c) any stereotyping or bias.
We have provided a Hindi language resource to
evaluate the reasoning abilities of LLMs with the
goal to make Al technology accessible to a wider
population. We have not performed model train-
ing/finetuning and therefore, no significant carbon
footprints were generated. We have chosen open
source models for this work.
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A Appendix
A.1 Model Specifications

The model specifications are provided below. We use the pre-trained models.

e Aya Expanse 8B : We set the maz_new_tokens = 1200, torch_dtype = torch.floatl6,
device_map = "auto”, do_sample = False. The model was loaded using the HuggingFace API
with the model name ‘CohereForAl/aya-expanse-8b‘. The model runs in evaluation mode, which
disables gradient updates for inference.

e Llama-3.1-8B-Instruct : We set the maz_new_tokens = 1200, torch_dtype = torch. float16,
device_map = "auto”, do_sample = False. The model was loaded using the HuggingFace API
with the model name ‘meta-Llama/Llama-3.1-8B-Instruct‘. The model runs in evaluation mode,
which disables gradient updates for inference.

e Gemma-2-9b-it : We set the max_new_tokens = 1200, torch_dtype = torch.floatl6,
device_map = "auto”, do_sample = False. The model was loaded using the HuggingFace API
with the model name ‘google/gemma-2-9b-it‘. The model runs in evaluation mode, which disables
gradient updates for inference.

A.2 Tables
A.2.1 Prompts

Prompts for Analogy Tasks

Task B: 0—Shot Prompting (from Sec 3.4)
Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B
Hi-Hi Setting

System Prompt:

15T X hITIg
T YT IR 5 YRR THIC hiT: ###3AfdH IR <3MMUh gRT A1 g fasheu>

User Prompt:
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) S0 TS

En-En Setting

System Prompt:
Complete the analogy:
You will end your answer with: ###Final Answer: <Your chosen option>

User Prompt:
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) S0 TS

Table Al: Prompts for Task B (0— Shot)

Task C: Chain of Thought Prompting (O—shot) (from Sec 3.5.1)
Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B
Hi-Hi Setting
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System Prompt:

TGy 1 ST : _
1Y {UAT IR T UhR AT hil: ###3ifaH ITR: <3MMUeh gRT AT g3 fdeneu>

User Prompt:
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) STEUTIA UST

35 heH R hed I

En-En Setting

System Prompt:
Complete the analogy:
You will end your answer with: ###Final Answer: <Your chosen option>

User Prompt:
IUTeT © HeT TR 1 AR : ?
(A) ToRTE (B) I (C) T (D) SRUTEA TS

Let’s think step by step.

Mixed Setting (En + Hi)

System Prompt:
Complete the analogy:
You will end your answer with: ###Final Answer: <Your chosen option>

User Prompt:
WIUTeT © HeT TR :: AR : ?
(A) ToRTa (B) I (C) T (D) STEUTIA UST

TS hed <X hed T

Table A2: Prompts for Task C (Chain of Thought 0— shot)

Task C: Grounded Zero-Shot Chain of Thought (from Sec 3.5.2)

Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B

Hi-Hi Setting

System Prompt:

37T Yeh THHGT (TATeIrSt) el Ut g1 o 38 & | THTT & sl o st gt gidt &, St fohelt

fordt R @ Uoh-gR & A1 @l 81

TUhHT I S8 AT bl YT AT 8, T Uge! &l QUeal & i< & Hae ehl ST It &g aht

TR 21e& TR AT AT 3R I I AT ok T <16 o)1 4T 9118

THTAT 81 S o [oIY 37 TRUT ohl UTeT ahe: TY Ugdt, Usd! af Usal (A 3R B) & &g & fafre

el oht Ugd | I8 993! foh A &1 B O o1 9EY g
Rz, It defey &l fieR 2reg (C) R AN o 3R & foh <t 2reg aram gim =nfgul

3fd #, fou 7 fashedt & T 39 fAered o1 Iu= o ST 31TUch Uga™ U &Y oh SMTYR UR AT i

eI adich ¥ QT ST 8|

Udeh TRUT H Fraegdes i< 3R sifad Ao o § uget s Ffad el wR faer &1 3 deh

Pl TE Y & UJd A1
30 3ifqw IR ol 3T T | &
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### Final Answer: (X) fdeneq
319 fAmfalRad g &t 39 d9-arufta gfeetor & g &<

User Prompt:

