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Abstract

This paper presents our approach to machine
translation between Spanish and 13 Indige-
nous languages of the Americas as part of the
AmericasNLP 2025 shared task. Addressing
the challenges of low-resource translation, we
fine-tuned advanced multilingual models, in-
cluding NLLB-200 (Distilled-600M), Llama
3.1 (8B-Instruct) and XGLM 1.7B, using tech-
niques such as dynamic batching, token ad-
justments, and embedding initialization. Data
preprocessing steps like punctuation removal
and tokenization refinements were employed to
achieve data generalization. While our models
demonstrated strong performance for Awajun
and Quechua translations, they struggled with
morphologically complex languages like Nahu-
atl and Otomí. Our approach achieved com-
petitive ChrF++ scores for Awajun (35.16) and
Quechua (31.01) in the Spanish-to-Indigenous
translation track (Es→Xx). Similarly, in the
Indigenous-to-Spanish track (Xx→Es), we ob-
tained ChrF++ scores of 33.70 for Awajun and
31.71 for Quechua. These results underscore
the potential of tailored methodologies in pre-
serving linguistic diversity while advancing ma-
chine translation for endangered languages.

1 Introduction

Nearly half of the world’s 7,000 languages are cur-
rently endangered1. Experts predict that around
1,500 of these languages could vanish by the end
of this century due to factors like globalization,
economic growth, and insufficient support for In-
digenous languages2. Indigenous languages are not
just cultural gems but also hold unique perspectives
and knowledge. The United Nations has declared
2022–2032 as the International Decade of Indige-
nous Languages, highlighting the urgency of this
issue (Boodeea et al., 2025).

1https://www.science.org/content/article/
languages-are-being-wiped-out-economic-growth

2https://www.anu.edu.au/news/all-news/
1500-endangered-languages-at-high-risk

Machine Translation (MT) presents significant
challenges, particularly in low-resource settings.
Limited data availability, the presence of diverse
dialects, and complex linguistic structures such
as polysynthesis significantly increase the chal-
lenges. However, recent improvements in neural
machine translation (NMT) and multilingual learn-
ing have shown promise. For example, models like
Meta’s NLLB-200 (Distilled-600M)(Costa-Jussà
et al., 2022) and fine-tuned methods using Low-
Rank Adaptation(LoRA) (Hu et al., 2022) have
worked well in low-resource settings, improving
translation accuracy while helping preserve lan-
guages with the involvement of Indigenous com-
munities.
The AmericasNLP 2025 Shared Task focuses on
translating between Spanish and 13 Indigenous lan-
guages, such as Quechua, Guarani, and Wayuu-
naiki. This project uses advanced MT techniques
and works closely with Indigenous communities
to create accurate and culturally respectful trans-
lation models. By using advanced techniques like
improved tokenization and batching, the initiative
aims to build strong MT systems that respect lin-
guistic diversity while pushing forward the field of
computational linguistics.
This task is an important step towards using tech-
nology to bridge cultural gaps, ensuring that In-
digenous voices are heard and preserved for future
generations.

The implementation details have been provided
in a GitHub repository3.

2 Related Work

MT has emerged as a promising solution for low-
resource languages. Fine-tuning large language
models and innovative tokenization strategies have
played a big role in these improvements. However,
challenges such as limited training data, linguistic

3https://github.com/mahshar-yahan/
AmericansNLP-2025/tree/main/Shared%20Task-1
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diversity, and issues like overgeneration continue
to hinder the development of robust systems.

Recent Advancements
Recent advancements in multilingual models have
significantly improved translation quality for low-
resource languages. (Costa-Jussà et al., 2022)
introduced NLLB-200 (Distilled-600M), a mas-
sively multilingual model trained on 200 languages,
demonstrating the effectiveness of fine-tuning for
low-resource settings. A recent study further
highlighted the potential of NLLB-200 (Distilled-
600M) by showing that fine-tuning this model can
substantially improve translation quality for spe-
cific language pairs, such as Spanish to Quechua
and Spanish to Guarani (Gilabert et al., 2024).
Additionally, LoRA-based approaches (Hu et al.,
2022) have shown promise by enabling efficient pa-
rameter updates in large language models without
requiring extensive computational resources. No-
tably, leveraging LoRA has led to a performance
improvement of 14.2%.

