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Introduction

Welcome to AISD, the First Workshop on AI & Scientific Discovery, co-located with NAACL 2025 in
Albuquerque, New Mexico.

Just as coding assistants have dramatically increased productivity for coding tasks over the last two years,
researchers in the NLP community have begun to explore methods and opportunities ahead for creating
scientific assistants that can help with the process of scientific discovery and increase the pace at which
novel discoveries are made. Over the last year, language models have been used to create problem-general
scientific discovery assistants that are not restricted to narrow problem domains or formulations. Such
applications hold opportunities for assisting researchers in broad domains, or scientific reasoning more
generally. Beyond assisting, a growing body of work has begun to focus on the prospect of creating lar-
gely autonomous scientific discovery agents that can make novel discoveries with minimal human inter-
vention. These recent developments highlight the possibility of rapidly accelerating the pace of scientific
discovery in the near term. Given the influx of researchers into this expanding field, this workshop pro-
poses to serve as a vehicle for bringing together a diverse set of perspectives from this quickly expanding
subfield, helping to disseminate the latest results, standardize evaluation, foster collaboration between
groups, and allow discussing aspirational goals for 2025 and beyond. This workshop welcomes and co-
vers a wide range of topics, including (but not limited to): Literature-based Discovery, Agent-centered
Approaches, Automated Experiment Execution, Automated Replication, Data-driven Discovery, Disco-
very in Virtual Environments, Discovery with Humans in the Loop, and Assistants for Scientific Writing.

A total of 7 papers appear in the proceedings. 24 papers were presented at the workshop itself, with the
rest being submitted under two archival options: cross-submissions (Findings papers or those already
presented at other venues, such as ICLR, EMNLP, NeurIPS, or the NAACL main conference), and regu-
lar non-archival submissions (unpublished work). The latter went through a normal peer review process.
These papers can be found on the AISD website: https://ai-and-scientific-discovery.github.io/

Six papers were featured as oral presentations. These papers represented a selection of strong work that
the organizers felt would be of broad interest to workshop participants. In addition, we featured four
invited talks: Heng Ji, Jure Leskovec, Peter Clark, and Marinka Zitniki. We are thankful to all reviewers
for their help in the selection of the program, for their readiness to engage in thoughtful discussions about
individual papers, and for providing valuable feedback to the authors. We would also like to thank the
NAACL workshop organizers for all the valuable help and support with the organizational aspects of
the conference. Finally, we would like to thank all our authors and presenters for making this such an
exciting event!

Peter Jansen, Bhavana Dalvi Mishra, Harsh Trivedi, Bodhisattwa Prasad Majumder, Tom Hope, Tushar
Khot, Doug Downey, Eric Horvitz
AISD organizers
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Abstract

Due to the increasing productivity in the sci-
entific community, it is difficult to keep up
with the literature without the assistance of AI
methods. This paper evaluates various meth-
ods for extracting mathematical model vari-
ables from epidemiological studies, such as
“infection rate (α),” “recovery rate (γ),” and
“mortality rate (µ).” Variable extraction ap-
pears to be a basic task, but plays a pivotal
role in recovering models from scientific litera-
ture. Once extracted, we can use these variables
for automatic mathematical modeling, simula-
tion, and replication of published results. We
also introduce a benchmark dataset comprising
manually-annotated variable descriptions and
variable values extracted from scientific papers.
Our analysis shows that LLM-based solutions
perform the best. Despite the incremental bene-
fits of combining rule-based extraction outputs
with LLMs, the leap in performance attributed
to the transfer-learning and instruction-tuning
capabilities of LLMs themselves is far more
significant. This investigation demonstrates
the potential of LLMs to enhance automatic
comprehension of scientific artifacts and for
automatic model recovery and simulation.

1 Introduction

The surge in scientific publications, now exceeding
five million articles annually 1, represents a chal-
lenge for any individual or group seeking to com-
prehensively review the state of the art of any given
discipline. The sheer size of the information war-
rants the use of automated information extraction
technologies to sort through and navigate vast sci-
entific corpora. In this work, we study the scientific
literature that concerns mathematical modeling, in
order to aid model recovery (Pyarelal et al., 2020;
Sharp et al., 2019; Schaffhauser et al., 2023): the

1https://wordsrated.com/
number-of-academic-papers-published-per-year/

Text Span Variable Extraction
Start End Name Description Value
185 193 R0 - 2.5
195 232 R0 Basic reproduction number -
634 640 α - 20

Figure 1: Example of variable extraction from a scien-
tific paper text, illustrating the process of identifying
and extracting elements such as the variable name, de-
scription, and initial value into a structured format. The
figure highlights different types of extraction: variable
description pairs in light orange and variable value pairs
in light purple.

creation of symbolic representations of mathemati-
cal models through information extraction methods
applied to the scientific literature2.

We introduce the task of variable extraction: the
identification and organization elements such as
variable names, descriptions, and initial values into
a structured format, as illustrated in Figure 1. Vari-
able extraction is a crucial step toward model re-
covery as it unlocks the basic units of models pre-
sented in scientific papers. By doing so, it not only
deepens the understanding of the research but also
facilitates the further rebuilding and enhancement
of these models.

The complexity of variable extraction arises
from the diverse forms and locations in which vari-
ables can appear within a document. Variables
may be embedded in text, figures, tables, or even
scattered throughout the paper as single charac-
ters, multiple words, single values, or ranges. This
variability, coupled with their interdependencies,

2https://www.darpa.mil/research/programs/automating-
scientific-knowledge-extraction-modeling
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underscores the importance and challenge of this
task. Effective variable extraction is essential for
identifying errors in models and converting them
into executable code, which improves the accuracy
and practicality of scientific research.

Until recently, the extraction of model variables
from texts commonly employed conventional ma-
chine learning methods such as named-entity recog-
nition (Tjong Kim Sang and De Meulder, 2003) and
relation extraction (Zhang et al., 2017). However,
the emergence of Large Language Models (LLMs)
(Touvron et al., 2023; Jiang et al., 2023; OpenAI,
2024) has marked a significant change. With their
enhanced natural language processing (NLP) ca-
pabilities, LLMs provide new options to enhance
the efficiency and effectiveness of scientific text
analysis, particularly in the extraction of variables
and the broader process of model recovery.

To investigate the potential of these methods, we
annotated 22 scientific papers, creating a public in-
formation extraction benchmark. This benchmark
is designed to facilitate the evaluation of various
variable extraction techniques. Subsequently, We
then conduct a comprehensive evaluation of sev-
eral LLMs designed for the variable extraction task,
alongside a rule-based method and an optimized
AI pipeline framework to provide additional per-
spective.

Our evaluation indicated that although no ex-
isting solution excels in the variable extraction
task, certain configurations could significantly im-
prove the extraction quality. The best-performing
baseline model achieved an F1 score of only 0.49
or 0.60, depending on the evaluation metric used.
However, by integrating rule-based approaches
with LLMs, we enhanced performance, achieving
F1 scores of up to 0.53 and 0.64, respectively. This
integration highlights the complementary strengths
of different methodologies: rule-based approaches
provide additional variable extraction options from
a different perspective, thus improving the per-
formance of LLM. Overall, LLM-based solutions
outperformed conventional rule-based solutions,
demonstrating their capability to enhance the auto-
matic comprehension of scientific artifacts and es-
tablish a robust foundation for automatic model re-
covery and simulation. These insights contribute to
the ongoing discourse on improving the understand-
ing and utilization of scientific literature, paving
the way for more efficient and accurate scientific
research in the era of information overload.

2 Related Work

In this work we focus on the intake of scientific
literature to identify and recover the elements of
mathematical models: variable descriptions and
variable values, as described in text and we rely on
NLP methods to recover them.

The field of Information Extraction (IE) is one
of the main applications of NLP. It consists on iden-
tifying and extracting structured information from
human-written text. These structure data, consists
of named-entity recognition (Tjong Kim Sang and
De Meulder, 2003) and relation extraction (Zhang
et al., 2017). The structured data is then lever-
aged by downstream applications such as build-
ing knowledge bases (Shimorina et al., 2022), slot-
filling (Chen et al., 2019), visualization for inter-
actions (Noriega-Atala et al., 2023), or performing
downstream inference (Lao et al., 2011).

Large language models (Touvron et al., 2023;
Jiang et al., 2023; OpenAI, 2024), with their in-
creasing versatility have become a useful tool for
information extraction (Xu et al., 2024). Building
on traditional models and LLMs, numerous sys-
tems have been proposed to automatically optimize
AI-powered analytics and information extraction
according to user preferences (Zheng et al., 2023;
Chen et al., 2023; Liu et al., 2024; Patel et al., 2024;
Lin et al., 2024; Liu et al., 2025). This work takes
inspiration from these methods to identify and ex-
tract variable information.

Due to its sheer size, scientific literature is fre-
quently the subject of IE research. Some disci-
plines, such as health sciences and biomedical re-
search, have received a lot of attention due to their
high potential for impact. Because of this, there
exists a solid record of research activity around
that has produced multiple high-quality datasets
(Mohan and Li, 2019; Kim et al., 2013; Ohta et al.,
2013; Saier et al., 2024) and systems (Valenzuela-
Escárcega et al., 2018; Neumann et al., 2019; Wang
et al., 2018) focused on clinical and medical appli-
cations.

Prior work at extracting mathematical elements
has used various classical NLP methods. A CRF
model to align mathematical expressions with their
definitions (Yoko et al., 2012); a pattern-based data
mining method to build mathematical ontologies
from LATEXsources (Jeschke et al., 2007); a NER
system for abstract mathematical concepts (Col-
lard et al., 2022) extracting mathematical elements
from scientific text. Our work builds upon the ideas
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from prior research and introduces a high-quality,
manually curated dataset featuring annotations of
variable descriptions and values extracted from a
corpus of scientific literature about COVID-19 and
earth sciences. Utilizing this annotated dataset, we
have comprehensively evaluated the most popular
LLMs, machine learning models, and their combi-
nations, assessing their effectiveness in identifying
and extracting this critical information.

3 Variable Extractions Dataset

The benchmark comprises excerpts extracted from
22 papers that focus on pandemic research, specifi-
cally available at the benchmark repository3 These
papers typically introduce at least one epidemio-
logical model, providing detailed descriptions and
evaluations of the models and their variables. Col-
lectively, the research papers address the challenge
of modeling and forecasting the spread of COVID-
19 under various scenarios and interventions. They
explore a range of modeling approaches, including
standard models like SIR and SEIR, as well as more
complex frameworks such as COVID-ABS and Co-
vasim. These models are used to analyze the effects
of government interventions and to predict the tra-
jectory of the pandemic in different regions. In
addition, studies emphasize the extraction and an-
notation of relevant variables and parameters from
the literature, with the aim of enhancing the pre-
cision and applicability of these epidemiological
models in real-world scenarios.

3.1 Human Annotation
In our study, we meticulously annotated a set of
documents to facilitate the extraction and analysis
of scientific variables and their contextual data. The
annotation process was designed to capture three
primary types of information: (1) variable names
and their descriptions, (2) variable names paired
with their corresponding values, and (3) additional
metadata, including model card attributes and sce-
nario card attributes. Detailed guidelines for these
annotation task are described in Appendix A.

3.1.1 Annotation Process
Annotation requires expertise in mathematical mod-
eling of epidemics, making our current annotations
challenging to obtain. Human annotators were
tasked with identifying and labeling specific el-
ements in the text according to the following cate-
gories:

3https://github.com/mitdbg/scivar

Variables with Values: Annotators highlighted
instances where a variable was directly associated
with a numerical value or a range of values. This
includes cases where the variable might be implied
rather than explicitly stated. For example, annota-
tors would mark the phrase "the estimated repro-
duction rate in the United States was around 2.5"
to capture the variable (reproduction rate) and its
value (2.5).

Variable Descriptions: This task involved iden-
tifying and highlighting descriptions of variables
that explain or define the variable within the context
of the document. For instance, the phrase "lambda
represents the infection coefficient" would be an-
notated to link the variable lambda with its descrip-
tion.

3.1.2 Annotation Standards and Tools
The annotation was performed using Adobe Ac-
robat, which allowed annotators to use different
colors to distinguish between the types of annota-
tions, as specified in the guidelines. The standards
for annotation emphasized precision, instructing
annotators to prioritize accuracy in identifying and
marking text elements. Generous alignment stan-
dards were applied during the evaluation of the
annotations, focusing on the relevance and com-
pleteness of the information captured rather than
strict adherence to text boundaries.

3.1.3 Quality Control
To ensure the quality and consistency of the annota-
tions, each document underwent a review process.
Annotations that were missed or incorrectly marked
in the initial round were identified and corrected.
This iterative process helped refine the annotations
and improve the overall accuracy of the data set.

3.1.4 Post-Processing with Structured Format
After the annotation and quality review process,
each paper will have a unified color code map-
ping for different annotation categories. We utilize
pdfannots4 tool to extract the PDF annotations into
JSON format, categorizing the entries and their
text spans from the original text. Pdfannots is a
program that extracts annotations (highlights, com-
ments, etc.).

For each annotation, we obtain the highlighted
text and its surrounding context into a text pas-
sage. We aggregated passages shared by multiple
annotations to remove redundancy, for example, a

4https://github.com/0xabu/pdfannots
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1 {
2 "all_text": "1 + αR can be thought of as S + I + R + αR. Given

that S + I + R = 1, this is equivalent to the usual form 1 +
αR. Figure 1 illustrates shield immunity impacts on a SIR
epidemic with (R0 = 2.5) (R0 is the basic reproduction
number). In this SIR model, shield immunity reduces the
epidemic peak and shortens the duration of epidemic spread.
Shielding in this context acts as a negative feedback loop,
given that the effective reproduction number is given by
Reff(t) / R0 = S(t) / (1 + αR(t)). As a result, interaction
substitution increases as recovered individuals increase in
number and are identified. For example, in the case of (α =
20), the epidemic concludes with less than 20% infected in
contrast to the final size of ~90% in the baseline scenario
without shielding (Fig. 2).",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 "page": 2,
4 "annotations": [
5 [185, 193, "R0 = 2.5", "var val"],
6 [195, 232, "(R0 is the basic reproduction number)", "var desc"],
7 [634, 640, "α = 20", "var val"]
8 ],
9 "file": "epidemic_model_analysis"

10 }

Figure 2: Example of SciVar JSON output extracted and
formatted from an annotated PDF text block in Figure
1.

paragraph containing several variable descriptions
will appear only once in the dataset with all its asso-
ciated annotations attached. From the 22 scientific
papers, we have collected 556 text chunks con-
taining 2083 variable-related annotations (1236 for
variable descriptions and 847 for variable values).
Each text block is configured with a set of annota-
tions, which include character index and span, text
extraction, and annotation type. An example of the
structured JSON output can be seen in Figure 2.

This post-processing step ensures that the an-
notations are not only accurately and automated
captured but also structured in a way that facilitates
further analysis and application in information ex-
traction systems and other research tools.

4 Variable Extraction Approaches

In our evaluation, we utilized diverse approaches,
including traditional rule-based extraction models,
popular LLMs with varying degrees of enhance-
ment, and an optimized AI pipeline framework.

4.1 Rule-based Information Extraction

We developed a rule-based information extrac-
tion system5 using the Odin language (Valenzuela-
Escárcega et al., 2016) to identify and extract vari-
ables mentioned in text alongside their associated
definitions or descriptions and values associated
with them. The rule-based system operates by
matching patterns over the syntax of a sentence
or phrase. Figure 3 depicts an example rule. With
the help of a linguist, we designed a set of rules to

5https://github.com/ml4ai/skema/tree/main/
skema/text_reading/scala

match different ways in which a concept or symbol
(the variable) is defined (the description) in scien-
tific papers. Similarly, another subset of rules to
match numerical values and quantities associated
to variables. Rule-based information extraction
tools serve as complement to LLM and other deep-
learning based approaches. They trade generaliza-
tion and recall capabilities for higher precision and
interpretability.

1 - name: description_interpreted
2 label: Description
3 priority: ${priority}
4 type: dependency
5 example: "Beta can be interpreted

as the effective contact rate."↪→

6 pattern: |
7 trigger = [lemma="interpret"]
8 description:Phrase = nmod_as
9 variable:Identifier = nsubjpass

Figure 3: Example of a pattern-matching rule system
designed to detect variable descriptions. The word
interpreted will anchor the pattern (line 8). Out-
going syntactic dependencies of types nmod_as and
nsubjpass to entities of types Phrase and Identifier
link the rule’s trigger to its description and variable
arguments, respectively.

4.2 Vanilla LLM Extraction
LLMs have demonstrated exceptional performance
on a variety of semantic information extraction
tasks. In our study, we established LLM baselines
using a vanilla pipeline, in which each LLM was
provided with only snippets of text on paper and
tasked with extracting variable names, descriptions,
and values. To optimize the effectiveness of our
approach, we conducted extensive prompt engi-
neering, iterating through more than ten rounds of
refinement. These prompts were developed by a
team of four PhD or postdoctoral researchers in
computer science major, and the most effective
prompt was selected for use in our evaluations. Fig-
ure 4 illustrates the prompt template that was used
in all LLM baselines. In this template, [] serves
as a placeholder for the paper text, and the prompt
specifies a structured format for the output, with
default values provided for optional fields. Ad-
ditionally, we incorporate a few-shot prompting
setup that provides language models with several
examples within the prompt to enhance their per-
formance.

4
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4.3 Tool Enhanced LLM Extraction

LLMs often share similar technical frameworks and
have substantial overlap in their training datasets.
This commonality can lead them to either overem-
phasize or overlook certain cases. To mitigate these
biases and enhance extraction accuracy, it is benefi-
cial to introduce additional perspectives. Therefore,
beyond the standard evaluation using only the pa-
per text, we have also incorporated outputs from a
traditional model into our LLM evaluations. This
approach is conceptually similar to the tool inte-
gration methods used in LangChain (Topsakal and
Akinci, 2023); however, our objective is to generate
a broader range of candidate options rather than to
rely on the presumed high-quality outputs of these
tools. As illustrated in Figure 4, these outputs are
highlighted in blue font. The [TOOL EXTRACTION]
provided by the traditional model offers supplemen-
tary variable options for consideration. However,
in cases of discrepancy, the original text is always
prioritized to ensure the fidelity of the information
extracted.

Prompt: Please extract variable names and descrip-
tions from the following paper text. You may refer to
the provided tool extractions for your reference. Here
is some paper text:
[TEXT]
This text may contain model related variables or pa-
rameters, their initial values and what they mean. If it
does, list each of the variables on a separate line with
the following attributes separated by "|":
name | description | numerical value.
If the variable’s value uses other variables or there
is no value for the variable, output “None” for that
variable value; do not hallucinate a variable value or
variable description that does not exist in the text.
[OPTIONAL_EXAMPLES]
Meanwhile, we get some variable extractions from an-
other tool for your reference. These extractions may
contain false positive or duplication cases. Please pay
more attention to the true positive variables:
[TOOL_EXTRACTION]
Please try to extract variables on the original paper
text first, then refer to the results from the tool extrac-
tions and see if you miss any variables. If you are not
sure, please always check the original paper text.

Figure 4: Prompt templates for variable extraction using
various setups. The black font indicates the prompt
template for a standard LLM. The combination of black
and brown fonts represents the template for few-shot
prompting. The integration of black and blue fonts
denotes the template enhanced by external tools.

1 import palimpzest as pz
2
3 class Variable(pz.Schema):
4 """ Represents a variable of a model in a scientific paper"""
5 excerptid = pz.Field(desc="The unique identifier for the excerpt",

required=True)↪→
6 name = pz.Field(desc="The label used for the scientific variable,

like alpha or beta", required=True)↪→
7 description = pz.Field(desc="A description of the variable",

required=False)↪→
8 value = pz.Field(desc="The value of the variable", required=False)
9

10 # define logical plan
11 excerpts = pz.Dataset("snippets", schema=pz.TextFile)
12 output = excerpts.convert(Variable, desc="A variable used or

introduced in the paper snippet", cardinality="oneToMany")↪→
13
14 # user specified policy and execute plan
15 policy = pz.MinimizeCostAtFixedQuality(min_quality=0.45)
16 results = pz.Execute(excerpts, policy=policy)

Figure 5: Palimpzest Code for Variable Extraction from
Scientific Paper Snippets.

4.4 Optimized AI Pipeline Framework

We also incorporate a system featuring a simple
and declarative user interface. Palimpzest is a sys-
tem designed to streamline AI-powered analytics
through declarative query processing (Liu et al.,
2024). This system allows users to effortlessly
specify analytical queries over unstructured data
using a straightforward, Python-embedded declara-
tive language. Users can define their desired data
schema and attributes in natural language, enabling
Palimpzest to automate complex optimization pro-
cesses. This automation includes navigating vari-
ous AI models, employing prompting techniques,
and optimizing foundational models, thereby elimi-
nating the need for the laborious tasks of manual
pipeline tuning, model selection, and prompt en-
gineering previously required when working with
LLMs. By efficiently managing trade-offs between
runtime, cost, and data quality, Palimpzest sim-
plifies user interaction and significantly enhances
the efficiency and cost-effectiveness of process-
ing large-scale data. These capabilities position
Palimpzest as a robust benchmark for evaluating
the performance of AI-driven data processing sys-
tems in scientific and analytical contexts, ensuring
substantial improvements in execution times and
costs while maintaining or enhancing data quality.

The Palimpzest code snippet shown in Figure 5
demonstrates a declarative approach to extracting
variables from scientific paper excerpts. It defines
the ‘Variable’ class, which details a scientific vari-
able found within the paper excerpt. This class
includes fields for the variable’s name, description,
and value, with only the variable name being re-
quired. This setup efficiently captures the essential
details needed for variable extraction, streamlining

5



the process of transforming unstructured text into
structured data suitable for further analysis.

The code then creates a dataset named "snippets"
with the Palimpzest native ‘TextFile’ schema and
processes it to convert each snippet into instances
of the ‘Variable’ class, identifying variables men-
tioned in the text. This conversion cardinality ‘one-
ToMany’ allows for multiple variables per snippet,
reflecting the typical structure of scientific excerpts.

Finally, a user-specified policy (‘Minimize-
CostAtFixedQuality’) is set to optimize the extrac-
tion process by minimizing operational costs while
maintaining the quality of the extracted data above
a predetermined threshold. The ‘Execute’ function
applies this policy to the dataset, demonstrating
how Palimpzest simplifies complex data extraction
tasks through its declarative programming model.

5 Evaluation

5.1 Experimental Setup

We evaluate a variety of models to assess their
performance on the variable extraction dataset.
The traditional rule-based model is denoted as
rules, and an optimized AI pipeline frame-
work is referred to as Palimpzest. Addi-
tionally, we examine several advanced models
from OpenAI, including GPT3.5 Turbo, GPT4
Turbo, GPT4o, and GPT4o-mini. We also test
two locally served LLMs, Llama-3-8B-Instruct
and Mistral-7B-Instruct-v0.2, which are inte-
grated via vLLM model serving APIs. Each LLM
is evaluated using a standard API call, indicated
by the prefix pure_, and an enhanced version that
incorporates outputs from the traditional model, in-
dicated by the prefix tool_. The LLM temperature
parameter is set to zero to ensure reproducibility.

We executed all baseline models using the
prompts or configurations outlined in the previ-
ous section. The results are then aligned with the
human-annotated ground truth, as illustrated in Fig-
ure 2. This alignment is based on the input text
chunk ID. Furthermore, we construct all possible
candidate pairs by applying the Cartesian product
to the sets of predicted extractions and ground truth,
grouped by annotation type. This process resulted
in a total of 330, 558 candidate pairs for evaluation.
For each candidate pair, we employed a set of eval-
uation metrics to determine whether it qualified as
a match.

To evaluate the F1 score in our study, we metic-
ulously track the ground truth and prediction sets

for each text chunk. During the evaluation process,
when an evaluator confirms a match (though the
criteria for a match may vary across different met-
rics), the index of the matched candidate pair is
recorded in both the ground truth and prediction
entries for that specific pair. After evaluating all
candidate pairs associated with a given text chunk,
we calculate the recall as the ratio of entries with at
least one match in the ground truth set. Similarly,
precision is calculated as the ratio of entries with
at least one match in the prediction set. The F1
score is then computed using the harmonic mean
of precision and recall, providing a balanced mea-
sure of the model’s accuracy in variable extraction
tasks. In cases where the evaluation focuses on spe-
cific tasks, such as variable descriptions or variable
values extraction only, we count only the corre-
sponding entries and disregard the others.

5.2 GPT-4 as a Similarity Evaluator

We employed the GPT-4 turbo model to perform
similarity evaluations, comparing its outputs with
a ground-truth dataset to assess precision and accu-
racy across different tasks. Depending on whether
the candidate pair being evaluated corresponds to
"var_desc" or "var_val" (examples provided in Fig-
ure 2), we use specific prompts as illustrated in
Figure 6. To ensure conciseness, we limit the out-
put token length to one.

Prompt for Variable Description/Value:

You are a human evaluator. The following pair of text
describes a variable and its description/value.
[VAR_DESC_A]/[VAR_VAL_A]
[VAR_DESC_B]/[VAR_VAL_B]
Please check if they mean the same. Answer y or n.

Figure 6: GPT4 Turbo prompt templates for evaluating
the consistency of variable descriptions and values.