HIgTar T e
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) S0 USRT

Ut IdT8 718 dfi=-aRufty At o1 UTert ahech 39 T1GY i 8 e

En-En Setting

System Prompt:

You are solving an analogy problem. An analogy is a comparison between two things that are
similar in some way. Your task is to complete the analogy by finding the relationship between the
first two terms and applying that same relationship to find what the third term relates to. Follow

these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be ex-
plicit in your reasoning. Present your final answer in the format: ###Final Answer: (X) option_text

Now solve the following analogy using this three-step approach:

User Prompt:
Complete the following analogy:

IUTeT : HE U &2 AR : ?
(A) ToRTE (B) I (C) T (D) SR0TIA TS

by following the three-step method.

Mixed Setting (En + Hi)

System Prompt:

You are solving an analogy problem. An analogy is a comparison between two things that are
similar in some way. Your task is to complete the analogy by finding the relationship between the
first two terms and applying that same relationship to find what the third term relates to. Follow

these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be ex-
plicit in your reasoning. Present your final answer in the format: ###Final Answer: (X) option_text

Now solve the following analogy using this three-step approach:
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User Prompt:

Complete the analogy:

AIUTeT © HeT TR 1 AR : ?

(A) ToRTE (B) I (C) T (D) SR0TA TS

by following the three-step method

Table A3: Prompts for Task C (Grounded 0—Shot Chain of Thought)

Task C: Grounded Few Shot Chain of Thought (from Sec 3.5.3)

Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B

Hi-Hi Setting

System Prompt:
31T Yeh FHHGT (TATCIrSl) el Ut g o 8 & | FHTT & sl o st gt gidt 8, it fohet =
fohelt IRE ¥ Uh-gIR ¥ A @ret 81
3TUhHT h1d TH AT hl T AT 8, T Uget &l el & offT & Hae el AR I4T Ty i
TR 278 TR AR <A1 3R I8 qT AT foh T 1eg 1 g1 A1fgq | THHAT 8 et o g &
TRUTF ST T e

1. g9 Ugdt, U &t esel (A 3R B) & &9 o fafe deiy ot uga | ag gusi fob 0 &1 0 @ &

EERE]
2. o, I Taiy ot R 2reg (C) TR AR e 3R 3 fos =t 2reg & gi=m =i ul

3. sfa ¥, Ry My faeheat & @ 39 farehed ol T8+ &< STt 311U UgaTH 7T & & SNTYR TR U
! gt Ik § O Rl 8
Udeh ROT | AaeTHIgdes 99 iR sifaw Fofa o @ uget svg deifad deel o foar | sra= adh
I TE TY Y T e | 30 3ifaH IR &t 39 UeU H &
3ifaH I<R: (X) fehe Tgi g IaTexvr 4g 7Y &: IaTeor 1:
At gamar &t g & 7 A< e 2
(A) uda
(B) aar
(C) HETETR
(D) BeH
TROT 1: G Ugel, 3t "T" R " & offw fAfAe deiy Y ugam ol g1 i ges fafre 9 8,
3R " gTnT ot AT Aoft &1 T Yok AT e § STt TS 2065 R UG I Yok AT IaT8R0T B
TROT 2: 37d, {3 34t oy hl "fgHTerd” R AN 1 g1 afe fgwTera i &Y avg Gen fafw Iargrur
&, al g3t 391 ot ar Juft get ghft
TROT 3: 3 H, g3 U ke i ST el 8
—uda: fearera uas fafre uda sj@en 8, ik "uda" g9l ot "udd” g1 ag T SR G &k g
G Rl STER0T T g
—23r: fRuTera i 321 18T §; I8 Uah oiiferes fasivar &
—ETR; fgaTer a1 Siet Aehr S qgrRT & &hls 999 T8l gl
—Ber: fRuTers AeM & fudd §; a8 T 3= 9@ 81
sifaw 3<R: (A) uda
3180l 2:
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fAfaRaa gamar &t gl @mget @ @t e ?
(A) g1g

(B) @

(C) fAmfor

(D) &AUR

RO 1: JY Ugd, g3 "I R "Glt" & sftw fAfre dew Y uga Sl @1 e G pfy
IAIE § ST Wl i ufehar T urd giar &1 g Teh TG 3R I UTW e <t Ufehar & o o1 ey
g

TROT2: 37, G St Helel ol "AATgT" R AN heAT ¢ | TS gl dTared chl ag Qeh 341G &, al g3t llgl
UTCT e ehl UfehdT ga-it a1t

