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Abstract

Time series modeling holds significant impor-
tance in many industrial applications and has
been extensively studied. A series of recent
studies have demonstrated that large language
models (LLMs) possess robust pattern recog-
nition and semantic understanding capabilities
over time series data. However, the current lit-
erature have yet striked a high-quality balance
between (a) effectively aligning the time series
and natural language modalities and (b) keep-
ing the inference efficiency for industrial de-
ployment. To address the above issues, we now
propose the Time-LlaMA framework. Time-
LlaMA first converts the time series input into
token embeddings through a linear tokeniza-
tion mechanism. Second, the time series token
embeddings are aligned with the text prompts.
Third, to further adapt the large languag model
(LLM) backbone for time series modeling, we
have developed a dynamic low-rank adaptation
technique (DynaLoRA). DynaLoRA dynami-
cally chooses the most suitable LoRA modules
at each layer of the Transformer backbone for
each time series input, enhancing the model’s
predictive capabilities. Our experimental re-
sults on an extensive collection of challenging
open and proprietary time series tasks confirm
that our proposed method achieves the state-of-
the-art (SOTA) performance and have poten-
tials for wide industrial usages.1

1 Introduction

Time series forecasting (TSP) represents a cru-
cial modeling endeavor (Jin et al., 2023b), span-
ning a wide array of practical applications such
as climate modeling, inventory management, and
energy demand prediction. Typically, each fore-
casting task demands specialized domain expertise
and bespoke model architectures. This requirement
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has precluded the development of a robust founda-
tional model (FM) capable of few-shot or zero-shot
learning, akin to GPT-3 (Brown et al., 2020), GPT-
4 (OpenAI, 2023), and Claude-32, within the time
series domain. Despite the fact that time series
modeling has yet to witness similar groundbreak-
ing advancements, the remarkable capabilities of
large language models (LLMs) have fueled interest
in their application to time series forecasting tasks
(Zhou et al., 2023).

Despite the advancements in the literature on
Large Language Model (LLM)-based Time Series
(TS) modeling (Zhou et al., 2023; Jin et al., 2023a),
several limitations remain, hindering their indus-
trial usages. Firstly, the successful integration of
time series data with natural language in LLM-
based TS modeling depends heavily on the appro-
priate alignment of their respective modalities. Cur-
rent approaches primarily rely on text prompts and
cross-attention mechanisms, which do not effec-
tively leverage the vocabulary. Secondly, recent
studies adopt a methodology similar to PatchTST
(Nie et al., 2022), transforming a univariate time se-
ries into a sequence of patches that are then treated
as tokens input into Transformer blocks. This ap-
proach necessitates converting multivariate Time
Series Prediction (TSP) tasks into multiple univari-
ate TSP subtasks, leading to increased inference la-
tency. Lastly, the current works maintains the LLM
backbone in a frozen state and refrains from incor-
porating additional trainable components within
the Transformer blocks (Jin et al., 2023a), which
may limit the models’ ability to adapt to specific
tasks more effectively.

To address the above issues, we introduce Time-
LlaMA, an innovative framework designed to har-
ness large language models for time series fore-
casting. Our approach diverges from prior method-
ologies (Zhou et al., 2023; Jin et al., 2023a) in
the following aspects. First, we treat each channel

2https://claude.ai/
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Figure 1: Schematic illustration of our Time-LlaMA framework.

within multivariate time series data as an individual
token. Furthermore, we employ a trainable cross-
attention module to align the tokenized time series
data with the embeddings of the text prompt, rather
than the entire vocabulary, thereby enhancing the
model’s focus on relevant information. Notably, the
text prompt is not passed through the Transformer
backbone to minimize inference delay. Addition-
ally, we present DynaLoRA, a novel variant of the
LoRA technique (Hu et al., 2021) that incorporates
a mixture-of-experts mechanism. DynaLoRA dy-
namically assigns distinct sets of LoRA modules to
various input samples, leading to improved perfor-
mance across the board. Extensive experimentation
has proved that our Time-LlaMA method surpasses
recent SOTA baseline methods. The contributions
of our work are summarized as follows:

• We propose a novel framework Time-LlaMA.
By aligning to text prompts and fine-tuning
the LLMs with a novel DynaLoRA method,
our work pushs the limit of LLM based TS
modeling methods.

• Time-LlaMA consistently exceeds SOTA per-
formance in TS forecasting tasks, especially
in few-shot and zero-shot scenarios. More-
over, this superior performance is achieved
while maintaining excellent inference effi-
ciency, making our method suitable for in-
dustrial usage.