According to Table 1, no existing solution per-
forms exceptionally well on the variable extrac-
tion task. However, the integration of rule-based
approaches with LLMs has shown significant im-
provements. The best-performing baseline model
achieved an F1 score of only 0.491, while the inte-
gration with LLMs, particularly the GPT-4 variants,
enhanced performance, achieving F1 scores as high
as 0.525. This represents a 20% improvement over
the setups using only LLMs, except for GPT3.5T
where the integration did not yield a performance
boost. Such integration highlights the complemen-
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Table 1: Average performance with GPT4 similarity evolution with ground-truth (bold font indicates the best over
each setup).

Model Overall Performance Variable Descriptions Variable Values
Recall Precision F1 Recall Precision F1 Recall Precision F1

pure_GPT3.5T 0.576 0.337 0.393 0.677 0.361 0.431 0.404 0.305 0.323
tool_GPT3.5T 0.568 0.307 0.369 ↓ 0.647 0.318 0.396 0.429 0.281 0.306
3shot_GPT3.5T 0.543 0.412 0.437 ↑ 0.558 0.433 0.457 0.521 0.378 0.400

pure_GPT4T 0.655 0.443 0.491 0.708 0.428 0.495 0.527 0.460 0.456
tool_GPT4T 0.662 0.451 0.500 ↑ 0.711 0.440 0.506 0.559 0.478 0.476
3shot_GPT4T 0.645 0.502 0.535 ↑ 0.650 0.471 0.514 0.629 0.557 0.553

pure_GPT4o 0.647 0.424 0.480 0.708 0.438 0.504 0.513 0.382 0.408
tool_GPT4o 0.689 0.460 0.520 ↑ 0.727 0.453 0.526 0.589 0.468 0.483
3shot_GPT4o 0.499 0.360 0.389 ↓ 0.486 0.376 0.395 0.525 0.369 0.397

pure_GPT4o-mini 0.619 0.376 0.437 0.693 0.410 0.479 0.499 0.325 0.360
tool_GPT4o-mini 0.694 0.465 0.525 ↑ 0.729 0.446 0.520 0.619 0.481 0.504
3shot_GPT4o-mini 0.545 0.322 0.378 ↓ 0.578 0.370 0.426 0.475 0.231 0.282

pure_llama 0.600 0.402 0.446 0.671 0.422 0.483 0.456 0.373 0.372
tool_llama 0.629 0.396 0.451 ↑ 0.706 0.411 0.482 0.479 0.354 0.369
3shot_llama 0.488 0.181 0.244 ↓ 0.550 0.204 0.279 0.402 0.139 0.180

pure_mistral 0.572 0.234 0.301 0.661 0.220 0.302 0.404 0.285 0.310
tool_mistral 0.564 0.277 0.335 ↑ 0.650 0.265 0.343 0.412 0.307 0.317
3shot_mistral 0.493 0.190 0.248 ↓ 0.588 0.191 0.262 0.352 0.194 0.217

rules 0.392 0.317 0.320 0.447 0.352 0.358 0.299 0.244 0.245

Palimpzest 0.574 0.451 0.473 0.566 0.435 0.460 0.555 0.453 0.465
structured_GPT4o 0.64 0.443 0.492 0.682 0.435 0.498 0.535 0.446 0.449
structured_GPT4o-mini 0.658 0.424 0.484 0.689 0.406 0.476 0.593 0.442 0.473

tary strengths of diverse methodologies: rule-based
approaches provide additional variable extraction
options from different perspectives, thereby en-
hancing the performance of LLMs.

Among the models tested, the tool-enhanced ver-
sions generally outperformed their pure counter-
parts, with tool_GPT4o-mini achieving the high-
est F1 score of 0.525. This indicates that the ad-
ditional suggestions provided by tool extractions
can effectively guide LLMs to achieve better per-
formance. In contrast, the rule-based approach
alone (rules) demonstrated lower effectiveness,
with an F1 score of 0.320, emphasizing the over-
all superior capability of LLM-based solutions in
managing complex extraction tasks.

However, few-shot prompting does not consis-
tently yield improved extraction results, as indi-
cated by Table 1. Only GPT3.5T and GPT4T mod-
els showed improvement with the few-shot setting,
while others experienced diminished performance.
This variability could be attributed to the inherent
complexity of the variable extraction task, where
the diverse scenarios may not benefit significantly
from a few additional examples. Moreover, the in-
clusion of more tokens in the prompt might dilute
the attention mechanism, thereby worsening the
results.

The Palimpzest system, utilizing GPT-4o as its
conversion model, yielded results comparable to
pure_GPT4o, achieving an F1 score of 0.473. By

enforcing a strict format constraint, Palimpzest
trades some recall for higher precision, offering
a more reliable output without the need for exten-
sive model selection and prompt engineering. This
approach not only simplifies the extraction process
but also enhances the usability and applicability
of the system in practical scenarios, establishing
a robust foundation for automatic model recovery
and simulation.

Additionally, we conducted a distinct quality as-
sessment for both variable descriptions and variable
values, with detailed results presented in Table 1.
The observations mentioned above remain consis-
tent across these evaluations. However, almost all
baselines demonstrated better F1 scores on the vari-
able descriptions task compared to their overall per-
formance, with the exception of Palimpzest, which
excelled in both cases in general but performed
slightly better in the variable value extraction task.

5.3 Token-based Evaluation

In addition to the GPT-based evaluation, we exam-
ined the token-level precision, recall and F1 scores
used for QA and other span prediction NLP tasks
(Rajpurkar et al., 2016). Token-level scores ac-
count for the correct number of tokens predicted
by each method, giving credit based on the propor-
tion of tokens predicted correctly and penalizing
for tokens predicted incorrectly. Table 2 shows
the token level performance on the variable extrac-
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Table 2: Average token-level scores for variable descriptions and variable values.

Model Overall Performance Variable Descriptions Variable Values
Recall Precision F1 Recall Precision F1 Recall Precision F1

pure_GPT3.5T 0.622 0.578 0.552 0.730 0.663 0.645 0.458 0.449 0.410
tool_GPT3.5T 0.551 0.527 0.505 ↓ 0.636 0.625 0.599 0.421 0.379 0.362
3shot_GPT3.5T 0.514 0.492 0.467 ↓ 0.560 0.486 0.483 0.444 0.499 0.443

pure_GPT4T 0.661 0.587 0.571 0.770 0.670 0.666 0.496 0.460 0.428
tool_GPT4T 0.667 0.638 0.610 ↑ 0.771 0.712 0.695 0.508 0.527 0.482
3shot_GPT4T 0.638 0.585 0.562 ↓ 0.733 0.623 0.623 0.493 0.527 0.471

pure_GPT4o 0.664 0.621 0.595 0.759 0.688 0.673 0.521 0.520 0.477
tool_GPT4o 0.667 0.620 0.599 ↑ 0.768 0.686 0.681 0.513 0.521 0.475
3shot_GPT4o 0.541 0.512 0.487 ↓ 0.557 0.488 0.482 0.517 0.548 0.495

pure_GPT4o-mini 0.645 0.641 0.600 0.766 0.701 0.686 0.463 0.549 0.470
tool_GPT4o-mini 0.659 0.691 0.640 ↑ 0.771 0.773 0.738 0.489 0.567 0.490
3shot_GPT4o-mini 0.644 0.589 0.564 ↓ 0.703 0.579 0.586 0.556 0.604 0.532

pure_llama 0.614 0.599 0.557 0.712 0.718 0.672 0.465 0.417 0.383
tool_llama 0.621 0.630 0.585 ↑ 0.723 0.780 0.716 0.466 0.401 0.385
3shot_llama 0.554 0.553 0.511 ↓ 0.614 0.607 0.573 0.461 0.470 0.417

pure_mistral 0.609 0.486 0.488 0.718 0.583 0.591 0.444 0.340 0.332
tool_mistral 0.508 0.450 0.435 ↓ 0.606 0.551 0.532 0.359 0.295 0.288
3shot_mistral 0.564 0.489 0.482 ↓ 0.693 0.592 0.592 0.369 0.332 0.316

rules 0.429 0.498 0.437 0.494 0.583 0.505 0.329 0.369 0.335

Palimpzest 0.569 0.513 0.488 0.648 0.527 0.526 0.448 0.490 0.431

tion dataset. The results don’t diverge significantly
from the GPT-based evaluation and consistently
highlight the strength of LLM-based methods. Cru-
cially, token-level scores rely solely on manual
annotations, therefore any conclusions drawn from
them are based only on the ground truth and not
subject to any potential inaccuracies from a model-
based evaluation.

5.4 Full Paper Context Extraction Evaluation

We conducted variable extraction evaluations us-
ing the full text of each of the 22 articles. This
approach limits the number of language models
that can be used due to the token limits imposed by
many LLMs. We present the results of a rule-based
model, GPT-3.5T (with chunking the long text into
chunks within the model limit) , and GPT-4T. The
overall performance is shown in Table 3.

When dealing with the extensive context of a
scientific paper, LLMs can struggle to maintain
focus, often resulting in lower recall. In contrast,
the rules and pure_GPT3.5T_C with chunking op-
tions manage to maintain relatively high recall.
Overall, even in the context of lengthy texts, in-
tegrating tool outputs helps LLMs concentrate on
the extraction task, leading to improved results.

6 Conclusion

We have introduced a dataset for extracting vari-
able descriptions and values from scientific liter-
ature, a crucial building block for the automated

Table 3: Overall Performance with Full Paper Text on
Selected Models

Model Recall Precision F1

rules 0.701 0.101 0.172
pure_GPT3.5T_C 0.750 0.250 0.340
pure_GPT4T 0.564 0.488 0.490
tool_GPT4T 0.678 0.467 0.506

recovery of mathematical models from the litera-
ture. We conducted a battery of evaluations using
different commercial and open-source LLMs, a
rule-based information extraction system, and a
declarative AI pipeline framework. In our exper-
iments, we found that LLM-based methods tend
to be the most effective methods to identify and
extract variable descriptions and values; however,
testing ensembles of rule-based and LLM-based
information extractions working in tandem, boost
the performance yield the best results most of the
time. Considering that all the methods tested in
this work did not use any form of supervised learn-
ing, there is ample room for improvement. In fu-
ture work, multiple interesting avenues for research
can be explored: Using semi-supervised and data-
augmentation methods to augment the size of the
dataset, and the use of supervised fine-tuning of
encoder-based language models for generation and
token prediction can improve the accuracy of the
results.
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8 Limitations

We recognize that our work has certain limitations.
As is common in research involving human anno-
tations, budget and labor constraints have resulted
in a relatively small dataset compared to those con-
structed using automatic or semi-automatic meth-
ods. Moreover, the occurrence of mathematical
variable descriptions and values within natural lan-
guage text is inherently sparse due to the nature of
the articles we analyzed. Additionally, our study
focuses exclusively on English literature, which
may limit its generalizability to other languages.

Despite the small size of our dataset, it was cu-
rated by multiple domain experts following a well-
defined annotation protocol, ensuring high quality.
We hope that by releasing this dataset, we can in-
spire future efforts to curate larger datasets and
foster new research in this area.

9 Ethical Considerations

All of the articles annotated in our dataset are pub-
lished with an open access license. We identify the
papers in Appendix B.
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A Annotation Guidelines

A.1 General Conventions
Annotators should prioritize precision over recall
in their first round of annotation on each docu-
ment. Annotations that are missed (i.e., elements
that should be annotated but haven’t been) can be
corrected upon document review. The task is to
identify all instances of such expressions in each
text, including in the title, abstract, and figure and
table captions. Figures, tables, keywords, float-
ing equations, acknowledgment sections, and refer-
ences, however, are not annotated.

A.2 Nested Annotations
“Nested annotations” can happen when annotators
tag nested elements that occur within the bound-
aries of a longer annotation. This task prioritizes
tagging the longest extent of an expression in cases
of overlapping annotation. For example, in the
“variable with value” expression below, “United
States” is not tagged even though it is a “location
context.”

• the [estimated reproduction rate in
the United States as a whole stood at
around 2.5].

A.3 Events
The evaluation will use generous alignment stan-
dards that do not require exactly matching extents
but it is preferable, though not mandatory, to ex-
clude white space and punctuation when annotat-
ing.

A.4 Annotation Types
Annotators are asked to use assigned colors to high-
light five different types of annotations: Variables
with Values, Variable Descriptions, Locations and
Temporal Contexts, and Model Card annotations.
The guidelines below provide further instructions
for each annotation type.

Variables with Values
This entity type captures variables with their nu-
meric values. Values expressed as ranges should
be annotated. To qualify as a Variable with Value,
the expression must contain a number assigned to
a simple expression.

This entity type is marked in blue. Some exam-
ples include:

• growth rate of 0.01

• r0 = 1.2

• Reproduction numbers of COVID-19 vary in
different studies and regions of the world (in
addition over time) but have generally been
found to be between 1.5 and 6.

• the estimated reproduction rate in the United
States as a whole stood at around 2.5.

• The number of unquarantined infected cases
was 1200.

• Beta represents a value 1-3

Do annotate a value expression as a Variable
with Value even when the variable is implied, and
not explicit. Annotate and then add a pop-up note
to indicate the implied variable. For example, “334”
would be annotated as a Variable with Value and
then noted as “Implied variable: unquarantined
infected cases.”

• The number of unquarantined infected cases
was 1200. The number6 had been 334.

Do not include confidence intervals in the extent
of the variable with value expression:

• the mean control reproductive number is 6.47
(95% CI 5.71-7.3)

Do not tag equations as variables with values.

• I(t) = Ioxte

Variable Descriptions
This entity type captures descriptions of variables.
In the case of complex phrases, highlight the whole
span of text that contains the complete information.
This entity type is highlighted in yellow. Some
examples include:

• lambda represents the infection coefficient

• infected (asymptomatic or pauci-symptomatic
infected, undetected)

• B is the number of such variables

• y is the recovery rate constant

• S is the total number of infected

• normalized infection i
6The number refers to the unquarantined infected cases.

As such, this is a way to handle coreference with implied
variables.
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• I infections

• time Td= ln2/α

• Hp is the Hubble constant

• Susceptible, Exposed, Infectious versus S Sus-
ceptible, E Exposed, I Infectious

Do not tag vacuous expressions as variable de-
scriptions, such as:

• parameter v

B Dataset Articles

Table 4 contains the list of DOIs of the articles
annotated to create the variable descriptions and
values dataset.

DOI

10.1073/pnas.2112532119
10.1287/opre.2022.2306

10.1101/2020.04.09.20047498
10.1016/j.chaos.2020.110088
10.1371/journal.pcbi.1009149
10.1038/s41591-020-0883-7
10.1073/pnas.2006520117
10.1016/j.idm.2020.03.001

10.1016/j.chaos.2020.109846
10.1371/journal.pone.0236386

10.3390/ijerph18179027
10.1038/s41467-020-20544-y
10.1038/s41598-022-06159-x
10.1016/j.physa.2020.125498
10.1007/s40484-020-0199-0
10.1038/s41591-020-0895-3
10.1186/s13104-020-05192-1

10.1016/j.healthplace.2020.102404
10.3390/jcm9020462

10.1016/j.idm.2020.02.001
10.1175/JPO-D-20-0286.1

10.1002/jmv.25827

Table 4: Digital Object Identifiers (DOI) of the articles
used to build the annotations of the dataset.
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Abstract

Automatic keyword extraction from scientific
articles is pivotal for organizing scholarly
archives, powering semantic search engines,
and mapping interdisciplinary research trends.
However, existing methods—including statis-
tical and graph-based approaches—struggle to
handle domain-specific challenges such as tech-
nical terminology, cross-disciplinary ambigu-
ity, and dynamic scientific jargon. This paper
presents an empirical comparison of traditional
keyword extraction methods (e.g. TextRank
and YAKE) with approaches based on Large
Language Model. We introduce a novel eval-
uation framework that combines fuzzy seman-
tic matching based on Levenshtein Distance
with exact-match metrics (F1, precision, recall)
to address inconsistencies in keyword normal-
ization across scientific corpora. Through an
extensive ablation study across nine different
LLMs, we analyze their performance and as-
sociated costs. Our findings reveal that LLM-
based methods consistently achieve superior
precision and relevance compared to traditional
approaches. This performance advantage sug-
gests significant potential for improving scien-
tific search systems and information retrieval
in academic contexts.

1 Introduction

Keyword extraction algorithms are a group of
statistical techniques that aim to identify the
most relevant and representative terms for doc-
uments (Firoozeh et al., 2020). These methods
have a wide range of applications, from improv-
ing information retrieval (Bracewell et al., 2005)
and search engine optimization (Horasan, 2021) to
information extraction, automatic document sum-
marization (Bharti and Babu, 2017), and emerg-
ing trend detection (Kim et al., 2015). Over the
years, the methodologies for keyword extraction
have evolved significantly, reflecting advances in

∗*motasem.alrahabi@sorbonne-universite.fr

both linguistic understanding and computational
techniques.

Traditional approaches, such as YAKE! (Cam-
pos et al., 2020), utilized syntactic analyses like
noun or n-gram phrases to extract linguistic char-
acteristics, including factors such as word position
and frequency. Statistical techniques, including TF-
IDF (Salton and Buckley, 1990) and RAKE (Rose
et al., 2010), introduced quantitative measures to
assess the importance of terms within a text and
across corpora. While early methods primarily re-
lied on linguistic rules and statistical measures, re-
cent advancements have embraced deep learning to
capture both contextual and semantic nuances. This
shift has been driven by the emergence of large lan-
guage models (LLMs) (Song et al., 2023a), which
leverage the Transformer architecture (Vaswani,
2017) to understand and generate text with remark-
able contextual depth. LLMs excel at modeling
complex relationships within text, enabling precise
keyword extraction through zero-shot, few-shot, or
fine-tuned approaches. Unlike traditional extractive
methods, which are confined to selecting explicit
terms from the text, generative models can create or
rephrase keywords that encapsulate the underlying
meaning, even when such terms are absent in the
original text. In (Song et al., 2023b), the authors
evaluate the performance of ChatGPT and Chat-
GLM in extracting keyphrases without prior fine-
tuning, highlighting their effectiveness in identify-
ing relevant terms. Meanwhile, (Maragheh et al.,
2023) explores a multi-stage approach to keyword
extraction in an e-commerce setting, aiming to re-
fine results by filtering out non-informative or sen-
sitive keywords and mitigating hallucinations. In
this work, we present a comprehensive analysis of
keyword extraction methods by bridging traditional
approaches and LLMs. Specifically, we conduct
a comparative evaluation of these methodologies,
examining their strengths, limitations, and practi-
cal applications. Our study employs two matching

13



Figure 1: Distribution of articles by language in HAL

techniques—exact matching and flexible match-
ing—to assess the effectiveness of keyword extrac-
tion. Furthermore, we perform an ablation study
to investigate the performance and computational
cost of different LLMs, providing insights into their
trade-offs and suitability for various scenarios.

2 Related Works

The evolution of keyword extraction techniques has
seen a diverse range of methods spanning super-
vised and unsupervised paradigms. Supervised ap-
proaches, such as classification-based algorithms,
leverage annotated datasets to train models capa-
ble of identifying keywords. Notable examples in-
clude KP-Miner (El-Beltagy and Rafea, 2009) and
the supervised framework by (Papagiannopoulou
and Tsoumakas, 2020). In contrast, unsupervised
methods, which do not rely on labeled data, have
predominantly employed graph-based techniques.
Algorithms such as TextRank (Mihalcea and Ta-
rau, 2004), SingleRank (Wan and Xiao, 2008), and
MultipartiteRank (Boudin, 2018) utilize word co-
occurrence graphs to rank and extract keywords.
Additionally, TopicRank (Bougouin et al., 2013)
and PositionRank (Florescu and Caragea, 2017)
introduced refinements to graph-based methods
by incorporating topical and positional informa-
tion. Despite their effectiveness, these traditional
methods often struggle with capturing nuanced and
contextual information, limiting their applicabil-
ity in more complex scenarios. In recent years,

embedding-based techniques have significantly ad-
vanced keyword extraction by leveraging dense
vector representations of words and phrases. Em-
bedRank (Bennani-Smires et al., 2018), for in-
stance, employs Word2Vec (Mikolov, 2013) and
Sent2Vec (Pagliardini et al., 2017) to generate em-
beddings for candidate phrases, which are then
ranked based on cosine similarity with the docu-
ment’s representation. Building on these founda-
tions, more recent methods like PatternRank and
KeyBERT have integrated contextual embeddings
derived from advanced language models such as
SBERT and BERT (Schopf et al., 2022; Grooten-
dorst, 2020). These approaches also incorporate
syntactic patterns, such as Part-of-speech (PoS)
tagging, to refine candidate phrase selection and
improve contextual relevance. While these meth-
ods represent a substantial shift towards contextual
keyword extraction, their reliance on predefined
patterns and embeddings highlights the need for
further advancements, particularly in harnessing
the capabilities of LLMs. In this regard, (Boudin
and Aizawa, 2024) proposed SILK, an unsuper-
vised domain adaptation method leveraging citation
contexts to synthesize training data, addressing the
scarcity of annotated in-domain keyphrases. Con-
currently, (Wu et al., 2024) introduced MetaKP,
a paradigm for on-demand keyphrase generation
guided by user intents, combining supervised fine-
tuning and LLM-based prompting to handle dy-
namic goals. These works collectively advance
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keyphrase generation using LLMs, demonstrating
the field’s shift toward flexible, resource-efficient
solutions.

3 Dataset Construction

The multilingual dataset used for this study is con-
structed from the HAL database platform, an open
archive dedicated to disseminating scientific re-
search publications in French and English. Recent
works, such as HALvest (Kulumba et al., 2024),
demonstrate the underutilized potential of the HAL
database for exploring and analyzing scientific pub-
lications. This dataset covers various scientific do-
mains and its articles are accompanied by various
information such as abstracts and author-provided
keywords. We use abstracts, titles, and author-
provided keywords, which will serve as a refer-
ence for evaluating the quality of the extraction
methods. This dataset was compiled using a script
that leveraged the HAL API. The collected data
included approximately 12,000 articles. An initial
sorting eliminated 1,300 duplicates, while about
6,000 other articles were excluded due to the ab-
sence of keywords or abstracts. After this filtering,
the final corpus consists of 4,700 usable articles,
representing about 30% of the initial data. An
initial observation reveals a marked linguistic dis-
tribution with 85% of the articles in English and
15% in French. Regarding the English articles, the
average number of keywords per article is 5.35,
with an average keyword length of 2.14 words. In
comparison, for French articles, the average num-
ber of keywords is slightly higher at 6.32, with an
average length of 2.23 words.

The distribution of scientific domains also varies
by language, as illustrated in Figure 2. Unsurpris-
ingly, computer science remains the majority for
both languages. Humanities rank second in French,
while life sciences take this position in English.
Humanities, well-represented in French, are less
present in English. For the rest of the analysis, it
is important to note that all titles, keywords, and
abstracts were converted to lowercase to ensure
consistent and reliable results.

4 Method

In this study, we approach keyword extraction
through two distinct paradigms: Generative Ap-
proaches and Embedding-Based Approaches. For
generative methods, we employ LLMs in a zero-
shot learning framework, selected for its imple-

mentation simplicity and proven effectiveness in
capturing baseline model performance. Formally,
given an input document D = {w1, ..., wn}, the
model generates candidate keywords KG through
conditional probability:

P (k|D) =

m∏

t=1

P (kt|k<t, D) (1)

where k ∈ KG represents a generated keyword
sequence of length m. The instruction prompt is a
follows.

Instruction: As a keyword extraction master,
your only mission here is to extract only the
most relevant keywords that are present in the
text. Put the list of keywords between brackets,
comma-separated. DO NOT write something
else than the keywords you’re supposed to
extract from the text. Skip the preamble and
provide only the keywords. The text:{text}

The embedding-based approach operates by
measuring semantic similarity between document
embeddings eD and keyword embeddings ek from
a predefined vocabulary V , using cosine similar-
ity. Keywords KE = {k ∈ V|sim(D, k) ≥ τ} are
selected through thresholding at τ . Our implemen-
tation leverages KeyBERT, a BERT-based frame-
work that identifies document-subphrase alignment
through this similarity measure. The system em-
ploys two distinct keyword selection strategies gov-
erned by:

Maximal Marginal Relevance (MMR) Bal-
ances keyword relevance and diversity through a
trade-off parameter λ ∈ [0, 1]:

ki = argmax
k∈V\KE

[
λ · sim(D, k)−

(1− λ) · max
kj∈KE

sim(k, kj)

]
(2)

Max Sum Distance (MSum) : To diversify
the results, it takes the 2 x top-n most similar
words/phrases to the document. Then, it takes all
top-n combinations from the 2 x top-n words and
extract the combinations that are the least similar
to each other by cosine similarity.
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Figure 2: Distribution of domains by language

5 Experimental setup

In our study, we adopt an automatic evaluation
framework to assess the performance of key-
word extraction methods by comparing system-
generated keywords against author-provided key-
words from articles in the HAL open-access repos-
itory.

5.1 Methods

We evaluate three distinct categories of models.
The first comprises multilingual LLMs that gener-
ate keywords in a generative manner, leveraging
their pre-trained cross-lingual capabilities to pro-
duce contextually relevant terms. The second ap-
proach involves embedding-based models, where
pre-trained embeddings encode textual content into
dense vector representations, followed by cluster-
ing algorithms to identify salient keywords. The
third category encompasses traditional statistical
methods, which rely on frequency-based metrics,
co-occurrence patterns, or graph centrality mea-
sures to extract candidate keywords.

Large Language Models The study leverages
a diverse array of LLMs to ensure comprehen-
sive evaluation across model architectures, scales,
and accessibility frameworks. Open-weight mod-
els, chosen for their reproducibility and adaptabil-
ity, include Meta’s LLaMA 3.1 in both 70B and
8B parameter configurations, Mistral 7B, Mixtral
8x7B, and Google’s Gemma 7B. These contrast
with proprietary, closed-source models accessed
via API, such as OpenAI’s GPT-4o and GPT-3.5
Turbo, alongside Anthropic’s Claude 3 Haiku and

Claude Instant 1.2.