TROT 3: 3 H, g U ke i ST el &

— YTd: I8 9dTaT1 ¢ foh gt @ ¢ (Ueh erq), 7 foh 58 ohdl e feha STra g1

— @ @A g Ufehar ¢ foiaeh g1 e gedt @ urtd fohar sirar 8, S fok @<t ag ufthar 8
g2 grae urd gia1 &1 I8 8! Jee I9T4 WadT g

— fAmtor: gg ues Ut ufchar € STt g ot ST ot §, 7 fob gt hd v fohar ST g1
— HUR; I8 <ig o fad=ur § Gefdd g, 7 foh 39 Idre 91

3ifaw I (B) @4

ITER0T 3:

At amar ol qur & fieett : R @2 et : ?
(A) FH

(B)&H

(C) SmU=

(D) Sifear

TROT 1: Y U, Jt "faeedt" SR "9RA" & 9 fAfw dder i ugar ot 81 faeet wRa &
AT 81 Tg Yo ASTYTT SR Ik 420 o 1< ohT Heiy &1 TROT 2: 37, q 34t e opt "Teril” R
AT AT 81 AfE herat et hl aRE an IsTami &, ot G5t a8 431 g&rT giTl ST et ISt
&1 TROT 3: 3id H, 73t UAeh [dched il ST ot 8:

_ = =fie o ety ifSi 8, et 8T
— ®Y: ¥g &6l AT GI%h g, et T8l
— SITU; Tt ST hl ST g1 I8 feeett 3R YRd & T 969 §91Y QT 8
— il Hifar (IR a1 &feron) Fi Jeter wim a1 R §, et 7gh|
3ifam IWR: (C) S
31801 4.
fAfafRaa gamar & gy e dfter : feremn o et : 2
(A) TR
(B) Shle-TT

(C) FFM T
(D) T
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WO 1: G Uged, g "R 3R "ferar” & = fafe ddy Fr ugmE w3+ g1 9@ T
ST & Foigent IUTT fora i feham o forg fohaT SITdT 81 I8 Top SueT SR 39 & & &
& &1 T g

TROT 2: 379, {3t St Gy opt "hall" R AN hAT 81 Al hlt df¥et <l avg Qep Juaeon 8, dt g3
et & 7 i I g1 g
TROT 3: 3id H, g3 U ke i ST el &

— U UWR Ueh 9] & o1 W s fomarr Sirar €, = ok gas fomami

— RICAT: eh1eAT a8 HA fonar g forgeh forq dheht et Suat fovar Sirar 8, S fon foremr et et
= & gl

— ST T et SRl 73] i gl gl
— 1 41 & oI SmdR W g2 3R 91t vt IuART fohar Sird 8, | foh ot el
3ifaw IR (B) apreT
3&180T 5:
fAfeifea gamar &t g & R @ S o At : ?
(A) fosrr
(B) Iq<
(C) =

(D) @d
TROT 1: T Uget, Jgt "W" 3R "SHTA” o ofi= e Geiy Fi gga™ el g1 S 98 UTepideh
ST T ITATERT & STgi TR TEd & | Tg Yeh STHaR IR Ik UTepfden [Mam ©iH & &t o1 day g1

TROT 2 e, H3t 34T GIY hl "HASeN" W AN hAT g1 Al ASel! R ohl a8 Yeh STHR 8, df g3
HSel! oh UThicdeh e QI IT a1dTaR0T <t &1 8|
TROT 3: 3id H, g3t Uk faehed i ST et 8:

— fOoRT: fUSRT U i aTdTaRon 8 STgi SI-eR] ehl T@T SI1dT 8, T8 Hel! ohl UTchideh STaTd gl
gl

— % TG 98 UTideh STelld aTdTa]ul g igi SfAhisr Asferar Edt 8, oid foh et SRY a1
UTepfden SITaTd 81
— AT A Yk S aTdTaRvl g Sl A ferdl & oy Sugad T8l 8l
— ©d: ©d FfY YA & 3R Fsferal a1 Ui smard @l g1
3ifas IR: (B) Iz
39 fAAfaRad Tarar &t 39 di9-arofig gfeentor & ga e

User Prompt:

15T O e

IUTeT : He U &2 AR : ?

