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Abstract

With Large Language Model (LLM)-based
applications becoming more common due to
strong performance across many tasks, prompt
optimization has emerged as a way to extract
better solutions from frozen, often commercial
LLMs that are not specifically adapted to a
task. LLM-assisted prompt optimization meth-
ods provide a promising alternative to man-
ual/human prompt engineering, where LLM
“reasoning” can be used to make them optimiz-
ing agents. However, the cost of using LLMs
for prompt optimization via commercial APIs
remains high, especially for heuristic methods
like evolutionary algorithms (EAs), which need
many iterations to converge, and thus, tokens,
API calls, and rate-limited network overhead.
We propose GenDLN, an open-source, efficient
genetic algorithm-based prompt pair optimiza-
tion framework that leverages commercial API
free tiers. Our approach allows teams with lim-
ited resources (NGOs, non-profits, academics,
...) to efficiently use commercial LLMs for
EA-based prompt optimization. We conduct
experiments on CLAUDETTE for legal terms
of service classification and MRPC for para-
phrase detection, performing in line with se-
lected prompt optimization baselines, at no
cost.

1 Introduction

LLMs (large language models) are increasingly
replacing traditional classification and inference
models due to their generality, ability to perform a
wide range of tasks, and seemingly advanced “rea-
soning." As the use of LLMs for domain-specific
tasks becomes more ubiquitous, prompt optimiza-
tion emerges as an important area of research to
improve the task-specific performance of LLMs, es-
pecially in complex domains like legal text analysis
and interpretation (Hakimi Parizi et al., 2023; Lai
et al., 2024). In recent years, several prompt design
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Figure 1: Running an individual through the DLN,
where an individual is a prompt pair (p1,p2); LLM;
responds to p1, and this response, along with po, is fed
into LL M, for classification. E.g.: p;: "Interpret <ToS
sentence ¢>" - po: "Based on the above interpretation,
classify <ToS sentence ¢> as fair or unfair."

and optimization techniques have been proposed.
Some examples are edit-based instruction search
GrIPS (Prasad et al., 2023) and reflection-based
frameworks that incorporate LLM self-critique
such as ProTeGi (Pryzant et al., 2023) and OPRO
(Yang et al., 2024).

Deep Language Networks (DLNs) is a novel ap-
proach that stacks LLMs as computational units
(Sordoni et al., 2023). Like other prompt opti-
mization methods, the goal is to use frozen-weight
LLM:s for inference while refining input prompts
for better results. Specifically, they stack two
LLMs, jointly optimizing two input prompts, where
the output of the first LLM, along with the second
prompt, is fed into the second LLM, as shown in
Fig. 1. The prompts are treated as learnable param-
eters of the generative distribution, and the prompt
pair is jointly optimized using variational inference.

We introduce our framework, GenDLN, where
we retain the stacked LLM structure and joint
prompt optimization introduced in DLN, but re-
place the variational inference-based optimization
with a Genetic Algorithm (GA) (Fig. 2). The ad-

1171

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 1171-1212
July 28-29, 2025 ©2025 Association for Computational Linguistics



initialization

for every individual in P:
compute fitness
( select > [ J [ J

for every individual in P’:
compute fitness

replace
only keep top N fittest individuals from P’

Figure 2: High-level GenDLN Optimization Framework.
Initialization starts from a bank of manual prompts,
with optional LLM augmentation. Selection, crossover,
and mutation follow the chosen strategies. P: starting
population. P’: population post-genetic operators.

vantage of using a GA is the ability to explore a
large search space and end up with a large pool
of candidate prompts. We apply our framework
to domain-specific and generic NLP datasets for
text classification. The first is a legal domain task,
with the aim of categorizing legal documents into
predefined classes, specifically, Terms of Service
(ToS) classification on the CLAUDETTE dataset.
Also known as Terms and Conditions or Terms of
Use, ToS are legal agreements between a service
provider and its users, sometimes employing de-
liberately confusing language (Yerby and Vaughn,
2022), or featuring unfair clauses to users (Loos
and Luzak, 2021). Due to ToS length and complex-
ity, users often accept them without fully reading
them. To that end, automated unfair clause detec-
tion allows consumers to better assess ToS in less
than the 45 minutes required to completely read an
average ToS agreement (Obar and Oeldorf-Hirsch,
2020). The general-purpose task is sentence pair
paraphrase detection on the Microsoft Research
Paraphrase Corpus (MRPC).

Our contributions include a GA framework that
successfully improves a population of prompt pairs
for classification across several runs and parameter
sets, performing in line with state-of-the-art prompt
optimization methods. More importantly, our main
contribution is an efficient, parameter-rich, LLM-
based genetic algorithm framework for text editing
that tackles several problems of applying GAs to
prompt optimization, including the bottleneck of
using API calls for prompt scoring and the addi-
tional overheads and limitations imposed by com-
mercial LLM providers. GenDLN can be used by

teams with limited resources to quickly generate a
pool of optimized prompts for a given task.

2 Background

2.1 Prompt Optimization

Prompt optimization is the process of systemati-
cally refining or designing the textual instructions
(prompts) that guide a Large Language Model to-
ward producing higher-quality, task-specific out-
puts. Various prompt optimization methods have
emerged in recent years. Reflection-based frame-
works (Pryzant et al., 2023; Ma et al., 2024) collect
error feedback or “textual gradients” from LLM
output, then edit prompts accordingly, while edit-
based approaches (Prasad et al., 2023) iteratively
rewrite instructions using operations such as para-
phrasing and swapping. Some methods take a
meta-prompts approach (Yang et al., 2024), dy-
namically updating instructions based on histor-
ical performance. Additionally, evolutionary al-
gorithm—driven solutions (Guo et al., 2024) sim-
ulate natural selection and evolve a population of
prompts across generations. All these methods
share the same objective: balancing exploration of
different prompt variations with exploiting the most
promising edits in order to improve the LLM’s abil-
ity to follow instructions across a range of tasks.
In the next sections, we introduce the prompt opti-
mization background used in GenDLN.

2.2 The Stacked LLM

Chaining, stacking, and joining different LLMs
has been increasingly explored (Lu et al., 2024;
Villarreal-Haro et al., 2024; Burton et al., 2024) and
shown to perform well across domains for various
use cases. The stacked LLM, where outputs from
one LLM serve as inputs to another, has proven
useful for decomposing complex tasks. One LLM
processes raw input, generating intermediate rep-
resentations or insights; another interprets these
representations to complete tasks (classification,
reasoning, decision-making, ...). This decompo-
sition boosts accuracy and interpretability (Zhang
et al., 2021), and enhances performance through
specialization. Since LL.Ms excel when narrowly
prompted, this division of labor reduces individual
LLM loads and improves result quality (Dai et al.,
2024). It also allows greater flexibility and modu-
larity in solution design (Khot et al., 2023) while
enhancing interpretability, as intermediate outputs
clarify reasoning steps (Proca et al., 2024), crucial
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in fields where black-box decision-making is un-
suitable, such as law. Lastly, this stacked paradigm
mirrors human inference ("First, analyze and inter-
pret. Second, draw conclusions and decide" (Cor-
rea et al., 2023)). Regardless of the optimization
method, stacked LLM architectures offer a clear
advantage.

Sordoni et al. (2023) introduced DLNs as a
prompt optimization technique leveraging chained
LLM calls. Like other prompt optimization meth-
ods, the goal is to use frozen-weight LLMs for
inference while refining input prompts for better
results. They present two models: DLN-1 (single-
layer) and DLN-2 (two-layer), treating LLMs as
stochastic language layers with learnable natural
language prompts as parameters. In DLN-2, the
first layer’s output is considered a latent variable
requiring inference, while prompts are learned as
parameters of the generative distribution. It em-
ploys variational inference for joint prompt opti-
mization in the stacked LLM structure. Similar
to the stacked DLN-2 framework, our approach
jointly optimizes a prompt pair (p1,p2) for clas-
sification, where the scoring function depends on
classification metrics. We use the term "DLN" to
refer to a two-layer deep neural network (DLN-2).
Fig. 1 illustrates GenDLN’s prompt pair evalu-
ation. While DLN uses variational inference to
model prompt generation as a latent variable esti-
mation problem, our approach treats it as a heuristic
search task, and uses an LL.M-assisted genetic algo-
rithm to evolve a population of prompt pairs. The
GA evolves the population based on task-specific
scoring, without relying on learned distributions
or gradient-based updates. Importantly, we do not
build on top of DLN - rather, we adopt its stacked
architecture (i.e., two chained LLM calls, guided
by an ordered pair of prompts) as a structural prior,
and use the GA to explicitly search the space of
possible prompt pairs through competitive evolu-
tion.

The advantage of the stacked LLM in DLN is the
ability to perform multi-step reasoning through the
chaining of prompts and outputs. However, while
LLMs do exhibit reasoning-like behavior, research
on their stability is mixed, showing high random-
ness and incoherence (Ma et al., 2024), which is
problematic when relying on them for optimization.
To mitigate this, we rely on a heuristic optimiza-
tion strategy (GA), adept at handling noise, coupled
with an LLM-based evaluation step (DLN).

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are a class of Evolution-
ary Algorithms (EAs), global stochastic optimiza-
tion techniques inspired by Darwin’s Theory of
Evolution and Natural Selection. They iteratively
evolve a "population” of candidate solutions toward
the fittest, where the best individual represents the
optimal solution (Holland and Taylor, 1994). Evo-
lutionary approaches excel where traditional meth-
ods like gradient descent fail — when the search
space is vast, complex, or non-differentiable (Yu
and Liu, 2024). Starting with an initial population,
candidates are evaluated using a fitness function,
with high-fitness individuals more likely to be se-
lected for crossover. Crossover combines features
from parents to generate offspring, which serve as
new solutions. To maintain diversity, mutations —
random occasional changes — are introduced. Re-
peating this cycle over multiple generations steadily
refines solutions, making EAs effective for black-
box optimization with minimal system knowledge.

Using GAs for prompt optimization is not new;
GAs are proven metaheuristic prompt optimiza-
tion methods (Pan et al., 2024), with few-shot ge-
netic prompt search surpassing manual tuning (Xu
et al., 2022) and evolutionary principles success-
fully applied to tasks like game comment toxic-
ity classification (Taveekitworachai et al., 2024),
Japanese prompting (Tanaka et al., 2023), and emo-
tional analysis (Menchaca Resendiz and Klinger,
2025). EvoPrompt (Guo et al., 2024) employs
LLMs for evolutionary operations like crossover
and mutation while EAs guide optimization. The
framework implements only one type of selection,
crossover, and mutation, all executed by LLMs
based on generic instructions, using both manual
and LLM-generated initial populations. Our ap-
proach, GenDLN (Fig. 2), performs joint prompt-
pair optimization instead of single prompt opti-
mization, introduces multiple selection, crossover,
and mutation strategies, and implements a richer
parameter pool for the GA.

3 Methodology

GenDLN is a multi-objective, steady-state, hybrid
genetic algorithm. More details on GenDLN’s
GA characterization can be found in Appendix A.
In this section, we outline the 5 steps of the GA
prompt optimization lifecyle in GenDLN (Fig. 2).

Initialization (3.1): An initial population of
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prompt pairs (p1, p2) is sampled from a predefined
prompt bank, with optional augmentation.
Fitness Computation (3.2): Each individual is
scored based on classification metrics by running
it through the DLN.
Selection (3.3): Individuals are chosen based on
fitness using various implemented strategies.
Genetic Operators (3.4):

Crossover (3.4.1): Combines two parents to gen-
erate semantically valid offspring.

Mutation (3.4.2): Introduces controlled varia-
tions to explore new solutions.
Replacement (3.5): The next generation is formed
by selecting the top individuals, and early stop cri-
teria are defined.

3.1 Population Initialization

A population P is a set of individuals. Chromo-
some encoding refers to how an individual is repre-
sented. Each individual I is a prompt pair (p1, p2),
where p; is the first-layer prompt for added context
and po is the second-layer prompt for classification.

For a population of size N, the initial population
consists of N pairs (p1, p2) sampled from a pre-
defined prompt bank, where example prompts are
manually added. If the selected size exceeds the
available prompts, a Population Initialization LLM
optionally generates additional diverse prompts us-
ing the prompt bank as examples. Details are in
Appendix B.

3.2 Fitness Function / Scoring

The fitness of a prompt pair is computed as a
weighted sum of classification metrics, including
accuracy and F1 scores, using a multi-objective
scoring approach. Fitness is evaluated by running
the individual through the DLN (Fig. 1) and com-
paring predicted labels ¢ to ground truth y. Met-
ric weights are configurable per GA run to reflect
different classification goals. Invalid individuals
(e.g., with empty prompts) are assigned a fitness
of —1 to avoid propagation. Additional fitness im-
plementation and system prompt details for output
specification are in Appendix C and E.