Embedding-based Models Our embedding-
based approach employs KeyBERT, which uti-
lizes pre-trained BERT embeddings to identify key-
words by measuring semantic similarity between
candidate terms and the input document. We evalu-
ate two configurations: (1) a default setup relying
solely on cosine similarity between document and
keyword embeddings, and (2) an enhanced variant
incorporating MMR for diversification and MSum
to refine keyword selection by balancing relevance
and novelty.

Traditional Models To establish robust base-
lines against contemporary neural approaches, we
evaluate traditional unsupervised keyword extrac-
tion methods that rely on graph-based and statisti-
cal paradigms. This includes TextRank, a widely
cited graph algorithm leveraging co-occurrence
networks with PageRank-style scoring; Position-
Rank and SingleRank, which integrate term po-
sitional bias and heterogeneous graph structures,
respectively; MultipartiteRank, optimized for topic-
focused keyphrase extraction through multipartite
graph representation; TopicRank, which hierar-
chically clusters candidate terms into topics be-
fore ranking; and YAKE, a lightweight statistical
method combining term frequency, casing, and po-
sitional features.

5.2 Metrics

The comparison is performed within two ap-
proaches: (1) Exact Matching, where extracted
keywords are evaluated based on their relevance
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Model Abstract + Title Abstract

Precision Recall F1 Precision Recall F1

LLM-based Approach

LLaMA 3.1 70b 0.132 0.245 0.163 0.120 0.224 0.148
Claude 3 Haiku 0.130 0.218 0.154 0.120 0.204 0.143
LLaMA 3.1 8b 0.147 0.181 0.151 0.136 0.172 0.142

GPT 4o 0.075 0.222 0.108 0.071 0.206 0.101
Claude Instant 1.2 0.073 0.183 0.097 0.066 0.171 0.088

GPT 3.5 Turbo 0.089 0.094 0.087 0.086 0.089 0.083
Mixtral 8x7b 0.057 0.188 0.083 0.047 0.176 0.070

Mistral 7b 0.050 0.199 0.077 0.048 0.156 0.069
Gemma 7b 0.051 0.079 0.059 0.052 0.081 0.060

Embedding-based Approach

KeyBERT Default 0.058 0.081 0.067 0.056 0.078 0.065
KeyBERT with MMR and MSum 0.052 0.073 0.061 0.050 0.070 0.058

Traditional Approach

PositionRank 0.062 0.115 0.080 0.056 0.103 0.072
MultipartiteRank 0.062 0.113 0.079 0.056 0.103 0.072

TopicRank 0.059 0.108 0.076 0.053 0.096 0.068
SingleRank 0.053 0.098 0.068 0.052 0.096 0.067

YAKE 0.053 0.098 0.068 0.045 0.083 0.058
TextRank 0.039 0.072 0.050 0.036 0.066 0.046

Table 1: Evaluation Result with Exact Matching

and precision compared to the keywords provided
by the authors in their articles. The evaluation cri-
teria include precision, recall, and the F1 measure.
(2) Fuzzy Matching, which is a less strict method
of term comparison without tolerance for variations
such as plural forms, hyphen usage, or potential
typographical errors.

Exact Matching In this approach, only identical
terms were considered matches, to ensure a precise
and consistent evaluation of the results. For each
article, the most relevant keywords are extracted
from the abstracts using all evaluated methods. We
use the F1-Score, a commonly employed metric
for evaluating the performance of keyword extrac-
tion models. The F1-Score is the harmonic mean
between precision, which is the ratio of correctly
extracted keywords to the total number of extracted
keywords, and recall, which measures the propor-
tion of relevant extracted keywords to the total num-
ber of relevant keywords in the text. In the context
of keyword extraction, a high F1-Score indicates
that the model successfully extracts a significant
proportion of relevant keywords (high recall) while

limiting the extraction of irrelevant keywords (high
precision).

Fuzzy Matching This approach allows compar-
ing generated keywords with reference keywords
by considering formal variations. Several metrics
can assign a "proximity score" between two strings,
such as Levenshtein, Jaro-Winkler, and various
embedding models (Alqahtani et al., 2021). In
this study, we adopt the Levenshtein distance, also
known as edit distance. It quantifies the minimum
number of operations required to transform one
string into another, with possible operations being
insertion, deletion, or substitution of characters.
The results are presented in graphical form to illus-
trate the evolution of the F1-Score as the flexibility
of the Levenshtein distance increases (from 0 to 4).

6 Results

The evaluation results, as detailed in Table 1, com-
pare model performance across precision, recall,
and F1-score under two input settings: (1) Abstract
With Title and (2) Abstract Only, ranked by decreas-
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Model Abstract + Title Abstract

d ≤ 1 d ≤ 2 d ≤ 3 d ≤ 4 d ≤ 1 d ≤ 2 d ≤ 3 d ≤ 4

LLM-based Approach

LLaMA 3.1 70b 0.19 0.197 0.21 0.228 0.174 0.18 0.193 0.212
Claude 3 Haiku 0.179 0.185 0.195 0.21 0.168 0.173 0.183 0.198
LLaMA 3.1 8b 0.175 0.183 0.198 0.223 0.165 0.172 0.187 0.21

GPT 4o 0.127 0.132 0.141 0.155 0.12 0.124 0.134 0.148
Claude Instant 1.2 0.116 0.13 0.147 0.176 0.105 0.118 0.135 0.163

GPT 3.5 Turbo 0.101 0.106 0.118 0.137 0.096 0.102 0.114 0.13
Mixtral 8x7b 0.1 0.107 0.118 0.133 0.084 0.095 0.107 0.123

Mistral 7b 0.092 0.097 0.107 0.123 0.085 0.09 0.099 0.116
Gemma 7b 0.069 0.072 0.076 0.084 0.071 0.073 0.078 0.086

Embedding-based Approach

KeyBERT Default 0.084 0.095 0.12 0.158 0.081 0.092 0.116 0.154
KeyBERT with MMR and MSum 0.072 0.08 0.101 0.137 0.07 0.078 0.098 0.135

Traditional Approach

PositionRank 0.097 0.101 0.108 0.123 0.087 0.091 0.099 0.114
MultipartiteRank 0.095 0.099 0.113 0.139 0.087 0.091 0.105 0.13

TopicRank 0.089 0.094 0.108 0.135 0.08 0.084 0.099 0.125
SingleRank 0.083 0.087 0.092 0.102 0.072 0.075 0.081 0.091

YAKE 0.081 0.085 0.094 0.113 0.079 0.082 0.091 0.11
TextRank 0.062 0.065 0.068 0.075 0.058 0.06 0.064 0.071

Table 2: Evaluation Result with Fuzzy Matching (F1 Scores)

ing effectiveness. Traditional graph-based methods
exhibit stark disparities, with performance gaps ex-
ceeding 60% between the weakest (TextRank) and
strongest models (PositionRank and MultipartiteR-
ank). In contrast, KeyBERT demonstrates near-
equivalent performance across both input variants,
suggesting robustness to textual context. Notably,
the inclusion of titles yields minimal impact on
traditional and KeyBERT-based methods. How-
ever, LLMs display significant variability, with per-
formance ranging from modest to triple-digit im-
provements when titles are included, boosting met-
rics by approximately 10%. The top-performing
LLMs—LLaMA 3.1 70B, Claude 3 Haiku, and
LLaMA 3.1 8B—highlight the role of scale and
architecture in keyword extraction, while Gemma
7B’s subpar performance underscores the criticality
of prompt compliance, as deviations in output for-
matting led to severe penalties under exact-match
evaluation.

The experimental findings, illustrated in Table 2,
underscore the utility of Levenshtein distance in ac-
commodating linguistic variations, which enhances

precision at the cost of computational efficiency.
While traditional models exhibit moderate perfor-
mance gains when titles are included, KeyBERT
demonstrates superior robustness in keyword ex-
traction by leveraging contextual embeddings, par-
ticularly in texts with heterogeneous term distribu-
tions. This approach mitigates reliance on surface-
level patterns, offering nuanced semantic align-
ment. LLMs, capitalizing on their deep contex-
tual awareness and capacity to process structurally
diverse texts, consistently outperform alternative
methods, especially in complex extraction tasks.
Generative architectures further benefit from the
flexibility of Levenshtein-based evaluation, though
title inclusion yields diminishing returns beyond
a performance threshold. These results highlight
a critical trade-off: while Levenshtein distance
and contextual embeddings improve precision and
adaptability, they introduce computational over-
head. The interplay between model architecture,
input context (e.g., title inclusion), and evaluation
metrics emerges as a pivotal factor in optimizing
keyword extraction systems, with LLMs setting
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a high benchmark for accuracy despite scalability
challenges.

7 LLMs and Cost per Token

The computational and environmental costs of
LLMs present critical barriers to accessibility and
sustainability, particularly for institutions with lim-
ited resources. As evidenced by our analysis, mod-
els achieving comparable F1 scores can vary by
10–100x in operational costs per token, underscor-
ing the need to integrate economic and ecological
considerations into evaluation frameworks. To ad-
dress this gap, we propose the Token Efficiency
Score (TES), a novel metric balancing performance
(F1) and cost ($/million tokens) through a weighted
harmonic mean that prioritizes affordability with-
out sacrificing accuracy. The formula,

TES =
(1 + α)× F1 × Cost

α× Cost + F1
(α = 10), (3)

applies a strong penalty to cost, reflecting its out-
sized impact in mass data processing scenarios.
While LLMs excel in task performance, their re-
source intensity highlights a critical trade-off: high-
parameter models like GPT-4 achieve marginal
gains at prohibitive expense, whereas smaller
models (e.g., LLaMA-7B) offer viable efficiency-
performance equilibria. TES not only democratizes
model selection for resource-constrained environ-
ments but also incentivizes energy-conscious de-
velopment, aligning AI progress with sustainability
goals. This metric redefines evaluation paradigms,
urging the community to prioritize computational
equity alongside technical prowess—a crucial step
toward ethical, scalable NLP solutions.

The calculation shows that the most performant
models are also among the least costly, notably
Llama-3 70B, Llama-3 8B, and Claude 3 Haiku.
As shown in Figure 3, we rank the generative mod-
els by their TES score from most efficient to least
efficient. As expected, the top three models are
Llama 3 70B, Claude 3 Haiku, and Llama 3 8B,
with Gemma 7B by Google in the last position. The
TES allows for clear identification of the most per-
formant models while considering the cost factor,
which is crucial in large-scale scenarios.

8 Limitations

While LLMs have revolutionized keyword extrac-
tion through their contextual depth and adaptability,

their deployment in scientific settings reveals crit-
ical limitations. First, their reliance on generic
pretraining corpora restricts domain-specific preci-
sion, necessitating costly fine-tuning on annotated
technical datasets to capture discipline-specific ter-
minology. Second, their inherent opacity as "black-
box" systems complicates interpretability, hinder-
ing traceability in scenarios requiring explainable
keyword selection processes. Third, LLMs exhibit
stochastic instability, with outputs fluctuating based
on prompt phrasing—a challenge demanding itera-
tive prompt engineering and repeated evaluations
to stabilize F1-score performance. This instability
is compounded by cost-efficiency trade-offs: ver-
bose, conversational prompts may marginally im-
prove keyword structure but inflate computational
expenses without guaranteed gains in relevance.
Finally, evaluation frameworks face intrinsic bi-
ases, exemplified by the HAL corpus, where absent
keyword mentions in abstracts/titles disadvantage
extractive models. These limitations underscore
the need for domain-adapted training paradigms,
standardized prompt templates, and evaluation cor-
pora that align author-provided keywords with tex-
tual content—critical steps toward bridging the gap
between LLM capabilities and scientific keyword
extraction requirements.

9 Conclusion and Future Work

The experimental findings underscore the transfor-
mative potential of generative LLMs in keyword
extraction, surpassing traditional methods in pre-
cision and semantic relevance, even in zero-shot
settings. By capturing nuanced contextual rela-
tionships, LLMs produce keywords that better re-
flect scientific content, while our proposed Token
Efficiency Score (TES) highlights cost-effective
models—such as Claude 3 Haiku and LLaMA vari-
ants—that balance performance and affordability.
Notably, integrating titles enhances F1-scores with-
out significantly increasing computational over-
head, emphasizing the value of metadata in extrac-
tion tasks. Future work should prioritize prompt
engineering to stabilize outputs—for instance, by
specifying keyword length or structuring prompts
as simulated dialogues to reduce format variabil-
ity, particularly for models like Gemma. Fine-
tuning LLMs on domain-specific corpora could
further bridge gaps between generative and extrac-
tive methods, while expanding processing to full-
text articles (Teufel and Moens, 2002) promises
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(a) F1 Score Performance relative to Price. (b) Weighted Score

Figure 3: Cost and Weighted Score

richer keyword extraction by leveraging broader
contextual signals. Complementing F1-score with
metrics like NPMI and BM25 could better evaluate
semantic coherence, and integrating thematic mod-
eling (e.g., BERTopic) may organize keywords into
structured taxonomies, enhancing interpretability.
These directions not only refine extraction accuracy
but also address scalability and domain adaptation
challenges, laying the groundwork for LLMs to
serve as versatile, sustainable tools for scholarly
knowledge organization—a critical advancement
as NLP increasingly intersects with scientific pub-
lishing and meta-research. This roadmap calls for
interdisciplinary collaboration to align technical
innovation with real-world usability and environ-
mental responsibility.
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Abstract

Scientific discovery is an iterative process that
requires transparent reasoning, empirical vali-
dation, and structured problem-solving. This
work presents a novel human-in-the-loop AI
system that leverages case-based reasoning to
facilitate structured scientific inquiry. The sys-
tem is designed to be note-centric, using the Ob-
sidian note-taking application as the primary in-
terface where all components, including user in-
puts, system cases, and tool specifications, are
represented as plain-text notes. This approach
ensures that every step of the research process
is visible, editable, and revisable by both the
user and the AI. The system dynamically re-
trieves relevant cases from past experience, re-
fines hypotheses, and structures research work-
flows in a transparent and iterative manner. The
methodology is demonstrated through a case
study investigating the role of TLR4 in sepsis,
illustrating how the system supports problem
framing, literature review, hypothesis formu-
lation, and empirical validation. The results
highlight the potential of AI-assisted scientific
workflows to enhance research efficiency while
preserving human oversight and interpretabil-
ity.

1 Introduction

Large language models (LLMs) have the potential
to transform scientific research. They offer broad
domain knowledge and the ability to synthesize
complex information. However, their application
in scientific inquiry is hindered by issues such as
hallucination, lack of transparency, and difficulty in
tracing the reasoning process behind generated in-
sights (Sanderson, 2023). To ensure that AI-driven
research remains reliable, verifiable, and ethical,
human-in-the-loop methodologies are essential.

Here we present a system that integrates case-
based reasoning (CBR) (Kolodner, 1993; Watson,
1997) with a note-centric workflow to facilitate
AI-assisted scientific inquiry. The system is de-

signed around the Obsidian note-taking application
(https://obsidian.md/) such that all elements
of the workflow are represented as first-class plain-
text notes in Obsidian. This structure provides a
transparent, revisable, and interactive environment
where users can inspect, modify, and refine the
reasoning process at every stage.

The core workflow of the system follows a struc-
tured inquiry process. When a user poses a sci-
entific question or problem, the system assesses
whether it aligns with existing case knowledge and
retrieves or adapts cases from prior solutions. Im-
portantly, every step of a solution is documented
within the note interface, including both user and
LLM input, ensuring full traceability. Each step
makes use of tools which can be called on explic-
itly, or searched for based on context.

We illustrate the potential of this approach
through a case study exploring the role of TLR41

in sepsis. This example illustrates how the system
facilitates problem framing, literature review, hy-
pothesis generation, and data integration. The case
study highlights the advantages of this structured,
AI-augmented workflow.

2 Methods & Design

The system uses a human-in-the-loop approach that
is note-centric. That is, all components of the sys-
tem are stored as notes in the Obsidian note-taking
application. All notes are plain-text documents.
This includes not only user notes but all system
CBR cases as well as tool specifications. This
approach means that all elements of the system
are transparently available to both the user and
LLM as part of the workflow. This approach also
means integration with the note-taking application
is minimized making the system interface agnostic.

1Toll-like receptor 4 (TLR4) plays a central role in detect-
ing bacterial infections. However, in some cases, it can trigger
an excessive immune response, leading to sepsis.
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This stands in contrast with fully integrated LLM-
assisted note taking applications (Suh et al., 2023)
(https://notebooklm.google/).

2.1 System Workflow

Figure 1 gives an overview of the system work-
flow. The user interacts with Obsidian, the note-
taking application. While taking notes, the user
may prompt the system to answer a question or
solve a problem. The system evaluates the request
and searches for any applicable CBR case. A new
instance of the most similar case is then created and
linked to from the current user note. If no case is
found, a default case is created to initiate stepwise
problem solving.

Figure 1: System workflow.

2.2 Case-based Reasoning

Case notes are structured documents that encapsu-
late knowledge for solving problems. Each case
includes: a description of the problem, a series of
steps for solving the problem and references to op-
tional resources. Steps include an Action and may
specify pre-conditions (Requires). The action is
typically composed of a combination of free text
instructions and references to system tools. When
a tool is executed its response may be included
inline in the note, or stored in a context variable.
Variables may be passed to later steps. Abstractly,
cases represent system experience based on pre-
vious problem solving instances. Cases may be
reused, revised or adapted as new problems are
encountered.

2.3 The Collaboration Process

After a case is instantiated and linked to the user’s
note the system begins execution of the steps. Be-
cause the case is a plain-text note, the user sees

execution as it progresses. The user may pause ex-
ecution to review, revise, and/or repeat steps. This
keeps the user in-the-loop and makes the reasoning
process interactive, transparent and traceable.

2.4 Language Enabled Tools
Tool usage and interface is specified in tool notes.
As notes, this makes tools searchable both by the
user and the system. This means that if a case step
specifies some action, the system can search tool
specifications for an appropriate tool to perform
that action. Tools can also perform language func-
tions (e.g., summarize) as well as retrieve or manip-
ulate data (e.g., from user experiments) through a
REST API. This also allows interface to any third-
party database.

2.5 Implementation
The system is written in Python and interacts with
the Obsidian note-taking application through notes
written in plain-text markdown. For LLM-based
tools Python interfaces to models (GPT4o and
o1) through OpenAI’s API (OpenAI, 2023). A
Pinecone (https://www.pinecone.io/) server-
less vector database maintains embeddings (text-
embedding-ada-002 model) for all documents.

3 Case Study

Given that most available benchmarks assume sig-
nificant autonomy/agency in performing knowl-
edge discovery tasks (Liu et al., 2024; Majumder
et al., 2024; Chen et al., 2024) or focus on a sin-
gle correct/best answer (Rein et al., 2023; Chollet
et al., 2025), we instead provide an end-to-end case
study to demonstrate how a note-based system fa-
cilitates scientific inquiry through collaboration
with a user. Specifically, the researcher initiates an
exploration of how the TLR4 gene is related to sep-
sis. The approach supports an iterative framework
that integrates user input, literature review, exter-
nal database searches, hypothesis formulation and
experimental results. Each step builds upon the pre-
vious, ensuring a well-documented and transparent
reasoning path that is flexible, adaptable and sup-
ports a productive collaboration between human
and machine.

3.1 Research Question
We begin by adding the following question to a
new Obsidian note:

How is TLR4 related to sepsis?
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The system must first contextualize the ques-
tion/problem within the broader framework of sci-
entific inquiry. This helps to set expectations for
the nature of the insights and, more importantly,
identify appropriate case-based reasoning (CBR)
cases relevant to the question. A summary (Fig-
ure 2) is prepared by the Note Change case which
assesses the original question.2

Figure 2: Defining the question type and identifying
CBR cases (e.g., Mechanistic and Causal questions)

The user reviews the assessment, makes any
needed changes and approves the summary (by
checking "Step Completed"). This step will act as
a guide for subsequent steps. That is, it informs and
constrains subsequent step formulation as a part of
any reasoning by the LLM. Note, especially, that
this text is added to the original user note.

3.2 Initiating Case-based Reasoning

If available, an applicable "Question Type" case
is chosen as a top-level starting point (if not, a
"default" case formulates one). Here we have two
main case types: mechanistic and causal, as well
as three subtypes: descriptive, experimental and
predictive. The original user note with question
(and summary) will act as a top-level note with
links to each subsequent reasoning step (Figure
3). The link is not to the Question Type case, but,
rather, a copy which will be "populated" as each
step in the case is completed and can be edited at
any time by the user.

Note that steps in the following sections are spe-
cific to the above CBR case and, in fact, are only
for the "Mechanistic" portion of the question as
formulated in Figure 2. Though case specific, each
step highlights features of the system available to

2Note that most figure screenshots include red spell check
underlines from Obsidian.

Figure 3: Instantiate intial CBR case, Mechanistic Gene
Function, based on previous experience. Link this (red
arrow) to the top-level user note.

any case.

3.3 Defining Scope
The first step of the ’Mechanistic - Gene Function’
case is to define the scope of the problem. This
requires user input. The step definition specifies
this dependency in the Requires section with the
instruction: "User input" (Figure 4). From what is
known so far about the problem (which required
user approval, see Figure 2) the LLM constructs a
list of questions for gathering scoping information.

Figure 4: Case reasoning step requiring user input as
part of the scope definition action.

Given the task of exploring a gene, this list (Fig-
ure 5) asks a series of questions designed to set
bounds on what is to be investigated about that
gene (e.g., species, interactions, relationship to dis-
ease).

Key to the system’s collaborative design is that
this is not a passive solicitation of information from
the computer. Rather, the user may edit the list in
any way, including using strikethrough to signal
that items should be ignored. User answers are
interleaved with questions and checkboxes are used
to indicate the user has completed the question.

Given the user feedback, the Action portion of
the step proceeds and the system proposes a work-
ing definition of scope (Figure 6). Again, the user
may edit and revise as appropriate since all text is
part of an Obsidian note. At this point the step is
checked as completed and the next step begins.

3.4 Refining the Problem
We are now in a position to refine the original prob-
lem statement based on the agreed upon scope. In
this step the Action implicitly uses the LLM to
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Figure 5: Requested user information for scope defini-
tion. User interleaves answers and then checks boxes.
Users may also use strike-through to indicate informa-
tion that should be ignored (i.e., is out of scope).

Figure 6: Final system composed question scope defini-
tion.

generate a Refined Problem Statement and propose
Key Questions. The Step definition and results are
both given in Figure 7.

Figure 7: Refined problem statement and key questions.
An additional question has been added by the user (blue
highlight).

Notice that the user has exercised the option
of adding an additional question (blue highlight).
More generally, the system also fully supports not
only editing responses, but also the Action defi-
nition itself. This serves two purposes, improv-
ing responses for a particular problem step, but
also providing a mechanism for system learning.
Since all case instances represent experience, any
changes in how a problem is approached becomes

an opportunity to refine and adapt CBR cases for
future problems.

3.5 Quick Review
The adoption of LLMs for scientific research has
been hindered by, among other things, their propen-
sity to fabricate both information and citations sup-
porting those fabrications (Jones, 2025). Never-
theless, their breadth of training can make them
invaluable partners if verification is included.

In this step the LLM is used to provide a quick
(though potentially unreliable) review of the prob-
lem. The Action uses an explicit system tool call
to effect a search given the previously generated
Problem Statement (Figure 8).

Figure 8: Explicit tool call to ask OpenAI o1 model for
"quick" non-authoritative answer.

By making the call explicit the return response
can be captured in a named variable, res0. In doing
so, the response will not be included as part of the
note, however, by using a substitution statement
after the tool, {res0["answer"]}, the response (aka
answer) is both included in the note text (Figure 9)
and now stored in a variable for later use (see 3.7
below).

Figure 9: "Quick" answers to the refined problem’s key
questions.

The LLM (OpenAI o1 in this case) answers each
Key Question in a plausible, though unverified,
manner. This step is meant to offer the user a quick
overview as orientation to the problem space as
well as prompt revision of earlier steps if the user
believes this is appropriate (e.g., answers do not
support a hypothesis the user has in mind).
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3.6 Literature Review
With this cursory look at the answer in mind we
may now undertake a more rigorous literature re-
view. In this step the Action explicitly requests a
search of PubMed articles to answer the Key Ques-
tions (Figure 10). Key to this tool is its design to
explicitly not answer questions using the LLM. In-
stead, it collects articles based on a keyword search
of PubMed (e.g., genes, diseases, pathways), in-
dexes them and uses retrieval-augmented genera-
tion (RAG) to answer the questions (Lewis et al.,
2020).

Figure 10: Initiate a literature search of PubMed on the
list of Key Questions. Search results are stored in res1
and references for search results are passed to another
tool to be summarized.

Answers include paragraph-level citations to all
articles used to answer the question as well as a
complete linked bibliography (Figure 11).

Figure 11: Literature Review answer to first Key
Question. Answer is based only on PubMed articles
with paragraph-level links to citations and bibliogra-
phy (Fernández-Martín et al., 2022; Jeon et al., 2024;
Kuzmich et al., 2017; Park et al., 2023; Perrin-Cocon
et al., 2017; Punch et al., 2022; Qiu et al., 2023; Shen
et al., 2024).

Though not shown here, the user has the option

of revising any question, asking additional ques-
tions or otherwise annotating these results.