2 Related work

Time series modeling. The progressive advance-
ments in natural language processing and computer
vision have led to the development of sophisticated

Transformer (Vaswani et al., 2017) variants tailored
for a wide array of time series forecasting applica-
tions (Zhou et al., 2021; Wu et al., 2021). Central
to these innovations is the methodology by which
Transformers handle time series data. For instance,
I-Transformer (Liu et al., 2023b) treats each uni-
variate time series as a distinct token, forming mul-
tivariate time series into sequences of such tokens.
More recently, PatchTST (Nie et al., 2022) adopts
an assumption of channel independence, transform-
ing a univariate time series into multiple patches,
which are subsequently treated as tokens and pro-
cessed through a Transformer encoder. This ap-
proach has yielded notable results on various bench-
mark datasets for time series. Nevertheless, these
forecasting models are trained end-to-end using
task-specific datasets. A recent trend involves the
developments of Transformer-based foundational
models for time series analysis (Das et al., 2023;
Goswami et al., 2024) via pre-training, capable of
being swiftly adapted to diverse downstream tasks.

Cross-modal transfer learning using language
models Recent investigations have highlighted
the efficacy of transferring Transformer models
(Vaswani et al., 2017), which are pretrained on ex-
tensive textual corpora, to other modalities. (Lu
et al., 2022) employs a frozen pretrained Trans-
former across a spectrum of sequence classifica-
tion tasks encompassing numerical computation, vi-
sion, and protein structure prediction, training only
the newly introduced classification heads. ORCA
(Shen et al., 2023) adopts an align-then-refine work-
flow to adapt to target tasks. Specifically, given
the target input, ORCA initially learns an embed-
ding network that aligns the feature distribution
of the embedded data with that of the pretraining
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modality. Subsequently, the pretrained model is
fine-tuned on the aligned data to harness cross-
modal knowledge. Building upon these capabili-
ties, recent studies have successfully adapted large
language models (LLMs) for time series analysis
through the use of a reprogramming module and
a tokenization technique, while maintaining the
LLMs in a frozen state (Zhou et al., 2023; Jin et al.,
2023a). Our contribution to this body of research
is twofold: (a) we conceptualize each time series
variable as a token, enabling simultaneous predic-
tions for all variables within a single forward pass,
thereby enhancing efficiency. (b) We introduce a
novel LoRA methodology that fine-tunes the LLM
backbone in a parameter-efficient manner, advanc-
ing the SOTA in LLM-based time series modeling.

Parameter efficient fine-tuning for pretrained
Transformer models Parameter-efficient fine-
tuning (PEFT) optimizes a small portion of added
parameters when fine-tuning a LLM and keeps the
backbone model frozen (Ding et al., 2022; Zhang
et al., 2023b). LoRA (Hu et al., 2021) is inspired
by (Aghajanyan et al., 2021) and (Li et al., 2018),
and hypothesizes that the change of weights during
model fine-tuning has a low intrinsic rank and opti-
mizes the low-rank decomposition for the change
of original weight matrices. LoRA (Hu et al., 2021)
is proven to be effective and yield stable results
when applied to both relatively small pretrained
backbones and large language models (Dettmers
et al., 2023; Zhu et al., 2023). However, the origi-
nal LoRA paper does not specify how to add LoRA
modules of different ranks to the Transformer back-
bones for adapting different tasks. In this work,
we propose a novel LoRA variant that can help the
LLM backbone to better adapt to the time series
prediction tasks and achieve SOTA performance.

3 Methodology

This section elaborates on the model architec-
ture of our Time-LlaMA framework as illustrated
in Figure 1. In this study, we address the chal-
lenge of multivariate time series prediction. Given
a sequence of historical observations X ∈ RN×TL

consisting of N different 1-dimensional variables
across TL time steps, we aim to adapt a large lan-
guage model f(·) to understand the input time se-
ries and accurately forecast the values at TP future
time steps, denoted by Y ∈ RN×TP .

3.1 Preliminaries
Transformer model As depicted in Figure 1,
each Transformer layer of a LLM with L layers
such as LlaMA-2 (Touvron et al., 2023) consists
of a multi-head self-attention (MHA) module and
a fully connected feed-forward (FFN) sub-layer.
MHA contains four linear modules, which are the
Query (Q), Key (K), Value (V), and Output (O)
modules. FFN contains three linear modules: Gate
(G), Up (U), and Down (D). For notation conve-
nience, we will refer to the number of modules in
a Transformer block as Nmod. Thus, in LlaMA-2,
Nmod = 7.
LoRA For any linear module m ∈
{Q, K, V, O, G, U, D} in the Transformer layer, the
LoRA method adds a pair of low-rank matrices to
reparameterize its weights. Formally, the forward
calculation of module m in layer l with LoRA is:

x
′
= xWm,l + gm,l ∗ xWA

m,lW
B
m,l + bm,l, (1)

where Wm,l ∈ Rd1×d2 is the weight matrix of
module m, bm,l is its bias term. WA

m,l ∈ Rd1×r

and WB
m,l ∈ Rr×d2 are the low-rank matrices for

the LoRA module, and r ≪ min(d1, d2). r is the
rank of the two matrices and will also be referred to
as the rank of the LoRA module. Here, we include
a binary gate gm,l ∈ {0, 1} to conveniently control
the inclusion of LoRA m in the forward calculation.
For the vanilla LoRA method, all the LoRA gates
gm,l are set to 1.