(A) ToRTE (B) I (C) TSI (D) SR0TIA TS

En-En Setting

System Prompt: You are solving an analogy problem. An analogy is a comparison between two
things that are similar in some way. Your task is to complete the analogy by finding the relationship
between the first two terms and applying that same relationship to find what the third term relates
to.

70



Follow these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be
explicit in your reasoning.

Present your final answer in the format: ###Final Answer: (X) option_text
Here are some examples:

Example 1: Complete the analogy: 17T : 94l :: fgarera : ?

(A) Tdd

(B) aar

(C) HeTEIR

(D) #aH

Step 1: First, I need to identify the specific relationship between "T" (Ganga) and "-&I" (river).
Ganga is a specific river, and "&" is its category or classification. This is a relationship where
the first term is a specific example of the second term.

Step 2: Next, I need to apply this same relationship to "fgHATer™@" (Himalaya). If Himalaya is a
specific example like Ganga, then I need to find its category or classification.

Step 3: Finally, let me examine each option:

- Jdd (mountain): Himalaya is a specific mountain range, and "U&d" is the category “mountain.”
This follows the same pattern as Ganga and river.

- 32T (country): Himalaya is not a country; it’s a geographical feature.

- HgI’IR (ocean): Himalaya is not related to water bodies like oceans.

- B¢ (plain): Himalaya is the opposite of a plain; it’s an elevated landform.
###Final Answer: (A)

Example 2:
Complete the analogy: aTael : @l :: &gl : ?

(A) 81g
(B) @9
(C) fRmfur

(D) AR

Step 1: First, I need to identify the specific relationship between "aT@d" (rice) and "&<t" (farming).
Rice is an agricultural product that is obtained through the process of farming. This is a relationship
between a product and the process used to obtain it.

Step 2: Next, I need to apply this same relationship to "&I" (iron). If iron is a product like rice,
then I need to find the process used to obtain iron.

Step 3: Finally, let me examine each option:

—4Td (metal): This describes what iron is (a metal), not how it’s obtained.

—¥- (mining): Mining is the process by which iron is obtained from the earth, just -as farming
is how rice is obtained. This maintains the same relationship.

—fRmfor (construction): This is a process that uses iron, not how iron is obtained.
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—MUR (trade): This relates to distribution of iron, not its production.
###Final Answer: (B) ¥4

Example 3: Complete the analogy: f&eell : YRd :: et : ?

(A) F=

B)=H

(©) Sima

(D) sifr

Step 1: First, I need to identify the specific relationship between "f&eeil" (Delhi) and "9Ra" (India).
Delhi is the capital city of India. This is a relationship between a capital city and its country.

Step 2: Next, I need to apply this same relationship to "&feR" (Tokyo). If Tokyo is a capital city
like Delhi, then I need to find the country of which Tokyo is the capital.

Step 3: Finally, let me examine each option:

—I (China): The capital of China is Beijing, not Tokyo.
—%9Y (Russia): The capital of Russia is Moscow, not Tokyo.

—SIT4T9 (Japan): Tokyo is the capital of Japan. This maintains the same relationship as Delhi and
India.

—epIfAT (Korea): The capitals of Korea (North or South) are Pyongyang or Seoul, not Tokyo.
###Final Answer: (C)

Example 4: Complete the analogy: Gl : fergmr :; &t : ?
(A) TR

(B) preAT

(OXEIE

(D) ¥t

Step 1: First, I need to identify the specific relationship between "G (pencil) and "fera=T"
(writing). A pencil is a tool used for the action of writing. This is a relationship between a tool and
its primary function.

Step 2: Next, I need to apply this same relationship to "al" (scissors). If scissors is a tool like a
pencil, then I need to find its primary function.

Step 3: Finally, let me examine each option:
- UWR (paper): Paper is an object that is worked upon, not an action.

- hIeHT (cutting): Cutting is the primary action for which scissors are used, just as writing is the
primary function of a pencil.

- 9T (making/creating): Making is not the primary function of scissors.
- T (sewing): Sewing typically uses needle and thread, not scissors.
###Final Answer: (B) <hT&ATl

Example 5:

Complete the analogy: SR : SiTTeT :: HSAT : ?
(A) fOorR

(B) 9H<
(C) ™=
(D) @q
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Step 1: First, I need to identify the specific relationship between "R" (lion) and "SiTTe" (jun-
gle/forest). A jungle is the natural habitat or environment where lions live. This is a relationship
between an animal and its natural habitat.