Tokenization Strategies
Indigenous languages often exhibit agglutinative or
polysynthetic structures that challenge standard to-
kenization methods. (Attieh et al., 2024) compared
various tokenization strategies, including Senten-
cePiece and BPE-MR. They found that BPE-MR
performs better for morphologically rich languages
by preserving meaningful subword units. Our ap-
proach inspired upon these findings by tailoring
tokenization strategies to the linguistic characteris-
tics of AmericasNLP languages.

Overgeneration issues
Overgeneration is a well-documented issue in ma-
chine translation systems, where models produce
excessively long or redundant outputs that compro-
mise translation quality. Prior work has addressed
this problem through evaluation metrics and ar-
chitectural modifications. For instance, LAAL
(Length-Adaptive Average Lagging) provides un-
biased metrics to measure overgeneration during
simultaneous translation tasks (Papi et al., 2022).
Additionally, methods such as beam search opti-
mization (Cohen and Beck, 2019) have been pro-
posed to mitigate excessive output length.

Addressing Similar Challenges
MMTAfrica (Emezue and Dossou, 2022) employs
backtranslation and reconstruction techniques to
enhance multilingual translations for African lan-
guages. Similarly, we have utilized backtranslation

in our system, enabling each of our models to trans-
late between Spanish and Indigenous languages
bidirectionally. On the other hand, ModeLing (Chi
et al., 2024) is a benchmark dataset designed to
evaluate linguistic reasoning in low-resource set-
tings. This work focused on phenomena such as
possessive morphology and word order variation.
ModeLing provides insights into linguistic chal-
lenges similar to those faced in AmericasNLP.

3 Dataset

The dataset provided by AmericasNLP 2025 in
Shared Task 1 (de Gibert et al., 2025) focuses
on MT between Spanish and 13 Indigenous lan-
guages of the Americas: Awajun (agr), Aymara
(ayr), Bribri (bzd), Asháninka (cni), Chatino (ctp),
Guarani (grn), Wayuunaiki (guc), Wixarika (hch),
Nahuatl (nah), Otomí (oto), Quechua (quy), Rara-
muri (tar) and Shipibo-Konibo (shp). It is divided
into training, development, and test sets. Training
samples vary from 3,883 (Asháninka) to 125,008
(Quechua), while development sets contain be-
tween 599 and 6,635 samples per language. The
test set is mostly balanced, with 1,003 samples per
language, except for Awajun (358) and Wayuunaiki
(498). The dataset supports two translation sub
tasks: Spanish to Indigenous languages (Es→Xx)
and Indigenous languages to Spanish (Xx→Es).
Across all datasets, we identified an average of ap-
proximately 765 new words per language that were
not present in the initial vocabulary of the NLLB-
200(Distilled-600M) tokenizer (Costa-Jussà et al.,
2022), which we used for this task. Among the pro-
vided datasets, we have utilized all except Chatino
and Rarámuri. Here the number of train, devel-
opment, and test datasets for different subtasks is
shown in the table 1.

4 Methodology

In this section, we explain the process of trans-
lating a sentence into a specific language. Here,
we will discuss both sub-tracks of AmericasNLP
2025 Shared Task 1, where Spanish is translated
to Indigenous languages and vice versa. Addition-
ally, we will see how to handle unknown words
while training the model for a new language. Also
we explore how sentence length can help reduce
translation errors.

5https://en.wikipedia.org/wiki/Wayuu_language
6https://en.wikipedia.org/wiki/Aymara_language

127

https://en.wikipedia.org/wiki/Wayuu_language
https://en.wikipedia.org/wiki/Aymara_language


Language Train Dev Test
agr 21,964 1,018 358
ayr 6,531 996 1,003
bzd 7,508 996 1,003
cni 3,883 883 1,003
ctp 357 499 1,000
grn 26,032 995 1,003
guc 59,715 6,635 498
hch 8,966 994 1,003
nah 16,145 672 1,003
oto 4,889 599 1,003
quy 125,008 996 1,003
shp 14,592 996 1,003
tar 14,720 995 1,003

Table 1: Language Data Across Stages

4.1 Data Preprocessing
Data preprocessing is a crucial step in preparing the
dataset for MT. In this step, we have cleaned and
standardized text to improve model performance
and ensure consistency across languages.

4.1.1 Punctuation Removal
In this step, we remove punctuation marks to en-
sure uniformity across the dataset. The removal
of punctuation helps in the tokenization process
as it reduces unnecessary symbols. We used the
MosesPunctNormalizer (Koehn et al., 2007) func-
tion from the sacremoses (Face, 2018) library for
normalization. For example,
Before Removal: Tujash, senchi nampekaju, nunik
jiyanitan nagkamawag, senchi maninau.
After Removal: Tujash senchi nampekaju nunik
jiyanitan nagkamawag senchi maninau.