Rate-Limiting Step: DLN Evaluation The bot-
tleneck in GenDLN is the evaluation of individuals
through the DLN, which requires two sequential
API calls per data point. Since genetic algorithms
require exploring large populations over many gen-
erations, and given the need to use larger models
due to the limitations of using smaller ones for
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Figure 3: Efficiency strategies implemented as part of
GenDLN. Not shown: workspace level rate-limiter that
keeps the frequency of API calls below the platform-
defined limit.

prompt optimization (Zhang et al., 2024b), this be-
comes both time- and cost-prohibitive. To address
this, we implement fitness caching, rate limiting,
and concurrency across two levels (Fig. 3). First,
at the population level (above the dotted line), in-
dividuals are evaluated in parallel across w inde-
pendent workspaces (each representing a compute
node with its API key), creating w jobs J that eval-
uate subsets of the population. Second, within each
job J (below the dotted line), the dataset is split
into batches of n sentences. Normally, classifying
a single sentence requires 2 sequential API calls
(one per DLN layer; see Fig. 1). However, by lever-
aging the model’s support for batched inference,
we classify an entire batch of n sentences using just
two API calls total. That is, each API call processes
a batch of n sentences at once, reducing the number
of calls required to process the dataset by a factor
of n. Additionally, before evaluating a prompt pair
(p1,p2), we check for its presence in a persistent
fitness cache. If found, stored metrics are reused,
avoiding an expensive DLN pass altogether. These
optimizations, for a dataset of size 100, increase
throughput from ~ 18 to =~ 300 individuals/hour
on an 8-core machine — a 16-fold improvement —
with each core operating under a dedicated API key.
More details on efficiency strategies and through-
put computation are in Appendix F.

3.3 Selection

Selection can be considered the driving force of
the GA; it determines which individuals from the
current population will potentially undergo muta-
tion and crossover (and conversely, which mem-
bers of the current population are discarded), usu-
ally based on some function of the individual’s
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fitness. The key is guiding the evolutionary process
towards better solutions by preferentially select-
ing for higher fitness while maintaining population
diversity, which is essential to avoid premature con-
vergence. Selection pressure refers to the degree to
which individuals with higher fitness are favored
during the selection process and directly influences
the balance of exploration and exploitation. Higher
selection pressure increases the likelihood that fitter
individuals will be chosen to pass on their genes, fa-
voring exploitation. This may result in more rapid
convergence but also premature convergence if di-
versity is lost too quickly. Conversely, lower se-
lection pressure allows for a more diverse set of
individuals to be selected, favoring exploration but
potentially slowing down convergence (Haasdijk
and Heinerman, 2018).

The choice of selection strategy is a param-
eter in GenDLN. We implemented most of the
commonly used GA selection strategies, where
each has distinct characteristics and influences
the algorithm’s selection pressure and, thus, ex-
ploration/exploitation. Selection is the only ge-
netic operator in GenDLN that is not fully or par-
tially LLM-assisted. We implement Random Se-
lection (used for comparison purposes), Roulette
Wheel Selection (Holland and Taylor, 1994), Tour-
nament Selection (Miller et al., 1995), Rank-
Based Selection (Baker, 2014), Stochastic Univer-
sal Sampling (SUS) (Baker, 1987), and Steady-
State Selection. More details on each strategy’s
exploration-exploitation balance and implementa-
tion can be found in Appendix G.

Preprocessing and Elitism Before applying any
selection method, an optional parameter "elitism"
(k) is used to directly preserve the top k individuals
with the highest fitness scores. This ensures that
the best-performing solutions are not lost due to
stochastic selection effects. For fitness score ties,
indices are shuffled, and ties are broken randomly.
When k # 0, the individuals are ranked by fitness,
and the top £ elites are selected for direct inclusion
in the next generation. The remaining individuals
undergo selection according to the chosen strategy.

3.4 Genetic Operators in the Textual Space

Since our chromosome is encoded as a tuple of two
strings, applying typical crossover/mutation strate-
gies presents challenges. Crossover and mutation
are usually performed on bitstrings, numeric vec-
tors, or structured representations of individuals,

often following deterministic rules involving slic-
ing, recombining, or editing genes based on strict
positional encoding, which is straightforward for
bitstring and numeric chromosomes. In the textual
space, this is more complex. We discuss these con-
siderations in Appendix H. Work on grammatically-
based genetic programming (Whigham et al., 1995)
for creating computer programs has shown the com-
plexity of this task, even in code and query opti-
mization (arguably easier to tokenize than natural
language but still sufficiently character- and token-
sensitive) (Whigham, 1995).

Research on genetic programming for natural
language generation emphasizes the importance
of maintaining semantic and syntactic coherence
(Araujo, 2020). Thus, we leverage LLMs’ ability
to dynamically interpret, generate, and refine text
as crossover and mutation operators, with prompts
passed to an LLM. The response is parsed using
regex-based JSON extraction to obtain children
in crossover and the mutated prompt in mutation,
with a fallback for invalid responses, detailed in
Appendix D. Although we have iteratively tested
various mutation and crossover prompts across dif-
ferent LLMs and included stable ones in GenDLN,
these operations remain dependent on LLM re-
sponses, with results varying by model and temper-
ature.

3.4.1 Crossover

We define a set of crossover strategies to allow
different levels of exploration and exploitation.
The LLM is crucial in ensuring that the offspring
are grammatically valid, structurally coherent, and
meaningful. We implement 5 strategies: Single-
Point, Two-Point, Semantic Blending, Phrase
Swapping, and Token-Level crossover. Details
about their implementation and behavior can be
found in Appendix 1. Crossover is applied to indi-
viduals with a user-defined “crossover rate” C,., the
probability of an individual getting picked to partic-
ipate in a crossover, and each crossover operation
between 2 parents yields 2 children.

3.4.2 Mutation

Much like crossover, we define a set of different
mutation strategies leveraging LLMs. The chal-
lenge with mutation is the necessity of “limiting”
the edits to only a portion of the prompt, as muta-
tion is typically used to introduce comparatively
small changes to the chromosome with a user-
defined mutation rate M,. The goal of mutation
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is to introduce controlled diversity into the popula-
tion while maintaining the semantic and syntactic
coherence of the prompts. We implement 8 differ-
ent mutation strategies (Random, Swap, Scram-
ble, Inversion, Deletion, Insertion, Semantic, and
Syntactic) with different editing modalities, whose
details and prompts can be found in Appendix J.
M, sets the probability of a “gene” (in our case, a
prompt is a gene) to undergo mutation. A “mutate
elites” boolean parameter can be used to protect
elites from mutation when elitism k # 0. Our
choice of strategies and corresponding prompts
for both crossover and mutation were made based
on our experience and trial and error during the
framework’s development. It allows for easy edit-
ing/extension to include more crossover/mutation
types and different prompts. Invalid responses are
dealt with using the same retry-fallback mecha-
nism.

3.5 Replacement and Termination

After mutation and crossover, the fitness of the re-
sulting population (now containing approximately
(N +C,* N) individuals) is calculated, and the top
N individuals are the final population of the current
generation, with the fittest one being declared the
"best in generation."

A GA run is defined for a specific number of
generations, but optional stopping criteria can be
set, and the GA run will terminate when one of
them is met. A “fitness goal” can end the run when
the best individual achieves a fitness score equal to
or greater than the goal, and a maximum number
of stagnant generations .S can be set to prematurely
terminate the run if the best individual’s fitness does
not improve for S consecutive generations. Other-
wise, the GA runs for the predetermined number of
generations.

3.6 Logging and Post-Processing

GenDLN features a modular, detailed log struc-
ture that allows full retracing of any run. It logs
abstractions like best/worst individuals per genera-
tion, average metrics, and genetic operator details,
alongside full and extracted LLM responses. Sys-
tem details and runtime are also recorded. The out-
put and logging structure is detailed in Appendix K.
While implemented in Python, we provide R scripts
for post-analysis and extensive GA lifecycle plot-
ting. GenDLN is open source and easily extensible.
Our code is available at https://github.com/

piachouaifaty/GenDLN. Additional plots and re-
producibility notes are in Appendix L and N.

The following sections describe experiments for
binary and multi-label ToS classification on the
CLAUDETTE dataset, and binary paraphrase de-
tection on MRPC.

4 Datasets

4.1 CLAUDETTE

The CLAUDETTE dataset (Lippi et al., 2019) fo-
cuses on Terms of Service agreements from ma-
jor online platforms, identifying potentially unfair
clauses. It includes 50 contracts from providers
like Dropbox, Spotify, Facebook, and Amazon, to-
taling 12,011 sentences, with 1,032 labeled as po-
tentially unfair. Each document is annotated for
two classification tasks: binary classification (fair
vs. unfair) and multi-label classification, where
unfair sentences receive one or more unfairness
categories. These include Arbitration, Unilateral
change, Content Removal, Jurisdiction, Choice of
Law, Limitation of Liability, Unilateral termina-
tion, and Contract binding upon usage. Experts
manually labeled sentences based on EU consumer
law guidelines and court rulings. The dataset is
imbalanced across both tasks. For our experiments,
we split the data into train, test, and validation
sets. Legal BERT and SVM baselines use the full
training set, while prompt optimization baselines
(OPRO and GrIPS) and our method use a balanced
subset of 100 samples per task. A 1000-sample test
set is used for evaluation.

4.2 Microsoft Research Paraphrase Corpus

The Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005) is a standard
benchmark for sentence-level semantic equivalence.
It contains 5,801 sentence pairs from news sources,
labeled for binary paraphrase detection. We chose
MRPC to evaluate GenDLN on a more general,
smaller dataset that may not suit fine-tuning or
traditional, non-prompt optimization methods. De-
spite its popularity, MRPC includes formatting ar-
tifacts that complicate its use in output-constrained
LLM pipelines. We therefore created an LLM-safe
version via two key preprocessing steps:

Quote sterilization: All quote characters (e.g.,
smart, curly, raw double quotes) were replaced
with a Unicode-safe symbol to prevent JSON se-
rialization errors. Mismatched or dangling quotes
were manually corrected.
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Figure 4: Metrics (best individual) and average fitness
(population) for best CLAUDETTE multi-label run in
Table 1.

Trigger filtering: We removed examples contain-
ing high-risk commercial LLM trigger terms.

Our LLM-safe version (See Appendix P for de-
tails) preserves task structure and label distribution
while ensuring compatibility with LLM-based clas-
sification. For experiments, we used 100 balanced
training samples and 1000 stratified test samples.

5 Baselines

We compare our approach to both state-of-the-art
and classical prompt optimization methods. Op-
timization by PROmpting (OPRO) (Yang et al.,
2024) iteratively refines prompt instructions us-
ing an LLM. It uses a meta-prompt containing a
problem description, top-performing instructions,
and task examples to guide the LLM in generat-
ing and evaluating new prompts. Since Legal-
BERT performs well in legal NLP classification
(Chalkidis et al., 2020), we fine-tuned it on the
full CLAUDETTE training set for the ToS labeling
tasks. For the paraphrase detection task, we fine-
tuned BERT on the full MRPC training set. Our
SVM baseline uses TF-IDF vectorization and is
trained separately on each full training dataset for
each task. The other baselines (OPRO and GrIPS)
use the same data splits as our approach. The most
comparable method to ours is GrIPS (Gradient-
free, Edit-based Instruction Search) (Prasad et al.,
2023), which edits prompts via deletion, addition,
and word swapping, as well as paraphrasing using
another LLM. Unlike our approach, it uses simple
edit operations and selects top prompts determinis-
tically, without stochastic operators like mutation
O CTOSSOVer.

Best Individual Metrics by Generation vs. Average Fitness

1 4 7 10 13 16

weighted_avg_f1_score

Figure 5: Metrics (best individual) and average fitness
(population) for best CLAUDETTE binary run in Table
1. Individual metric lines overlap in the binary case.

6 Results and Discussion

We ran over 110 GenDLN executions on
CLAUDETTE with various parameter sets across
both tasks (binary and multi-label), and around
35 on MRPC. All runs draw from the same set
of 10 binary and 10 multi-label manual prompts
for CLAUDETTE, and 25 for MRPC, shown in
Appendix B, Tables 3-7.

Table 1 lists the runs yielding the best-
performing prompts across the different parameter
sets we tried, selected based on Macro F1 perfor-
mance on the test set. The full prompts for the runs
are in Appendix M, Tables 11, 12 and 13. Com-
mon parameters for all reported runs: £ = 1, no
elite mutation, and fitness = 0.2 % (accuracy) +
0.4 % (macro avg. F1) + 0.4 % (weighted avg. F1).
Although we tried and successfully ran GenDLN
using GPT-3, GPT-4, Llama-3.1-8B, Llama-70B,
and Ministral 8B, with varying temperature settings
during the framework’s development, we ultimately
used Mistral Large (“mistral-large-2411”, 123B pa-
rameters) for all reported runs. LLM temperatures
for initialization, crossover, and mutation were all
set to 0.7.