3.2 Time-LlaMA
We now describe the forward calculation process

of Time-LlaMA
Token Embedding In order to seamlessly apply
the LLM to time series prediction, we consider the
i-th variate Xi,:’s whole series as a token (Liu et al.,
2023b), and embed it with:

hTS,0
i = TSEmb(Xi,:), (2)

where TSEmb : RT 7→ Rdm denotes the time-
series token embedding module, dm denotes the
hidden size of the LLM backbone. And HTS,0 =
{hTS,0

1 , ...,hTS,0
N } denotes the whole token se-

quences of the input time series.
Modality Alignment Note that time series is
different from the language modality, making it dif-
ficult for the LLM to understanding time series. To
close this gap, we propose to align the time-series
token embeddings H0 with the prompts’ embed-
dings HP,0. To realize this alignment, we utilize

1147



a multi-head cross-attention (MHCA) layer where
H0 acts as the query tensor and HP,0 acts as the
key and value tensor. Specifically, for each atten-
tion head k ∈ {1, 2, ...,K}, we define the query
tensors as Qk = H0WQ

k , the key tensors as Kk =
HP,0WK

k , and the value tensors as Vk = HP,0W V
k ,

where WQ
k ,WK

k ,W v
k ∈ Rdm×dhead are the weight

matrices, dhead = dm/K is the hidden dimension
on each head. Then the time-series token embed-
dings are aligned to the natural language represen-
tation via the following equations:

Ak =Softmax(
QkK

⊺
k√

dhead
)

H0 ←H0 + Concat([A1, ..., AK ])WO,

(3)

where Concat() is the concatenation operation, and
WO ∈ Rdm×dm is the attention output projection
matrix. Then the input for the LLM’s Transformer
blocks H0 is obtained by projecting H0 to dimen-
sion dmodel, the hidden dimension of the LLM.
LLM backbone Time-LlaMA utilizes a pre-
trained LLM backbone to encode the input tokens.
Different from the previous works, we install our
novel DynaLoRA module on each Transformer
layer. The details are presented in the next sub-
section.
Output layer and loss calculation After H0 is
encoded by the LLM, we obtain the output repre-
sentation HL. Then HL will go through a linear
layer to obtain the predictions for the future TP

time steps:

Ŷ = HLWP + bP , (4)

where WP ∈ Rdm×TP is the weight matrix, and
bP ∈ R1×TP is the bias term.

Following the standard practice for the time-
series prediction tasks, the objective is to minimize
the mean square errors between the ground truths
Y and predictionsŶ:

Lmse = ∥Y − Ŷ∥2F . (5)

Following (Fedus et al., 2022), to better train
our DynaLoRA module, we add a load balancing
loss to the training loss function. Consider a train-
ing batch B with NB samples, let f l

i represent the
proportion of prompts assigned to the i-th LoRA
expert in layer l,

f l
i =

1

NB

∑

x∈B
1{argmax

j
plj(x) = i}, (6)

where plj is the probability of expert j, output by the
router l. Let p̂li be the average of probability masses

received by the i-th expert, p̂li =
1

NB

∑
x∈B pli(x).

Then, the load balancing loss is given by:

Llb = Nmod

L∑

l=1

Nmod∑

i=1

f l
i · p̂li. (7)

The Llb loss term is added to the cross entropy loss
with a coefficient λlb ≥ 0:

L = Lmse + λlb ∗ Llb. (8)

3.3 DynaLoRA
In the previous works (Zhou et al., 2023; Jin

et al., 2023a) on applying LLM backbones to the
time series tasks, the LLMs are kept entirely frozen,
making it convenient for task adaptation. How-
ever, this setting restricts the expressiveness of
the whole model. Inspired by the recent works
on parameter-efficient fine-tuning in the LLM re-
search, we propose to fine-tune the LLM backbone
in a parameter-efficient manner when adapting it to
time-series tasks. However, through initial experi-
ments, we find that the vanilla LoRA method (Hu
et al., 2021) does not perform well on all the time-
series prediction tasks. We hypothesize that when
adapted to different time-series tasks, how to set the
LoRA modules should differ significantly. In this
work, we take a step further and propose an input-
adaptive dynamic LoRA (DynaLoRA) method (on
the right hand side of Figure 1), which dynamically
assign LoRA modules to the different Transformer
modules based on the input.