4.1.2 Whitespace and Character Cleaning
Whitespace inconsistencies were addressed by re-
moving extra spaces and ensuring proper format-
ting. Leading and trailing spaces were trimmed,
and multiple spaces were condensed into one. Ad-
ditionally, invalid characters were identified and
removed to avoid errors during tokenization. In
the following example an unnecessary extra space
before a fullstop is removed,
Before Cleaning: Nuniamuik pishak najaneaku .
After Cleaning: Nuniamuik pishak najaneaku.

4.1.3 Lowercasing
All text was converted to lowercase for consis-
tency unless case sensitivity was required. How-
ever, sometimes capitalization is important, like for

proper nouns, acronyms, or special terms. In those
cases, we keep the original case instead of convert-
ing everything to lowercase. To ensure accurate
handling of case-sensitive words, we utilized the
SpaCy library (Honnibal et al., 2020) for Spanish
text processing. SpaCy’s built-in Named Entity
Recognition (NER) capabilities allowed us to iden-
tify and retain the original case for entities like
names, locations, and other significant terms. For
instance,
Before: Etsa wantintuk yumijau
After: etsa wantintuk yumijau

4.1.4 Handling Unknown Tokens
Unknown tokens are words or symbols not present
in the tokenizer’s vocabulary. To address this,
we introduced <unk> tokens to represent out-of-
vocabulary items. During preprocessing, texts con-
taining unknown tokens were flagged for review,
allowing us to refine the vocabulary or handle these
cases systematically. For instance, rare Indigenous
words were either added to the tokenizer or mapped
to <unk> during training. This strategy minimized
disruptions caused by unseen words while main-
taining translation quality.

4.2 Token Adjustment

Since some languages are new to the model, we
need to adjust the tokenization process to fit them.
This step is essential for helping the model general-
ize and properly understand Indigenous languages.
By doing this, we can improve translation quality
and ensure the model handles these languages more
effectively.

4.2.1 Adding New Language Tokens
To add new languages in the translation model,
we introduced special language tokens. These
tokens help the model recognize the source and
target languages during both training and inference.
The token addition process involved updating the
tokenizer’s vocabulary and mappings to integrate
these new tokens seamlessly. Each language was
assigned a unique token, such as <agr_Latn> for
Awajun and <spa_Latn> for Spanish. These tokens
were added to sentences during training to clearly
specify the language. For example:
Before: Yama nagkamchamunmak Chijajai,
Timantim, Sukuyá.
After: <agr_Latn>Yama nagkamchamunmak
Chijajai, Timantim, Sukuyá.
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Language Closest Sup-
ported Lan-
guage

Basis for Similarity

agr_Latn
(Awajun)

quy_Latn
(Quechua)

Geographic proximity in Peru and shared agglutinative mor-
phology (Goulder, 2005).

bzd_Latn
(Bribri)

grn_Latn
(Guarani)

Both are polysynthetic languages with tonal systems in
Central and South America (Kann et al., 2022).

cni_Latn
(Asháninka)

quy_Latn
(Quechua)

Regional proximity in Peru and shared syntactic traits (Goul-
der, 2005; Bustamante et al., 2020).

guc_Latn
(Wayuu-
naiki)

grn_Latn
(Guarani)

Polysynthetic structure and noun incorporation in northern
South America.5

hch_Latn
(Wixarika)

quy_Latn
(Quechua)

Shared agglutinative features despite different language
families (Goulder, 2005).

nah_Latn
(Nahuatl)

ayr_Latn
(Aymara)

Typological similarities like agglutination and SOV word
order due to historical interactions.6

oto_Latn
(Otomí)

ayr_Latn
(Aymara)

Borrowing from Nahuatl and typological resemblance to
Aymara.6

shp_Latn
(Shipibo-
Konibo)

quy_Latn
(Quechua)

Shared Amazonian influences and agglutinative morphol-
ogy (Goulder, 2005; Bustamante et al., 2020).