Step 2: Next, I need to apply this same relationship to "H&ell" (fish). If fish is an animal like a
lion, then I need to find its natural habitat.

Step 3: Finally, let me examine each option:

- fUSIRT (cage): A cage is an artificial environment where animals are kept, not the natural habitat
for fish.

- §Hg (sea/ocean): The sea/ocean is the natural aquatic environment where most fish live, just as
the jungle is the natural habitat for lions.

- = (desert): A desert is a dry environment that is not suitable for fish.
- @d (field/farm): A field is agricultural land and not the natural habitat for fish.
###Tinal Answer: (B) 94

Now solve the following analogy using this three-step approach:

User Prompt:

Complete the following analogy:

IIUTeT © HeT TR 1 AR : ?

(A) ToRTE (B) I (C) IR (D) STE0TIA USeT.

Mixed Setting (En + Hi)

System Prompt: You are solving an analogy problem. An analogy is a comparison between two
things that are similar in some way.Your task is to complete the analogy by finding the relationship
between the first two terms and applying that same relationship to find what the third term relates
to.

Follow these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be
explicit in your reasoning.

Present your final answer in the format: ###Final Answer: (X) option_text
Here are some examples:

Example 1: Complete the analogy: T : =&} :: fgaTe™ : ?

(A) gdd

(B) gar

(C) HeTEIR

(D) #aH

Step 1: First, I need to identify the specific relationship between "TT" (Ganga) and "-&Y" (river).
Ganga is a specific river, and "F&I" is its category or classification. This is a relationship where
the first term is a specific example of the second term.

Step 2: Next, I need to apply this same relationship to "f@HTe@" (Himalaya). If Himalaya is a
specific example like Ganga, then I need to find its category or classification.
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Step 3: Finally, let me examine each option:

- Jdd (mountain): Himalaya is a specific mountain range, and "Udd" is the category “mountain.”
This follows the same pattern as Ganga and river.

- &7 (country): Himalaya is not a country; it’s a geographical feature.

- HgIIIR (ocean): Himalaya is not related to water bodies like oceans.

- #&M (plain): Himalaya is the opposite of a plain; it’s an elevated landform.
###Final Answer: (A)

Example 2:

Complete the analogy: aTaet : @l :: &gl : ?

(A) oTg

B) @4

(C) fAmfor

(D) @R

Step 1: First, I need to identify the specific relationship between "dTae" (rice) and "&<t" (farming).
Rice is an agricultural product that is obtained through the process of farming. This is a relationship
between a product and the process used to obtain it.

Step 2: Next, I need to apply this same relationship to "&gT" (iron). If iron is a product like rice,
then I need to find the process used to obtain iron.

Step 3: Finally, let me examine each option:
—4Tq (metal): This describes what iron is (a metal), not how it’s obtained.

—¥- (mining): Mining is the process by which iron is obtained from the earth, just -as farming
is how rice is obtained. This maintains the same relationship.

—fRmfor (construction): This is a process that uses iron, not how iron is obtained.
—UR (trade): This relates to distribution of iron, not its production.

###Final Answer: (B) @4

Example 3: Complete the analogy: f&eeft : ¥R :: Tt : ?

(A) T

(B) &9

(C) StmaTt

(D) &ifRan

Step 1: First, I need to identify the specific relationship between "f&eeft" (Delhi) and "9Rd" (India).
Delhi is the capital city of India. This is a relationship between a capital city and its country.

Step 2: Next, I need to apply this same relationship to "&et" (Tokyo). If Tokyo is a capital city
like Delhi, then I need to find the country of which Tokyo is the capital.

Step 3: Finally, let me examine each option:
— (China): The capital of China is Beijing, not Tokyo.
—%9¥ (Russia): The capital of Russia is Moscow, not Tokyo.

=TT (Japan): Tokyo is the capital of Japan. This maintains the same relationship as Delhi and
India.

—apIAT (Korea): The capitals of Korea (North or South) are Pyongyang or Seoul, not Tokyo.
###Final Answer: (C)
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Example 4:

Complete the analogy: Uf&reT : fergem :: daft: ?
(A) TR

(B) opret

(C) 9411

(D) ¥t

Step 1: First, I need to identify the specific relationship between "Uf@ie" (pencil) and "fera=T"
(writing). A pencil is a tool used for the action of writing. This is a relationship between a tool and
its primary function.