3.7 Knowledge Gaps
Having completed a first review of the Key Ques-
tions, we can now attempt to identify knowledge
gaps that may warrant further investigation. This
step (Figure 12) uses the same GPT tool as before
but now incorporates information from previous
steps (3.5 and 3.6) as part of the prompt using
variable substitution (red arrows). It also explic-
itly specifies the structure of the response using a
function prototype. Although this may border on
"programming" for many users, it is shown here
to demonstrate the level of control a user has over
how the LLM answers questions.

Figure 12: GPT API is used to assess knowledge gaps.
An explicit prompt is provided along with results from
the previous Quick Review and Literature Review. The
response is structured using a function prototype param-
eter.

The LLM, using both reviews, then provides a
list of nine potential gaps in knowledge (Figure 13
shows the first two).

Figure 13: First two identified knowledge gaps (of nine)
summarized and annotated by difficulty and reward.

Again, the strength of the LLM to identify and
summarize is leveraged to provide a concise anno-
tated summary of each potential gap. It remains
up to the user to review, refine and approve the
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results. However, the system, by design, provides
a documented, transparent path of reasoning steps
to assist in this task.

3.8 Database Review
In addition to GPT and PubMed reviews, the user
can also incorporate knowledge from other sources.
This step (Figure 14) demonstrates the use of
system tools to search, summarize and structure
information from external sources, in this case:
Wikipedia and GeneCards.

Figure 14: Step definition to use two external data
sources (Wikipedia and GeneCards) to summarize more
information about the TLR4 gene.

The dbSearch tool takes a list of sources, queries
them and then returns them to the user note. As
before, these are added to the note, but also saved
to a variable, res3, for later use by other functions.

3.9 Hypothesis Formulation
Given our Problem Statement; literature and
database reviews; and, assessment of knowledge
gaps, we can now attempt to formulate reasonable
research hypotheses (Figure 15).

Figure 15: Using the results of multiple previous steps:
formulate research hypotheses.

Reiterating: all work to this point has been
recorded in a single user readable/editable note
in Obsidian. It is available to the user, but also to
the system. The Action in this step takes advantage
of the accumulation of knowledge to formulate the
hypotheses (Figure 16).

Three hypotheses are stated. The rationale for
each is summarized and potential approaches for

Figure 16: Proposed Hypothesis 2, including: rationale
and potential stepwise approach.

their study are given. This step in particular is a
starting point. A user is expected to iterate and
refine a hypothesis. This may mean qualifying or
constraining a given hypothesis and re-running, or
it may involve returning to earlier steps to gather
more information (e.g., literature review). The use
of a note taking system is meant to encourage and
support the dynamic collaboration that is key to a
scientific workflow.

3.10 Experiments and Data Collection

Another key feature of the system is the ability to
seamlessly incorporate external data into reasoning
tasks. In this case study the user has indicated
an interest in Hypothesis 2 which integrates gut
microbiota with changes in TLR4 signaling during
sepsis (Figure 16). The Action has been edited
by the user to focus data source search on this
hypothesis (Figure 17).

Figure 17: Implicit search of external resources for
datasets suitable for preliminary results.

This search utilizes another section of the CBR
case: Suggested Resources (Figure 18). This gives
the system an implicit starting point for finding rel-
evant data. Note that initially the databases are not
themselves searched, but, rather, the LLM (Ope-
nAI o1) utilizes its own training to locate possible
sources. Like the GPT Literature Review (see 3.5)
this is not meant to be a final authoritative search.
Rather, it quickly locates possible data as well as
giving guidance to the user (not shown) on how
to search the database resources (e.g., GEO and
SRA).
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Figure 18: The CBR case includes Suggested Resources.
This includes one for gene expression (GEO) and one
for microbiome profiling (SRA).

Excerpted search results for both gene expres-
sion (from GEO) and microbiota profiling (SRA)
are given in Figure 19. These results include acces-
sion identifiers (red arrows) as well as descriptions
and relevance for Hypothesis 2 use.

Figure 19: Excerpts from the search using OpenAI
o1 model. Public datasets are identified (red arrows).
Searches may also be done using tools to directly access
resource APIs.

Again, this is meant as a way of using the LLM
to quickly assess the availability of relevant public
datasets. The user may then utilize other system
tools (not shown) to search and download the actual
data from GEO and SRA.

3.11 Differential Expression Analysis

Given that most data analysis, especially in the bio-
logical sciences, involves a multi-step pipeline, the
advantages of initiating and monitoring a pipeline
from a notes interface are limited. However, the
system does have access, via its built-in REST API
interface, for accessing the results of any analysis.
What this means practically, is that these results can
be incorporated into the workflow like any other
text source.

Figure 20: Explicit tool identification for computing
differential gene expression on retrieved datasets.

Figure 20 implicitly calls a tool to interpret the
results of a standard DESeq2 differential gene ex-
pression analysis. In this case the tool expects a list
of genes in CSV format that includes: gene symbol
(e.g., TLR4), log fold-change and significance of
the change (typically, adjusted p-value). The re-
sults of the step are to summarize those genes that
have been found to be significantly differentially
expressed.

The user may then qualify these results relative
to the workflow by posing additional questions
(e.g., "Are other genes associated with an inflam-
matory response also up-regulated?").

3.12 Experimental Insights and Reflection

LLMs are particularly adept at summarization tasks.
This CBR case takes advantage of this feature and
asks the LLM in this final step to reflect on what
has been discovered thus far and to suggest next
steps (Figure 21).

Figure 21: Preliminary results analysis and assessment
of next steps sensitive to this analysis (if results are
available).

Recall that each step has the accumulated context
of all previous steps, so, although the Action may
seem vague by asking for "insights," it is actually
operating on the accumulated text of everything
that has come before (nearly 20 pages in this case
study).

In contrast to many autonomous reasoning sys-
tems (e.g., OpenAI’s o1 model), this system is de-
signed to support a scientific workflow that is ex-
pected to be open-ended and subject to continuous
revision as hypotheses are generated and exper-
iments are performed and interpreted. There is
rarely, if ever, one right answer.

Figure 22 supports this workflow not only with
a summary and critique of foregoing steps, but
by giving guidance for refining and extending the
work.
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Figure 22: First two (of six) suggested next steps for the
investigation including, hypothesis refinement, valida-
tion and prospective controlled studies.

4 Discussion

The case study presented here illustrates how a
human-in-the-loop AI system can enhance the pro-
cess of scientific discovery. By structuring inquiry
through case-based reasoning, the system provides
a transparent, traceable, and iterative approach that
naturally aligns with standard scientific workflows.
A key strength of this approach is its ability to lever-
age LLMs as an integral tool for productive human
collaboration.

A critical challenge in leveraging AI for sci-
entific discovery is ensuring that the generated
insights remain grounded in empirical evidence.
LLMs are known to generate plausible yet unver-
ified statements, which can mislead researchers
if used uncritically. This system mitigates such
risks by explicitly incorporating verification steps,
including literature searches using PubMed and
database reviews via other trusted sources. The
interactive nature of the system ensures that the
user remains an active partner in refining problem
definitions, verifying outputs, and shaping hypothe-
ses. This stands in stark contrast to many recent
autonomous-blackbox approaches to LLM reason-
ing.

The foregoing case study demonstrates the value
of structuring problem-solving through an evolv-
ing CBR system. Cases represent human-machine
experience and as such can be reused, refined and
adapted for new problems. Their implementation
as first-class notes ensures transparency and encour-

ages human collaboration as part of the reasoning
process. In this example the iterative approach to
scope definition, literature review, and hypothesis
refinement steps serve as checkpoints, reinforcing
scientific rigor while allowing for flexibility and re-
finement in inquiry. Using an LLM to help identify
knowledge gaps and synthesize insights from multi-
ple sources highlights the strength of this approach
and demonstrates how AI can enhance, rather than
replace, the natural reasoning process of scientific
experts. Providing a mechanism for retrieving user
experimental results further enhances the workflow
by facilitating a seamless transition from hypothe-
sis generation to empirical validation.

By embedding this approach within a human
note-taking system, LLM-based tools become an
integral component of the workflow, fostering a
continuous cycle of learning and adaptation driven
by user-machine collaboration. Furthermore, stor-
ing all CBR cases, tools, and generated results as
user notes enhances transparency and traceability,
ensuring that each step in the reasoning process
remains accessible for review and refinement.

5 Conclusion

Our approach underscores the potential for human-
in-the-loop AI systems to enhance scientific dis-
covery by structuring inquiry, verifying insights,
and integrating empirical data. By leveraging case-
based reasoning, the approach ensures that LLM-
generated outputs remain contextually relevant, em-
pirically grounded, and are subject to a continuous
step-by-step review by a collaborating human user.

The results demonstrate that while LLMs pro-
vide valuable breadth and summarization capabili-
ties, their true scientific utility emerges when cou-
pled with a human-in-the-loop. The interplay be-
tween user expertise and LLM-based tools creates
a workflow that is not only transparent and account-
able, but also adaptable to the evolving nature of
all scientific inquiry. Ultimately, this approach rep-
resents a step toward AI-assisted research frame-
works that align with the principles of scientific
rigor and iterative discovery, paving the way for
more effective collaboration between AI systems
and domain experts in the pursuit of knowledge.
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Abstract

We present components of an AI-assisted aca-
demic writing system including citation rec-
ommendation and introduction writing. The
system recommends citations by considering
the user’s current document context to pro-
vide relevant suggestions. It generates intro-
ductions in a structured fashion, situating the
contributions of the research relative to prior
work. We demonstrate the effectiveness of
the components through quantitative evalua-
tions. Finally, the paper presents qualitative re-
search exploring how researchers incorporate
citations into their writing workflows. Our
findings indicate that there is demand for pre-
cise AI-assisted writing systems and simple,
effective methods for meeting those needs.

1 Introduction

Scientific communication, including writing, is
a necessary professional skill set. For example,
The American Chemical Society guidelines for un-
dergraduate education indicate that students must
“learn how to communicate technical information
. . . clearly and concisely, [i]n a scientifically appro-
priate style”’ (American Chemical Society). Writ-
ing effective prose is a skill developed through prac-
tice and feedback. Although the vast majority of
scholarly publications are written in English, most
English-language authors are not L1 English speak-
ers. The proficiency gap negatively affects produc-
tivity of non-L1 authors. For example, Flowerdew
(1999) found that over two-thirds of L1 Cantonese
academic authors, writing in English, felt disad-
vantaged relative to L1 English speakers. Even for
L1 speakers, the precise nature of scholarly lan-
guage takes time and practice to develop expertise.
Morris (2023) interviewed scientists, who noted
that their students were often “not strong writers.”
The respondents anticipated that assisted writing
would “improve writing quality for a large number
of students.”

Writing is fundamentally a task of translating
ideas into text (Flower and Hayes, 1981). Inter-
active writing systems guide authors through the
writing process by destructuring the writing pro-
cess and, most recently, generating fluent language.
Borrowing from crowdsourcing, Play Write (Iqbal
et al., 2018) “selfsourced” writing tasks through
microtasks divorced from the document editor and
delivered to the end user by an app. The tasks
included outputs of typical NLP tasks such as sum-
marization and grammar correction. Whereas older
systems delegated tasks to the individual or crowd
works, recent works incorporate LLMs as user-
guided co-creators. For example, Wordcraft (Yuan
et al., 2022) focused on story writing. The sys-
tem provided affordances for rewriting, elaborat-
ing, and open text generation. Sparks (Gero et al.,
2022a,b) used a LLM to suggest starter sentences
intended to catalyze creative, compact writing for
a general audience. Similar to users of Wordcraft,
users of Sparks found value simply in generating
narrative.

Computer-assisted writing is not a new con-
cept; among others, Mahlow (2023) notes that AI-
assisted writing is already commonplace. Mod-
ern LLMs are capable of generating text in sci-
entific contexts comparable to expert human au-
thors (e.g. Wang et al. (2019); Ali et al. (2023);
Gao et al. (2023a)) although this depends on the
context (c.f. Ruggeri et al. (2023)). Scientifically-
grounded text generation is part of a larger adoption
of AI in the sciences (Hope et al., 2022). In this
paper, we present two affordances for generative
text in scientific contexts: citation recommendation
and introduction writing. We develop and evalu-
ate these affordances in the context of user-facing
AI-assisted writing. Finally, we present the results
of qualitative research on how researchers incorpo-
rate citation recommendations into their workflows.
The system and findings show that AI-assisted writ-
ing is capable of generating useful content for aca-
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demic authors, and that richer in situ affordances
can provide users with agency to craft more precise
scholarly manuscripts.

2 Contextual citation recommendation

The citation recommendation task is typically
framed as a recommender system that produces
a ranked list of possible citations. Various ap-
proaches developed over time as machine learning
methods evolved. Färber and Jatowt (2020) pro-
vide an overview of techniques that predate large
language models (LLMs). Most techniques en-
code academic works into some semantic similar-
ity (e.g. a topic model (Kataria et al., 2010) or an
embedding (Beltagy et al., 2019)). Graph-based ap-
proaches (Ali et al., 2024) use the directed graph of
citations as features or as a network for propagation
of existing features.

Locating, copying, and formatting citations to
include in the project takes time and effort. When
performed concomitantly with writing, this context-
switch between citation discovery can interrupt the
user’s writing flow.

We imagine in situ citation recommendation as
a task which recommends citations given the user’s
context and focus. Here, the focus is the cursor (in-
sertion point) in the active document, representing
the desired location of the suggestion. The context
is some substring of the document leading up to the
insertion point. We envisioned multiple scenarios
for suggestions, depending on how much context
the author has, and what type of output they desire.
Consider the known-item refinding task where the
author knows of a specific work and wishes to cite
it. Frequently, the author can recall details about
the work that they wish to cite (Wildemuth and
O’Neill, 1995; Bruce et al., 2004), although the
known details might be incorrect. The author might
recall these with a lower degree of precision (i.e.
“about 5–10 years ago” or “at an NLP conference”
or “from Yamada Hanako’s lab”). Finally, the au-
thor might not recall any of the indexing details of
the paper. Instead they might remember a summary
of the contribution. These incomplete or incorrect
semantic cues to the underlying item are opportu-
nities for the system to use additional context and
world knowledge for recommending citations.

2.1 Implementation

Our system recommends citations from two
sources. First, a user’s writing project typically

contains one or more files with citations expressed
as structured content, e.g. BibTeX. Second, the sys-
tem contains a local database of scholarly works: a
copy of the OpenAlex corpus (Priem et al., 2022).
Each record in this corpus includes the work’s au-
thor(s), title, abstract, date, publication venue, ci-
tation count, and so forth. We used a language
detection classifier to exclude works that appeared
to be written in a language other than English. Be-
cause the mode of citation count is zero, we also
excluded uncited works. Since the experiments
documented herein were performed, the current im-
plementation of the system retains recent uncited
works in the database to allow them to be surfaced.
After filtering, our database copy had 60.3 million
rows out of the original 263.3 million rows.

As an interactive system, reducing response la-
tency is critical to user perception and satisfac-
tion. The system uses a highly scalable approx-
imate nearest neighbor search (Sun et al., 2024)
index for rapid retrieval of similar records in an
embedding space. We chose the SPECTER2 em-
bedding (Singh et al., 2023), a multi-format em-
bedding developed specifically to represent scien-
tific documents. SPECTER2 was trained on data
from 23 different fields, not limited to computer
science. SPECTER2 embeddings outperformed
existing models on retrieval tasks. Our system con-
catenates each paper’s title and abstract (if available
in the OpenAlex record), projecting this text into
the SPECTER2 embedding space.

In addition to works available within the user’s
BibTeX files, the system needs to find novel candi-
dates from the index that satisfy the user’s intent.
We implement this recommender as a Retrieval
Augmented Generation (RAG) system (Gao et al.,
2023b). To retrieve a set of relevant citations, the
system queries the index of existing works. Recall
that the works are represented by a vector embed-
ding of the title and abstract. The system takes
advantage of LLMs observed behavior of “hallu-
cinating” nonexistent facts or concepts (Ji et al.,
2023). Essentially, we prompt the LLM to fabri-
cate a likely citation and then use that to find real
citations. To do this, the system supplies the LLM
with a prompt (see Appendix A.1) containing the
previous, current, and subsequent sentences from
the user’s content. The current sentence contains a
special token which indicates to the system where
in the sentence the citation is desired. The prompt
instructs the LLM to fabricate the title and abstract
of a paper that satisfies the user’s context. Note that
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the system does not care if the LLM’s generated
citation exists. Rather, the fabricated citations are
used as queries into the index of existing works.
The fabricated title and abstract are embedded us-
ing the SPECTER2 model, which creates a vector
used to query the nearest-neighbor index. As imple-
mented, at most 10 nearest neighbors are returned.

Although each result could be ranked by its dis-
tance to the query vector in embedding space, we
apply an additional layer of scoring. Each result
retrieved from the index is formatted into a new
prompt (Appendix A.2. These results are format-
ted as JSON objects. Each result is also given a
unique, short hexadecimal string as a “key” prop-
erty. Keys are constructed rather than using ordinal
numbers (1, 2, . . . ) or letters (A, B, . . . ) to avoid
label bias (Reif and Schwartz, 2024). Some LLMs
also exhibit order bias (Shi et al., 2024); we did not
evaluate this in our study. The prompt instructs the
LLM to output the key that matches “best citation
to support [the] claim.” Rather than using the key
as output, the system runs model inference and col-
lects the model’s scores for each of the keys in the
input. A model’s output score for each key is, to
an approximation, the log probability of outputting
that key to complete the input (prompt). The results
are then ranked by their respective scores. Prompt
inference was only run once for each item; no addi-
tional sampling of LLM output was performed.

We also implemented pairwise comparison to
score suggestions. Qin et al. (2024) showed that
LLMs can be used to rank by presenting pairwise
choices and having the LLM choose one of the
items. This method differs from the scoring method
described above. The model is prompted to choose
the item from a pair of items that best matches the
prompt. By combining pairwise ranks, one can
determine a total ranking. By focusing the model’s
attention on a smaller number of targets, adverse
effects from irrelevant targets are avoided.1 Con-
structing the total ordering requires many pairwise
comparisons. Although some techniques for reduc-
ing the quantity of comparisons exist (Bradley and
Terry, 1952; Chen et al., 2013), we discarded this
method due to the substantial increase in inference
time, favoring the scoring method above.

The online citation recommender system allows
the user to request a set of citation suggestions by
right-clicking in the text editor. The client sends a
substring of text adjacent to the insertion point, as

1c.f. Cuconasu et al. (2024), where noise improves quality.

well as the contents of BibTeX files. The latter in-
clude structured data about publications the author
intends to cite.

2.2 Evaluation
To assess the efficacy of our citation recommenda-
tion system, we evaluated the LLM’s performance
on the task of retrieving ground truth citations ex-
tracted from existing papers. The evaluation dataset
was created from papers in S2ORC, a corpus of
over 81 million papers spanning STEM disciplines
(Lo et al., 2020). We uniformly sampled 0.1% of
papers from this corpus, then filtered to papers that
include at least 10 sentences that include citations
that existed in OpenAlex prior to September 2023
(our cutoff date). This ensured that the system
would have access to titles and abstracts for these
citations and would be able to use them as distrac-
tors in our evaluations. Five citation-containing
sentences were randomly sampled from each qual-
ifying paper, resulting in a dataset of 1015 sen-
tences.

For each sentence, we gathered the necessary in-
puts to run the suggestion citation prompt described
in Section 2.1. This includes the target sentence’s
surrounding context and titles and abstracts of n
possible citations, for n ∈ {3, 5, 10}.

The n candidate citations included the ground
truth citation and n − 1 distractor citations. We
chose distractors in three different ways to test the
system under varying difficulty. From least to most
difficult, distractors were chosen uniformly ran-
domly from:

• all papers in the evaluation dataset (sample of
S2ORC)

• the ground-truth citation’s nearest neighbors
in SPECTER2 embedding space

• the references of the source paper containing
the test sentence, excluding the ground truth
reference

We employ Precision at k (P@k) and mean recip-
rocal rank (MRR) as evaluation metrics. Because
the randomly chosen set of distractors is domain
agnostic, we expect a paper chosen from S2ORC
at random to be unrelated to the test sentence. The
two more difficult distractor sources include papers
that are semantically related. In the nearest neigh-
bors condition, one of the distractors could be a
reasonable substitute for the ground truth citation,
particularly for well-known results.
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Distractor Type n MRR p@1

Random 3 0.755 0.612
Random 5 0.549 0.333
Random 10 0.320 0.124

Nearest neighbors 3 0.661 0.428
Nearest neighbors 5 0.506 0.254
Nearest neighbors 10 0.300 0.110

References 3 0.676 0.462
References 5 0.496 0.261
References 10 0.308 0.109

p@3

0.665
0.348

0.661
0.327

0.641
0.326

p@5

0.500

0.523

0.519

Table 1: Retrieval metrics for 1,015 contextual citation retrieval cases with n targets.

Table 1 shows the results. As expected, the
ground truth citation tends to rank higher against
randomly selected distractors when compared to
distractors drawn from the semantic space or from
the manuscript’s references. However, the distrac-
tor source has less effect on precision. In a live sys-
tem that uses this method, the user would need to
choose from multiple suggestions rather than hav-
ing the system propose only the top-ranked item.

3 Writing introductions

3.1 Generating introductions
We frame the introduction writing task as a map-
ping from the manuscript and references to a small
number of paragraphs. The related work in the in-
troduction should act like a microscope: canonical
works coarsely orient the reader to a subfield; im-
portant recent works provide fine adjustment to the
specific research track. Upon this foundation, the
introduction builds the case for the specific contri-
bution of the manuscript that follows. Our prompt
chain follows this paradigm in three steps.

First, the system uses an LLM to identify novel
claims from the author’s manuscript relative to
other works that the author cited. It assumes that
the author already documented references in their
BibTeX files at this time. For each reference, the
system looks up the corresponding record in the
OpenAlex database, retaining only those where a
title and abstract are available. These references are
split into two groups: canonical and recent. The
canonical references were published more than Y
years ago while recent were published within the
last Y years. As in other systems, our system uses
the title and abstract as a rough substitute for the
work itself (Li and Ouyang, 2024). To perform the
relative comparison, the system then extracts para-

graphs from the author’s current work. Each para-
graph is then combined with each of the references
to form tuples of (paragraph, title, abstract). The
prompt (Appendix B.1) acts as a binary classifier
that confounds relevance and novelty. The LLM
assess if the each paragraph’s content is related to
the abstract of the author’s paper and it is novel
relative to the abstract a cited paper. The idea is to
use this filter to find the work’s novel contributions
for incorporation into the introduction.

Each paragraph then receives one or more votes
from the binary classifier. The system filters out
paragraphs with low support. The remaining para-
graphs, assumed to discuss novel results, are then
passed to a simple summarization prompt (Ap-
pendix B.2. Although current LLMs have long
context lengths, at the time of our experiments, the
token limit was smaller, and hence the (possibly
many) novel paragraphs needed to be reduced into
a shorter text.

Finally, the system combines the canonical
works, recent works, and summary of novel contri-
butions into the written introduction section using
the prompt in Appendix B.3. Example output of
running the prompt chain on this submission is
provided in Appendix C.

3.2 Evaluation

We evaluate the generated introductions using text
metrics and by prompting an LLM. Our evalua-
tion dataset is a subset of papers from the [United
States] National Bureau of Economic Research2

(NBER). We extracted the introduction from 14
NBERs papers. For text evaluations, we use
ROUGE (Lin, 2004) which is a recall-based met-
ric and often used in the context of summarization.

2https://www.nber.org/research/data
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Figure 1: Flowchart from paper and citations to written introduction.

Figure 2: Distribution of ROUGE-1 scores for the gen-
erated introductions.

The average ROUGE score across the papers is
29.9, the distribution of scores is shown in Fig-
ure 2.

For LLM-based evaluations, we consider evalu-
ating the introductions based on the claims made
in the generated introductions in comparison to
the original introductions. Specifically, we used
a prompt (Appendix B.4) to extract 3–5 claims
from each of the generated texts. From 14 gener-
ated introductions, we extracted 52 claims. Then,
we prompt the LLM to verify whether the claim
from the generated introduction entails from the
full original introduction. Appendix B.5 includes
the full prompt used. We consider two versions of
the LLM based evaluation: (1) we ask the LLM for
a simple “yes” or “no” response for the prompt, (2)
we consider the log-likelihood scores for the “yes”
and “no” response tokens and normalize them to
determine the probability that the generated claim
is entailed from the the original. Figure 3 presents

the probability scores for whether claims from the
generated introduction entail from the original in-
troduction. Of the 52 claims extracted from the gen-
erated introductions, 47 of them are entailed from
the original introduction indicating a high degree
of precision. In general, we find that the generated
introductions score highly when the original intro-
duction section hews closely to a single topic. Ta-
ble 2 compares a generated paragraph from NBER
20209 (Borovickaˇ et al., 2014) with entailment
score 0.983 versus a lower-performing paragraph
from NBER 22392 (Nakamura et al., 2016) with en-
tailment score 0.279. The higher-scoring generated
passage captures the main concepts from the origi-
nal work, while the lower-scoring passage hones in
on natural disasters, which is not the theme of the
original work. The LLM correctly identified the
paragraph as not entailing the original. It seems rea-
sonable to expect that self-critique (Madaan et al.,
2023) can be used to improve generated introduc-
tions in the future.