Table 2: Mapping of Embedding Initialization for Unsupported Languages Based on Linguistic Similarity using
NLLB-200 (Distilled-600M)

4.2.2 Embedding Initialization

The NLLB-200 (Distilled-600M) (Costa-Jussà
et al., 2022) model directly supports three Indige-
nous languages: Aymara (ayr_Latn), Guarani
(grn_Latn), and Quechua (quy_Latn). However,
when extending the model to new languages
that are not explicitly supported, embeddings are
initialized using representations from linguisti-
cally similar languages. For example, Awajun
(agr_Latn) uses Quechua(quy_Latn) embeddings
due to linguistic similarities. This approach
leverages existing knowledge, reducing training
time and improving convergence. Using PyTorch,
the embedding layer is resized, and new token
IDs are mapped to pre-trained embeddings,
ensuring compatibility while preserving prior
representations. This method enables efficient
extension to low-resource languages.

In comparison, models like LLaMA 3.1 (Tou-
vron et al., 2023) and XGLM (Lin et al., 2021)
offer multilingual capabilities but do not directly
support Indigenous languages. LLaMA 3.1 focuses
on eight high-resource languages, such as Spanish
and Hindi. XGLM uses a balanced multilingual
corpus but lacks direct support for low-resource

Indigenous languages.

4.3 Fine Tuning Process

The fine-tuning process was conducted separately
for Task 1 (Es→Xx) and Task 2 (Xx→Es) using
NLLB-200(Distilled-600) (Costa-Jussà et al.,
2022), LLaMA 3.1 (Touvron et al., 2023), and
XGLM (Lin et al., 2021) models. Each model was
adapted to the specific translation direction by
leveraging its pre-trained multilingual capabilities.

For NLLB, the training process involved
freezing encoder layers to reduce computational
overhead while updating decoder layers for
task-specific adaptation. The model was fine-tuned
using a custom training loop with Adafactor
optimizer and a constant learning rate scheduler
with warm-up steps. Training batches were dynam-
ically generated, ensuring source-target alignment
through language-specific tokens. Periodic
checkpoints were saved, and the best-performing
model was selected based on ChrF++ scores on the
development set. Language-specific tokens (e.g.,
spa_Latn for Spanish and agr_Latn for Awajun)
were used to guide the model during training and
evaluation.
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For LLaMA 3.1 and XGLM, we followed a
similar fine-tuning strategy but incorporated the
parameter-efficient technique LoRA. This method
allowed us to train adapter layers in self-attention
blocks while freezing most of the model’s parame-
ters. Dynamic batching was employed, where lan-
guage pairs were randomly selected for each batch.
It allowed the model to learn from diverse linguis-
tic contexts and improve generalization across lan-
guages. Mixed-precision training was employed
to further optimize GPU utilization. Both models
were fine-tuned using the same bilingual datasets
but with task-specific configurations for each trans-
lation direction.

4.4 Post Processing

To ensure the translated text remains concise and
relevant, we first determined the length of the orig-
inal sentence and compared it to the length of the
translated output. If the translated text was more
than twice the length of the original, we retained
only the first 1.25 times the original length. Since
we used a causal learning model, it sometimes gen-
erated extra information. This method helped con-
trol excessive output while maintaining translation
quality.

5 Results and Analysis

The evaluation of our system in the AmericasNLP
2025 Shared Task on MT revealed mixed results
across languages for both Track 1 (Spanish to In-
digenous languages) and Track 2 (Indigenous lan-
guages to Spanish) will be discussed in this sec-
tion. Our experiments utilized fine-tuned versions
of NLLB-200 (Distilled-600M) (Costa-Jussà et al.,
2022), XGLM 1.7B (Lin et al., 2021), and Llama
3.1(8B-Instruct) (Touvron et al., 2023), focusing on
multilingual setups to optimize performance across
diverse linguistic structures. The test results of
the submitted system using NLLB-200 (Distilled-
600M) are presented in Table 6.

5.1 Hyper Parameter Setting

Table 5 shows parameter settings for different mod-
els.

In Table 5, lr, optim,la and l4 represents learn-
ing_rate,optimizer, lora_alpha and load_in_4bit
and respectively.

5.2 Evaluation Metrics

The performance of various models has been eval-
uated using the Bilingual Evaluation Understudy
(BLEU) score, the Character-level F-score (ChrF),
and the Character-level F-score++ (ChrF++) met-
rics on the development and test dataset.

5.3 Comparative Analysis

In this subsection, we provide a detailed analysis
of the performance of different models across both
development and test datasets for the submitted lan-
guages. Using Table 3 and Table 4, which present
development results, and Table 6, summarizing test
results, we analyze the performance of submitted
models across languages. This comparison helps
identify trends and determine which models per-
form better for specific languages in both tracks.