Fig. 4 shows the best non-stagnating multi-label
CLAUDETTE run (Table 1). Interestingly, it used
an insertion mutation strategy, leading to longer
prompts, suggesting insertion is exploratory — sup-
ported by the diversity plot 8 in Appendix N, which
shows a consistently diverse population after the
first few generations. While shorter prompts often
yield better results (Brown et al., 2020), this run
did not early-stop, and could improve with more
generations.

Fig. 5 presents metrics for the best binary
CLAUDETTE run. Like the multi-label case, we
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. Performance (Test) GA Parameters Early|
Task Fitness
Acc. MacroF1 W.F1 Sel. Cross. C. Mut. M, Pop. Gen. Stop
% Binary | 0.879 | 0.79 0.652 0.826 Rank gﬁ;rlld 0.8 Semantic 0.2 10 16 Yes
S
3
© Phrase .
Multi 0.938 | 0.825 0.862 0.856 Rank Swap 0.85 Inmsertion 0.3 30 30 No
g Single
£ | Binary | 0.849 | 0.813 0.796 0.816 | Steady-State Point 0.85 Semantic 0.20 30 16 Yes

Table 1: Best GenDLN runs across tasks and datasets. Dataset label is shown in first column. GA Parameters
include selection, crossover and mutation types, Population and Generation size, crossover rate C,. and mutation
rate M,.. Early stop indicates that the run stopped early due to stagnation. W. F1: Weighted FI score.

CLAUDETTE MRPC
Binary Multi Binary
Ace. MacroF1 W.F1 | Acc. MacroF1 W.F1 | Acc. MacroF1 W.F1

GenDLN 0.79 0.65 0.83 0.83 0.86 0.86 0.81 0.80 0.82
OPRO 0.80 0.64 0.83 0.71 0.84 0.84 0.80 0.77 0.80
(Legal-)BERT* | 0.94 0.85 0.94 0.97 0.91 0.91 0.80 0.78 0.80
SVM TF-IDF 0.93 0.79 0.93 0.77 0.86 0.86 0.70 0.59 0.66
GrIPS 0.82 0.45 0.85 0.94 0.82 0.82 0.79 0.76 0.79

Table 2: Test set performance comparison of baseline optimizers across datasets. W. F1: Weighted F1 score. *BERT

was used for MRPC, Legal-BERT was used for CLAUDETTE.

Best Individual Metrics by Generation vs. Average Fitness
0.85

0.80
0.75

0.70

1 4 7 10 13 16
Generation

-~ accuracy =@= average_fitness finess_score ~#= macro_avg_f1_score weighted_avg_f1_score

Figure 6: Metrics (best individual) and average fitness
(population) for best MRPC binary run in Table 1.

observe stable convergence and fitness improve-
ments across generations. Table 1 lists the best
binary run parameters. Unlike multi-label runs,
where high-performing prompts were longer, bi-
nary runs maintained a more stable prompt length,
suggesting structural modifications were more ef-
fective than exploratory insertions.

Fig. 6 shows the best MRPC run. MRPC runs
resulted in an improvement in accuracy of 6 per-
centage points on average, with the range of im-
provement between 3-8 percentage points. Over-
all, GenDLN consistently improves initial prompts
across reasonable parameter settings and remains
stable over diverse configurations, and this con-
sistency holds across both datasets. Appendix M

Best Individual Metrics by Generation vs. Average Fitness

0.9

Generation

e~ accuracy 8= average._fitness fitness_score =@~ macro_avg_f1_score weighted_avg_f1_score

Figure 7: Ablation on CLAUDETTE multi-label. Ran-
dom selection stagnates metrics and prevents GA
optimization.(Y-axis scaled)

includes additional selected runs, parameters, best
prompts, and results. Appendix N contains fur-
ther plots on metrics, convergence, diversity, and
similarity for our best runs (Tables 8, 9, and 10 in
Appendix M).

Ablation we conduct an ablation study on a sub-
set of the best runs for both CLAUDETTE tasks
and the MRPC task, re-running them with "random
selection" to isolate selection impact. As expected,
ablation results show flatlined metrics (Fig. 7), con-
firming that removing selection pressure collapses
the GA into random search.

Generally, our results align with expected GA be-
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havior. All our runs had a maximum population and
generation size of 30, which is the bare-minimum,
exploratory number for GA convergence. Rather
than declaring "optimal" parameter sets for spe-
cific tasks, we demonstrate that GenDLN converges
across diverse settings, tasks, and datasets. Ad-
ditionally, Table 2 highlights GenDLN’s strong
performance against state-of-the-art baselines. In
CLAUDETTE binary classification, GenDLN out-
performs OPRO and GrIPS in macro F1-score (our
prioritized metric due to dataset imbalance). Al-
though LegalBERT and SVM reach the highest
overall scores, they rely on full dataset fine-tuning
and are not viable for prompt-based few-shot set-
tings. In contrast, GenDLN consistently improves
across reasonable parameter configurations using
only 100 examples — making the amount of data
required to yield a high-performing classification
prompt up to two orders of magnitude less than
what is required to fine-tune a BERT model, and
significantly cheaper from a data perspective than
the discriminative model paradigm.

Notably, for MRPC, which unlike
CLAUDETTE, does not require domain specificity,
GenDLN achieves the overall best performance
and is in line with the highest few-shot F1 bench-
mark of 78.3 in the literature reported by Zhang
et al. (2022). For multi-label ToS classification,
GenDLN also delivers strong macro and weighted
F1 scores, outperforming OPRO and GrIPS in both
and surpassing SVM in accuracy, demonstrating its
ability to optimize prompt pairs effectively without
requiring extensive model adaptation.

7 Conclusion

We introduce GenDLN, an efficient evolutionary
algorithm-based framework for joint prompt opti-
mization using a stacked LLM architecture. Our ap-
proach successfully refines populations of prompt
pairs, achieving strong performance on ToS classi-
fication and paraphrase detection, in line with base-
lines such as OPRO and GrIPS on CLAUDETTE
for legal ToS classification, and MRPC for para-
phrase detection, while remaining relatively cost
and computationally efficient compared to tradi-
tional GA implementations. Through the imple-
mentation of efficiency strategies at several levels,
we were able to leverage commercial API free tiers
to optimize prompt pairs at no cost. This implemen-
tation could enable resource-limited teams to use
commercial LLMs for EA-based prompt optimiza-

tion as applied to well-defined tasks. Our findings
highlight the potential of evolutionary strategies
as a scalable alternative to traditional prompt engi-
neering and fine-tuning, paving the way for more
accessible and cost-effective LLM-driven classifi-
cation methods.

8 Limitations

Given its reliance on classification based on extrac-
tion from an LLM response, the fitness function
is subject to model biases and can be influenced
by factors such as dataset quality, prompt structure,
and stochastic behavior of LLMs. Consequently,
fitness scores in this framework serve as an ap-
proximation of the true generalization ability of
candidate solutions.

Although performing multiple seeded runs for
the same parameter set to ensure statistical relia-
bility is standard practice for GA result validation,
technically, it would be impossible to reproduce
a GenDLN run exactly, even with a seed. This is
because LL.M-based operations are inherently un-
stable; the same prompt to the same LLM rarely
yields the exact same response. Since mutation
and crossover are LLM-driven, the GA lifecyle
will vary, even for the exact same parameter set
and initial population. Usually, GA runs should
be repeated with differently seeded initializations
- this is especially true for setups where individu-
als are encoded as numeric vectors, bitstrings, or
discrete, structured representations. In the case of
GenDLN, the LLM-assisted augmentation of the
intitial population ensures that the starting popula-
tion is, by default, slightly different for every run,
despite the common starter prompt bank. Given
the prohibitive computational cost and our focus
on the framework’s ability to consistently optimize
rather than finding specific parameters most suited
to a task, we prioritized generational progress met-
rics over multi-run averaging. This approach aligns
with existing hybrid GA-LLM approaches (Bouras
etal., 2025; Guo et al., 2024; Liu et al., 2024) where
LLM stochasticity substitutes manual seeding, and
stable improvement trajectories provide sufficient
support for the GA’s optimization ability. There-
fore, we do not repeat GenDLN runs with different
random seeds, and rely on the high stability (consis-
tent improvement across different parameters sets,
tasks, and datasets) of our framework.

Moreover, our framework is limited to
tasks/problems where it is possible to encode a
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solution as a semi-structured, multi-dimensional
individual that lends itself to crossover and mu-
tation, and can be assessed by a fitness function.
For reasoning/analysis tasks, especially those of a
legal nature, the suitability of a solution may be
less straightforward to encode and evaluate. Such
tasks would require looking at a solution as a multi-
step task (possibly using more DLN layers and a
learned-heuristic approach), such as the work done
by Chen et al. (2024).

Additionally, due to the modular logging struc-
ture, it is possible to run genetic operators indi-
vidually and post-process their data. As such, it
would be interesting to look at the use of LLMs as
genetic operators more closely and examine how
they compare to the established stochastic methods,
and the bias and differences among different LLMs,
temperatures, and parameters.

LLMs are known to sometimes suffer from un-
controlled bias (Bender et al., 2021; Gallegos et al.,
2024). In the context of GenDLN, this may lead to
search space restriction due to trigger word sensitiv-
ity (Zhao et al., 2025), pretraining bias (Mina et al.,
2025), and over-optimization bias (since LLMs are
trained to minimize loss on text generation rather
than maximize diversity). We have observed anec-
dotal evidence and instances of the above issues oc-
curring for both datasets, and crucially for MRPC,
which necessitated the creation of the LLM-safe
version, but this needs formal exploration.

Furthermore, we do not vary the LLMs and
temperature parameters across our different runs.
Ideally, instead of relying on the same LLM for
all GA operations, different models for mutation,
crossover, and evaluation can be used. This ap-
proach would introduce flexibility and attempt to re-
duce systemic bias. Since mutation requires diver-
sity, and a model that introduces novelty, an open
model would allow unfiltered, exploratory muta-
tions. Crossover, on the other hand, requires consis-
tency and meaning preservation, and an instruction-
tuned LLM would be more suitable. For the DLN,
a task-specific fine-tuned model would be more
reliable for consistent classification.

Moreover, it is important to mention that unlike
methods that optimize prompts based on error feed-
back, GenDLN does not "learn" the dataset in the
traditional sense. Due to its reliance on competition
and exploration-driven evolution, it shows adaptive
improvement, and optimizes prompt pairs for clas-
sification with the specific target LLM model used
for optimization. This is in line with expected EA

behavior. For this reason, specific signals from the
dataset will not necessarily make their way to the
optimized prompts, and any learning is implicit and
general, rather than dataset-specific. This could be
part of the reason why GenDLN performs better on
MRPC than on CLAUDETTE, but further testing
on additional datasets is needed to confirm this.

Importantly, we include strong system prompts
(based on trial and error) to supplement our op-
timized prompt pairs. Recent work has explored
optimizing system prompts (Zhang et al., 2024a);
a development of the idea would be to refine our
chromosome encoding to include system prompts.
This would make the chromosome carry more than
a couple of genes, which is typically the case in
GAs.

In addition, we quantify the improvements of
our implemented efficiency mechanisms with ob-
served execution speed and GA throughput (gen-
erations/individuals evaluated per unit of time, for
a number of concurrently executing cores), rather
than token consumption. Our efficiency mecha-
nisms enabled us to stay below free tier limits for
all our experiments, and all passed input prompts
and LLM outputs for a particular GA run are saved
as strings in the structured GA log output of a run,
but this excludes the input and output strings from
fitness calculation (classification using the DLN),
which is the main token consumer. As token con-
sumption remains a key concern for LLM-based
approaches, future work should focus on systemat-
ically tracking the tokens used by GenDLN in all
phases of the GA lifecycle to better assess scalabil-
ity and cost.