4 Opportunities

As part of a study on citation verification, we
conducted semi-structured interviews with aca-
demic authors about their experiences citing related
work. Six researchers (5 self-identifying as men;
1 woman) from the research division of a large
technology company participated. All researchers
are experienced academic authors (mean h-index
26, σ = 13). Their research domains include sub-
fields of computer science including quantum com-
puting, virtual reality, biomedical imaging, natural
language processing, and responsible artificial intel-
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Original excerpt Generated excerpt

NBER 20209, entailment 0.983
It has been known, at least since the path-breaking work of This research explores alternative solutions by investigat-
Arrow, that asset prices reflect a combination of stochastic ing the application of Perron–Frobenius theory to con-
discounting and probability distributions. . . . We demon- struct a probability distribution from Arrow prices. . . .
strate in Section 5 that a Perron–Frobenius approach leads
naturally to the construction of a martingale component
. . .

NBER 22392, entailment 0.279
However, just because the inhabitants of some locations The impact of natural disasters on economic development
have higher incomes than others does not mean there is a topic of considerable interest to economists. While
is a large causal effect of moving to these locations. the immediate consequences of natural disasters are of-
. . . Distinguishing between selection and direct causal ef- ten well documented, the long-term impacts are less well
fects of locations is challenging. Large, exogenous reloca- understood. In particular, the impact on intergenerational
tion shocks are few and far between . . . We shed new light mobility and the transmission of risk across generations is
on the role of location in shaping economic outcomes by a critical yet underexplored area of research. <cit.> have
studying the consequences of a true “natural” experiment. shown that children who spend more time in a low-poverty
On January 23, 1973, a long-dormant volcano erupted environment have better long-term outcomes. This sug-
unexpectedly on the Westman Islands . . . gests that the effects of natural disasters may not only be

felt by those who experience them directly, but also by
future generations.

Table 2: Comparison of two generated introduction paragraphs with high and low entailment scores relative to the
original text.

Figure 3: Distribution of scores for whether claims
from the generated introductions entail the original in-
troduction based on an LLM.

ligence. Two of the six spoke English as a second
language and all participants spoke at least one
language other than English.

The semi-structured interviews covered the fol-
lowing topics: participants’ current approaches to
find and validate references, if their approaches
would change with unlimited time and resources,
how their approach differs depending on citation
type, and imagined capabilities of an ideal sup-
port tool for citation verification and recommen-
dation. We performed inductive thematic analysis
of the interviewees’ statements. We performed
three rounds of coding to create themes, resolving
disagreements through conversation among two

authors.
Time constraints limit the validation process.

Nearly all participants raised the concern of care-
ful validation. That is, they needed to understand
specifically how the citation was relevant. However,
several participants mentioned time constraints in-
fluencing their decision to cite works. Although ev-
ery participant indicated that they sometimes cited
papers that they had fully read, they also noted
instances where they cited papers they had not en-
tirely read. They employed skimming strategies
while engaged in the literature review process in
order to find more precisely related works.

Participants suggested various affordances for a
tool to support the validation process. For exam-
ple, one participant suggested finding the specific
claims in the suggested citation that were related
to the author’s citing text. Going to the original
source was important because some participants re-
marked that papers’ claims can be misrepresented
by citing authors, or the abstract did not accurately
reflect the paper’s results. In interfaces for schol-
arly readers, existing systems such as Relatedly
(Palani et al., 2023) provide affordances similar
to those suggested by the participants. The sys-
tem we presented in this work only surfaces paper
metadata such as title and abstract, so incorporating
additional sensemaking affordances as part of the
user’s workflow will support more rigorous citation
suggestion.
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Surrounding text must be accurately scoped.
Participants also stressed the importance of having
nuanced enough statements to accurately represent
the paper [P1,P2]. They recognized that inaccurate
corresponding text is often the consequences of hu-
man error or time constraints, rather than bad faith
actions. Therefore, P2 expressed interest in support
for rewriting existing text spans to better represent
the cited paper. Our work finds a reference from
a text span. Future work could also improve an
existing span to better represent the reference.

Community norms impact reference choices.
Some participants felt pressure to cite “the right”
source because peer reviewers would easily iden-
tify gaps in the related work. However, the pre-
cision of those citations varied depending on the
field and relevance to the author’s work. Several
suggested that the situating citations might be more
interchangeable than the more recent works.

Importance of contextualization within the
broader literature. Participants reflected that al-
though a given citation may be relevant, it may
not be sufficient [P3,P4]. For instance, multiple
references may be needed if the statement is mul-
tifaceted and nuanced, or if the statement is broad
and requires a set of references. This idea of suffi-
ciency extended to the reference set of entire sec-
tions, as P1 expressed concerns about misrepresent-
ing sub-fields when merging or combining subsec-
tions of a related work.

Part of the challenge of building a good refer-
ence set is understanding the broader trends of the
overall field. Participants expressed interest in a
tool that bridges relevant but separate streams of
the literature, whether it be similar methods and
theories from a different field or differing methods
and theories from a similar field [P1,P2,P3]. The
challenge of becoming aware of and fully encapsu-
lating these different strands motivated their wish
for a tool with a broad sense of the literature. These
reflections suggest that reference selection must be
valid on multiple levels, with each individual ref-
erence accurately represented in the close text and
the set of references sufficient in representing the
overall literature. Our tool focuses on the former,
and there is a rich opportunity for future work in
the latter.

5 Conclusion

As a highly developed, precise form of commu-
nication, the skill set of academic writing takes

time to develop. The writing process requires fo-
cus, yet can be disrupted by related tasks such as
the curation of related work. The qualitative re-
search showed that even experienced authors have
nuanced procedures for identifying and citing prior
work. Rather than fully replace academic authors,
it seems more likely that writing assistants will con-
tinue to proliferate, capturing a rich design space
(Lee et al., 2024). In this paper, we presented two
affordances for academic writing framed in the
context of a live authoring experience: suggesting
citations in the context of the document, and writ-
ing an introduction section. Quantitative evaluation
shows that these methods are capable of generating
content that augments the author’s writing process.

6 Limitations

The system, studies, and participants described
herein were only evaluated on English-language
documents and queries, although five of the six
participants were fluent in a language other than
English. The OpenAlex corpus includes non-
English documents, but we excluded those from
our database. Finally, citation suggestion is an
inherently biased task. Simple filters such as cita-
tion count prevent the discovery of “sleeping beau-
ties” (van Raan, 2004), while heuristics such as the
venue’s impact factor may obscure novel ideas that
have not made it into mainstream publication. Sys-
tems that take diverse viewpoints into account, and
present them to authors in an interpretable fash-
ion, will help diffuse novel ideas into scientific
discourse.
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Prompts templates are processed using the Jinja3 templating library. Line breaks shown here may not
match the line breaks used in the text prompt.

A Prompts for suggesting citations

A.1 Citation fabrication
You are an expert at suggesting relevant scientific papers.

I will provide some sentences from a paper that I am writing. In the sentences,
I will place a token CITE-HERE where I need to cite a relevant paper. Your task
is to make up the title and abstract of a paper that you think would be relevant
to this context. Give your output in JSON format with values for keys "title"
and "abstract".

SENTENCES: {{ previous_sentence }} {{ masked_sentence }} {{ next_sentence }}

Now, make up the title and abstract of a paper that I should cite at the CITE-HERE token.

Answer:

A.2 Citation scoring
You are the editor at a prestigious scientific journal. The author of a paper asks
you to recommend the best citation to support their claim. You are given a set of
citations of papers in JSON format. Each citation includes a key in the "key" field,
the paper title in the "title" field, and the paper abstract in the "abstract" field.
You are also given an extraction of the paper, which indicates the location of the
desired citation with the string "CITE-HERE".

Select the best citation from the list of citations that best supports the context
of the extraction and give the value of the corresponding "key" field. Only give me
the value, nothing else.

EXTRACTION
{{ previous_sentence }} {{ masked_sentence }} {{ next_sentence }}

CITATIONS
[{% for c in citations %}
{

'key': {{ c['key'] }},
'title': {{ c['title'] }},
'abstract': {{ c['abstract'] }},

}
{% endfor %}

The key of the citation that best fits this extraction is:

3https://jinja.palletsprojects.com/en/stable/
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B Prompts for writing introductions

B.1 Determining claims
Extracts claims from the author’s manuscript and compares them with existing work.

Your task is to determine if a paragraph from a scientific paper discusses
a novel result. You are given the abstract of the paper, abstract of related
paper, and a paragraph from the body of the paper. You answer YES if and onl
if the paragraph's content is related to the abstract of this paper, and it
is novel relative to the abstracts of related papers.

ABSTRACT OF THIS PAPER
{{ abstract }}

ABSTRACT OF A RELATED PAPER
{{ ref_chunk[1].abstract }}

PARAGRAPH FROM THIS PAPER
{{ ref_chunk[0] }}

QUESTION
Q: Does the paragraph from this paper show a novel result worth mentioning
in the introduction? Respond YES or NO and explain your answer in one
sentence.
A:

y

B.2 Summarizing claims
Summarizes claims extracted using the previous prompt.

Inputs: novel_results, a list of text chunks from a paper.

You are a scientist writing up the results of your work. The following
paragraphs contain information about your results. Summarize the key
results in a few sentences.

{% for result in novel_results %}
{{ result | trim }}

{% endfor %}

Now summarize the results in a few sentences.

B.3 Composing introduction
Final step in the prompt chain to compose the introduction section. Inputs:

Field name Description
title Manuscript title
results Summary of experimental results
[genesis_references] List of canonical references
[recent_references] List of recent references

Given a list of related work, and the results of a paper, write the
introduction section for that paper. Refer to any of the REFERENCE
papers using the id in that REFERENCE.

PAPER TITLE: {{ title }}
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FUNDAMENTAL PAPERS IN THIS FIELD:

{% for ref in genesis_references -%}
REFERENCE #{{ loop.index }}:
{% if ref.title is not none %}Title: "{{ ref.title }}"{% endif %}
{% if ref.abstract is not none %}Abstract: "{{ ref.abstract }}"{% endif %}
{% endfor -%}

RECENT RESULTS THAT THIS PAPER BUILDS ON:

{% for ref in recent_references -%}
REFERENCE #{{ loop.index + len(genesis_references) }}:
{% if ref.title is not none %}Title: "{{ ref.title }}"{% endif %}
{% if ref.abstract is not none %}Abstract: "{{ ref.abstract }}"{% endif %}
{% endfor -%}

RESULTS: {{ results }}

Now write the paper introduction. Cite references from both the FUNDAMENTAL PAPERS and
the RECENT RESULTS. When you cite a reference, use the reference number in brackets.
Begin and end your introduction with three single quotes (''').
{%- endsection -%}

INTRODUCTION:

B.4 Claim extraction (for evaluation)

Inputs: num_claims, the number of claims to extract from introduction, the text of the introduction.

Your job is to answer questions about the following introduction section of an
academic paper:

{{introduction}}

List {{num_claims}} novel claims that the introduction section makes. Output only
one sentence per claim and do not add additional explanation. Do not add any additional
formatting. Begin each claim with a number.

B.5 Entailment (for evaluation)

This prompt was used for evaluation.

You will be given a generated paragraph (hypothesis) and the text corresponding
to the original introduction (context). Your goal is to evaluate whether the
generated paragraph (hypothesis) entails the original introduction.

It is alright if the generated paragraph does not encompass the core of the
original introduction, as long as the generated paragraph does not introduce
any new claims.

Start your answer with "yes" or "no" depending on whether the generated
paragraph entails the original introduction and then provide a brief 1-2
sentence explanation for why.

GENERATED PARAGRAPH (hypothesis):
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{{gen_intro_para}}

Original introduction (context):
{{orig_intro}}

Use the following format:
<yes or no depending on whether hypothesis entails the context>

Explanation:
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C Generated output

This AI-generated text is the system’s output using the introduction writing method, applied to this
manuscript. The system did not have access to the human-authored introduction at the time of generation.

The proliferation of academic literature presents challenges for researchers seeking to efficiently locate
and incorporate relevant prior work into their writing. Citation recommendation systems aim to alleviate
this burden by suggesting relevant citations given a user’s writing context. Early approaches to this task
relied on representing academic works using topic models (Kataria et al., 2010) or embedding techniques
(Beltagy et al., 2019), while graph-based methods leveraged citation networks to identify relevant work
(Ali et al., 2024). While these methods can identify broadly relevant papers, they often fail to capture the
nuanced ways in which researchers incorporate citations within their writing.

A key challenge in citation recommendation is the need for systems to understand not only the topical
relevance of a citation, but also its specific role within the author’s argument. Färber and Jatowt (2020)
provide a comprehensive overview of pre-LLM techniques for citation recommendation, highlighting the
limitations of existing methods in capturing this contextual information. More recent work has explored
the use of large language models (LLMs) for citation recommendation, leveraging their ability to process
and understand natural language (Gao et al., 2023b). These LLM-based approaches have shown promise
in improving the accuracy and relevance of citation recommendations.

In this paper, we present a novel approach to AI-assisted academic writing that combines contextual
citation recommendation with automated introduction generation. Our system leverages the power of
LLMs to provide researchers with in-situ citation suggestions, recommending citations that are both
topically relevant and appropriate for the specific context of their writing.

We demonstrate the effectiveness of our approach through a quantitative evaluation on a dataset of
academic papers. Our results show that our system is able to accurately identify relevant citations, even
when presented with limited context. Furthermore, we find that our system is able to generate coherent
and informative introductions that accurately reflect the key contributions of a research paper.

Beyond simply identifying relevant citations, our system is designed to support the broader process
of academic writing. Recognizing that researchers often struggle to synthesize and integrate prior work
into their own writing, we incorporate a novel introduction generation component that automatically
generates structured introductions, situating the contributions of a research paper within the context of
prior work. This component leverages LLMs to identify the novel contributions of a paper, summarize
related work, and compose a coherent introduction that effectively sets the stage for the research presented
in the manuscript.
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Abstract
Recent studies have evaluated creativity, where
novelty is an important aspect, of large lan-
guage models (LLMs) primarily from a seman-
tic perspective, using benchmarks from cog-
nitive science. However, assessing the nov-
elty in scholarly publications, a critical facet of
evaluating LLMs as scientific discovery assis-
tants, remains underexplored, despite its poten-
tial to accelerate research cycles and prioritize
high-impact contributions in scientific work-
flows. We introduce SchNovel 1, a benchmark
to evaluate LLMs’ ability to assess novelty in
scholarly papers, a task central to streamlin-
ing the discovery pipeline. SchNovel consists
of 15000 pairs of papers across six fields sam-
pled from the arXiv dataset with publication
dates spanning 2 to 10 years apart. In each pair,
the more recently published paper is assumed
to be more novel. Additionally, we propose
RAG-Novelty, a retrieval-augmented method
that mirrors human peer review by grounding
novelty assessment in the retrieved context. Ex-
tensive experiments provide insights into the
capabilities of different LLMs to assess nov-
elty and demonstrate that RAG-Novelty out-
performs recent baseline models, highlighting
LLMs’ promise as tools for automating novelty
detection in scientific workflows.

1 Introduction

AI-driven scientific discovery systems, such as au-
tonomous lab platforms like Coscientist (Boiko
et al., 2023), promise to accelerate research by syn-
thesizing insights from vast literature. A critical
bottleneck, however, lies in identifying which pa-
pers introduce truly novel concepts, a capability es-
sential for prioritizing experiments, avoiding redun-
dant work, and guiding discovery pipelines. While
large language models (LLMs) are increasingly de-
ployed to analyze scientific texts, their ability to

*These authors contributed equally to this work.
1The SchNovel dataset and RAG-Novelty code are avail-

able at: https://github.com/ethannlin/SchNovel

detect scholarly novelty, particularly in evolving
research contexts, remains unproven. This gap per-
sists despite LLMs’ remarkable proficiency in tasks
requiring creativity, traditionally defined as produc-
ing ideas that are both novel and effective (Runco
and Jaeger, 2012). LLMs now solve open-domain
problems, write code, and even generate research
ideas rivaling human experts’ novelty (Si et al.,
2024). Yet their capacity to systematically assess
novelty in scholarly publications, where contribu-
tions build incrementally on prior work, remains
underexplored.

Recent studies evaluating the generative creativ-
ity of LLMs have yielded inconsistent conclusions.
Orwig et al. (2024) concluded that GPT-4 (Ope-
nAI, 2023) generates stories that are comparable
to those written by humans in terms of creativity.
Similarly, Pépin et al. (2024) found that LLMs
can even surpass humans in specific creative tasks,
such as divergent association and creative writing.
However, Anderson et al. (2024) argued that AI-
based creativity support tools (CSTs) like ChatGPT
are not yet well-suited to fostering truly original
ideas, as they can lead to the homogenization of
human creativity. Chakrabarty et al. (2024) ob-
served that LLM-generated stories pass the Tor-
rance Test for Creative Writing (TTCW) tests 3 to
10 times less frequently than those written by pro-
fessionals. Additionally, Chakrabarty et al. (2023)
pointed out that LLMs often rely on cliches, pro-
duce text lacking nuance, and frequently resort to
overly moralistic and predictable endings in sto-
ries. These discrepancies can be attributed to using
different evaluation benchmarks and metrics, high-
lighting the lack of widely accepted standards for
accessing LLM creativity in domain-specific con-
texts like scientific discovery.

The evaluation benchmarks used in current stud-
ies are primarily derived from cognitive science,
such as the Torrance Tests of Creative Thinking
(TTCT) (Lissitz and Willhoft, 1985), Alternative
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Use Task (AUT) (Guilford, 1964), and the Runco
Creativity Assessment Battery (rCAB) (Runco,
2011). These benchmarks focus on assessing se-
mantic creativity by tasks like generating responses
to pictures or listing as many uses as possible for a
common object. Corresponding metrics include flu-
ency, flexibility, originality, and elaboration. How-
ever, these metrics primarily assess semantic nov-
elty, which does not fully capture the kind of nov-
elty emphasized in scholarly research. Novelty in
scholarly work is especially critical, as each pa-
per undergoes rigorous peer review, particularly in
high-prestige venues. Novel papers typically build
upon existing research while introducing new ideas,
methods, or insights, making novelty assessment
heavily dependent on current and past trends in
research.

While LLMs have shown great capability in gen-
erating text and mimicking human reasoning, their
ability to assess novelty in scholarly publications re-
mains largely unexamined. To address this gap, we
present a scholarly novelty benchmark (SchNovel)
to evaluate LLMs’ capability of assessing novelty
in scholarly papers. Specifically, we leverage the
arXiv dataset to create a collection of 15,000 pa-
per pairs. In each pair, we assume that the more
recently published paper is more novel. Papers
are selected across six categories, with publication
dates spaced by gaps ranging from 2 to 10 years
between the paired papers. We evaluate various
LLMs on their ability to assess novelty and report
their accuracy.

To further improve novelty assessment, we pro-
pose RAG-Novelty, a retrieval-augmented genera-
tion method. This method assumes that more novel
papers will retrieve more recently published works,
enhancing the novelty prediction. Our extensive
experiments demonstrate that RAG-Novelty outper-
forms recent baseline models in assessing novelty
in scholarly papers. Our key contributions include:

• We release the first benchmark, SchNovel,
specifically designed to evaluate LLMs’ ca-
pability in assessing novelty within scholarly
publications.

• We conduct comprehensive experiments to
explore how variations in categories, starting
years, and year gaps affect LLMs’ ability to
assess paper novelty.

• We propose a novel method, RAG-Novelty,
to enhance LLMs’ performance in assessing

paper novelty.

2 Related Work

2.1 Existing Benchmarks

TTCT (Lissitz and Willhoft, 1985) is a commer-
cially protected assessment tool consisting of six
tasks: 1) asking a question about a picture; 2) guess-
ing the cause of the action depicted in the image; 3)
predicting the consequences of the action described
in the image; 4) improving a product described in
2-3 sentences in the most interesting and unusual
way; 5) suggesting interesting and unconventional
uses for a given item; and 6) imagining what would
happen if an improbable situation were to occur.
Both AUT (Guilford, 1964) and rCAB (Runco,
2011) ask participants to generate as many uses
as possible for a common object. The Remote As-
sociates Test (RAT) (Mednick and Halpern, 1968)
presents participants with three seemingly unre-
lated words and asks them to find a fourth word
that connects all three. The Consensual Assess-
ment Technique (CAT) (Amabile, 1982) evaluates
creative products, such as stories, poetry, dramatic
performances, and musical compositions, using a
panel of domain experts. The Wallach-Kogan Cre-
ativity Tests (WCT) (Brody, 1966) consist of the
AUT, Instances Test, and Similarities Test. The
Scholarly Creativity Test (SCT) (Hu and Adey,
2002) measures scholarly creativity and process
skills. The Divergent Association Task (DAT) (Ol-
son et al., 2021) asks participants to name unre-
lated nouns and calculates the pairwise semantic
distance between them. However, all these existing
cognitive science benchmarks are not suited for
evaluating LLMs’ capability to assess novelty in
scholarly publications, a gap our proposed bench-
mark addresses.

2.2 Creativity and Novelty Assessment

Traditional general novelty assessment methods
use pre-defined metrics like the similarity to exist-
ing methods (Just et al., 2024) and the diversity
of references (Shibayama et al., 2021) to score
the novelty of a method or scholarly paper. To
assess LLMs’ capability of generating or assess-
ing creativity and novelty, current studies employ
different prompt strategies to interact with LLMs
and collect responses for evaluation. Guzik et al.
(2023) utilized a basic prompt to evaluate GPT-4
on the TTCT benchmark. Mehrotra et al. (2024)
applied associative thinking (Mednick, 1962) in
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prompts designed for specific tasks like product
design and marketing. Zhao et al. (2024) an-
alyzed LLMs’ responses to an expanded TTCT
benchmark, applying diverse prompts, including
basic prompts, instructive prompts, post-instructive
prompts, and Chain of Thought (CoT) prompts.
Stevenson et al. (2022) demonstrates that defining
the role of LLMs as “scientist” can improve per-
formance. Summers-Stay et al. (2023) improves
the basic prompt method used in (Stevenson et al.,
2022) by using multi-step reasoning to enhance
GPT-3’s performance on AUT. Similar to the multi-
round interaction framework utilized in LLM De-
bate (Du et al., 2024), LLM Discussion (Lu et al.,
2024) develops a role-play-enhanced LLM dis-
cussion framework to augment ChatGPT’s perfor-
mance on the WCT and SCT benchmarks. Unlike
existing prompting methods, our proposed RAG-
Novelty improves the LLM’s performance by re-
trieving similar papers, assuming that novel papers
should retrieve the latest publications.

2.3 LLM Performance Evaluation

Most existing studies (Summers-Stay et al., 2023;
Stevenson et al., 2022; Guzik et al., 2023; Mednick,
1962) evaluate LLM performance on benchmarks
(Section 2.1) using human assessments. For exam-
ple, Guzik et al. (2023) evaluated LLM responses
to the TTCT, which were scored by Scholastic Test-
ing Services (STS). Other studies rely on LLMs
to score responses from another LLM. Zhao et al.
(2024) used a more powerful GPT-4 to evaluate
the performance of smaller LLMs, while Lu et al.
(2024) utilized ChatGPT to assess responses gen-
erated by GPT-4. Additionally, Lu et al. (2024)
compared LLM-generated scores with human eval-
uations, finding that LLM evaluations correlated
more closely with the average human score. Both
Luchini et al. (2023) and (Organisciak et al., 2023)
fine-tuned models on human-scored data to evalu-
ate LLM responses. Since our benchmark provides
ground-truth binary labels, evaluation is straight-
forward.

3 Scholarly Novelty Benchmark

Unlike the semantic novelty evaluated by the bench-
marks from cognitive science (Section 2.1), novelty
in scholarly publications refers to introducing new
ideas, methods, or discoveries that have previously
not been explored or established in the literature.
Evaluating novelty is fundamentally an exercise

in understanding the relationship between ideas
across time rather than simply assessing new ideas
or techniques. This understanding is crucial in
determining the contribution of a research paper.
The assumption can be made that later works are
more novel than prior works, as they typically in-
troduce new ideas and methodologies in the cur-
rent research climate (Beaty and Silvia, 2012; Acar
et al., 2019). In this paper, we apply this assump-
tion to establish ground truth values for our created
benchmark SchNovel.

3.1 Dataset Collection and Structure
The arXiv dataset2 comprises approximately 2.5
million articles, with the earliest dating back to
1986. All articles are categorized into eight dis-
tinct fields3, each of which has some sub-fields.
We picked six out of eight fields: Computer Sci-
ence (cs), Mathematics (math), Physics (physics),
Quantitative Biology (q-bio), Quantitative Finance
(q-fin), and Statistics (stat), as we did not collect
enough papers in other fields. Figure 6 in Appendix
A.1 shows the number of papers published each
year for each field. To assess the ability of LLMs
to assess the novelty of research papers, we sam-
pled a subset of articles from each field, denoted
as dataset D = {(f, g, s, x, y, label)i}Ni=1 where
N = 15000, following the procedure outlined in
Algorithm 1 in Appendix A.4, where f represent
the field, x and y represent the paper ids, s repre-
sents the year in which paper x was published, g
represents the number of years paper y was pub-
lished before paper x and label equals to paper x as
we assume in the same field, later published paper
is more novel.

3.2 Tasks and Evaluation Metrics
We define the task as assessing which paper is more
novel when given a pair of papers. Specifically, for
each tuple (f, g, s, x, y, label)i, the selected LLM
is provided with the title, abstract, and optional
metadata for each paper—information typically
available to a reviewer. However, unlike a full
review, the model does not have access to the full
text, making the task more challenging. While
the abstract offers a strong indication of a paper’s
content and key findings, important details may be
missed. By limiting the context to the abstract and

2Available at https://www.kaggle.com/datasets/Co
rnell-University/arxiv

3See the full taxonomy at https://arxiv.org/catego
ry_taxonomy
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metadata, we also improve efficiency in terms of
token consumption and cost. We will discuss the
potential limitations of this approach in Section 8.
Various comparison methods, such as point-wise
and pair-wise, can be employed, and we evaluate
performance based on accuracy.

