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Abstract

Machine translation (MT) has advanced signifi-
cantly for high-resource languages, yet special-
ized domain translation remains a challenge
for low-resource languages. This study evalu-
ates the ability of state-of-the-art multilingual
models to translate animal health reports from
English to Yorùbá, a crucial task for veterinary
communication in underserved regions.We cu-
rated a dataset of 1,468 parallel sentences and
compared multiple MT models in zero shot and
fine-tuned settings. Our findings indicate sub-
stantial limitations in their ability to generalize
to domain-specific translation, with common
errors arising from vocabulary mismatch, train-
ing data scarcity, and morphological complex-
ity. Fine-tuning improves performance, particu-
larly for the NLLB 3.3B model, but challenges
remain in preserving technical accuracy. These
results underscore the need for more targeted
approaches to multilingual and culturally aware
LLMs for African languages.

1 Introduction

Machine translation (MT) has the potential to im-
prove communication in African languages, but
most state-of-the-art models underperform in spe-
cialized domains. Yorùbá-speaking communities
rely on accurate veterinary translations for disease
surveillance and livestock health. However, generic
MT models struggle with technical terms and tonal
complexities. This study evaluates MT models
for domain-specific translation, highlighting chal-
lenges and improvements through fine-tuning.

2 Related Work

Recent advances in machine translation (MT)
have significantly improved low-resource language
translation through transfer learning and unsuper-
vised MT techniques. For African languages, par-
ticularly Yorùbá, pre-trained multilingual models
like mT5 and mBART (Lee et al., 2022)have shown

promising results when fine-tuned on Yorùbá data
(Adelani et al., 2022). However, challenges per-
sist in domain-specific applications, especially in
specialized fields such as animal health, where stan-
dardized terminologies are often absent or under-
developed (Abenet). Existing MT systems such as
NLLB and Google Translate frequently produce
erroneous translations of technical terms, high-
lighting the need for domain-specific fine-tuning
(Adebara and Abdul-Mageed, 2022).To address
data scarcity in low-resource MT systems, re-
searchers have explored various augmentation tech-
niques. Back-translation has shown promise by
creating synthetic parallel data from monolingual
target-language content(Jauregi Unanue and Pic-
cardi, 2020), though its effectiveness in preserving
technical accuracy remains uncertain for domain-
specific translations(Baruah and Singh, 2022).Syn-
thetic data generation techniques have been inves-
tigated for neural MT (Tonja et al., 2023), while
human-in-the-loop strategies incorporating domain
experts (Nunes Vieira, 2019) have emerged as cru-
cial approaches for improving translation quality,
particularly in specialized domains (Yang et al.,
2023). Evaluation of MT systems in specialized
domains requires comprehensive assessment ap-
proaches that go beyond traditional metrics. While
metrics such as BLEU, AfriComet and chrF pro-
vide insights into different aspects of translation
quality, (Zappatore and Ruggieri, 2023) argue that
specialized domains like biomedical MT require
tailored evaluation strategies emphasizing terminol-
ogy accuracy and practical usability. For Yorùbá
animal health translation, these metrics collec-
tively offer a multi-faceted assessment framework:
BLEU measures n-gram overlap, AfriComet ac-
counts for semantic accuracy in African languages,
and chrF captures character-level precision, partic-
ularly valuable for morphologically rich languages
like Yorùbá.
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3 Dataset and Methodology

We introduce VetYorùbá, a curated corpus of 1,468
English-Yorùbá parallel sentences, sourced from
veterinary health reports. Data preprocessing in-
cluded normalization to handle Yorùbá’s tonal or-
thography. We evaluated multiple MT models, in-
cluding NLLB 3.3B (Team et al., 2022), AfriTeVa
(Jude Ogundepo et al., 2022), and mT0, under zero-
shot and fine-tuned conditions. Metrics such as
BLEU, chrF, and AfriComet were used to assess
translation quality.We collected our data from three
primary sources: the World Organisation for An-
imal Health (WOAH) reports focusing on seven
epidemiologically significant diseases in the re-
gion: Rabies, Avian Influenza, Newcastle Disease,
Foot-and-Mouth Disease (FMD), African Swine
Fever (ASF), Bovine Tuberculosis, and Peste des
Petits Ruminants (PPR). Food and Agriculture Or-
ganization (FAO) documentation covering animal
health practices, preventive measures, and outbreak
management protocols, selected to enhance the cor-
pus’s terminological breadth. Real-time epidemi-
ological data extracted using PADI-Web (Valentin
et al., 2020), an event-based surveillance tool that
aggregates information from both structured (offi-
cial reports) and unstructured sources (news arti-
cles, social media)(Oladipo et al., 2023). We fo-
cused on maintaining a balanced representation
across different disease contexts and livestock cate-
gories.Veterinarians facilitated data curation, while
native speakers of Yorùbá translated the sentences.
The translations were then validated by veterinari-
ans fluent in Yorùbá.

Split Size TTR (English) TTR (Yoruba)
Train 1172 0.2243 0.1672
Dev 147 0.4706 0.3629
Test 147 0.4592 0.3485

Table 1: Dataset split and Type-Token Ratio(TTR) for
English and Yoruba sentences

4 Results and Discussion

Zero-shot translation yielded poor results in all
models, with NLLB 3.3B achieving a BLEU score
of 2.9. Fine-tuning improved performance signifi-
cantly, raising BLEU to 45.89 for NLLB 3.3B and
enhancing chrF and AfriComet scores. However,
translation errors persisted, particularly in complex
veterinary terms and tonal variations. These find-
ings highlight the limitations of general-purpose

Figure 1: MT Model performance on Yoruba Animal
Health Translation

LLMs in handling domain-specific, low-resource
languages.

The performance of the machine translation mod-
els evaluated was quantified using BLEU (Pap-
ineni et al., 2002), chrF (Popović, 2015), and
AfriComet (Wang et al., 2024) metrics under both
zero-shot and fine-tuned conditions. Overall, fine-
tuning on our domain-specific dataset of 1,468 En-
glish–Yorùbá sentence pairs resulted in marked
improvements across all metrics. In the zero-
shot setting, the models generally exhibited low
performance, with many struggling to produce
coherent translations in the specialized domain
of animal health. mT0 achieved a BLEU score
of 11.57, while other models such as Afri-mT5
and AfriTeVa_v2 recorded near-zero BLEU scores
(0.0003 and 0.005, respectively).Fine-tuning of the
models on the curated veterinary dataset signifi-
cantly improved translation quality. The BLEU
score of the mT0 model improved to 15.9, while
NLLB 3.3B exhibited the most dramatic gain, ris-
ing from 2.9 to 45.89. This improvement was
consistently reflected in the chrF scores, with
NLLB 3.3B increasing from 19.47 to 66.85. The
AfriComet metric further supported these improve-
ments, particularly for the NLLB 3.3B and the
AfriTeVa base, whose fine-tuned scores of 62 and
35, respectively, signified better semantic align-
ment and contextual accuracy in translations.The
substantial improvements observed in key models,
particularly NLLB 3.3B, confirm that fine-tuning
can mitigate the limitations of zero-shot translation
(Alabi et al., 2022) and lead to more accurate and
reliable translations of technical content in Yorùbá.

5 Conclusion and Future Work

This study underscores the challenges of apply-
ing multilingual LLMs to specialized translation
tasks in African languages. Although fine-tuning
improves performance, key limitations remain, em-
phasizing the need for tailored approaches integrat-
ing linguistic features such as tone and morphology.
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Future research would focus on expanding domain-
specific corpora and developing African-centric
models for technical translation tasks in animal
health.
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