Finally, due to time constraints, we were not
able to run all possible/plausible parameter set
combinations. We welcome any effort to extend
the framework, explore more parameter combina-
tions, and/or formalize parameter exploration for
GenDLN through grid search or other techniques.
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A  GenDLN: GA Characteristics

GenDLN is a multi-objective, steady-state genetic
algorithm (SSGA), whereby only a subset of the
population is replaced in each generation, and
parents evolve alongside their children (through
rolling selection, crossover, and mutation) rather
than generating an entirely new population. Also,
elitism (keeping the best &k solutions unchanged)
is implemented as an optional parameter, ensuring
that the best individual(s) survive to the next genera-
tion. Due to employing LLMs in the population ini-
tialization, and the mutation and crossover genetic
operators, the framework can also be described as
a hybrid genetic algorithm (HGA), where domain-
specific methods are integrated into the evolution-
ary process (El-Mihoub et al., 2006). In our do-
main, textual prompt optimization, GenDLN uses
LLM inference to indirectly optimize the initial
population, or yield a “good” mutation or crossover
product, as opposed to deterministic bit-wise or
function-aided manipulations used in classical GAs.
Furthermore, in the fitness evaluation, employing
the deep-language network (DLN) to determine the
suitability of the solution (prompt pair) also makes
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use of LLM inference and classification-based fit-
ness to guide the optimization process instead of
using a deterministic, mathematical function. Our
framework is also a multi-objective GA since we
use weighted summing of multiple objectives into a
single scalar fitness score (Srinivas and Deb, 1994).

B Population Initialization

This section provides an overview of the popula-
tion initialization process for the GA, incorporat-
ing structured prompt generation and augmentation
techniques.

Overview The population is initialized using pre-
defined sets of prompts, which serve as the basis
for generating diverse individuals. These prompts
are loaded and paired to create an initial pool
of candidates. These "prompt banks" as used in
our experiments are shown in Tables 3 and 4 for
CLAUDETTE, and 5-7 for MRPC.

Handling Population Size If the predefined set
of individuals is smaller than the required popu-
lation size, additional individuals are generated
through augmentation. This ensures a sufficient
and varied population.

Augmentation Process When augmentation is
enabled, additional prompts are created by an LLM
based on the existing prompt bank. The process
ensures that newly created prompts maintain coher-
ence and contribute to the diversity of the popula-
tion.

Prompt Generation Details The augmentation
process is guided by a structured system role and
user input specification. The following details out-
line the LLM prompt construction.

System Role

You are an expert prompt generator. Based on
a given task description and examples, your

goal is to generate a specified number of new

prompt pairs.
Each prompt pair consists of two prompts:

Prompt 1: An initial instruction to an LLM,
to which the LLM would provide a response.
Prompt 2: A follow-up instruction, which
will be fed to another LLM along with the
prior response. This prompt should relate to
the expected response from the first LLM.

The new prompt pairs must be unique but

adhere to the task description.

Each prompt pair must follow this JSON

structure:

{
"prompt_1": "The first instruction for an
LLM, which it will respond to.",
"prompt_2": "The second instruction for a
different LLM, which will be given the
response to prompt_1 as input and should
be related to the expected response.”

}
User Input

The task involves assessing the fairness or
unfairness of a given sentence using prompt
pairs.

The sentence will be taken from the Terms &
Conditions or similar documents of
businesses. In this context, fairness or
unfairness is meant in the strictly legal
sense.

This means determining whether the
sentence, in isolation, could be deemed
unfair by a lawyer or court of law.

We do not know in advance the nature of the
sentence or the area of law it relates to.

For this reason, prompt_1 must be general
and not tied to any specific scenario,
law, or jurisdiction.

The sentence will be provided alongside
prompt_1 to an LLM. Prompt_1 will ask for
some insight, analysis, or interpretation
of the given sentence.

The response from the first LLM, along with
prompt_2, will then be passed to a second
LLM.

Prompt_2 acts as the final "classifier” and
must induce a fair/unfair classification
by the second LLM based on the response
to prompt_1.

Here are some examples of prompt pairs for
the mentioned task:
user_input += "- Prompt 1: " +
individual["prompt_1"] + "\n Prompt 2:

+ individual["prompt_2"]1 + "\n"

n

user_input += "\nGenerate " +
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Prompt 1

Prompt 2

Summarize the following text.

Analyze the following sentence for any poten-
tial ambiguities or unclear language.

Explain the meaning and implications of the
following sentence in a legal context.

Identify any potential biases or assumptions
present in the following sentence.

Provide a paraphrased version of the following
sentence to ensure clarity and understanding.
Discuss the potential consequences of the fol-
lowing sentence in a legal or regulatory con-
text.

Evaluate the following sentence for compli-
ance with relevant laws or regulations.

Interpret the following sentence in the context
of a specific industry or sector.

Highlight any potential areas of concern or
controversy surrounding the following sen-
tence.

Consider the following sentence in light of
relevant case law or precedents.

Based on the description above, is the follow-
ing fair or unfair?

Based on the analysis above, would a reason-
able person find this sentence to be fair or un-
fair?

Considering the explanation above, is this sen-
tence likely to be considered fair or unfair by
a court of law?

Based on the identified biases and assump-
tions, do you think this sentence is fair or un-
fair?

Considering the paraphrased version above, is
this sentence fair or unfair in its original form?
Based on the discussion above, do you think
this sentence is fair or unfair in its current
formulation?

Considering the evaluation above, is this sen-
tence fair or unfair in terms of its compliance
with applicable laws?

Based on the interpretation above, is this sen-
tence fair or unfair in its application to this
industry or sector?

Considering the highlighted areas of concern
above, do you think this sentence is fair or
unfair in its current form?

Based on the consideration of case law above,
is this sentence fair or unfair in terms of its
alignment with established legal principles?

Table 3: CLAUDETTE - Manual binary prompt bank used to initialize every GenDLN binary run.

str(total_needed)
+ " additional pairs of prompts.”

user_input += "Ensure all new pairs
are distinct from the examples.”

Finalization Once the population reaches the de-
sired size, unique identifiers are assigned to each
individual. Logging mechanisms help track the
composition of the population, distinguishing be-
tween original and augmented individuals.

This implementation supports prompt-based pop-
ulation initialization while maintaining flexibility
through structured augmentation and validation
mechanisms.

C Fitness Function

The fitness of a prompt pair is a weighted sum
of classification metrics using a multi-objective
weighted sum approach.

To compute fitness, the individual is evaluated
through the DLN (Fig. 1). The classification results
1y are compared to real labels y, and raw metrics
(accuracy, class precision, recall, F1-score, and ag-
gregate metrics like macro- and weighted-average
precision, recall, and F1-score) are output by the
DLN. Metric weights in the fitness function are
configurable per GA run, allowing adaptation to
different classification goals, such as prioritizing
class-balanced performance by emphasizing macro
and weighted metrics or optimizing for specific
classes. The sum of metric weights must equal 1,
and the resulting fitness score lies in the [0, 1] range.
Invalid individuals (where at least one prompt is
empty) are assigned a fitness score of -1 to prevent
their propagation, as per the fallback mechanism
outlined in the next section.
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D Fallback Mechanism for Invalid LLM
responses

In GenDLN, LLMs are employed for mutation,
crossover and population initialization. The LLM
is instructed to generate responses in a valid JSON
format, which is necessary for the extraction of
prompts and subsequent processing and evalua-
tion of the individuals. However, there are sev-
eral reasons why the LLM might fail to produce a
valid JSON response, beyond ambiguity in prompt
instructions (Liu et al., 2023; Reynolds and Mc-
Donell, 2021), which is not the case in GenDLN:

1. Model Limitations and Hallucinations:
LLMs are known to potentially "hallucinate"
or generate outputs that deviate from the ex-
pected format, especially when the task in-
volves complex constraints or novel combi-
nations of concepts (Ji et al., 2023). JSON
generation requires strict adherence to syntax
rules, and any deviation (e.g., missing brack-
ets, incorrect key-value pairs) results in an
invalid response.

2. Token Limitations and Truncation:

LLM:s have a finite context window, and if the
generated response exceeds this limit, it may
be truncated. Truncation can lead to incom-
plete JSON structures, rendering the output
invalid. This issue is exacerbated when the
response includes nested or lengthy JSON ob-
jects (OpenAl, 2023).

3. Stochastic Nature of LLMs:

LLMs are probabilistic models, and their out-
puts can vary significantly even with identical
inputs due to temperature settings and sam-
pling strategies. This stochastic behavior in-
creases the likelihood of generating invalid
JSON, especially if the temperature param-
eter is set too high, encouraging creativity
at the expense of consistency (Brown et al.,
2020). Although our LLM temperature is 0.7
for all experiments, this does not discount the
stochastic effects.

4. Crossing Over Identical Prompts:
Some selection strategies naturally lead to the
presence of the same individual more than
once in the population. Moreover, it is pos-
sible to have individuals with one identical
prompt through the natural trajectory of evo-
lution. Since individuals are paired up for

crossover randomly, the crossover LLM might
be prompted to crossover two "identical" sen-
tences. In most of these cases, the LLM out-
puts an invalid response. This was a problem
for all LLMs we tried, including GPT-3, GPT-
4, Llama-3.1-8B, Llama-70B, Ministral 8B,
and even Mistral Large. Rather than instruct-
ing the LLM explicitly on how to handle this
edge case, which did not reliably solve the
problem, we rely on our fallback mechanism
to detect and recover from it automatically.

D.1 Fallback Mechanism

To mitigate these issues, we implemented a fall-
back mechanism that retries the operation up to a
specified limit (3 in our experiments). If all re-
tries fail, an empty string is returned, which is
detected during fitness calculation. The assign-
ment of a fitness score of —1 to such individu-
als ensures that they are not propagated further
in the evolutionary process, maintaining the in-
tegrity of the population. This approach aligns
with established practices in evolutionary compu-
tation, where invalid or malformed individuals are
penalized to prevent their influence on future gen-
erations (Eiben and Smith, 2015) and limit their
downstream propagation. We observe that invalid
responses occur quite frequently, and can be visual-
ized as "X" on the y-axis in the convergence plots
32, 33, 34, 35 (CLAUDETTE multi), 36, 37, 38,
39 (CLAUDETTE binary), 40, 41, 42, 43 (MRPC).

E System Prompts

E.0.1 System Prompts

GenDLN’s DLN implementation includes system
prompts in scoring. These specify the input/output
format (e.g., JSON), define the task, and may in-
clude few-shot examples.

Our approach utilizes four distinct system
prompts, corresponding to the two-layer binary and
multi-label classification approaches. Each prompt
defines the input format, specifies the expected out-
put structure, and ensures consistency in model
responses.

All prompts follow a common structure:

* The embedded prompt generated by our GA.

* A description of the input format, including
identifiers and sentence text.

* A specification of the expected output format,
ensuring valid JSON at the second layer.
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» Example inputs and outputs to showcase the
expected input and output format.

Few-Shot Examples Each system prompt in-
cludes six few-shot examples to guide the
model’s responses. For binary classification on
CLAUDETTE, we randomly select three fair and
three unfair sentences from the training set, en-
suring they are distinct from those used in the
optimization task. Similarly, for MRPC, we se-
lect three pairs of paraphrased and three pairs of
non-paraphrased sentences. For multi-label clas-
sification on CLAUDETTE, we again select six
sentences, each representing a unique class. Addi-
tionally, for Layer 2 prompts, the examples include
the feature-enriched output from Layer 1 to provide
a more contextualized input.

This approach ensures a balanced representation
of labels while maintaining consistency across both
classification tasks.

We present the full system prompts in the fol-
lowing sections.

E.1 Binary Classification
E.1.1 System Prompt Layer 1
<Prompt_01_Placeholder>

Input Data

The input data is a dictionary containing
sentences from the CLAUDETTE dataset,
where each entry has:

Key: An identifier

(e.g., "sentence_1", "sentence_2")
Value: The sentence text

Example Input

{
"sentence_1": "This is the text
representing sentence 1.",
"sentence_2": "This is the text
representing sentence 2."
}

E.1.2 System Prompt Layer 2
<Prompt_02_Placeholder>

Input Data

The input data is composed of two parts.
The first part ("previous_outputs:")
contains a feature-enriched version

of the user input that has already been
processed by a different LLM and

system prompt. The second part
("sentences_to_classify:") is
a dictionary containing sentences
to classify, where each entry has:

Key: An identifier
(e.g., "sentence_1", "sentence_2")
Value: The sentence text

Example Input
"previous_outputs”: "Feature enriched
version of the
sentences to classify
"sentences_to_classify":

{

n

"sentence_1": "This is sentence 1.",
"sentence_2": "This is sentence 2."

Output Requirements

For each sentence, add:

"classification”: "fair” or "unfair”.

"rationale”: Explanation highlighting
influential words.

Example Output
{
"sentence_1": {
"text": "This is sentence 1.",
"classification”: "fair",
"rationale”: "Explain the
decision.”
1
"sentence_2": {
"text": "This is sentence 2.",
"classification”: "unfair”,
"rationale”: "Explain the
decision.”

Ensure JSON format is valid!

E.2 Multi-Label Classification

E.2.1 System Prompt Layer 1
<Prompt_01_Placeholder>

CLAUDETTE Classes:

- PINC (Pins and Cookies)
- USE (Usage Restrictions)
- CR (Content Removal)
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TER (Termination)

LTD (Liability Limitation)
A (Arbitration)

LAW (Applicable Law)

J (Jurisdiction)

CH (Changes)

Input Data:

A dictionary of “unfair” sentences:

- Key: Sentence ID (e.g., "sentence_1").
- Value: The sentence text.