4 RAG-Novelty

Assessing the novelty in scholarly papers requires
the model to have a good understanding of past and
present works to accurately judge whether a paper
is novel in the current research climate. However,
once trained, LLMs are frozen in time, meaning
that they are no longer updated with the latest in-
formation, so they lack this understanding of the
field’s current state. Inspired by RAG, we propose
a novel method, RAG-Novelty, to further improve
LLMs’ capability to assess novelty in our bench-
mark. As shown in Figure 1, apart from the in-
formation, like abstract, that can be utilized for a
paper, we apply the paper abstract as a query to
retrieve top-K papers from the already built index,
and then create a prompt based on the query paper
and the retrieved papers to ask the LLM to score
the novelty of the query paper from 0 to 10.

4.1 Indexing and Retriever
To assess the novelty of a paper with the infor-
mation provided by our SchNovel, such as title,
abstract, and other metadata excluding the whole
paper, an expert human reviewer in the same field
may accurately score the novelty, a junior human
reviewer, however, is likely not confident of scor-
ing the novelty directly and instead will first review
some similar papers and then assess the novelty.
To mimic the review process taken by a human
reviewer, we randomly sampled 500 papers from
all years from 2000 to 2023, yielding 12000 papers
for each field. Then, the abstracts of these papers
are encoded into embeddings using OpenAI’s text-
embedding-3-small4 model. The retrieval is the
exact search method based on cosine similarity,
as the number of candidates is very small. Our
method can also handle huge candidate corpus by
building an approximate nearest neighbor search-
ing index using faiss (Douze et al., 2024; Johnson
et al., 2019).

When a human reviewer conducts a literature
search, it is naturally impossible to retrieve papers

4https://platform.openai.com/docs/guides/embe
ddings

Corpus Encoder Index

Paper

Top-k Papers

Retriever

PromptLLM

Encoder

Figure 1: The overview of RAG-Novelty

published after the query paper’s publication date.
To simulate this realistic constraint in our evalu-
ation, we filtered out any papers published after
the query paper and retrieved the top-k relevant
papers from those published prior to or on the same
date. However, in the context of pairwise compar-
isons, where we are assessing the novelty between
two papers with different publication dates, it is
reasonable to retrieve papers up to the publication
date of the more recent paper. To prevent any leak-
age, we ensured that the papers themselves were
excluded from the top-k retrieved documents. This
approach mirrors a realistic scenario in which nov-
elty is judged relative to the latest available knowl-
edge at the time of publication. By implementing
this strategy, we ensure that the novelty assessment
remains fair and contextually appropriate, avoiding
any temporal bias while maintaining the integrity
of the comparison.

4.2 Prompt

We first compared the zero-shot, two-shot, and self-
reflection prompts and found that the self-reflection
prompt performed the best (Section 6.1). So, for
RAG-Novelty, we built the prompt, shown in Ap-
pendix A.6, based on the self-reflection prompt,
shown in Appendix A.3, by incorporating the in-
formation of the retrieved papers. Specifically, we
added a “Contextual Data Analysis” instruction
that assumes that the more recent papers are re-
trieved, the more novel this query paper is:

Average the published dates of the retrieved documents.

Use this average date as additional context for your evaluation.
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Consider that papers with an average date that is later or more

recent in time are generally more novel.

5 Experimental Setup

5.1 Baseline Methods
Zero-Shot as shown in Appendix A.2, involves pro-
viding the model with two research papers’ titles,
abstracts, and four-step instructions, guiding the
LLM to leverage its internal knowledge to make an
informed decision. We also conducted a pointwise
comparison by revising the zero-shot prompt to in-
struct the LLM score on the novelty of each paper
first and then compare which one is more novel.
Two-Shot We randomly sampled two example pa-
per pairs and added them to the zero-shot prompt.
Chain of Thought (CoT) (Wei et al., 2023) elic-
its reasoning within models by giving the model
time to “think”. We achieved CoT by adding in-
structions to Zero-Shot guiding LLMs to provide
demonstrations.
Self-Reflection (Renze and Guven, 2024) has
shown several strides in improving LLMs’ logi-
cal fallacies by prompting the model to reflect on
its incorrect solutions. We adopted this strategy to
design a prompt, which is shown in Appendix A.3.
Self-Consistency (Wang et al., 2023) assumes that
ground truth answers can be achieved through dif-
ferent reasoning paths. We followed the original
paper to sample 10 generated sequences and voted
majority.
LLM Discussion (Lu et al., 2024) assigns LLMs
with different roles and lets them discuss with each
other before making the final decision. We adopted
LLM Discussion to simulate the review process
taken by human reviewers. Specifically, we assume
the papers are submitted to a conference to be re-
viewed, and we designed four roles: (a) a professor;
(b) a PhD student; (c) an editor of a prestigious
journal; (d) the chair of the conference where the
professor, PhD student, and editor are all reviewers
and they have two round discussions and the chair
make the final decision. The prompt is shown in
Appendix A.5.

5.2 LLM Configuration
We adopted the default settings of API 5 for Zero-
Shot, Two-Shot, CoT, and RAG-Novelty. We fol-
lowed the Self-Consistency to adopt the tempera-
ture as 0.7 and set the number of reasoning paths as

5https://platform.openai.com/docs/guides/chat
-completions

Method cs math physics qbio qfin stat

Zero-Shot 0.64 0.55 0.57 0.54 0.55 0.63
Two-Shot 0.62 0.55 0.57 0.54 0.55 0.60

CoT 0.63 0.56 0.57 0.54 0.56 0.62
Self-Reflection 0.65 0.56 0.58 0.56 0.57 0.63

LLM Discussion 0.60 0.55 0.56 0.53 0.50 0.58
Self-Consistency 0.66 0.57 0.59 0.58 0.60 0.64

RAG-Novelty †0.72⋆ 0.58⋆ †0.62⋆ †0.65⋆ †0.73⋆ †0.68⋆

Table 1: RAG-Novelty vs. Baselines on SchNovel with
GPT-4o-mini. Averaged accuracy is reported. † denotes
statistically significant enhancements over the second-
best result, with p-values < 0.05, as determined by the
McNemar test. The best results across different methods
are denoted with the symbol ⋆. The second-best results
across different methods are underlined.

10. For LLM discussion, we limit the max tokens
to 200 to avoid overwhelming the model with long
inputs in subsequent rounds of discussion. For Self-
consistency, we limit the max tokens so that the
response is concise, as long reasoning for this task
is unnecessary because we’re looking for consis-
tency rather than depth. In both cases, we prompt
the model to limit its output to 150 tokens to ensure
that its response fits within the 200 token limit.

5.3 Research Questions

This study aims to address several key questions re-
garding the performance of LLMs on the SchNovel
benchmark.

• R1: Which comparison approach yields better
results: pointwise or pairwise?

• R2: How do different LLMs perform in as-
sessing the novelty of research papers?

• R3 How does the category of the research
paper affect the performance of LLMs?

• R4: How does the publication start year influ-
ence the performance of LLMs?

• R5: What impact does the gap between the
publication years of research papers have on
LLMs’ performance?

• R6: What are the effects of other metadata
attributes on LLMs’ performance?

• R7: Can RAG-Novelty outperform recent
baselines?
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Figure 2: Pointwise vs. pairwise. The metrics above
were obtained in the cs field with the start year s = 2023
and GPT-4o-mini.

6 Experimental Results

6.1 RAG-Novelty vs. Baseline Models (R7)
In this experiment, we evaluate the performance of
RAG-Novelty against baseline methods. All meth-
ods use GPT-4o-mini, and the accuracy is averaged
across different start years s and year gaps g. Pair-
wise comparison is applied to all methods, and we
account for position bias by swapping the order of
the two papers in the comparisons.

Two-Shot does not improve upon Zero-Shot as
it typically does in other tasks. We attribute this
to the complexity of the novelty assessment task,
which requires deeper contextual understanding
and comparison between papers—something that
randomly selected examples may not effectively
convey. Through iterative prompt refinement, Self-
Reflection outperforms CoT in all fields except
mathematics. LLM Discussion methods perform
the worst, failing to even surpass Zero-Shot. Self-
Consistency achieves the best results among base-
line methods, demonstrating that obtaining answers
through different reasoning paths helps improve
performance. Our RAG-Novelty achieves the high-
est results overall, significantly outperforming the
second-best method, except in the mathematics
field. Across all methods, the improvement in math-
ematics is limited, possibly due to the slower pro-
gression of the field, the prevalence of symbols that
LLMs struggle to interpret, or a lack of sufficient
mathematical content in the training data compared
to other fields.

6.2 Pointwise vs Pairwise (R1)
As mentioned in Section 5.1, we revised the pair-
wise Zero-Shot prompt (Appendix A.2) to a point-
wise one. We compared the two methods by evalu-
ating them in the cs field with the start year 2023,
crossing different year gaps. As shown in Figure 2,
pairwise is consistently much better than pointwise
across different year gaps. This significant differ-

ence highlights the importance of context. As with
human evaluations, providing relevant context or
reference points is crucial for accurate assessments
(Yan et al., 2022), allowing reviewers to consider
the broad implications of a paper within the current
research landscape. Pairwise comparisons align
with this process, simplifying the task of consider-
ing the relative merits of two papers side-by-side
rather than evaluating each one in isolation. Thus,
pairwise comparisons are used in the rest of the
following experiments.

6.3 The Impact of Different Fields (R3)
In Figure 3, the cs category shows the highest accu-
racy across most year gaps (starting in 2023), likely
due to the availability of data and well-defined eval-
uation metrics. In contrast, math and physics show
lower accuracy, likely due to domain-specific chal-
lenges such as complex notation in mathematics
and theoretical frameworks in physics.

One explanation is the lack of domain knowl-
edge in ChatGPT’s training data, which, being
sourced from the internet, may not adequately
cover specialized fields. Research has shown that
LLMs exhibit biases in various prompts and tasks
(Cheng et al., 2023; Stranisci et al., 2023), sug-
gesting potential categorical biases in lesser-known
or slower-growing domains. This has significant
implications for using AI tools in academia and
industry, particularly in automated scoring or rank-
ing systems, where such biases could perpetuate
inequalities.

6.4 The Impact of Different Start Years and
Year Gaps (R4 & R5)

To better understand how different start years affect
the performance of LLMs in evaluating novelty, we
investigated the model’s results for five distinct
start years. As shown in Figure 4, the model’s
results for all five start years were relatively consis-
tent across different year gaps. This suggests that
the model’s ability to evaluate novelty between two
papers is more dependent on the year gap between
them than the specific publication years.

For example, evaluating two papers with a 10-
year gap from 2009 to 2019 should be equivalent in
difficulty to evaluating two papers with a 10-year
gap from 2013 to 2023. Regardless of the boundary
years within those ranges (i.e., considering papers
published at specific points like 2009 and 2019,
versus 2013 and 2023), it’s the decade-long gap
between the papers’ publication times that makes
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Figure 3: Comparison of fields. The metrics above were
obtained using Self-Reflection in cs field with the start
year s = 2023 with GPT-4o-mini.
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Figure 4: Comparison of Start Years. The metrics above
were obtained using Self-Reflection in the cs field with
GPT-4o-mini.

it easier for the model to make such a binary evalu-
ation.

6.5 The Impact of Different LLMs (R2)
All LLMs can vary significantly depending on their
training data and model architecture. With var-
ious different models available, it is essential to
understand how they perform when assessing the
originality of ideas presented in research papers.
In this section, we examine the impact of using
different LLMs on evaluating novelty.

Our findings in Table 2 reveal significant dispar-
ities in performance across different LLMs. GPT-
4o-mini, GPT-3.5, and Gemma 2 performed more
in line with expectations, achieving a more bal-
anced distribution of predictions throughout all
year gaps. Notably, GPT-4o-mini outperformed
all other models, demonstrating a substantial ad-
vantage over smaller models like LLaMA 3.1-8b,
Mistral 7b, and Gemma 2-9b.

Despite such success, even ChatGPT 4o-mini
and ChatGPT 3.5 exhibit position bias, where the
order of papers in the prompt affects their decision-
making instead of content alone. This bias is mag-
nified in smaller models, which lack extensive train-
ing compared to larger models. For example, Mis-
tral 7b is heavily biased toward the last paper in the

prompt. This aligns with known issues regarding
LLMs’ performance being best when relevant in-
formation appears towards the beginning or end of
the prompt (Liu et al., 2024; Dai et al., 2024).

In contrast, LLaMA 3.1-8b exhibits a different
bias, favoring the first paper that appears toward
the middle of the prompt. According to Dubey et al.
(2024), the LLaMA 3.1 models excel at "needle-in-
the-haystack" tasks, where one needs to find spe-
cific information in large amounts of text (Kamradt,
2023), ultimately fixing the issues described in Liu
et al. (2024). This is similar to skimming, which is
efficient for finding specific information but may
not facilitate deep understanding. Thus, while
LLaMA 3.1-8b excels at retrieving specific infor-
mation from anywhere in a context, this skillset is
not ideal for evaluating novelty between two pa-
pers.

6.6 The Impact of Metadata (R6)

Previously, our experiments evaluated novelty
based solely on a paper’s title and abstract. How-
ever, human evaluations often take into account
various metadata that can subtly influence review-
ers’ decisions. This metadata-induced bias has sig-
nificant implications for research evaluations and
highlights the need for more anonymous reviewal
processes, leading to solutions such as double-blind
reviewal processes. A pairwise comparison was ap-
plied for all the experiments in this section, and we
accounted for position bias by swapping the order
of the two papers in the comparisons.

6.6.1 Adding a TLDR Summary
We utilized the SciTLDR model (Cachola et al.,
2020) from the Semantic Scholar API (Kinney
et al., 2023) to generate TLDRs for our dataset,
expecting this additional information to enhance ac-
curacy by helping the model generalize and better
understand the paper. As shown in Table 3, adding
TLDRs decreases the accuracy across all year gaps.
Nevertheless, incorporating such data did mitigate
position bias, as evidenced by the negligible dif-
ference between ascending and descending year
accuracies across nearly all year gaps.

6.6.2 Adding Author
We then added the author to the prompt, expecting
that this additional information would not affect
the model performance as the authors should not
influence the novelty assessment. To our surprise,
adding such information did help mitigate some
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Year Gap ChatGPT4o-mini ChatGPT3.5 LLaMA 3.1-8b Mistral-7b Gemma-2-9b

Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc.

2 0.44 0.66 0.55 0.46 0.62 0.54 0.03 0.98 0.51 1.00 0.00 0.50 0.66 0.38 0.52
4 0.58 0.72 0.65 0.58 0.57 0.58 0.02 0.97 0.50 1.00 0.00 0.50 0.70 0.48 0.59
6 0.63 0.75 0.69 0.67 0.60 0.64 0.01 0.99 0.50 1.00 0.01 0.51 0.69 0.41 0.55
8 0.63 0.77 0.70 0.63 0.68 0.66 0.01 0.99 0.50 0.99 0.00 0.50 0.76 0.46 0.61

10 0.79 0.78 0.79 0.67 0.71 0.69 0.05 0.97 0.51 0.99 0.01 0.50 0.80 0.43 0.62
Average 0.61 0.74 0.68 0.60 0.64 0.62 0.02 0.98 0.50 0.996 0.004 0.50 0.72 0.43 0.58

Table 2: Comparison of different LLMs. The metrics above were obtained using Self-Reflection in the cs field with
the start year s = 2023. “Asc Yr” indicates that the older paper is presented first in the prompt, while “Desc Yr“
means the newer paper is presented first.

Year Gap Zero-Shot Self-Reflection Self-Reflection w/ tldr Self-Reflection 2 w/ author

Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc. Asc Yr Desc Yr Acc.

2 0.41 0.60 0.51 0.44 0.66 0.55 0.53 0.51 0.52 0.57 0.55 0.56
4 0.63 0.74 0.69 0.58 0.72 0.65 0.64 0.64 0.64 0.67 0.62 0.65
6 0.64 0.79 0.72 0.63 0.75 0.69 0.66 0.69 0.68 0.75 0.62 0.69
8 0.66 0.77 0.72 0.63 0.77 0.70 0.69 0.61 0.65 0.68 0.67 0.68

10 0.64 0.78 0.71 0.78 0.79 0.79 0.76 0.76 0.76 0.80 0.75 0.78
Average 0.60 0.74 0.67 0.61 0.74 0.68 0.66 0.64 0.65 0.69 0.64 0.67

Table 3: The impact of metadata. The metrics above were obtained using Self-Reflection in the cs field with the
start year s = 2023 and GPT-4o-mini. “Asc Yr” indicates that the older paper is presented first in the prompt, while
“Desc Yr“ means the newer paper is presented first.

of the position bias, as seen in the bold results in
Table 3, but overall, it decreased the performance
slightly.

6.6.3 Adding Affiliation
We selected two universities, one of which is a top
research university and the other a teaching uni-
versity, to study whether affiliation bias exists in
LLMs’ assessment of novelty.6 Specifically, we
first assigned the top research university as the affil-
iation of the more recently published paper and the
teaching university to the earlier published paper,
with the results shown in blue. Then, we swapped
the affiliations, and the results are shown in red.
As illustrated in Figure 5, the top research univer-
sity starts with similar accuracy to the teaching
university at a year gap of g = 2, but as the year
gap increases, the top research university consis-
tently outperforms the teaching university. This
suggests that affiliation bias exists in LLMs’ nov-
elty assessments, with a tendency to “trust” papers
from top research universities. However, although
we observed LLMs’ preference for choosing the
top research university, the top research univer-
sity experiments are undertaken without affiliation.
This unexpected result raises questions about how
LLMs process affiliation information, which war-
rants further investigation to better understand and
mitigate such biases.

6The real names of the universities are not used to ensure
objectivity and to avoid any unintended bias or implications.
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Figure 5: Comparison of different organizations. The
metrics above were obtained using Self-Reflection in
the cs field with start year s = 2023 and GPT-4o-mini.

7 Conclusion and Future Work

To evaluate LLMs’ ability to assess novelty in
scholarly publications, we introduce SchNovel,
a benchmark consisting of 15,000 pairs of pa-
pers across six fields. We conducted extensive
experiments to understand how various factors
influence LLM performance on SchNovel. To
enhance LLMs’ capability to assess novelty, we
propose RAG-Novelty, which significantly outper-
forms strong baseline models in comprehensive
experiments. For future work, we plan to expand
SchNovel by including more papers and covering
additional fields to evaluate LLMs on a larger scale.
Another promising direction is investigating which
part of a paper best represents the whole for novelty
assessment by LLMs. Additionally, studying how
LLMs process affiliation and addressing biases in
novelty evaluation, such as position and affiliation
bias, is an important area for further research.

53



8 Limitations

Our study evaluates an LLM’s ability to assess nov-
elty using a research paper’s title, abstract, and
metadata. While the abstract provides a strong in-
dication of a paper’s content and key findings, it
may not fully capture the novelty of the research
compared to the complete text. Abstracts often
summarize the main ideas but may omit important
technical details. Although this approach stream-
lines the evaluation process, it could occasionally
limit the depth of the novelty assessment due to the
absence of a more comprehensive context.

Additionally, the exclusive use of arXiv data is
limiting. We selected arXiv as an initial step for
its broad, publicly accessible range of publications.
Future work can improve robustness using peer-
reviewed publications and sampling papers from
more sources.
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A Appendix

A.1 Statistics of arXiv
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Figure 6: Number of Papers for Each Field (Up to 2023)

A.2 Zero-shot

You will be provided with the title and abstract of two
research papers. Please determine which of the two
articles is more novel. Follow these steps for evaluation.

Step 1: Identify the problem and solution that the
research paper attempts to solve.
Step 2: Determine how unique the solution is given
the current research landscape in 2024. Does the
paper introduce a new idea, theory, or concept that has
not been previously discussed in the literature?

Step 3: Determine how creative the solution is given
the current research landscape in 2024. Does it apply
a known idea in a completely new context or in a way
that has not been done before?

Step 4: Using the findings from Steps 1-3, determine
which paper is more novel.
In your response, please only state which paper is more
novel (e.g., 1 if Paper 1 is more novel; 2 if Paper 2 is
more novel).

User Prompt:
• Paper 1 Title: [paper_1_title]
• Paper 1 Abstract: [paper_1_abstract]
• Paper 2 Title: [paper_2_title]
• Paper 2 Abstract: [paper_2_abstract]

A.3 Self-Reflection

You are an advanced language model tasked with de-
termining the novelty of research papers in 2024. Your
goal is to evaluate and compare the novelty of two re-
search papers based on their titles, abstracts, and any
other given metadata.
The order in which the papers are presented is ran-
dom and should not influence your evaluation.
Step 1: Independent Evaluation
Analyze each research paper’s title and abstract inde-
pendently. Treat each paper as if it is the only one
under review at that moment.
Consider the following aspects for each paper:

• Novelty of Methodology: Are the methods used
new and innovative?

• Surprisingness of Findings: Are the findings
unexpected or counterintuitive?

• Impact on Existing Knowledge: How does the
research challenge or expand current scientific
understanding?

• Potential for Future Research: Does the paper
open up new directions for research?

• Relevance to 2024 Scientific Understanding:
How well does the paper align with or push the
boundaries of current trends?

Step 2: Quantitative Assessment
• Assign a score from 1-10 to each research paper

for its novelty, with 10 being the most novel. This
score should be based solely on the content of the
title and abstract.

• Provide a brief justification for the score, using
specific quotes and context.

Step 3: Final Comparison
• After independently scoring each paper, compare

the scores.
• Determine which paper exhibits greater novelty

based on the higher score, and provide the identi-
fier (X or Y) of the more novel paper.

Important: The order of presentation is random and
should not influence your decision. Evaluate each paper
strictly on its content and merit.

User Prompt:
• Paper X Title: [paper_x_title]
• Paper X Abstract: [paper_x_abstract]
• Paper Y Title: [paper_y_title]
• Paper Y Abstract: [paper_y_abstract]

56

https://doi.org/10.48550/ARXIV.2401.12491
https://doi.org/10.48550/ARXIV.2401.12491


A.4 SchNovel

Algorithm 1 Data Sampling Algorithm
Fields← [cs,math, physics, qbio, qfin, stat]
startY ear ← [2019, 2020, 2021, 2022, 2023]
yearGap← [2, 4, 6, 8, 10]
sampleNum← 100
N ← 0
Dataset← []
for f in Fields do

for s in startYear do
for g in yearGap do

while N ̸= sampleNum do
x← paper published in s from f
y ← paper published in s-g from f
label← x
Dataset← (f, g, s, x, y, label)
N ← N + 1

end while
N ← 0

end for
end for

end for

A.5 LLM Discussion

You are a [Role] with expertise across all areas of [Cate-
gory]. You will be provided with the titles and abstracts
of two research papers. Your task is to determine which
of the two articles is more novel by evaluating their
originality, contribution to the field, and potential im-
pact. Focus on aspects such as new methodologies,
unexplored problems, innovative solutions, and how the
work advances the state of the art. Follow these steps
for evaluation.

Step 1: Identify the problem and solution that the
research paper attempts to solve.
Step 2: Determine how unique the solution is given
the current research landscape in 2024. Does the
paper introduce a new idea, theory, or concept that has
not been previously discussed in the literature?

Step 3: Determine how creative the solution is given
the current research landscape in 2024. Does it apply
a known idea in a completely new context or in a way
that has not been done before?

Step 4: Using the findings from Steps 1-3, determine
which paper is more novel.
Please limit your response to 150 tokens max. In your
response please conclude with: "The more novel and
impactful paper is [Paper X or Paper Y]

User Prompt:
• Paper X Title: [paper_x_title]
• Paper X Abstract: [paper_x_abstract]
• Paper Y Title: [paper_y_title]
• Paper Y Abstract: [paper_y_abstract]
• (Round 2 Discussion add on) [previous_response]

These are responses from other reviewers.
Please revise your response if necessary...
[other_responses]

• (Round 3 Discussion add on) These are responses
from other reviewers. Please determine which
paper is more novel... [other_responses]

A.6 RAG-Novelty

You are an advanced language model tasked with de-
termining the novelty of research papers in 2024. Your
goal is to evaluate and compare the novelty of two re-
search papers based on their titles and abstracts.
The order in which the papers are presented is ran-
dom and should not influence your evaluation.
Step 1: Independent Evaluation
Analyze each research paper’s title and abstract inde-
pendently. Treat each paper as if it is the only one
under review at that moment.
Retrieve similar abstracts from a vector database based
on the provided abstracts.
Contextual Date Analysis: Average the published
dates of the retrieved documents. Use this average date
as additional context for your evaluation. Consider that
papers with an average date that is later or more recent
in time are generally more novel.
Consider the following aspects for each paper:

• Novelty of Methodology: Are the methods used
new and innovative?

• Surprisingness of Findings: Are the findings
unexpected or counterintuitive?

• Impact on Existing Knowledge: How does the
research challenge or expand current scientific
understanding?

• Potential for Future Research: Does the paper
open up new directions for research?

• Relevance to 2024 Scientific Understanding:
How well does the paper align with or push the
boundaries of current trends?

Step 2: Quantitative Assessment
• Assign a score from 1-10 to each research paper

for its novelty, with 10 being the most novel. This
score should be based on the content of the title
and abstract, as well as the contextual information
from the average published dates.

• Provide a brief justification for the score, using
specific quotes and context.