5.3.1 Track 1 (Es→Xx)
NLLB-200 (Distilled-600M) consistently outper-
formed LLaMA 3.1 and XGLM across all lan-
guages on both development and test datasets.
While all models performed below baseline, no-
table trends were observed in Awajun (agr) and
Quechua (quy), where results approached the base-
line. For the test data, NLLB-200 achieved the
highest ChrF++ scores, with 35.16 for agr and
31.01 for quy, demonstrating its ability to handle
low-resource Indigenous languages. On the de-
velopment data, agr and quy also performed well,
with ChrF++ scores of 31.55 and 40.01, respec-
tively, showing consistency across datasets.
LLaMA 3.1 exhibited moderate performance for
agr on development data (25.17 ChrF++) but strug-
gled with other languages, including quy (13.74
ChrF++). XGLM performed the weakest overall,
with ChrF++ scores of 20.44 for agr and only 9.45
for quy on development data, indicating signifi-
cant challenges in adapting to low-resource settings.
However, even in NLLB-200 (Distilled-600M),
the best-performed model also showed poor per-
formance relative to the baseline, particularly for
morphologically complex languages like Nahuatl
(ChrF++: 13.88 vs. baseline 26.36) and Wayu-
uunaiki (ChrF++: 14.40 vs. baseline 24.74) on
test results. These results highlight challenges in
handling linguistic diversity despite leveraging ad-
vanced models.

5.3.2 Track 2 (Xx→Es)
The performance of NLLB-200, LLaMA 3.1, and
XGLM in Track 2 was evaluated using ChrF++
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Language NLLB-600M Llama 3.1 (8B-
Instruct)

XGLM 1.7B

BLEU ChrF++ BLEU ChrF++ BLEU ChrF++
BLEU ChrF++ BLEU ChrF++ BLEU ChrF++

agr 5.97 31.55 5.11 25.17 3.25 20.44
aym 4.03 30.11 4.09 28.13 2.51 22.45
bzd 3.63 16.25 2.72 15.19 1.85 12.37
cni 2.35 24.24 2.02 22.46 1.45 18.92
grn 3.44 19.53 2.57 20.13 1.83 16.24
guc 1.11 17.56 0.56 11.44 0.32 8.76
hch 8.66 28.17 6.79 24.21 4.32 19.87
nah 1.13 14.64 0.93 10.29 0.61 7.85
oto 0.62 15.12 0.23 6.43 0.15 4.21
quy 2.43 40.01 1.16 13.74 0.78 9.45
shp 1.30 18.12 1.01 9.76 0.67 6.32

Table 3: Comparison of BLEU and ChrF++ scores of development data across different models and languages of Es
to Xx(Track 1).

Language NLLB-600M Llama 3.1 (8B-
Instruct)

XGLM 1.7B

BLEU ChrF++ BLEU ChrF++ BLEU ChrF++
agr 11.12 32.80 9.45 28.17 6.73 23.54
aym 8.82 31.72 7.21 26.85 5.34 22.16
bzd 4.31 26.74 3.52 22.18 2.65 18.72
cni 2.85 21.20 2.31 17.65 1.74 14.84
grn 8.62 32.07 7.15 27.26 5.17 22.45
guc 2.22 12.58 1.78 10.46 1.33 8.81
hch 3.69 23.36 3.05 19.48 2.21 16.35
nah 7.22 26.89 5.86 22.41 4.33 18.82
oto 1.50 19.01 1.23 15.84 0.90 13.31
quy 8.76 33.83 7.18 28.76 5.26 23.68
shp 7.22 27.33 5.87 23.23 4.33 19.13

Table 4: Comparison of BLEU and ChrF++ scores of development data across different models and languages of
Xx to Es(Track 2).

Model lr optim la l4
NLLB-200 2e−4 Ada - -
(Distilled-600M) Factor
Llama 3.1 3e−3 Paged 4 8
(8B-Instruct) Adamw
XGLM 1.7B 3e−3 Adam 4 8

Table 5: Parameter settings for different models

scores on both development and test datasets.
Similarly, as track 1 Awajun (agr) and Quechua
(quy) showed results approaching the baseline,
demonstrating better adaptability compared to
other languages.