Step 2: Next, I need to apply this same relationship to "&@l" (scissors). If scissors is a tool like a
pencil, then I need to find its primary function.

Step 3: Finally, let me examine each option:
- UTR (paper): Paper is an object that is worked upon, not an action.

- hIeAT (cutting): Cutting is the primary action for which scissors are used, just as writing is the
primary function of a pencil.

- 4TI (making/creating): Making is not the primary function of scissors.
- ¥ (sewing): Sewing typically uses needle and thread, not scissors.
###Final Answer: (B) ohleHT

Example 5:

Complete the analogy: R : SivTet :: ASedl ; ?

(A) fosrr

(B) §i«

(C) e

(D) @q

Step 1: First, I need to identify the specific relationship between "SR" (lion) and "SFTal" (jun-
gle/forest). A jungle is the natural habitat or environment where lions live. This is a relationship
between an animal and its natural habitat.

Step 2: Next, I need to apply this same relationship to "#&efi" (fish). If fish is an animal like a
lion, then I need to find its natural habitat.

Step 3: Finally, let me examine each option:

- fUSRT (cage): A cage is an artificial environment where animals are kept, not the natural habitat
for fish.

- HHg (sea/ocean): The sea/ocean is the natural aquatic environment where most fish live, just as
the jungle is the natural habitat for lions.

- (desert): A desert is a dry environment that is not suitable for fish.
-Qd (field/farm): A field is agricultural land and not the natural habitat for fish.
###Final Answer: (B) 9%

Now solve the following analogy using this three-step approach:

User Prompt:

HIgTar 1 e
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) STE0TIA TSR
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Table A4: Prompts for Task C (Grounded few-Shot Chain of Thought)

Task C: Few Shot Chain of Thought (with Translation) from Sec 3.5.4

Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B

English-only Setting

System Prompt: You are solving analogy problems presented in Hindi. An analogy is a compari-
son between two things that are similar in some way.

Follow these main steps: 1. Translation: Translate the Hindi question and all options to English. 2.
Solution: Solve the translated (english) analogy using only English (detailed below). 3. Mapping:
Map your English answer back to the correct Hindi option.

For the solution process (step 2), follow these sub-steps: a) Identify the specific relationship be-
tween the first two terms (A and B).

b) Apply this same relationship to the third term (C) to determine what the fourth term should be.
¢) Examine each of the given options and select the one that best completes the analogy.
IMPORTANT: Use ONLY English words during your solution process (step 2 and its sub-steps).
Only use Hindi when referring to the original question and when giving your final answer.

For each step, think carefully and consider multiple possible relationships. Be explicit in your
reasoning.

Present your final answer in the format: ###Final Answer: (X) option_text
Here are some examples:

Example 1:

Complete the analogy: T : =&t :: fgHTe™ : ?
(A) T

(B) a=r

(C) HeTaTR

(D) &eM

Step 1 - Translation:

Question: Ganga : River :: Himalaya : ?
Options:

(A) Mountain

(B) Country

(C) Ocean

(D) Plain

Step 2 - Solution:

a) Relationship identification:

Ganga is a specific river, and River is its category. This is a specific instance to category relation-
ship.

b) Relationship application:

Now I need to apply this relationship to Himalaya. If Ganga is a specific river, then Himalaya would
be a specific instance of what category?
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¢) Option examination:

- Mountain: Himalaya is a specific mountain range, so Mountain is its category. This matches the
relationship.

- Country: Himalaya is not a country, it’s a geographical feature.

- Ocean: Himalaya is not a body of water, it’s a land formation.

- Plain: Himalaya is the opposite of a plain; it’s an elevated region.

Step 3 - Mapping:

The answer in English is ”Mountain” which corresponds to the Hindi option (A) Udd.
###Final Answer: (A)

Example 2:

Complete the analogy: f&eefl : vRa :: aerit : ?
(A) T

B)x"

(C) sa=

(D) sifar

Step 1 - Translation:

Question: Delhi : India :: Tokyo : ?

Options:

(A) China

(B) Russia

(C) Japan

(D) Korea

Step 2 - Solution:

a) Relationship identification:

Delhi is the capital city of India. This is a capital-country relationship.
b) Relationship application:

Now I need to apply this relationship to Tokyo. I'm looking for the country of which Tokyo is the
capital.

¢) Option examination:

- China: The capital of China is Beijing, not Tokyo.

- Russia: The capital of Russia is Moscow, not Tokyo.