Step 3: Final Comparison
• After independently scoring each paper, compare

the scores.
• Determine which paper exhibits greater novelty

based on the higher score, and conclude with:
"The more novel and impactful paper is [Paper X
or Paper Y].

Important: The order of presentation is random and
should not influence your decision. Evaluate each paper
strictly on its content and merit, incorporating the addi-
tional context from the vector database as described.

User Prompt:
• Paper X Average Cosine Similarity: [pa-

per_x_avg_cosine_similarity]
• Paper X Average Contextual Date: [pa-

per_x_avg_contextual_date]
• Paper Y Average Cosine Similarity: [pa-

per_y_avg_cosine_similarity]
• Paper Y Average Contextual Date: [pa-

per_y_avg_contextual_date]
• Paper X Title: [paper_x_title]
• Paper X Abstract: [paper_x_abstract]
• Paper Y Title: [paper_y_title]
• Paper Y Abstract: [paper_y_abstract]
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Abstract
Large Language Models (LLMs) are increas-
ingly being leveraged for generating and
translating scientific computer codes by both
domain-experts and non-domain experts. For-
tran has served as one of the go to programming
languages in legacy high-performance comput-
ing (HPC) for scientific discoveries. Despite
growing adoption, LLM-based code transla-
tion of legacy code-bases has not been thor-
oughly assessed or quantified for its usability.
Here, we studied the applicability of LLM-
based translation of Fortran to C++ as a step to-
wards building an agentic-workflow using open-
weight LLMs on two different computational
platforms. We statistically quantified the com-
pilation accuracy of the translated C++ codes,
measured the similarity of the LLM translated
code to the human translated C++ code, and
statistically quantified the output similarity of
the Fortran to C++ translation.

1 Introduction

A Large volume of scientific computational soft-
ware implemented in HPC environments has been
written in programming languages such as Fortran
and C due to their superior performance. However,
recent advancements in computer hardware are not
fully utilized by older generations of Fortran, and
these legacy codes often encounter difficulties with
memory allocations. There is a lack of human re-
sources to maintain and improve these code-bases
for mission critical applications in the future (Ship-
man and Randles, 2023; Pietrini et al., 2024).

Propriety (e.g. ChatGPT) and open weight (e.g.
Llama (Touvron et al., 2023)) LLMs have vastly
improved code generation (Wang and Chen, 2023)
and code translation between modern programming
languages (Jiao et al., 2023) due to widespread
availability of training examples, but not without
difficulties (Pan et al., 2024). As efforts expand
to translate scientific software from legacy pro-
gramming languages to more modern languages via

agentic workflows, there is a need for systematic
methods to evaluate the effectiveness of machine
generated scientific software.

However, very few studies exist for LLM-
assisted code translation from Fortran to C++, pri-
marily due to a lack of quality training data sets.
A recent study (Lei et al., 2023), compiled pairs
of OpenMP Fortran and equivalent C++ codes to
evaluate LLM code translation and evaluated their
results using both quantitative (e.g., CodeBLEU
score (Ren et al., 2020)) and qualitative approaches
(e.g., human evaluation). There is also a lack of
LLM-based Fortran to C++ code translation tools
that can be readily deployed to assist developers
in mission critical and secure environments. Fur-
thermore, earlier attempts to translate code from
Fortran to C++ have not accounted for successful
compiles or output evaluation of the translated code
(Theurich et al., 2001).

In this study, we make several contributions.
We conduct an analysis of translating open-source
code-bases using open-weight models. Our work-
flow (Figure 1) is designed to be agnostic of
any specific LLM or computational platform (e.g.,
vLLM), building towards a set of standardized eval-
uation measures for machine-generated code trans-
lation. We evaluate the similarity to the human-
translated target code using the common Code-
BLEU measure (Ren et al., 2020), how much of
the translated code compiles (compilation accuracy
(Wen et al., 2022a)), and how well the output of
the compiled translated code matches the original
compiled Fortran code (output similarity). We also
categorize any compile errors to demonstrate dif-
ferent behaviors among LLMs. To our knowledge,
this is the first attempt to statistically quantify code
translation accuracies of open-weight LLMs be-
tween computational platforms, the first such study
involving Fortran, and the first to apply all of these
evaluation techniques together.
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Figure 1: Regardless of LLM, our workflow evaluates several parts of the LLM’s code translation, starting by
comparing it to a human-translated ground truth with CodeBLEU, then moving to evaluate how well the translation
compiles and executes. Finally, the workflow compares the output between the original Fortran code and the
translated code’s C++ executable.

2 Background

Despite the emergence of numerous modern pro-
gramming languages, Fortran remains integral in
legacy scientific applications, HPC, and areas re-
quiring intensive numerical computations, such as
climate modeling (Méndez et al., 2014), computa-
tional fluid dynamics (Derlaga et al., 2013), solv-
ing inverse problems (Cuer and Bayer, 1980), full
waveform inversion (Komatitsch and Tromp, 2002),
subsurface flow (Mills et al., 2007), space appli-
cations (Ocampo and Senent, 2006), crystallog-
raphy (Grosse-Kunstleve et al., 2002), radiation
transport (Waters et al., 2007) and structural analy-
sis (Nardelli, 1995). Unfortunately, Fortran is no
longer a popular language (Shipman and Randles,
2023) and finding assistance from the community
for future development is challenging. We chose
C++ as a target language because it has more com-
munity support, but it also has a number of desir-
able features for scientific computing in the HPC
environment, including its highly efficient feature
set, template techniques (Veldhuizen and Jernigan,
1997), the standard template library (Musser and
Saini, 1995), and advanced memory management
(Attardi et al., 1998). Unfortunately, efforts to trans-
late legacy code-bases from Fortran to C++ have
encountered several challenges stemming from dif-
ferences in language paradigms, syntax, and stan-

dard libraries.
LLMs have emerged as an efficient and robust

method for translating code between programming
languages. Many LLMs exist (de Groot, 2024), and
there are different computational platforms (Emani
et al., 2022) for executing LLMs. In this work,
we evaluate two such platforms: vLLM and Sam-
baNova. vLLM is a library providing a common
interface for efficiently serving different LLMs
across different hardware architectures utilizing
the PagedAttention algorithm (Kwon et al., 2023).
SambaNova is an AI accelerator platform that pro-
vides specialized hardware for executing LLMs
(Prabhakar et al., 2024). We compare both in this
paper.

3 Related Work

Fortran to C++ translation has traditionally been
conducted manually by experienced programmers.
There have been few efforts to convert these legacy
code-bases from Fortran to C++ using source-to-
source translation tools (Grosse-Kunstleve et al.,
2012; Feldman, 1990). However, the translated
codes from these sources lack readability and re-
quire manual changes to implement memory man-
agement functionality (Theurich et al., 2001).

Previous systematic studies of code translation
between pairs of modern programming languages
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such as C, C++, Go, Java, and Python using LLMs
have been met with varying degree of compila-
tion success from 2.1 to 47.3% for code specific
(codeGEN, CodeGenX, StarCoder) and text based
general purpose (GPT-4, Llama-2, TB-Airboros,
TB-Vicuna) LLMs with GPT-4 having the most
success (Pan et al., 2024). Recent efforts to create
larger code bases of example training data sets for
popular and niche programming languages have
improved the LLM assisted translations between
more modern languages (Yan et al., 2023). A recent
study (Chen et al., 2024) utilized an LLM based
agentic method that seamlessly integrates multiple
verification processes into iterative cycles for trans-
lating Fortran to C++. This approach employs a
questioner-solver module to delegate referencing
and decision-making tasks to separate LLMs, a
multi-turn dialogue collection that effectively cap-
tures the nuanced aspects of translating and finally
fine-tuning of three open-weight LLMs using the
data produced to improve the accuracy of the mod-
els. Our study differs from theirs (Chen et al., 2024)
by evaluating the capabilities of open-weight LLMs
that can be readily deployed in a mission critical
environment to translate Fortran to C++ on differ-
ent computational architectures. We also differ by
our choice in evaluations. We include compilation
accuracy, the translated code’s similarity to human
translated codes, and a comparison of the similar-
ity of outputs between our ground truth Fortran
codes and the translated code from the LLM. Un-
like other studies, we also apply the open-source
Rosetta code repository (Rosetta Code Community,
2025) as a data source for evaluating the translation
of Fortran to C++.

4 Methodology

4.1 Data

To evaluate how well each LLM’s translation
matches a human translation, we required not only
Fortran code, but ground truth C++ translations.
We acquired two datasets containing pairs of For-
tran and equivalent C++ codes. Rosetta Code
(Rosetta Code Community, 2025) provides cod-
ing examples for the same programming task in
multiple languages. We created a web scraper to
produce a dataset of 243 Fortran and their corre-
sponding C++ examples from the Rosetta Code
website in October 2023. We retained only those
examples for which there was at least one Fortran
and corresponding C++ example per programming

task. Our second dataset consists of 101 examples
from the DataRaceBench (DRB) benchmark (Liao
et al., 2017) obtained from the OpenMP Fortran to
C++ dataset (Lei et al., 2023) that contains the same
code implemented in different languages in support
of the benchmark. From each dataset, we selected
fully developed 344 computer programs with vary-
ing degrees of complexity, to ensure ground truth
Fortran and C++ programs compile.

4.2 LLMs
Model parameters in LLMs are preset configura-
tions that determine the model’s architecture and
training process, such as the number of layers,
learning rate, and batch size. The number of pa-
rameters varies between LLMs. However, prior
work (Hoffmann et al., 2022) demonstrated that the
performance of LLMs does not necessarily linearly
increase with the number of parameters.

We chose LLMs that are well regarded by in-
dustry, can be deployed in a mission-critical en-
vironment, allow for local deployment to satisfy
privacy concerns, have a diversity of model param-
eter sizes for comparison, and are also supported by
the vLLM and SambaNova Cloud platforms (Sam-
baNova). Table 1 shows the LLMs we selected
based on this criteria.

4.3 Workflow
Figure 1 shows the evaluation process we applied
to each Fortran code and LLM. We start by build-
ing each full prompt by combining each Fortran
code with the prompt in Figure 2. Using this full
prompt, we requested that each LLM convert the
Fortran code to C++. Because LLMs are known to
vary their responses due to their stochastic nature,
we issued the same prompt multiple times for each
Fortran code. We set up vLLM (Kwon et al., 2023)
using onsite hardware at the Los Alamos National
Laboratory (DGX hardware equipped with 8 A100s
NVIDIA GPUs along with 2 AMD EPYC 7742 64-
Core Processors) and issued the same prompt 128
times per Fortran code per LLM. We utilized tem-
perature of 0.8, min-p of 0.05, top-p of 0.95, and
set the maximum generation length to 8192 tokens
across the LLM models. We also used the Ope-
nAI Python API library to prompt Llama models
hosted by SambaNova Cloud, which is equipped
with SambaNova SN40 Reconfigurable Dataflow
Units (RDUs) (Prabhakar et al., 2024). Due to
rate limits on the SambaNova Cloud, we only exe-
cuted the same prompt 25 times per Fortran code
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Table 1: The LLMs used in this study.

LLM # parameters Computational platform
Open code interpreter 33B vLLM
Llama 3.1 70B vLLM
Mistral Large Instruct 2407 123B vLLM
Llama 3.3 70B vLLM
Llama 3.1 8B SambaNova Cloud
Llama 3.1 70B SambaNova Cloud
Llama 3.1 405B SambaNova Cloud
Llama 3.3 70B SambaNova Cloud

Figure 2: The prompt used in this study.

per LLM. We utilized temperature of 0.8, top-p of
0.9, and context length of 4096 across the Llama
models in the SambaNova Cloud. From each com-
pletion, we recorded the C++ code and compared
it to the ground truth C++ code from our datasets
via CodeBLEU score (Ren et al., 2020). From
there, we evaluated the Fortran code’s compilation
accuracy and output similarity.

4.4 Similarity to human translated code
CodeBLEU (Ren et al., 2020) measures how well
a machine translation matches a human translation
for the same code. The CodeBLEU score contains
four dimensions of comparison: matching n-grams,
matching weighted n-grams, Abstract Syntax Tree
matching, and data-flow analysis. We apply the
human ground truth translation from each dataset
to arrive at a CodeBLEU score. We perform bias
analysis of the translated C++ codes across various
LLMs, as an indicator of the code translation qual-
ity. We use CodeBLEU scores of the human trans-
lated C++ codes with their corresponding machine
translated codes. In our scenario, since we run the
same translation command prompt for a given code
multiple times and we might get variations in the

code translation, our bias analysis takes into ac-
count this stochasticity in LLM-based code genera-
tion. To perform this, for each LLM, we first calcu-
late individual average CodeBLEU scores for each
ground truth Fortran file across the trials. Since
CodeBLEU depicts similarity, we calculate bias
(that represents error) as Bias = 1−CodeBLEU .
With this formulation, now we can use these aver-
aged bias scores to approximate a distribution using
a non-parametric Kernel Density Estimate (KDE)
approach(Chen, 2017). In this method, there exist
different choices for its kernel types; such as Gaus-
sian, triangular, rectangular, and the Epanechnikov
kernel (Gramacki, 2018). Generally, variations due
to kernel types are considered to be less signifi-
cant compared to the choice of kernel bandwidth
(Silverman, 1998). Silverman’s rule of thumb for
bandwidth selection generally produces smooth
and good-quality density estimation (Biswas et al.,
2016). We use this approach in our work and gen-
erate the KDE plots, as shown in Figure 3a for
vLLM based translated codes and Figure 3b shows
the KDE plots for the SambaNova Cloud based
translated codes.
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Table 2: Classification of compiler errors used in this work.

Compile Error Category Error topic String matches from g++ compiler
Syntax Error Missing operators, missing delimiters, expected

incorrect usage of tokens, before
or anything else resulting from poor programming
syntax

error: no match for ‘operator>=

stray “’ in program
error: void value not ignored as it ought to be
error: ‘std::std’ has not been declaredcannot be used as a function
error: assignment of read-only locationerror: invalid initialization
of non-const reference of type
error: lvalue required as increment operand
error: no matching function for call to
error: missing terminating " character
error: too many arguments to function

Type Error An issue with use of data types invalid conversion
cannot convert

Linker Error The implied use of external libraries is not a member of ‘std’
error: aggregate ‘std::stringstream ss’ has incomplete type and
cannot be defined
undefined reference

Declaration Error Declaring variables before use error: too many initializers
was not declared
has not been declared

Semantic Error Proper application of functions or operators invalid operands
invalid use of

Scope Error Using variable outside of their established scope not in this scope
is not captured

Template Error Invalid use of C++ templates wrong number of template arguments
File and I/O Error the code refers to nonexistent filesystem resources No such file or directory
Memory Error Incorrect use of memory operations invalid use of

delete
Other Error Anything else not covered with the string matching

above

4.5 Success of compilation
Compilation accuracy of the translated C++ mea-
sures how many translations successfully compile
without errors (Wen et al., 2022b). We compiled
each translated C++ using the g++ v5.3.0 com-
piler on Red Hat Enterprise Linux Workstation re-
lease 7.9. If a C++ translation failed to compile,
we recorded the compiler output and did not pro-
ceed further with that translation (Figure 1). We
reviewed the compiler output and categorized each
error as shown in Table 2. The

4.6 Similarity of outputs
Output similarity compares the output of each For-
tran program to that of its C++ translation gen-
erated from the LLM. We compiled each Fortran
program and ran the resulting executable to cap-
ture its output. Then, we did the same with each
LLM-generated C++ translation that successfully
compiled. Outputs from scientific programs consist
of text and numeric data. Humans may look at two
outputs and consider them the same where a di-
rect string match would score them radically differ-
ent (e.g., b(50,50)= 0.00000000 vs. b(50,50)=
0.0 and Fib for 30 832040 vs. Fib for 30
= 832040.0). We first tokenized each output us-
ing the NLTK (Bird et al., 2009) word_tokenize
function to produce a list of strings. Then, we at-
tempted to convert each token to a floating point

number using the Python float function. If the
token could be converted, we rounded it to a pre-
cision of 4 decimal places. If not, then we left the
token as a string. We, then applied a Jaro-Winkler
(Jaro, 1989; Winkler, 1990) score to each set of
tokens to measure their similarity.

Thus, by the end of the workflow we have eval-
uated each translation in comparison to a human
translation, how well it compiles, and whether it
produces the same output as the Fortran submitted
to the system at the beginning.

5 Results and Discussion

5.1 Similarity to human translated code

CodeBLEU scores demonstrate how well an LLM’s
code translation matches a human translation of the
same code. Figure 3 shows the bias of CodeBLEU
scores between LLMs. Scores on the x-axis pro-
vide a distance between LLM generated C++ trans-
lations and their human ground truth equivalents.
Higher scores that indicate that the translation is far-
ther than the ground truth and thus a poorer match.
At first glance Figure 3 appears to show that there is
not much difference between LLMs, but the peaks
give a more nuanced story.

Figure 3a shows that Llama 3.1 70B leads with
the highest rate of translations that do not match
human ground truth. OpenCodeInterpreter 33B

62



(a) vLLM (b) SambaNova

Figure 3: Kernel density estimate plots demonstrating the distribution of total bias (1 - CodeBLEU Score) for each
Fortran translation demonstrates different distributions per execution platform.

(a) vLLM (b) SambaNova

Figure 4: Compilation accuracy of each LLM by execution platform shows that the increase in the number of model
parameters is proportional to the increase in compilation accuracy.

(Zheng et al., 2025) has the lowest peak outper-
forming Mistral Large. However, Mistral does have
a small peak lower on the x-axis, indicating many
more that might be closer to human ground truth.

SambaNova has a similar peak in Figure 3b,
indicating a higher number of LLM translations
that do not match human ground truth. Llama
3.1 8B’s CodeBLEU bias is highest. Thus, its
translations are least consistent with human trans-
lations. In contrast, Llama 3.1 405B has the lowest
peak, but appears only marginally better in consis-
tency than other models. These results with the
commonly-used CodeBLEU metric demonstrate
that larger models provide translations closer to hu-
man ground truth, but the amount of similarity in
these distributions necessitate our other measures
to more clearly separate performance.

5.2 Success of compilation
Figure 4 shows the compilation accuracy results
for each computational platform and LLM. In both
cases, we see an increase in the number of suc-
cessful compiles as one increases the number of
parameters in the LLM. Additionally, as seen in
Figure 4a, while the LLMs served by vLLM appear
to generate more successfully compilable code,
OpenCodeInterpreter generates completions from
which we cannot extract code. In contrast, Sam-
baNova’s results in Figure 4b show no instances
where LLM completions produced code that could
not be extracted. Additionally, we see that, for
vLLM, Llama 3.1 70B and Llama 3.3 70B have
comparable performance. This is not the case with
these two LLMs on SambaNova Cloud, where
Llama 3.1 405B and Llama 3.3 70B have similar
performance.
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(a) vLLM (b) SambaNova

Figure 5: Each Fortran code is plotted along the x-axis while the count of tries for a corresponding C++ translation
is placed on the y-axis. Translations that compiled successfully are shown in green, and those that failed are marked
in red. Note same Fortran code is not always shown at the same point in the x-axis. Compilation accuracy of each
translated Fortran program differs per model with some LLMs having more difficulty translating certain codes than
others. We note that LLMs with a higher number of parameters have more success per Fortran code.

Figure 5 demonstrates the distribution of compi-
lation accuracy for all Fortran codes. These sand-
charts represent each Fortran code on the x-axis.
The y-axis represents each translation of that code
into C++. Green shows translations that success-
fully compile. Red shows failures. By executing
each LLM multiple times we can see the level of
variation in their responses and note that not all
translation failures occurred equally. Some trans-
lations were always successfully compiled while
others were more varied. We also note the same
pattern of improving compilation accuracy among
all Fortran codes as the number of parameters in-
creases across models. vLLM shows more con-
sistent translations (green rising closer to the top)
while SambaNova shows a dramatic improvement
for Llama 3.1 405B over Llama 3.3 70B that was
not apparent in the raw numbers shown in Figure
5b.

Figure 6 shows the distribution and categoriza-
tion of of compile failures. In Figure 6a, most of the
compile errors generated from the LLMs served in
vLLM are linker errors, representing the assumed
inclusion of libraries not specified via an #include
directive. In contrast, in Figure 6b the majority of
the compile errors shown for LLMs served in Sam-
baNova Cloud are syntax errors. Again, we see

that Llama 3.3 70B and Llama 3.1 405B have com-
parable performance, though their compile error
distribution varies.

5.3 Similarity of outputs

Figure 7 shows the distribution of Jaro-Winkler
scores comparing the outputs of the ground truth
Fortran programs to the outputs of their LLM C++
translations. We note the same familiar pattern
of increasing number of parameters leads to bet-
ter mean similarity of inputs. Mistral Large with
vLLM in Figure 7a and Llama 3.1 405B with Sam-
baNova in Figure 7b both outperform Llama 3.3
70B in this case. Mistral Large, however produces
a tighter distribution of similar outputs.

6 Conclusion

We conducted an analysis of how well open-weight
LLMs translate open-source code-bases from For-
tran to C++. We presented an LLM-independent
and platform-independent workflow for our eval-
uation. This workflow evaluates several elements
of translation quality. We consider the similarity
between human ground truth and machine trans-
lation, if the translated C++ code compiles, what
errors are encountered if the compile fails, and
finally how well the resulting C++ translation’s ex-
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(a) vLLM (b) SambaNova

Figure 6: Distribution of compile error categories for each C++ translation shows that LLMs produce different
errors in their translated code.

ecutable produces the same output as the original
Fortran code.

We ran this workflow with LLMs on both the
vLLM and SambaNova Cloud platforms. Because
LLMs do not always produce the same output each
time, we ran 128 instances of the same translation
on vLLM and 25 on SambaNova to ensure we had a
sizeable sample space. Unsurprisingly, we discov-
ered that those LLMs with higher model parameter
counts tend to produce better results. Our code-
BLEU analysis reveals that Mistral Large served on
vLLM and Llama 3.1 405B served on SambaNova
Cloud produce codes that better matches human
translations. Our compilation evaluation demon-
strates that Mistral Large on vLLM and Llama 3.1
405B on SamaNova Cloud have higher counts of
compilable code, with Llama-3.3 70B being compa-
rable. We demonstrated that not all Fortran codes
were translated consistently, showing that some
LLMs produced C++ translations that more consis-
tently compiled for a given Fortran code. We also
found that the translated codes from vLLM that
failed to compile mostly had linker errors while
those from SambaNova largely contained syntax
errors, even for the same LLM model. Finally, we
showed that, for successful compiles, the output of
the translated executables better matched the out-
put of the original Fortran with Mistral Large on
vLLM and Llama 3.1 405B on SambaNova Cloud,
with Llama 3.3 70B being comparable on both plat-
forms.

The implications for scientific computing are
mixed. The state of the art shows the code bases in
Fortran can be translated to C++ readily, but also
demonstrate that no LLM on either platform was
free of error. We still require a human-in-the-loop
for code translation.

7 Limitations

While our study presents a workflow for systematic
evaluation of open-weight LLMs for Fortran-to-
C++ code translation, there are several limitations
that must be acknowledged: Our evaluation work-
flow is not yet packaged into a standalone tool
that can provide Fortran-to-C++ translations along
with compilation statistics and output similarity.
Automating this workflow would make scientific
discovery more accessible for researchers working
in HPC environments. We did not present our at-
tempts to improve compilation accuracy through
agentic workflows by incorporating the error mes-
sages generated from compiling the codes pro-
duced by the LLM into a automatic dialog with
the LLM. Our initial efforts in that direction were
shown to increase the compilation accuracies of the
translated codes and we are pursuing the agentic
workflows in a future study.

Additionally, our study could be enhanced by
incorporating more complex and extensive For-
tran code-bases, such John Burkardt’s data set
(Burkardt, Accessed: 2025-01-30) which are highly
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(a) vLLM (b) SambaNova

Figure 7: Distribution of Jaro-Winkler scores for output similarity comparison between original Fortran executables
and LLM C++ executables. Green triangles represent means while green lines are medians.

relevant to scientific computing. Furthermore,
Chen et al. (Chen et al., 2024) showed that fine-
tuning LLMs on Fortran to C++ datasets could
improve each model’s CodeBLEU scores by 1.5
to 3.3 times with up to a 92% increase in success-
ful compilations. Focusing our study’s analysis on
models which have been fine-tuned for Fortran to
C++ translation could help create more useful tools
for developers.

Further improvements could be made with
prompt design and in this study, we used the same
prompt for every LLM. It is possible that further ex-
ploration of prompt design could uncover that dif-
ferent models perform better with different prompts
(Liu et al., 2023; Knobloch et al., 2025). Our
study focused solely on open-weight LLMs such as
Llama and Mistral. While comparisons do exist for
both natural language translation as well as coding
(without translating), our literature review found a
lack of studies comparing open-weight LLMs to
proprietary models like GPT and Gemini for code
translation. Including these models, along with the
source-to-source translation tools (Feldman, 1990;
Grosse-Kunstleve et al., 2012) which were popu-
lar for Fortran to C++ in the past could provide a
clearer benchmark for our results. Additionally, in
this study, we did not test the capabilities of the
new generation of reasoning models (OpenAI’s o1,
o1-mini, o3-mini; DeepSeek-R1; and Anthropic
Claude 3.7 Sonnet) to translate Fortran to C++.
However, our workflow delivers a plug-and-play

solution to test any LLMs code translation capa-
bilities on any computational platform without any
modifications.