Example Input:

{
"sentence_1": "We may terminate your
account at any time.",
"sentence_2": "By using Pinterest,
you agree to our
policies.”
}

E.2.2 System Prompt Layer 2
<Prompt_02_Placeholder>

CLAUDETTE Classes:
- PINC, USE, CR, TER, LTD, A, LAW, J, CH

Input Data:
First Part: "previous_outputs”
- Feature-enriched sentences.
Second Part: "sentences_to_classify”
- Dictionary of sentences.

Example Input:
"previous_outputs”: "Feature enriched
version”
"sentences_to_classify":
{
"sentence_1": "We may terminate
your Account at any time.",
"sentence_2": "By using Pinterest,
you agree to our policies.”

Example Output:
{
"sentence_1": {
"text"”: "We may terminate
your account.”,
"classification”: ["TER"]

b

"sentence_2": {

"text"”: "By using Pinterest,
you agree.",
"classification”:
["PINC", "USE"]

Each sentence is classified
into one or more labels.
Ensure JSON validity.

F Efficiency Strategies
F.1 Motivation and Setup

Since we use commercial LLM APIs and GAs re-
quire exploring a vast search space to converge,
running our framework is both cost- and time-
intensive, especially for fitness evaluation. Evalu-
ating a prompt pair through the DLN requires two
API calls per data point. For large datasets and
populations (essential for exploration), running the
framework for enough generations becomes too
expensive, not to mention the need to test various
parameter sets and the significant trial-and-error
phase inherent to evolutionary optimization. To
mitigate this, we implemented efficiency strategies
at different framework stages. We apply metric
caching, request rate limiters, and concurrency at
two DLN levels (Fig. 3).

F.1.1 Metric Caching

As mentioned, running an individual through the
DLN yields a set of classification metrics. In
GenDLN, these raw metrics are cached for every
prompt pair to avoid rerunning the evaluation of the
same prompt pair within the same run; we also ex-
tend it to avoid rerunning the evaluation of the same
prompt pair for the same LLM-dataset-task combi-
nation. The cost savings and speed-up provided by
caching comes at the risk of introducing some bias
(LLM-classification is inherently unstable, and the
same prompt can lead to different responses from
the same LLM). However, this is primarily used
to explore parameter sets, and for suitable, stable
parameter definitions, the GA should eventually be
rerun three times to discount noise.

F.1.2 Parallelization

Significant work has been done on parallelizing
the execution of GAs (Alba and Tomassini, 2002).
For GAs in general, evaluation of an individual
is independent, and for GenDLN (DLN classifica-
tion using prompts (p1,p2)), this allows popula-
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tion evaluation to be parallelized. To accelerate
the prompt optimization process, our framework
employs a two-layer parallelization approach, ad-
dressing both the evaluation of individual prompt
pairs and the internal processing of data batches for
each individual.

Inter-Individual Parallelization In Fig. 3,
the top section (above the dashed line) shows
population-level parallelization, our first concur-
rency layer.

A workspace W is a compute node with an inde-
pendent API token handling requests. For a w-core
machine, w sets of individuals from population
P run in parallel across w workspaces, creating
w jobs J, each evaluating up to N/w individu-
als. Rather than processing individuals sequen-
tially, our framework concurrently evaluates sev-
eral prompt pairs. This strategy exploits multi-
core architectures to significantly reduce the over-
all optimization time. By partitioning the popula-
tion across multiple execution threads or processes,
each prompt pair can be evaluated independently.
Importantly, each individual maintains its own iso-
lated “workspace,” meaning that the computational
resources and rate-limiting mechanisms are man-
aged on a per-individual basis.

Intra-Individual Concurrency The bottom sec-
tion (Fig. 3) details job J. Within the evaluation
of a single prompt pair (job J), further efficiency
is gained by concurrently processing the training
dataset. We first partition the dataset into multi-
ple batches, then evaluate the prompt pair on these
batches concurrently, using 2 API calls (one per
DLN layer/prompt) per batch rather than 2 per sen-
tence.

This fine-grained parallelism allows us to ag-
gregate evaluation metrics faster, as each batch is
processed in parallel rather than sequentially. The
results across individuals and batches are aggre-
gated to determine (p1, p2)’s overall performance,
with metrics stored in the cache for future use.

A notable constraint in our setup is the use of
an external API that enforces a strict rate limit
of one request per second (RPS). To adhere to
this limit while still maintaining high throughput,
we integrate a rate limiter into our concurrency
model. For each prompt pair, the batch-level evalu-
ations are regulated such that API calls are spaced
appropriately. Since each individual has its own
“workspace,” the rate limiting is applied indepen-
dently per prompt pair. This design ensures that the

API is not overwhelmed by simultaneous requests
across the entire population while still exploiting
concurrency within each evaluation task.

Overall, the combination of inter-individual par-
allelization and intra-individual concurrency leads
to a significant speedup in our prompt optimiza-
tion process, allowing us to efficiently explore the
search space while managing the operational con-
straints imposed by the external APIL.

F.1.3 Individual Evaluation Throuphput

To quantify the efficiency of our genetic algorithm
runs, we define the individual evaluation through-
put as the number of individuals evaluated per unit
of time. Given a genetic algorithm run with G gen-
erations, a population size of NV, a crossover rate of
(., and a total runtime of 7T hours, the number of
individuals evaluated per generation is computed
as:

N(1+Cy) ey

Thus, the total number of individual evaluations
across all generations is:

G-N1+C,) )

To determine the throughput in terms of individ-
uals evaluated per hour, we divide the total evalua-
tions by the runtime:

G- N(1+C,)
T

This metric allows us to compare different ge-
netic algorithm configurations by normalizing their
efficiency in terms of evaluations processed per
hour, thereby accounting for variations in runtime
across different experimental settings.

Throughput = (3)

G Selection Strategies

G.1 Random Selection

Random selection is the absence of a selection strat-
egy. It refers to selecting individuals uniformly
at random, irrespective of fitness values. We im-
plement it for use as a baseline for comparison
purposes.

G.2 Roulette Wheel Selection

Also known as fitness proportionate selection,
roulette wheel selection is one of the very first ex-
plored GA selection strategies (Holland and Taylor,
1994). It simulates spinning a wheel where each

1189



individual occupies space proportional to its fit-
ness, and selections are made probabilistically (by
“spinning” a wheel and selecting the individual the
“pointer” lands on). It ensures that individuals with
higher fitness have a higher chance of selection,
but any individual could potentially be selected.
However, if relatively high-fitness individuals dom-
inate early, this may lead to premature convergence.
Also, when fitness values are very similar, low se-
lection pressure may lead to stagnation (Hancock,
1994).

Tournament Selection First introduced by
Miller et al. (1995), tournament selection is a sim-
ple and widely-used selection strategy. For a tour-
nament size ¢, it randomly picks ¢ individuals from
the population, and selects the individual with high-
est fitness (the “tournament winner””) for the next
generation. For a population size N, N tourna-
ments are held, with ¢ participants each (if elitism
k # 0, N — k tournaments are held). Tournament
selection aims to establish a balance between explo-
ration and selection pressure, which can be tuned
with tournament size f. Larger tournaments lead
to stronger selection pressure and lower diversity
(exploitation), while smaller tournament sizes favor
exploration.

Rank-Based Selection Conceptually similar to
roulette wheel, rank-based selection assigns indi-
viduals space on the wheel according to their rank
rather than their fitness, where the total space on
the wheel is equal to the sum of the ranks. Intro-
duced by Baker (2014), to mitigate scaling issues
where individuals in the population have fitness val-
ues that are either too extreme (high-fitness outliers
would be selected too often in classical roulette),
or too similar (if fitness values are too close to-
gether, each individual would have roughly the
same chance of being selected in classical roulette).
Rank selection ensures a linear selection probabil-
ity distribution which prevents bias towards dispro-
portionately high fitness individuals, while main-
taining selection pressure.

Stochastic Universal Sampling (SUS) SUS was
introduced by Baker (1987) as an improvement
over roulette wheel selection. In this variant, N
evenly spaced pointers are assigned to the wheel,
on which the individuals occupy space proportional
to their fitness values, and NV individuals are se-
lected in one go when the wheel is “spun.” It en-
sures a more diverse selection and reduces stochas-

tic noise, but will still suffer from premature con-
vergence in the presence of a high-fitness outlier (if
an individual occupies a disproportionately large
space on the wheel, several pointers will land on
it).

Steady-State Selection Our framework is inher-
ently an SSGA due to the way our replacement step
(discussed in a futher section) operates, however,
we also implement an explicit steady-state selec-
tion strategy for greater flexibility. Steady state
selection requires elitism k # 0 or else it will be-
have like random selection. In this strategy, the
top k fittest individuals are selected for the next
generation, and N — k are randomly selected from
the remaining individuals to complete the popula-
tion. Steady-state selection ensures that only a few
individuals are replaced at a time in each genera-
tion. Always keeping many elites in the population
may accelerate convergence at the risk of reducing
diversity.

H Adapting Chromosomes to the Textual
Space - Considerations

Although we have encoded the chromosome as a
tuple, that does not mean the individual only has 2
genes (p; and ps). The “suitability” of the solution
depends on unstructured, hard-to-define compo-
nents or “tokens” within the two text prompts, as
well as hidden "genetic material" in the textual fea-
tures of each prompt string. In natural language,
different words, phrases, and clauses hold different
weights in conveying meaning, unlike in structured
encoding, where every component’s contribution
to the solution’s suitability is defined. If classical
strategies were to be applied (slicing the strings
at arbitrary points, editing the characters at arbi-
trary indices), this would risk yielding too many
syntactically invalid or semantically nonsensical
prompts. Additionally, words and phrases are in-
terdependent (much like real genes), and simple
positional swapping and randomized editing may
distort the meaning. In fact, textual meaning can
completely collapse if crossover/mutation is badly
applied, yielding individuals far inferior to their
progenitors, which defeats the purpose. Determin-
ing where and how to split/edit text dynamically
while ensuring coherence of results is an inherently
non-deterministic process, contrary to the estab-
lished concept of crossover and mutation in GAs.
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I Crossover Strategies
We implemented the following strategies:

Single-Point Selects a single random point in
each sentence and swaps the latter halves to form
new sentences.

Two-Point Selects two random points in each
sentence, swapping alternating segments to form
new sentences.

Semantic Blending Blends the core meaning of
both parents into two complementary sentences.
Offspring are not simple recombinations but rather
semantically fused versions of the inputs.

Phrase Swapping Identifies key phrases in each
parent and swaps them while maintaining grammat-
ical integrity.

Token-Level Swaps individual words or tokens
between sentences.

I.1 Crossover System Prompt

"You are an expert linguist and copywriter, act-
ing similar to how genetic crossover works, but
in a textual context. Generate two complementary
sentences as children of the provided parent sen-
tences. Here complementary means that the two
child sentences must have complementary parts of
the parents, as in genetic crossover. Make sure the
children sentences are wrapped in a JSON-object
as follows:

{"child_1": "child sentence 1",
"child_2": "child sentence 2"}

The rest of your response can be plain text, but
the new sentences must be in a JSON. Both sen-
tences must be grammatically correct and reason-
ably meaningful."

LI.2 Crossover Strategy Prompts

Single-Point "Combine the following two sen-
tences by splitting each at a single random point.
The first child should take the first half of the first
sentence and the second half of the second sen-
tence. The second child should take the first half of
the second sentence and the second half of the first
sentence. Ensure both sentences remain coherent
and meaningful."

Two-Point "Combine the following two sen-
tences by selecting two random points in each sen-
tence. The first child should integrate the segments
alternately, starting with the first part of the first

sentence. The second child should integrate the
remaining segments alternately. Ensure both sen-
tences are coherent and meaningful."

Semantic Blending "Blend the following two
sentences to create two complementary sentences.
Each child should focus on combining the core
meaning of both sentences in a unique way. Ensure
that both sentences are coherent, meaningful, and
distinct from one another."

Phrase Swapping "Swap one or more phrases
between the following two sentences to create two
new sentences. Each child should incorporate
phrases from the other parent in a way that cre-
ates a coherent and meaningful result.”

Token-Level "Swap individual words or tokens
between the following two sentences to create two
new sentences. FEach child should incorporate
words from the other parent in a way that creates a
coherent and meaningful result."

1.3 Crossover Examples

Below are some selected illustrative crossover ex-
amples.

Single-Point

Parent 1: "Summarize the following text.”
Parent 2: "Explain the meaning

and implications of the

following sentence in a legal context.”
Child 1: "Summarize the following text
in a legal context.”