On the development data, NLLB-200 outper-
formed the other models across all languages.
It achieved ChrF++ scores of 32.80 for agr and
33.83 for quy, showcasing its strong multilingual
capabilities. LLaMA 3.1 followed with moderate
performance, scoring 28.17 ChrF++ for agr and
22.86 ChrF++ for quy, indicating some adaptability
to low-resource languages in this track. XGLM
exhibited weaker performance overall, with
ChrF++ scores of 23.54 for agr and 20.36 for
quy, reflecting its challenges in handling complex
linguistic diversity.
On the test data, NLLB-200 maintained its
dominance, achieving ChrF++ scores of 33.70 for
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Language Es to Xx (Track 1) Xx to Es (Track 2)
BLEU ChrF ChrF++ BLEU ChrF ChrF++

agr 7.82 40.10 35.16[1] 13.21 36.11 33.70[2]
aym 1.96 31.61 27.72[1] 5.89 27.53 25.78[1]
bzd 4.55 21.68 22.77[1] 5.87 27.53 26.22[2]
cni 2.43 26.96 23.17[1] 3.06 21.34 20.13[2]
grn 3.46 17.84 16.21[2] 15.14 26.15 24.70[2]
guc 0.11 15.86 12.83[2] 3.14 16.19 14.40[2]
hch 11.07 30.47 26.77[1] 3.98 23.69 22.02[2]
nah 0.65 15.73 12.64[2] 4.00 15.40 13.88[2]
oto 0.76 14.16 12.02[1] 1.50 19.91 17.80[1]
quy 3.07 36.14 31.01[2] 10.60 33.26 31.71[2]
shp 0.37 14.94 12.76[2] 8.94 32.58 30.83[2]

Table 6: Translation Evaluation Metrics for submitted test languages using NLLB-200 (distilled-600M)

agr and 31.71 for quy, coming close to the baseline
scores of 38.39 (agr) and 37.18 (quy). These
results highlight NLLB-200’s ability to generalize
well across datasets. However, even NLLB-200
struggled with morphologically complex languages
like Nahuatl (nah), scoring only 13.88 ChrF++,
which is below its baseline of 26.36 ChrF++.

Overall, NLLB-200 delivered solid results in
both tracks for Awajun (agr), indicating that
the token adjustments effectively compensated
for the model’s lack of direct understanding of
the language. This demonstrates the adaptabil-
ity of NLLB-200 in handling low-resource lan-
guages through fine-tuning. LLaMA 3.1 exhib-
ited moderate potential, particularly for Awajun
(agr) and Quechua (quy), suggesting that further
fine-tuning could enhance its performance in these
languages. However, all models, including NLLB-
200, showed relatively poor performance compared
to the baseline for morphologically complex lan-
guages like Nahuatl (nah) and Otomí (oto), high-
lighting the challenges posed by such linguistic
diversity.

6 Conclusion

This research work on MT provided valuable in-
sights into the challenges and potential of trans-
lating between Spanish and Indigenous languages.
Our approach incorporated techniques like token
adjustments and dynamic batching to address lin-
guistic diversity and complex grammatical struc-
tures. The results highlighted both the strengths
and limitations of our models. While Awajun and
Quechua showed decent performance, most other

languages underperformed against the baseline, re-
vealing gaps in handling morphosyntactic complex-
ities. This study shows the importance of devel-
oping tailored strategies for Indigenous languages,
which often feature unique linguistic phenomena
such as polysynthesis and agglutination.

7 Limitations

Our models struggled to consistently outperform
the baseline in most languages, likely due to dif-
ficulties in handling complex grammar and sen-
tence structures. Training large models like NLLB-
200 (Distilled-600M) and Llama required powerful
GPUs, which were not fully available. This con-
straint impacted critical processes such as hyperpa-
rameter tuning and token adjustments, which are
essential for optimizing performance. Additionally,
the reduced training duration (limited to 5 epochs)
further hindered the models’ ability to fully adapt
to the linguistic intricacies of the target languages.

8 Future Work

Future efforts will focus on addressing the chal-
lenges identified in this study to improve translation
quality for Indigenous languages. First, increas-
ing training epochs and leveraging more powerful
computational resources will allow for better fine-
tuning of large models. Exploring transfer learn-
ing from linguistically similar languages may also
enhance performance for underperforming cases
like Guarani and Nahuatl. Another key area for
improvement is the development of specialized
architectures or fine-tuning strategies tailored to
polysynthetic and agglutinative languages. Finally,
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expanding the dataset with diverse linguistic phe-
nomena and experimenting with ensemble methods
could further enhance translation accuracy and ro-
bustness across all languages.
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