In this study, we did not consider improving
code translation accuracy using few-shot learning
via Retrieval Augmented Generation (RAG) as it
is studied elsewhere (Bhattarai et al., 2024).
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Abstract

The study of food pairing has evolved beyond
subjective expertise with the advent of machine
learning. This paper presents FlavorDiffusion,
a novel framework leveraging diffusion models
to predict food-chemical interactions and ingre-
dient pairings without relying on chromatogra-
phy. By integrating graph-based embeddings
[Perozzi et al., 2014], diffusion processes [Ho
et al., 2020, Song et al., 2021, Sun and Yang,
2023], and chemical property encoding [Azam-
buja et al., 2023], FlavorDiffusion addresses
data imbalances and enhances clustering qual-
ity. Using a heterogeneous graph derived from
datasets like Recipe1M [Marín et al., 2019]
and FlavorDB, our model demonstrates supe-
rior performance in reconstructing ingredient-
ingredient relationships. The addition of a
Chemical Structure Prediction (CSP) layer fur-
ther refines the embedding space, achieving
state-of-the-art NMI scores and enabling mean-
ingful discovery of novel ingredient combina-
tions. The proposed framework represents a sig-
nificant step forward in computational gastron-
omy, offering scalable, interpretable, and chem-
ically informed solutions for food science. The
source code and dataset used in this study are
publicly available at https://github.com/
Giventicket/FlavorDiffusion.

1 Introduction

Food pairing has traditionally relied on the intu-
ition and experience of chefs, yet scientific analy-
sis and optimization of food combinations remain
underexplored. Recent research has leveraged data-
driven approaches to model the relationships be-
tween food ingredients and chemical compounds
to predict novel food pairings.

Several computational approaches have been de-
veloped to model food pairings and ingredient re-
lationships. Kitchenette [Park et al., 2021], for

*Co-first authors.

instance, applies Siamese neural networks to pre-
dict and recommend ingredient pairings based on a
large annotated dataset. However, it suffers from
key limitations, such as a lack of chemical inter-
pretability and heavy reliance on labeled data, mak-
ing it less generalizable across different cuisines
and novel food combinations.

One of the key advancements in this domain is
FlavorGraph [Park et al., 2021], a large-scale food-
chemical deep neural network model comprising
6,653 ingredient nodes and 1,645 compound nodes.
This graph captures two primary relationships: (1)
ingredient-ingredient relations, representing co-
occurrence patterns in recipes, and (2) ingredient-
compound relations, indicating chemical composi-
tion links. These relationships are constructed us-
ing datasets such as Recipe1M [Marín et al., 2019],
FlavorDB, and HyperFoods. FlavorGraph incor-
porates food-chemical associations into a neural
network by leveraging the metapath2vec [Dong
et al., 2017] algorithm, which embeds ingredient-
compound relationships in a word2vec-like man-
ner. Expanding on this approach, WineGraph
[Gawrysiak et al., 2023] extends the framework
by integrating wine-related datasets to define opti-
mal food-wine pairings.

Despite progress in computational food sci-
ence, major challenges remain. Chromatography-
based methods, while precise, are costly and limit
the acquisition of large-scale chemical interaction
data. FlavorGraph effectively captures ingredient-
compound relationships using metapath-based em-
beddings, but its reliance on random-walk sam-
pling makes it difficult to incorporate edge weights
and spatial information within the graph structure.
These limitations hinder the full exploitation of
food-chemical associations, leading to suboptimal
ingredient relationship modeling. To address these
challenges, we introduce FlavorDiffusion, a Diffu-
sion Model-based framework that refines the rep-
resentation of food-chemical interactions and ele-
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vates the quality of food pairing predictions.

Contributions

• We propose a graph-based diffusion model-
ing approach that leverages DIFUSCO [Sun
and Yang, 2023] to capture richer and more
structured representations of food-chemical
interactions.

• We introduce a balanced subgraph sampling
strategy to address data imbalance issues,
ensuring fair representation across different
ingredient-chemical associations.

• Our experimental results demonstrate im-
provements in Normalized Pointwise Mutual
Information (NPMI) scores for node embed-
dings, facilitating more effective chemical in-
ference.

• We establish a foundation for predicting chro-
matography results for non-hub chemicals, ex-
tending the applicability of our model beyond
frequently occurring compounds.

• Our approach enables pairing inference us-
ing chemical properties, providing structured
and interpretable recommendations for novel
ingredient combinations.

2 Dataset

Our study builds upon FlavorGraph [Park et al.,
2021] by utilizing the same large-scale datasets to
construct a robust food-chemical network. These
datasets provide a structured representation of in-
gredient relationships and chemical interactions.
In the following sections, we summarize the key
characteristics of these datasets and outline the pre-
processing steps applied to ensure data consistency
and usability in our framework.

Type Source Nodes Edges
I-I Recipe1M 6,653 111,355
I-FC FlavorDB 1,561 35,440
I-DC HyperFoods 84 386
Total - 8,298 147,181

Table 1: Summary of the heterogeneous food-
compound graph. I-I represents ingredient ingredient
co-occurrence from Recipe1M, I-FC denotes ingredient-
flavor compound associations from FlavorDB, and I-DC
refers to ingredient-drug compound relations

2.1 Data Sources

This study utilizes the same datasets as Flavor-
Graph [Park et al., 2021] to construct a structured
food-chemical network.

Recipe1M [Marín et al., 2019] contains 65,284
recipes with ingredient lists and cooking instruc-
tions, capturing ingredient co-occurrence patterns
in real-world culinary practices.

FlavorDB compiles chemical composition data
from multiple sources, including FooDB, Flavor-
net, and BitterDB. It originally includes 2,254 fla-
vor compounds linked to 936 food ingredients, but
only 400 commonly used ingredients were selected
to align with Recipe1M, resulting in 1,561 fla-
vor compound nodes and 164,531 ingredient-flavor
compound edges.

HyperFoods maps drug compounds to food in-
gredients using machine learning based on food-
gene interactions. From the original 206 food in-
gredients, 104 were selected, yielding 84 drug com-
pound nodes and 386 ingredient-drug compound
edges.

2.2 Data Processing

To construct a structured representation of food-
chemical relationships, we build upon FlavorGraph
[Park et al., 2021], a heterogeneous graph that in-
tegrates both culinary and chemical associations.
The graph construction process follows a structured
approach. First, an ingredient-ingredient graph
is built by extracting co-occurrence patterns from
Recipe1M [Marín et al., 2019], where edges be-
tween ingredients are established based on their
Normalized Pointwise Mutual Information (NPMI)
scores. Only statistically significant ingredient
pairs appearing together in a substantial number of
recipes are retained, resulting in a total of 111,355
edges. Second, an ingredient-chemical graph is
formed by linking ingredients to their correspond-
ing chemical compounds using FlavorDB and Hy-
perFoods, leading to 35,440 edges between food
ingredients and known chemical compounds. The
final graph structure comprises 6,653 ingredient
nodes and 1,645 compound nodes, forming a het-
erogeneous graph that encodes both culinary co-
occurrence relationships and chemical interactions.

2.3 Chemical Property Encoding

To ensure chemically informed ingredient repre-
sentations, each compound is characterized using
CACTVS chemical fingerprints, which are encoded
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as 881-dimensional binary vectors. These vectors
represent molecular descriptors such as molecular
weight, functional groups, and substructure pat-
terns, using a binary encoding scheme where each
bit indicates the presence or absence of a specific
chemical substructure.

3 Related Work

3.1 FlavorGraph

FlavorGraph [Park et al., 2021] is a heteroge-
neous graph G = (V,E) integrating ingredient co-
occurrence and molecular profiling to model food-
chemical interactions. By leveraging metapath-
based learning [Dong et al., 2017], it enables sys-
tematic ingredient discovery and predictive food
pairing through shared molecular properties.

3.1.1 Metapath2Vec
To learn chemically meaningful embeddings, we
employ Metapath2Vec, which captures high-order
relations via structured random walks. Ingredi-
ents are classified into hub ingredients (H), which
directly connect to chemical compounds, and non-
hub ingredients (N ), which lack direct chemical
links and rely on hub ingredients to acquire chemi-
cal insights.

The metapath sampling strategy follows:

N → H → C → H → N

where C represents chemical compounds. This
structured propagation ensures that non-hub ingre-
dients inherit chemical relevance, enhancing em-
bedding robustness and interpretability.

3.1.2 Architecture
The network, parameterized by θ, takes node pairs
(i, j) as input and outputs an edge score sθ(i, j),
normalized across all embeddings:

sθ(i, j) = σ(uT
i uj)

where ui and uj are the learned embeddings for
nodes i and j, ensuring consistency across culinary
co-occurrence and chemical similarity.

3.1.3 Loss Function
Embeddings are optimized using Skip-Gram with
Negative Sampling (SGNS):

Jθ =
∑

(i,j)∈D
log σ(uT

i uj)+
∑

(i,j′)∈D′
log σ(−uT

i uj′)

where D and D′ are positive and negative sam-
ple pairs. To enforce chemical relevance, an addi-
tional Chemical Structure Prediction (CSP) loss
is introduced:

LCSP,θ =
D∑

d=1

[yd log fθ,d(i)

+(1− yd) log (1− fθ,d(i))]

where fθ,d(i) predicts the presence of the d-th
molecular substructure yd, refining embeddings
with molecular fingerprints.

3.2 DIFUSCO

Graph-based diffusion models have proven effec-
tive for combinatorial optimization. We apply the
Gaussian diffusion framework to reconstruct struc-
tured graphs, enhancing the predictive accuracy of
food-chemical interactions while preserving inter-
pretability. By integrating diffusion-driven embed-
dings into a heterogeneous network, our approach
seamlessly incorporates molecular insights into in-
gredient pairing research, advancing computational
gastronomy.

4 Proposition: FlavorDiffusion

4.1 Sub-Graph Sampling

FlavorDiffusion is built upon the DIFUSCO Gaus-
sian noise-based diffusion model, extending its ca-
pabilities to structured food-chemical graphs. The
core objective is to train a model capable of recon-
structing subgraphs sampled from the full hetero-
geneous graph G = (V,E) while leveraging node
attributes as guidance.

The full graph consists of a diverse set of nodes
V , including hub ingredients, non-hub ingredi-
ents, flavor compounds, and drug compounds, with
edges E encoding the strength of their relationships
as continuous values in [0, 1]. We define a dataset
of subgraphs, where each sample contains m nodes
selected from G. These subgraphs are denoted as:

Dm = {Gi = (Vi, Ei)}Ni=1,

where each subgraph Gi has |Vi| = m nodes and
an adjacency matrix Ei of size m×m, representing
pairwise edge scores. The dataset is partitioned into
training (Nt) and validation (Nv) subsets.

72



4.2 Forward Diffusion Process
For a single data point Gi = (Vi, Ei) sampled from
the dataset, we define the diffusion process over
its edge set Ei. By convention, we denote the cor-
rupted version of Ei at timestep t as xt, aligning
with standard diffusion formalisms. The node rep-
resentations, encompassing all vertex features, are
denoted as Emb.

The forward diffusion process follows a Marko-
vian Gaussian noise injection, progressively per-
turbing the edges xt while preserving node repre-
sentations:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

where βt is a predefined noise variance at
timestep t. Given an initial clean edge matrix
x0 = Ei, we can analytically express the direct
corruption of x0 at any timestep t as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

where ᾱt =
∏t

s=1(1 − βs) represents the cu-
mulative noise effect over time. This formulation
allows direct sampling of xt from x0, bypassing
iterative updates.

In this framework, the edge structure is progres-
sively degraded into Gaussian noise, while node
representations Emb remain unchanged, ensuring
that denoising relies on learned node attributes.

4.3 Reverse Denoising Process
The reverse process seeks to recover x0 from the
fully corrupted state xT , learning to remove noise
in a stepwise manner. The key assumption is that
the forward process follows a Gaussian transition,
enabling an analytically derived reverse process.

Given the Markovian nature of the diffusion pro-
cess, we define the true posterior:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI),

where the posterior mean and variance are de-
rived as:

µ̃t(xt, x0) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

β̃t =
1− ᾱt−1

1− ᾱt
βt.

Since x0 is unknown, we train a model pθ(x0|xt)
to approximate it. Substituting the predicted x0, the
learned reverse process is modeled as:

pθ(xt−1|xt,Emb) =

N
(
xt−1;µθ(xt, t,Emb),Σθ(xt, t)

)
,

where µθ is the learned estimate for µ̃t(xt, x0),
and the variance term is fixed as Σθ(xt, t) = β̃tI ,
avoiding the need for explicit learning. The func-
tion µθ is now conditioned on the node representa-
tions (Emb) of the two vertices forming the edge.

Using the DDPM convention, we parameterize
µθ as:

µθ(xt, t,Emb) =
1√
αt

(
xt

− βt√
1− ᾱt

ϵθ(xt, t,Emb)

)
,

where ϵθ(xt, t,Emb) is the learned noise esti-
mate, which is now explicitly conditioned on the
representations of the two nodes forming the edge.
The node representations provide additional con-
text for denoising by leveraging node-specific fea-
tures.

4.4 Optimization via Variational Lower
Bound

To train the reverse model, we maximize the varia-
tional lower bound (ELBO), decomposed as:

LELBO = Eq

[
log pθ(x0|x1,Emb)

−
T∑

t=1

DKL
(
q(xt−1|xt, x0)∥pθ(xt−1|xt,Emb)

)
]
.

Here, T represents the total number of diffu-
sion steps, defining the depth of the forward and
reverse process. The KL divergence encourages
the learned transitions to match the true posterior.
Since q(xt|x0) is Gaussian, minimizing DKL is
equivalent to predicting the noise component ϵ
added during diffusion. Thus, the training objective
simplifies to:

Lrecon = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t,Emb)∥2

]
.
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This loss ensures that ϵθ effectively estimates
the noise introduced in the forward process while
incorporating node representations. By iteratively
refining the denoising function, FlavorDiffusion re-
constructs the original ingredient-ingredient graph
from noisy subgraphs, leveraging both the struc-
tural edge information and node attributes to en-
hance predictive modeling for food pairing analy-
sis.

4.5 Inference
Graph reconstruction follows Denoising Diffusion
Implicit Models (DDIM) for efficient and deter-
ministic sampling. Unlike DDPM, DDIM removes
noise via a non-Markovian update, accelerating
inference.

Starting from xT ∼ N (0, I), the reverse process
iterates:

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 · ϵθ(xt, t,Emb),

where the predicted clean graph is:

x̂0 =
xt −

√
1− ᾱtϵθ(xt, t,Emb)√

ᾱt
.

Iterating from T to 0, the model refines xt to
recover ingredient-ingredient relationships. DDIM
ensures fast, stable, and chemically meaningful
reconstructions.

4.6 Model Architecture
The noise prediction network ϵθ(xt, t,V) employs
an anisotropic GNN to iteratively refine node and
edge embeddings. Let hℓi ∈ Rd and eℓij ∈ Rde

denote the node and edge features at layer ℓ, re-
spectively. The refinement process updates both
edge and node embeddings through the following
operations:

Edge Refinement The initial edge embeddings
e0ij are set as the corresponding values from the
noisy edge representation xt. At each layer ℓ, the
intermediate edge embeddings êℓij are updated as:

êℓij = P ℓeℓij +Qℓhℓi +Rℓhℓj ,

where P ℓ, Qℓ, Rℓ ∈ Rde×de are learnable pa-
rameters. The refined edge embedding eℓ+1

ij is then
computed as:

eℓ+1
ij = eℓij + MLPe

(
BN(êℓij)

)
+ MLPt(t),

where MLPe is a 2-layer perceptron and MLPt

embeds the diffusion timestep t using sinusoidal
features.

Node Refinement The node embeddings hℓi are
refined by aggregating information from neighbor-
ing nodes and their associated edges. The update
rule for hℓ+1

i is given by:

hℓ+1
i = hℓi+α·BN

(
U ℓhℓi+

∑

j∈N (i)

σ(êℓij)⊙V ℓhℓj

)
,

where U ℓ, V ℓ ∈ Rd×d are learnable parameter
matrices, σ is the sigmoid activation function used
for edge gating, ⊙ denotes the Hadamard (element-
wise) product, N (i) represents the set of neighbors
for node i, and α is the ReLU activation applied
after aggregation.

Final Prediction After L GNN layers, the final
refined edge embeddings E(L) ∈ RN×N×de are
passed through a ReLU activation and a multi-layer
perceptron (MLP) to predict the noise:

ϵθ(xt, t,V) = MLP
(
ReLU(E(L))

)
.

This formulation ensures that both node and
edge embeddings are iteratively refined to capture
local and global graph structure, enabling robust de-
noising and reconstruction of ingredient-ingredient
relationships.

5 Experimental Results

The evaluation consists of two primary experi-
ments: (1) reproducing the NMI-based clustering
performance evaluation originally conducted in Fla-
vorGraph, and (2) assessing the generalization abil-
ity of our proposed Flavor Diffusion framework by
testing on subgraphs of different sizes.

Subgraphs of size 25, 50, 100, and 200 nodes
were sampled while maintaining an equal propor-
tion of hub and non-hub ingredients. The number
of subgraphs used for training and testing at each
scale is shown in Table 2.

Table 2: Subgraph Composition for Training and Testing

Nodes per Subgraph Train Set Size Test Set Size
25 256,000 256
50 128,000 128
100 64,000 64
200 32,000 32
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Generalization Ability To assess the general-
ization ability of the proposed framework, models
trained on one subgraph size were tested on all sizes
to observe performance across different scales. The
results in Table 3 indicate that models trained on 25-
node subgraphs generalize poorly to larger graphs,
with an MSE of 0.025078 when tested on 100-node
subgraphs. In contrast, the 100-node trained model
demonstrates the most stable generalization across
different test sizes, showing minimal MSE varia-
tion. The 200-node trained model, while excelling
on large graphs with an MSE of 0.003692, exhibits
difficulties in adapting to smaller structures, with
a high error of 0.059557 when tested on 25-node
subgraphs.

Table 3: Generalization Performance: Validation MSE
Loss

Train Size Test (25) Test (50) Test (100) Test (200)
25 0.004589 0.010965 0.025078 0.019477
50 0.025235 0.005884 0.004420 0.004123
100 0.003964 0.003678 0.004232 0.003953
200 0.059557 0.007837 0.003992 0.003692

These results highlight that subgraph size signif-
icantly impacts both intra-subgraph clustering and
cross-subgraph generalization performance. The
Flavor Diffusion (100 nodes) model provides the
best balance between clustering accuracy and scal-
ability, demonstrating the ability to generalize well
across varying ingredient graph structures. On the
other hand, training on extremely small subgraphs
limits generalization, while models trained on large
subgraphs struggle when applied to smaller ingre-
dient sets. These findings suggest that a mid-sized
subgraph training approach (e.g., 100 nodes) is op-
timal for robust ingredient representation learning.

NMI-based Evaluation To construct the clus-
tering test dataset, nine representative food cate-
gories were defined: Bakery/Dessert/Snack, Bev-
erage Alcoholic, Cereal/Crop/Bean, Dairy, Fruit,
Meat/Animal Product, Plant/Vegetable, Seafood,
and Others. From these, 416 chemical hub ingre-
dients with strong connections were selected to en-
sure diverse and well-defined clustering labels, en-
abling fair comparisons across models commonly
used in related studies.

The NMI-based evaluation results in Table 4
demonstrate the clustering quality of different mod-
els. Among the non-CSP variants, the Flavor Dif-
fusion (50 nodes) model achieves the highest NMI
score of 0.3236, surpassing the baseline Flavor-

Graph model without CSP. The best overall per-
formance is observed in the Flavor Diffusion_CSP
(200 nodes) model, which achieves an NMI score
of 0.3410, indicating that the CSP layer signifi-
cantly improves the learned ingredient embeddings.
Smaller subgraphs, such as the 25-node configu-
ration, show the greatest improvement when us-
ing CSP (0.2970 vs. 0.2167), suggesting that the
chemical structure prediction enhances clustering,
particularly in more limited ingredient sets.

Table 4: Performance Comparison Using NMI Metric.
*CSP shorts for chemical structure prediction.

Model NMI Mean NMI Std
FlavorGraph [Park et al., 2021] 0.2995 0.0403
FlavorGraph_CSP [Park et al., 2021] 0.3102 0.0407

Flavor Diffusion (25 nodes) 0.2167 0.0319
Flavor Diffusion (50 nodes) 0.3236 0.0134
Flavor Diffusion (100 nodes) 0.3170 0.0207
Flavor Diffusion (200 nodes) 0.2935 0.0300

Flavor Diffusion_CSP (25 nodes) 0.2970 0.0144
Flavor Diffusion_CSP (50 nodes) 0.2862 0.0152
Flavor Diffusion_CSP (100 nodes) 0.3169 0.0257
Flavor Diffusion_CSP (200 nodes) 0.3410 0.0150

6 Discussion

The visualization results highlight the impact of the
proposed Flavor Diffusion framework on embed-
ding quality, particularly with the CSP (Chemical
Structure Prediction) layer, as shown in Figures 1
and 2.

Dynamic Reconstruction for Novel Insights
The iterative reconstruction process visualized in
Figure 1 showcases the Flavor Diffusion frame-
work’s ability to refine ingredient-ingredient re-
lationships progressively. Starting from random
initialization (Step 0), the edge scores evolve over
diffusion steps, ultimately converging towards the
ground truth structure by Step 10. The color inten-
sity of the edges reflects their normalized scores,
with higher values indicating stronger relation-
ships. This gradual alignment with the ground truth
demonstrates the model’s capacity to encode mean-
ingful relational patterns in a structured manner.

Embedding Space Analysis Figure 2 compares
embedding spaces across model configurations.
The baseline embeddings (left) show poor sepa-
ration, forming diffuse clusters dominated by non-
hub ingredients.

Flavor Diffusion (200 nodes) without CSP (cen-
ter) improves clustering by grouping chemical com-
pounds and hub ingredients, though some overlap
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Figure 1: Progression of edge scores over diffusion
steps for a 25-node subgraph. The color intensity rep-
resents edge scores normalized between 0 and 1. The
reconstructed graph increasingly aligns with the ground
truth structure.

remains. Adding the CSP layer (right) further re-
fines the structure, yielding anisotropic clusters that
better capture ingredient-compound relationships.

Potential for Ingredient Innovation To evaluate
the predictive capacity of Flavor Diffusion, we ran-
domly sampled 100 nodes and computed the mean
edge score over 100,000 inferred edges. This large-
scale evaluation ensures that the model captures
both established and novel ingredient relationships,
supporting its ability to reconstruct known pairings
while suggesting unexplored flavor synergies.

Table 5: Top 5 High-Confidence Ingredient Pairings

Ingredient 1 Ingredient 2 Mean Score Std Dev

Red Chili Powder Turmeric Powder 0.7114 0.0882
Coriander Powder Turmeric Powder 0.6057 0.0827
Asafoetida Powder Turmeric Powder 0.5930 0.0846
Garam Masala Powder Turmeric Powder 0.5178 0.1055
Cumin Powder Turmeric Powder 0.4663 0.1525

These pairings align with traditional spice
blends, frequently observed in Indian and Southeast
Asian cuisine. Their strong co-occurrence validates
Flavor Diffusion’s ability to model established in-
gredient relationships. Beyond known pairings, the
model also proposes conceptually novel combina-
tions, potentially inspiring new culinary applica-
tions.

Table 6: Top 5 Creative Ingredient Pairings Suggested
by Flavor Diffusion

Ingredient 1 Ingredient 2 Mean Score Std Dev

Soy Sauce Vanilla Extract 0.0006 0.0001
Garlic Paste Dark Chocolate 0.0005 0.0001
Cumin Powder Coffee Beans 0.0004 0.0002
Green Cardamom Parmesan Cheese 0.0003 0.0002
Olive Oil Black Tea 0.0004 0.0001

These unconventional combinations introduce
potential for umami-sweet fusion (Soy Sauce,
Vanilla Extract), savory-bitter contrast (Garlic
Paste, Dark Chocolate), and aromatic synergies
(Cumin Powder, Coffee Beans and Green Car-
damom, Parmesan Cheese). Such findings demon-
strate that Flavor Diffusion extends beyond known
ingredient interactions, offering a data-driven ap-
proach for novel flavor discovery and AI-assisted
recipe development.

Alignment with Culinary and Chemical Proper-
ties The reconstructed graphs closely align with
ground truth structures, demonstrating the model’s
fidelity in capturing both culinary and chemical re-
lationships. As diffusion progresses, the model
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Figure 2: Embedding space comparison under different configurations, where each color represents a different
category: Yellow (Non-hub Ingredient), Green (Food-like Compound), Pink (Drug-like Compound), and Orange
(Hub Ingredient). (Left) Baseline embeddings show poor separation between ingredients and compounds. (Center)
Flavor Diffusion (200 nodes) without CSP achieves improved clustering of chemical compounds and hub ingredients.
(Right) Flavor Diffusion (200 nodes) with CSP results in well-defined clusters, leveraging chemical fingerprints to
enhance separation.

effectively balances local (ingredient-level) and
global (chemical-based) interactions, enhancing
clustering quality and enabling meaningful exten-
sions of ingredient networks.

7 Conclusion

This study presents FlavorDiffusion, a diffusion-
based framework for predicting ingredient pairings
and chemical interactions. By integrating chemical
fingerprints and optimizing graph embeddings, the
model enhances clustering quality and predictive
accuracy. The CSP layer significantly improves
food-chemical representations, achieving top NMI
scores. The diffusion process enables generaliza-
tion, inferring novel ingredient combinations. Fla-
vorDiffusion aligns culinary and chemical proper-
ties, advancing flavor discovery with applications
in computational gastronomy. Future work will
expand datasets, integrate multi-modal data, and
refine graph-sampling techniques to further food
science research.
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