Child 2: "Explain the meaning and
implications of the following text.”

Two-Point

Parent 1: "Summarize the following text.”
Parent 2: "Explain the meaning and
implications of the following sentence
in a legal context.”

Child 1: "Summarize the meaning and
implications of the following sentence in
a legal context”

Child 2: "Explain the following text in
a concise manner and its potential impact
on the law”

Semantic Blending

Parent 1: "Based on the description above,
is the following fair or unfair?”

Parent 2: "Considering the explanation
above, is this sentence likely to be
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considered fair or unfair by a court
of law?”

Child 1: "Considering the description
above, is the treatment likely to be
considered fair or unfair by a court
of law?”

Child 2: "Based on the explanation
above, is the sentence likely to be
considered fair or unfair in a court
of law?”

Phrase Swapping

Parent 1: "Summarize the following text."
Parent 2: "Explain the meaning and
implications of the following sentence
in a legal context.”

Child 1: "Explain the meaning and
implications of the following summary in
a legal context.”

Child 2: "Summarize the following sentence
to understand its core message and
implications.”

Token-Level

Parent 1: "Based on the description above,
is the following fair or unfair?”

Parent 2: "Considering the explanation
above, is this sentence likely to be
considered fair or unfair by a court

of law?”

Child 1: "Considering the description
above, is the following sentence likely
to be considered fair or unfair by a
court of law?”

Child 2: "Based on the explanation above,
is the following sentence likely to be
considered fair or unfair by a court of
law?”

J Mutation Strategies

The following is a summary of the introduced
strategies and their intended result.

Random Changes a single word or phrase in the
sentence to a synonym or a similar concept.

Swap Swaps existing words or phrases in the
sentence to introduce minor structural variation.

Scramble Rearranges the order of words/phrases
while maintaining the original meaning.

Inversion Reverses the order of words or phrases
in part or all of the sentence.

Deletion Removes a word or phrase from the
sentence to create a more concise variation.

Insertion Adds new words or phrases to provide
additional context while preserving meaning.

Semantic Rephrases the sentence slightly while
keeping the core meaning intact.

Syntactic  Alters the sentence structure while pre-
serving the meaning.

J.1 Mutation System Prompt

"You are an expert linguist and copywriter. Make
sure the sentence you return is wrapped in a JSON-
object as follows:

{"mutated_sentence”: "new sentence
you generate based on the instruction”}.

The rest of your response can be plain text, but the
new sentence must be in a JSON. The new sentence
you suggest must be grammatically correct and
reasonably semantically similar to the original."

J.2 Mutation Strategy Prompts

Random "Change only one single word or phrase
in the sentence to a synonym or similar concept."”

Swap "Swap two existing words or phrases in the
sentence."
Scramble "Rearrange the existing words and/or

phrases in the sentence with a minimal addition of
new words."

Inversion "Invert the order of the existing words
or phrases in all or part of the sentence."

Deletion "Delete a word or phrase in the sen-
tence."
Insertion '"Insert words or phrases in the sen-

tence that could provide more context/clarity while
keeping the same base meaning."

Semantic "Slightly rephrase the sentence."

Syntactic "Modify the sentence structure of the
sentence while keeping the same base meaning."
J.3 Mutation Examples

Below are some selected illustrative mutation ex-
amples.
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Semantic

Initial Prompt: "Produce a detailed output
for each sentence, outlining the reasoning
for its classification into the most likely
category."”

Mutated Prompt: "Generate a comprehensive
output for each sentence, explaining the
rationale for its categorization into the
most probable group.”

Insertion

Initial Prompt: "Interpret each sentence
and provide a comprehensive rationale for
its legal classification.”

Mutated Prompt: "Carefully interpret each
individual sentence within the context of
the document and provide a comprehensive
rationale for its specific legal
classification.”

Random

Initial Prompt: "Summarize the following
text."
Mutated Prompt: "Condense the following
text."

Swap

Initial Prompt: "Based on the description
above, is the following fair or unfair?”
Mutated Prompt: : "Based on the description
above, is the following unfair or fair?"

Deletion

Initial Prompt: "Based on the description
above, is the following fair or unfair?”
Mutated Prompt: "Based on the description,
is the following fair or unfair?”

Scramble

Initial Prompt: "Based on the description
above, is the following fair or unfair?"
Mutated Prompt: "Is the following fair or
unfair, based on the description above?"

K GenDLN Logging

Every sub-component of GenDLN (fitness calcu-
lation, selection, crossover, mutation, replacement,
caching) has a dedicated logger and defined struc-
ture, and a GA Log (which is the output of the
framework), is a structured log of these compo-
nents. Below we provide the expected output and
logger functionality and examples.

The logging system in the Genetic Algorithm
(GA) serves as a comprehensive tracking and de-
bugging framework, capturing detailed records of
key evolutionary events at multiple levels. It en-
sures traceability of the entirety of the GA run. The
logging structure is hierarchical, with nested log-
gers handling distinct operations, and a centralized
GA logger aggregating all logs.

Hierarchical Structure of Logging The logging
framework consists of specialized loggers:

* GA Logger — The central log for the en-
tire evolutionary process, containing per-
generation records of all key operations.

* Population Initialization Logger — Tracks
how the initial population is created, including
augmentation details.

* Selection Logger — Records selected individ-
uals, strategy parameters, and elitism effects.

* Crossover Logger — Captures the details
of crossover operations, including parent-
offspring relationships.

* Mutation Logger — Stores information on
how individuals are mutated, along with mu-
tation types.

* Fitness Logger — Logs individual fitness
scores and overall generation-level fitness
statistics.

* Fitness Cache Logger — Tracks cache hits
and misses.

* Replacement Logger — Logs how individuals
are retained or replaced in the next generation.

* Run-Specific Details — Runtime, system
specs, configs, and hyperparameters of the
GA run are appended to the end of the log.

GA Logger: Centralized Evolution Tracking
Each generation’s log entry contains the following:

{

"generations”: [

{"generation_id" : i,
"initial_population”: [...],
"selection_data”: [...],
"population_after_selection”: [...],
"crossover_data”: [...],
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"population_after_crossover”: [...],
"mutation_data": [...],

"population_after_mutation”: [...],
"fitness_data": {...3},
"replacement_data": [...]

}!

{...3, ... ],
"early_stopping":

{"status": false, "reason": ""},
"runtime”: "3.25 minutes”,

"system_info": {...},

"config”: {...3},

"hyperparameters”: {...},

"ga_log_filename":
{"ga_log_date-timestamp.log"}

This hierarchical logging system ensures that all
operations are transparently recorded, aiding both
debugging and performance analysis of the genetic
algorithm.

L. Reproducibility

We provide a set of R Scripts that allow the repro-
duction of our results, plots, and analyses. The
scripts are structured to ensure transparency and
ease of replication, and enforce a file path structure
for inputs and outputs.

L.1 Environment Setup

All necessary dependencies are installed and loaded
at the start of the execution. The required R
libraries include tidyverse, jsonlite, here,
purrr, data.table, dplyr, ggplot2, tidyr,
readr, and stringdist. The script automatically
installs missing dependencies.

L.2 Data and Directory Structure

The project assumes a structured directory for data
storage and result output:

* Root Directory: Automatically set to the lo-
cation of the script.

* Log Directory: Stores raw Genetic Algorithm
(GA) log files (output of GenDLN).

e Summary Directory: Contains extracted
metadata and performance summaries.

¢ Test Directory: Stores test results.

* Output Directory: Stores processed results
and plots.

* Plot Directory: Contains visualization out-
puts.

All necessary directories are created if they do
not exist.

L.3 Processing and Normalization

Log File Normalization GA log files are pro-
cessed into structured formats. Key extracted ele-
ments include:

* Initial generation data (fitness scores, raw met-
rics, attributes).

* Subsequent generation data with performance
metrics.

* Total number of completed generations.

* Metadata including runtime, system configu-
ration, hyperparameters, and early stopping
conditions.

Metadata Extraction Log files are further pro-
cessed to extract structured information on:

* GA parameters (population size, mutation
rate, selection strategy, fitness function).

* Run performance (best fitness scores, accu-
racy, raw evaluation metrics).

* Execution environment (system specifications,
runtime details).

L.4 Batch Processing and Summary
Generation

Aggregating Run Summaries A batch process-
ing script collects metadata from all runs and pro-
duces a consolidated summary. The summary in-
cludes:

* Number of runs per batch.
* Associated test results.
* Log files used in the batch.

This process ensures that interrupted runs are
accounted for and test data is linked correctly.

Appending Notes to Summaries Notes can be
appended to individual summaries to document
special conditions or anomalies in the runs.
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L.5 Analysis and Visualization

GA Performance Report Each log file is pro-
cessed to produce a detailed report that includes:

* Performance metrics across generations (fit-
ness scores, accuracy, F1 scores...).

¢ Statistical summaries (mean, variance, min,
max values of key metrics).

* Evolutionary trends of best and worst individ-
uals.

Metric Extraction and Visualization Metrics
such as fitness score, accuracy, and F1 scores are ex-
tracted for each generation and visualized to track
GA progression.

GA Convergence Analysis The convergence of
the GA is visualized by plotting best and worst
fitness scores across generations.

Diversity and Similarity of Best Individuals
The script computes diversity across generations,
tracking:

* Unique individuals per generation.

* Similarity of best individuals across genera-
tions.

* Levenshtein and Jaccard similarity scores for
best individuals.

Comprehensive Run Summary A final com-
bined summary consolidates all extracted informa-
tion, test results, and log metadata into a structured
CSV file.

M Detailed Results

M.1 CLAUDETTE

The best prompts from the top 4 selected binary
runs in Table 8 are shown in Table 11

As for multi-label, results are in Table 9, and
prompts are in Table 12.

M.2 MRPC

The best prompts from the top 4 selected runs in
Table 10 are shown in Table 13

N Detailed Plots

N.1 Metrics Over Generations

The metrics over generations plot tracks key per-
formance metrics across generations, such as accu-
racy, fitness score, average fitness, and F1 scores.
It is a multi-line plot where each line represents a
metric and its trend over generations. The x-axis
represents the generation number, while the y-axis
represents the value of the metric. Different colors
indicate different metrics.

Higher values generally indicate better perfor-
mance. Fluctuations in fitness and accuracy reflect
instability or exploration by the genetic algorithm
(GA), while a converging trend suggests stabiliza-
tion around optimal solutions. A steadily increas-
ing or stable fitness score implies progress and con-
vergence, whereas a volatile or fluctuating fitness
score suggests ongoing evolution.

CLAUDETTE Plots for the top multi-label runs
are on the left side of Fig. 8, 10 and 12, 14. For the

binary runs, they are on the left of Fig. 16, 18 and
20, 22.

MRPC Plots for the top runs are on the left side
of Fig. 24, 26 and 28, 30.

N.2 Convergence Plot

The convergence plot visualizes how the best and
worst individuals change across generations, pro-
viding insight into GA optimization progress. This
line plot features a dashed blue line representing
the best fitness and a dotted red line representing
the worst fitness. A shaded region between these
lines indicates population fitness spread. The x-
axis represents the generation number, and the y-
axis represents the fitness score. The best fitness
line tracks the top-performing individual in each
generation, while the worst fitness line tracks the
least-performing individual. A narrowing gap be-
tween the two lines indicates that the population
is converging toward similar solutions. If the best
fitness stagnates early, the algorithm may have pre-
maturely converged to a suboptimal solution. Con-
vergence occurs when the best and worst scores
stabilize and remain close together. A wide gap be-
tween best and worst scores suggests high diversity
in the population. If the worst score is constantly
low, it may indicate poor-quality individuals or un-
fit solutions. The X on the Y-axis represents a
worst individual with an empty prompt, which was
detected by the fallback mechanism described in D
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Best Individual Metrics by Generation vs. Average Fitness
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Figure 8: CLAUDETTE - Left: plot of metrics and average fitness for best run A in Table 9. Right: Diversity

plotting for best multi-label run A in Table 9
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Figure 9: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best

multi-label run A in Table 9.

and assigned a fitness score of —1, not represented
in the y-axis scale in order not to skew the graph.

CLAUDETTE The convergence plot for the top
multi-label runs are in Fig. 32, 33, 34, and 35. For

binary, they can be found in in Fig. 36, 37, 38, and
39.

MRPC The convergence plot for the top runs are
in Fig. 40, 41, 42, and 43.

N.3 Diversity Plot

The diversity plot tracks the number of unique in-
dividuals and prompts across generations to assess
genetic diversity. This multi-line plot shows the
unique count of prompt 1, prompt 2, and unique
individuals. The x-axis represents the generation
number, while the y-axis represents the count of
unique individuals. A high count indicates high
diversity, suggesting that the GA is still exploring
solutions, whereas a sharp drop in diversity sug-
gests exploitation, whereby the same individual is
being selected for the next generation several times
due to high selection pressure. Diversity is crucial
for exploration in early generations. The GA may

get stuck in a local optimum if diversity drops too
early. If diversity remains high for too long, the
GA may struggle to converge.