- Japan: Tokyo is the capital of Japan. This matches the relationship.

- Korea: The capitals of North and South Korea are Pyongyang and Seoul respectively, not Tokyo.
Step 3 - Mapping:

The answer in English is “Japan” which corresponds to the Hindi option (C) SIT4T-.

###Final Answer: (C)
Example 3:

Complete the analogy: aTaet : @l :: &gl ?

(A) g1g
(B) @
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(C) fHfuT

(D) IR

Step 1 - Translation:
Question: Rice : Farming :: Iron : ?
Options:

(A) Metal

(B) Mining

(C) Construction

(D) Trade

Step 2 - Solution:

a) Relationship identification:

Farming is the process by which Rice is produced or obtained. This is a product-production process
relationship.

b) Relationship application:

Now I need to apply this relationship to Iron. I’'m looking for the process by which Iron is produced
or obtained.

¢) Option examination:
- Metal: This is a category to which Iron belongs, not a production process.

- Mining: This is the process by which Iron is obtained from the earth, similar to how Farming is
used to obtain Rice. This matches the relationship.

- Construction: This is a process that uses Iron, not how it’s produced.
- Trade: This relates to the distribution of Iron, not its production.
Step 3 - Mapping:

The answer in English is "Mining” which corresponds to the Hindi option (B) ¥&--.
###Final Answer: (B)

Example 4:

Complete the analogy: Uf&reT : forgsr :; daft : ?

(A) IR

(B) preAT

(OXEIE

(D) "

Step 1 - Translation:

Question: Pencil : Writing :: Scissors : ?

Options:

(A) Paper

(B) Cutting

(C) Making

(D) Sewing

Step 2 - Solution:

a) Relationship identification:

78



A pencil is a tool used for the action of writing. This is a tool-function relationship.

b) Relationship application:

Now I need to apply this relationship to scissors. I'm looking for the primary function of scissors.
¢) Option examination:

- Paper: This is an object that is worked upon, not an action.

- Cutting: This is the primary function of scissors, just as writing is the primary function of a
pencil.

- Making: This is too general and not the specific function of scissors.

- Sewing: Sewing is done with a needle and thread, not scissors.

Step 3 - Mapping:

The answer in English is ”Cutting” which corresponds to the Hindi option (B) chTeT.

###Final Answer: (B)
Example 5:

Complete the analogy: SR : SiTTeT :: HSe! : ?
(A) fisr

(B) %

(C) =

(D) @d

Step 1 - Translation:

Question: Lion : Jungle :: Fish : ?

Options:

(A) Cage

(B) Ocean/Sea

(C) Desert

(D) Field/Farm

Step 2 - Solution:

a) Relationship identification:

A jungle is the natural habitat where lions typically live. This is an animal-habitat relationship.
b) Relationship application:

Now I need to apply this relationship to fish. I’'m looking for the natural habitat where fish typically
live.

c¢) Option examination:

- Cage: This is an artificial structure, not a natural habitat.

- Ocean/Sea: This is the natural aquatic environment for most fish, like jungle is for lions.
- Desert: Deserts are dry and unsuitable for fish.

- Field/Farm: This is land used for agriculture, not suitable for fish.

Step 3 - Mapping:

The answer in English is "Ocean/Sea” which corresponds to the Hindi option (B) ¥Hg.
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###Final Answer: (B)
Now solve the following analogy using the same step-by-step approach. Remember to use ONLY
English in your solution process (step 2):

User Prompt:

Complete the following analogy:

WIUTST : Ae U & IAHR : ?

(A) TSRTd (B) IS (C) ISR (D) SEUTTEe TSl

Table A5: Prompts for Task C (Few Shot Chain of Thought (with translation))

A.2.2 Model Response Language across different settings

Model Setting (System+User) | 0—Shot | 0—Shot CoT | Grounded 0—Shot CoT | CoT (Few Shot) | CoT (Few Shot-Translate-EN)

Hi+Hi Hi Hi Hi Hi -
aya—expanse-8B Hi+En - Hi Hi Hi -

En+En En En En En En

Hi+Hi Hi Hi Hi Hi
Llama—3.1-8B-instruct | Hi-++En Hi Hi Hi

En-+En Hi Hi En En Hi

Hi+Hi Hi Hi Hi Hi -
gemma-—2-9b-it Hi+En - En En En -

En+En En En En En En

Table A6: Language in which each model responded across different prompting strategies and language
settings
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