CLAUDETTE Diversity plots for the top multi-
label runs are on the right side of Fig. 8, 10 and 12,

14. For the binary runs, diversity plots are on the
right of Fig. 16, 18 and 20, 22.

MRPC Diversity plots for the top runs are on the
right side of Fig. 24, 26 and 28, 30.

N.4 Similarity Heatmaps

The similarity heatmap compares the similarity
of best individuals across generations using Lev-
enshtein distance. These plots take the form of
heatmaps where the x-axis and y-axis represent
generations, and the color intensity represents the
distance. The darker the color, the more simi-
lar (smaller distance) the prompts are. The Lev-
enshtein distance measures character-level differ-
ences between best individuals. If distances are
high between adjacent generations, it suggests sig-
nificant mutation and exploration. If distances are
low, it suggests convergence and exploitation. Each
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Figure 10: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run B in 9. Right: Diversity

plotting for best multi-label run B in Table 9
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Figure 11: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best

multi-label run B in 9.

cell compares the similarity of the best individu-
als from one generation to another. Diagonal cells
should always be darkest since they compare iden-
tical generations. Clusters of dark squares sug-
gest stable solution phases in the GA. Although we
also plotted the tokenized version of this (where
token distance rather than character distance is com-
pared), the plots differ very slightly and globally
communicate the same information.

CLAUDETTE Prompt similarity plots for the
top 4 multi-label runs are in Fig, 9, 11, 13, and 15.
For the binary they are in Fig. 17, 19, 21, and 23.

MRPC Prompt similarity plots for the top 4 runs
are in Fig, 25, 27, 29, and 31.

N.5 Summary of Plot Interpretations

The combination of these plots provides a com-
prehensive view of how the genetic algorithm pro-
gresses over time. The metrics over generations
plot tracks performance trends, the convergence
plot highlights stability and volatility, the diversity
plot indicates exploration versus exploitation, and
the similarity heatmaps reveal how best individuals

evolve.

O Ablation Study

Comparing the pre and post-ablation metric plots
(Fig. 44), we observe that the post-ablation plot
flatlines for all metrics, including average fitness
(and looks similarly flat for the binary case). In
contrast, the pre-ablation plot shows a clear trend
of exploration and improvement, demonstrating
the role of selection in guiding the search toward
optimal solutions. By removing it, the evolutionary
process collapses into a random stagnating search.

P LLM-Safe MRPC

We performed a thorough preprocessing of the
Microsoft Research Paraphrase Corpus (MRPC)
(Dolan and Brockett, 2005) to ensure its suitability
for modern large language model (LLM) pipelines.
MRPC consists of sentence pairs extracted from
news sources, labeled as semantically equivalent
or not. Our preprocessing was carried out with the
intent to sanitize potentially problematic content
and eliminate parsing issues during downstream
processing, which we faced in practice, when we
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Figure 12: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run C in 9. Right: Diversity

plotting for best multi-label run C in 9
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Figure 13: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best

multi-label run C in 9.

attempted to run our framework on the unprocessed
dataset.

P.1 Trigger Keyword Removal

We defined a list of content-sensitive trigger key-
words that might introduce bias or lead to mal-
formed LLM output due to content flagging.

This list included terms such as: ["murder”,
"terrorist”, "rape", "suicide”, "nazi",
"porn”, "overdose”, "deep state”, ...]

Using a compiled regex, we flagged and removed
any sentence pair where either sentence contained
one of these keywords. This was applied separately
to the training and test sets. We flagged and re-
moved 124 rows from the training set and 53 rows
from the test set.

P.2 Quote Normalization

Many sentences contained unbalanced or mal-
formed quote characters (e.g., unmatched ", im-
proper smart quotes like “ and ”, or terminal es-
caped quotes like ). These were identified using a
custom detection function that counted quote occur-
rences per sentence and flagged anomalies where
the quote count was odd. We manually corrected

374 such cases across both sentence columns. All
forms of quotation marks were then normalized
to a single safe, non-standard Unicode character
(U+2033 Double Prime), visually identical to a
double quote, and interpreted the same by an LLM,
but would not interfere with JSON parsing.

P.3 Final Output

The final version of the dataset:
* Contains only rows free of trigger words.

* Has quote balance issues corrected across all
sentence pairs.

* Is JSON-safe and fully parsable by LLMs and
downstream systems.

We refer to this cleaned version as the LLM-
Safe MRPC Dataset and use it consistently
throughout our experiments.
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Figure 14: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run D in 9. Right: Diversity
plotting for best multi-label run D in 9
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Figure 15: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
multi-label run D in 9.
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Prompt 1

Prompt 2

Create a feature-enriched output that provides
a reasoning for each sentence’s most likely
classification.

Generate an explanation-rich classification for
each sentence, including the reasoning behind
the classification decision.

Provide a detailed analysis for each sentence,
outlining the reasoning for its classification
into the most likely category.

Construct a comprehensive output that ex-
plains the rationale for each sentence’s classi-
fication.

Develop an enriched response that details the
reasoning for each sentence’s assigned classi-
fication.

Offer a feature-oriented output that justifies
the classification of each sentence with clear
reasoning.

Generate a detailed report justifying each sen-
tence’s classification with specific reasoning.

Create a classification output enriched with
reasoning for every sentence in the input.

Produce an output that pairs each sentence
with an explanation for its classification.

Develop a thorough output that provides rea-
soning for the classification of each input sen-
tence.

Deliver a reasoning-augmented classification
output for each provided sentence.

For each sentence contained within the input
data, evaluate and accurately classify it into
one or more of the following categories: ((cat-
egory listing ...)) Carefully analyze the content
and implications within each sentence to de-
termine the comprehensive set of categories it
belongs to.

Analyze each sentence in the input data and
classify it into one or more relevant categories
based on their content and implications, ensur-
ing precision in multi-label classification.
Perform a comprehensive classification of
each input sentence into appropriate cate-
gories, ensuring all applicable labels are cap-
tured.

Evaluate each sentence thoroughly, assigning
it to relevant categories and providing precise
multi-label classifications.

Classify the input sentences, ensuring a rigor-
ous multi-label classification for relevant as-
pects such as: ((category listing ...))

For every sentence in the dataset, determine
the applicable categories and provide an accu-
rate multi-label classification for these: ((cate-
gory listing ...))

Thoroughly analyze each sentence to classify
it into one or more relevant categories, captur-
ing all dimensions of the classification.
Assign appropriate classifications to each in-
put sentence, reflecting its content and intent
while addressing these categories: ((category
listing ...))

Evaluate and classify each sentence in the
dataset into all relevant categories, focusing
on ((category listing ...)).

Analyze the input data sentence by sentence
to identify the most applicable categories for
each, ensuring completeness in multi-label
classification.

Classify the content of each sentence with a
focus on accurate multi-label categorization,
rigorously addressing ((category listing ...)).

Table 4: CLAUDETTE - Manual multi-label prompt bank used to initialize every GenDLN multi-label run.
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Figure 18: CLAUDETTE - Left: plot of metrics and average fitness for best run B in 8. Right: Diversity plotting

Prompt 1

Prompt 2

You are a linguistic analysis model special-
ized in paraphrase tasks. For each input pair,
extract key semantic and syntactic features rel-
evant for paraphrase classification.

Analyze each sentence pair to identify mean-
ingful features that help determine if the two
sentences are paraphrases.

Given a list of sentence pairs, extract discrimi-
native features for each pair that can support
downstream paraphrase detection.

You are tasked with analyzing sentence pairs.
For each pair, return a compact description of
important features that would help in classify-
ing paraphrase relationships.

Analyze the input sentence pairs and extract
useful features that would support a classifier
in detecting semantic equivalence.

You are a feature extraction system for para-
phrase detection. For each sentence pair, out-
put key comparison features in the specified
format.

Given sentence pairs, identify and summarize
linguistic or semantic cues that are relevant for
determining paraphrasing.

For each pair of sentences, write a brief set
of features that capture their semantic, lexical,
and structural alignment.

You are an expert in paraphrase detection. In
the following your task is to analyze if sen-
tence 2 is a paraphrased version of sentence
1. Thus, you shall classify each sentence pair
into 0 (not equivalent’) or 1 (equivalent’)
depending on whether sentence 1 and 2 are
semantically equivalent.

Given each sentence pair, determine if the sec-
ond sentence is a paraphrase of the first. Out-
put 1 if they are semantically equivalent, O if
they are not.

Your job is to judge whether the meaning of
sentence 1 is preserved in sentence 2. Clas-
sify the pair as 1 for paraphrase or O for non-
paraphrase.

Classify each sentence pair by checking if sen-
tence 2 can be considered a paraphrase of sen-
tence 1. Use 1 for equivalent, O for not equiva-
lent.

You are a paraphrase classification assistant.
For each sentence pair, assign a binary label:
1 if sentence 2 is a paraphrase of sentence 1,
else 0.

You are to detect paraphrases. For each sen-
tence pair, determine if both express the same
meaning. Label with 1 if equivalent, otherwise
0.

For each given pair of sentences, assess
whether sentence 2 paraphrases sentence 1.
Output 1 for equivalent meaning, O for dif-
ferent meaning.

You are evaluating sentence-level semantic
similarity. Classify each pair with 1 if both
sentences are paraphrases, and O if they are
not.

Table 5: MRPC - Manual binary prompt bank (Part 1/3) used to initialize GenDLN binary runs.

Best Individual Metrics by Generation vs. Average Fitness
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for best binary run B in Table 8.
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Prompt 1

Prompt 2

Inspect each input sentence pair and generate
a meaningful feature description that reflects
their similarity or difference in meaning.

You are a natural language understanding
model. For each sentence pair, extract features
that reveal differences or overlaps in meaning
and expression.

Identify semantic relationships and stylistic
variations in each sentence pair. Output con-
cise features that explain their alignment or
divergence.

For every input pair, generate a feature-based
comparison that highlights differences in struc-
ture, meaning, or terminology.

You are helping a classifier understand sen-
tence similarity. Extract key features that
could guide a model in deciding paraphrase
equivalence.

Assess each sentence pair for shared mean-
ings, nuanced differences, or structural shifts.
Provide these insights as short, structured fea-
tures.

Your goal is to support a paraphrase detec-
tion system by extracting features that capture
lexical, syntactic, and semantic properties of
sentence pairs.

Review each sentence pair and write a concise
summary of alignment cues and linguistic dif-
ferences that may affect paraphrase detection.

You are an NLP expert assessing paraphrase
relationships. Label each sentence pair as 1 if
semantically equivalent, else 0.

You are a binary classifier for sentence equiv-
alence. Judge whether sentence 2 retains the
meaning of sentence 1. Output 1 or 0 accord-
ingly.

Your goal is to assess if sentence 2 can be con-
sidered a reasonable paraphrase of sentence 1.
Output 1 if so, otherwise 0.

Examine the semantic content of each sentence
pair and decide if they convey the same core
meaning. Return 1 for paraphrase, 0 for other-
wise.

Determine whether sentence 2 is interchange-
able with sentence 1, i.e. a suitable paraphrase.
Output 1 if they are interchangeable, else 0.

You are assessing paraphrase validity. Classify
each pair as 1 if the second sentence accurately
reflects the meaning of the first, or 0 if not.

For every pair, identify whether sentence 2 ex-
presses the same meaning as sentence 1 using
a binary label: 1 (yes), 0 (no).

Your task is to judge if sentence 2 carries the
same intent and meaning as sentence 1. Output
1 for equivalence, 0 otherwise.

Distance
60

40

20

0

Figure 19: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best

Table 6: MRPC - Manual binary prompt bank (Part 2/3) used to initialize GenDLN binary runs.
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Figure 20: CLAUDETTE - Left: plot of metrics and average fitness for best run C in 8. Right: Diversity plotting

Prompt 1

Prompt 2

As a sentence-level feature extractor, outline
the textual signals that could be used to deter-
mine if two statements express the same idea.

Examine each sentence pair and extract dis-
tinguishing features that would help a down-
stream model judge paraphrase likelihood.

Your job is to find patterns in sentence pairs
that indicate whether they express similar or
different meanings. Output a compact list of
relevant features.

You are a linguistic alignment engine. Identify
whether key predicates, named entities, and
relationships are preserved across the sentence
pair.

Highlight phrasing shifts, information asym-
metry, or reordering patterns that could influ-
ence whether the sentence pair is semantically
aligned.

For each input pair, extract lexical and struc-
tural markers - including synonym usage,
clause structure, and entity alignment - that
contribute to paraphrase detection.

Extract the central premise of each of the two
sentences, what information does each con-
vey?

As an expert writer, would you say the two
sentences convey the same main idea? What
would you say is the point of each sentence?

Could the two sentence reasonably be ex-
changed within a text without changing the
general meaning of the text? Why or why not?

Determine semantic equivalence at the sen-
tence level. For each pair, output 1 if meaning
is preserved between the two sentences, 0 if it
is lost or altered.

Review each sentence pair and determine
whether sentence 2 retains the essential mean-
ing of sentence 1. Respond with 1 for equiva-
lence, O otherwise.

Your job is to classify whether sentence 2 can
logically be interpreted as expressing the same
idea as sentence 1. Output 1 for yes, O for no.

Assess whether sentence 2 paraphrases sen-
tence 1 without introducing or omitting criti-
cal information. Output 1 for paraphrase, O if
meaning changes.

For each pair of statements, decide whether
sentence 2 communicates the same content as
sentence 1. Respond with 1 for equivalent, 0
for not equivalent.

Analyze the sentence pair and determine if
their meanings align well enough to be consid-
ered paraphrases. Output 1 if they do, 0 if not.

Are they paraphrases of each other? Output 1
for yes, O for no.

Would it be reasonable to replace one sentence
with the other in a text without changing the
overall meaning? In other words, are the sen-
tences paraphrases of each other? Output 1 if
yes and O if no.

Given that assessment, can the sentences be
classified as paraphrases of each other? An-
swer with 1 if they are paraphrases, and O if
not.

Table 7: MRPC - Manual binary prompt bank (Part 3/3) used to initialize GenDLN binary runs.

Best Individual Metrics by Generation vs. Average Fitness
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Diversity of Prompts and Individuals Over Generations

\WV/ N\
\V

Generation

30

Number of Unique Elements

27

unique_individuals 8= unique_prompt_1 unique_prompt_2

1203



Metric Run A Run B Run C Run D
Runtime (mins) 58.565 160.9097 100.8069 53.262
Best Fitness 0.8785 0.8785 0.8687 0.8380
Best Accuracy 0.8788 0.8788 0.8687 0.8384
Test. Accuracy 0.7897 0.7706 0.7646 0.7404
Best Macro F1 0.8785 0.8785 0.8686 0.8380
Test. Macro F1 0.6523 0.6364 0.6338 0.6172
Best Weighted F1 0.8784 0.8784 0.8687 0.8379
Test. Weighted F1 0.8256 0.8115 0.8073 0.7894
Selection Strategy Rank SUS SUS Rank
Crossover Type Semar.ltic Token Semal?tic Semaqtic
Blending Level Blending Blending
Crossover Rate 0.800 0.800 0.800 0.800
Mutation Type Semantic Syntactic Semantic Semantic
Mutation Rate 0.200 0.200 0.200 0.200
Population Size 10 30 30 10
Completed Generations 16 16 9 16
Stopped Early Yes Yes Yes Yes
Stopped Early Reason 5 stag. gens. 5 stag. gens. 5 stag. gens. 5 stag. gens.

Table 8: CLAUDETTE - Selected runs for binary (fair/unfair) classification.

Metric Run A Run B Run C Run D
Runtime (mins) 469.689 439.694 373.876 155.367
Best Fitness 0.938 0.925 0.922 0.921
Best Accuracy 0.910 0.890 0.880 0.900
Test. Accuracy 0.825 0.769 0.809 0.802
Best Macro F1 0.947 0.936 0.935 0.929
Test. Macro F1 0.862 0.799 0.844 0.855
Best Weighted F1 0.944 0.933 0.929 0.923
Test. Weighted F1 0.856 0.808 0.842 0.851
Selection Strategy Rank Steady-State SUS Steady-State
Crossover Type Phrase Swap Phrase Swap Token Level Semantic Blending
Crossover Rate 0.850 0.850 0.850 0.800
Mutation Type Insertion Insertion Syntactic Semantic
Mutation Rate 0.300 0.300 0.300 0.200
Population Size 30 30 30 30
Completed Generations 30 30 30 12
Stopped Early No No No Yes
Stopped Early Reason - - - 5 stag. gens.

Table 9: CLAUDETTE - Selected best runs for multi-label classification.
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Metric Run A Run B Run C Run D
Runtime (mins) 137.681 167.228 67.070 127.262
Best Fitness 0.850 0.840 0.850 0.840
Best Accuracy 0.850 0.840 0.850 0.840
Test. Accuracy 0.813 0.807 0.798 0.799
Best Macro F1 0.850 0.840 0.850 0.840
Test. Macro F1 0.796 0.787 0.782 0.781
Best Weighted F1 0.850 0.840 0.850 0.840
Test. Weighted F1 0.816 0.809 0.802 0.802
Selection Strategy Steady-State Roulette Tournament SUS
Crossover Type Single Point ~ Semantic Blending  Token Level Two Point
Crossover Rate 0.85 0.85 0.85 0.80
Mutation Type Semantic Insertion Insertion Deletion
Mutation Rate 0.20 0.20 0.20 0.20
Population Size 30 30 30 30
Completed Generations 16 23 12 15
Stopped Early Yes Yes Yes Yes
Stopped Early Reason 10 stag. gens. 10 stag. gens. 10 stag. gens. 10 stag. gens.

Table 10: MRPC - Selected best runs for binary paraphrase classification.

Run | Prompt Text

A | Prompt 1: Assess the potential legal consequences and issues of the following sentence.

Prompt 2: Based on the previous discussion, would you consider this sentence to be fair or
unfair as it stands?

B | Prompt 1: Interpret the following sentence in any hidden clauses or implications.

Prompt 2: Will the described potential impact be considered fair or unfair?

C | Prompt 1: Assess the possible legal ramifications and effect on consumer rights of the

following sentence.
Prompt 2: Considering the impact of the ethical implications discussed, is this sentence fair
or unfair in its current phrasing?

D | Prompt 1: Identify any potential legal issues when analyzing the meaning of the following

sentence in a legal context.
Prompt 2: Given the emphasized issues, is this sentence fair or unfair in its current state?

Table 11: CLAUDETTE - Prompt 1 and 2 of the best individuals for the runs as reported in Table 8 for the binary

classification task.

Prompt 1 Levenshtein Distance
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Figure 21: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best

binary run C in Table 8.
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Run | Prompt Text

A | Prompt 1: To enhance transparency for the end user, who may not be familiar with the
internal mechanics of our system, we should annotate each individual sentence contained
within the given customer review that is specifically about our recently introduced product,
including a clear, concise, and straightforward explanation that meticulously details the
reasoning, justification, and rationale behind its specific classification, ensuring that the user
comprehends why we classified the sentence as such.
Prompt 2: To thoroughly organize and accurately assign a precise data monitoring technique
or pertinent cookie policies that are explicitly outlined in a legal privacy policy document, a
team of legal experts should meticulously review the entire policy document, starting from
the introduction to the conclusion, and systematically classify each individual clause from the
contract with high precision during the detailed multi-label classification process, ensuring
that the resulting labels are not only relevant to the contractual obligations clearly outlined in
the legal documents but also precise in their legal definition.
B Prompt 1: To ensure thorough documentation and transparency in our contractual legal anal-
ysis efforts within the jurisdiction of the relevant state legal system, produce a comprehensive
legal classification of the content within each individual clause that is clearly outlined in the
case files pertaining to the ongoing corporate lawsuit.
Prompt 2: When examining corporate legal documents, such as those related to IT service
agreements, systematically classify each individual sentence from various types of contrac-
tual clauses, including confidentiality, liability, and termination clauses, into relevant and
predefined labels for better organization and analysis.
C | Prompt 1: Present a detailed report on the categorization of every sentence, accompanied by
relevant evidence.
Prompt 2: Every sentence, in the multi-label classification process, will be assigned to its
fitting categories to maintain it thoroughly, emphasizing suitable labels that range from PINC
for cookie and tracking to LAW for legal frameworks.
D | Prompt 1: Generate a feature-focused output that matches each sentence with a reason for
its categorization.
Prompt 2: Sort and classify each sentence in the dataset, taking into account these categories:
PINC (Cookies or data collection), USE (Rules on user activities), CR (Removal rights),
TER (Service terminations), LTD (Limitation of liability), A (Arbitration resolutions), LAW
(Governing legal codes), J (Jurisdiction clauses), CH (Agreement changes).

Table 12: CLAUDETTE - Prompt 1 and 2 of the best individuals for the runs as reported in Table 9 for the multi-label
task.

Best Individual Metrics by Generation vs. Average Fitness Diversity of Prompts and Individuals Over Generations
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o~ accuracy 8= average_fitness fitness_score 8= macro, _avg_f1_score weighted_avg_f1_score unique_individuals 8= unique_prompt_1 unique_prompt_2

Figure 22: CLAUDETTE - Left: plot of metrics and average fitness for best run D in 8. Right: Diversity plotting
for best binary run D in Table 8.
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Run | Prompt Text

A | Prompt 1: Assess each pair of sentences and generate a feature-based comparison that
highlights differences in structure, meaning, or terminology.
Prompt 2: You are evaluating each pair of sentences to determine if they express the same
central meaning; return 1 if they are paraphrases, and 0 otherwise.
B Prompt 1: For each individual pair of sentences that you evaluate within a comparative text
analysis study, output a meaningful feature description that accurately captures their shared
meanings, specific word choices, sentence structure, and stylistic differences.
Prompt 2: After carefully examining each individual pair of sentences for their meaning
and content, determine if they are paraphrases and convey the same meaning; label with a 1
if they are semantically equivalent, otherwise label them with a 0.
C | Prompt 1: For each sentence pair, extract semantic relationships and output concise features
that reveal differences or overlaps in meaning and expression.
Prompt 2: Your goal is to assess whether or not sentence 2 retains the meaning of sentence
1, taking into account all aspects of semantics and context. Judge whether sentence 2 can
be considered a reasonable paraphrase of sentence 1, with an equivalent core interpretation.
Output 1 for yes or O for no accordingly.
D | Prompt 1: Compare each sentence pairs that reveal distinguishing features in meaning.
Prompt 2: Judge whether they are expressing the same intent of each other in a text.

Table 13: MRPC - Prompt 1 and 2 of the best individuals for the runs as reported in Table 10 for the paraphrase
classification task.
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Figure 23: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
binary run D in Table 8.
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Figure 24: MRPC - Left: plot of metrics and average fitness for best run A in Table 10. Right: Diversity plotting
for best multi-label run A in Table 10
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Figure 25: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run A in Table 10.

Best Individual Metrics by Generation vs. Average Fitness Diversity of Prompts and Individuals Over Generations
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Figure 26: MRPC - Left: plot of metrics and average fitness for best run A in Table 10. Right: Diversity plotting
for best multi-label run B in Table 10
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Figure 27: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run B in Table 10.
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Figure 28: MRPC - Left: plot of metrics and average fitness for best run C in Table 10. Right: Diversity plotting
for best multi-label run C in Table 10
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Figure 29: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run C in Table 10.
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Figure 30: MRPC - Left: plot of metrics and average fitness for best run D in Table 10. Right: Diversity plotting
for best multi-label run D in Table 10
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Figure 31: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run D in Table 10.
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Fitness Convergence Over Generations
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Figure 32: CLAUDETTE - Convergence plot for best
multi-label run A in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.
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Figure 33: CLAUDETTE - Convergence plot for best
multi-label run B in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.
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Figure 34: CLAUDETTE - Convergence plot for best
multi-label run C in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.
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Figure 35: CLAUDETTE - Convergence plot for best
multi-label run D in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.

Fitness Convergence Over Generations

——

080

Generation

== BestFitness = = WorstFitness

ga_log_20250117_204400.1og

Figure 36: CLAUDETTE - Convergence plot for best
binary run A in Table 8.
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Figure 37: CLAUDETTE - Convergence plot for best
binary run B in Table 8.
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Fitness Convergence Over Generations
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Figure 38: CLAUDETTE - Convergence plot for best
binary run C in Table 8. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.
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Figure 39: CLAUDETTE - Convergence plot for best
binary run D in Table 8.
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Figure 40: MRPC - Convergence plot for best binary
run A in Table 10. X on the x-axis indicates an illegal
individual as per the fallback mechanism in Appendix
D.
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Figure 41: MRPC - Convergence plot for best binary
run B in Table 10. X on the x-axis indicates an illegal
individual as per the fallback mechanism in Appendix
D.
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Figure 42: MRPC - Convergence plot for best binary
run C in Table 10.
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Figure 43: MRPC - Convergence plot for best binary
run D in Table 10.
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Figure 44: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run in Table 1. Right:
Ablation of selection pressure for the same run.
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