We now present the details of our DynaLoRA
method. The core of DynaLoRA is the input-
dependent LoRA assignment mechanism, as shown
in Figure 1. Under this mechanism, a LoRA router
takes the input’s hidden states as input and outputs
the assigned LoRA experts for the current layer.
Denote the hidden state of the input right before
the Transformer layer l as Hl−1 ∈ RN×dm . Then
a pooling operation transforms it to a single vector
hl
pooled ∈ R1×dm :

hl
pooled = Pooler(Hl−1). (9)

Consistent with (Radford et al., 2018) and (Lewis
et al., 2019), Pooler() takes the vector representa-
tion of the last token in the input as hl

pooled. Then,
hl
pooled will go through an activation function g and
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then the LoRA router Rl right before layer l. Rl

assigns the current input to the most suitable LoRA
modules. This router contains (a) a linear layer
that computes the probability of hl being routed
to each LoRA module LoRAm (m ∈ {Q, K, V,
O, G, U, D}), (b) a softmax function to model a
probability distribution over the LoRA modules,
and finally, (c) a Top_K(·, n) function that choose
the top n > 0 experts with the highest probability
masses. Formally,

Rl(hl) = Top_K(Softmax(g(hl)W l
r), n), (10)

where W l
r ∈ Rdm×Nmod is the router’s weight.

Rl(hl) is a Nmod-dim vector, in which the m-th
element is a binary value in {0, 1} and is assigned
to gm,l to activate or deactivate LoRA m:

gm,l ← Rl(hl)[m], (11)

and
∑Nmod

m=1 gm,l equals n. The LoRA router dy-
namically selects and activates the best n > 0 ex-
perts for each input during inference.

Different from the standard LoRA method (Hu
et al., 2021), our work: (a) determines the assigned
LoRA modules at the Transformer’s layer level, se-
lecting which Transformer module should be mod-
ified by its corresponding LoRA module. (b) The
decision on selecting LoRA modules are condi-
tioned on the input data, and different test samples
could set LoRA modules differently. (c) Note that
for a test input, different Transformer layers may
choose to assign different LoRA modules. (d) Note
that we can adjust the number of assigned LoRA
modules n per layer, making inference more effi-
cient than the vanilla LoRA method or previous
dynamic LoRA methods (Liu et al., 2023a).

4 Experiments

4.1 Baselines
We compare our Time-LlaMA method with the

SOTA time series models: (a) Time-LLM (Jin
et al., 2023a), (b) GPT4TS (Zhou et al., 2023),
(c) PatchTST (Nie et al., 2022), (d) DLinear (Zeng
et al., 2023), and (e) TimesNet (Wu et al., 2022).

4.2 Datasets and evaluation metrics
For long-term time series forecasting, we as-

sess our Time-LlaMA framework on the follow-
ing datasets, in accordance with (Wu et al., 2022):
ETTh1, ETTm1, Weather, ECL, and Traffic. For
short-term time series forecasting, we employ the

M4 benchmark (Makridakis et al., 2018). We uti-
lize the mean square error (MSE) and mean abso-
lute error (MAE) for long-term forecasting. For the
short-term forecasting task on M4 benchmark, we
adopt the symmetric mean absolute percentage er-
ror (SMAPE), mean absolute scaled error (MASE),
and overall weighted average (OWA). Detailed in-
troductions to data sets and evaluation metrics are
in the Appendix A.

4.3 Experimental setups
We use Llama-3 1B (Grattafiori et al., 2024) as

the default LLM backbone unless stated otherwise,
thus dm = 2048. We utilize the first L = 6 Trans-
former blocks of the LLM for our Time-LlaMA
framework. For the alignment module, the number
of attention heads is K = 8. For DynaLoRA, the
LoRA rank is set to r = 4, and each layer will
select n = 4 LoRA modules during inference.

The Adam optimizer (Loshchilov, 2017) is em-
ployed throughout all experiments. The loss ob-
jective is MSE for the long-term forecasting tasks,
and SMAPE for the short-term forecasting tasks.
The learning rate is denoted as LR. We utilize the
LlaMA-2 7B (Touvron et al., 2023) model, main-
taining the backbone model layers at 8 across all
tasks. Denote the lookback window’s length as TL,
the prediction horizon as TP . And the heads K
correlate to the multi-head cross-attention utilized
for time-series data reprogramming. For the LoRA
modules, the number of ranks r is set to 8. Each
Transformer block’s LoRA router activates n = 4
LoRA modules. We detail the configurations for
each task in Table 7 of Appendix A.

4.4 Main results
Results for long-term forecasting For the long-
term forecasting tasks, the input time series length
TL is set as 512, and we use four different pre-
diction horizons TP ∈ {96, 192, 336, 720} (H ∈
{24, 36, 48, 60} for the ILI task). The evaluation
metrics include mean square error (MSE) and mean
absolute error (MAE). In Table 1, we report the
scores over four different prediction horizons.

The experimental results demonstrate that our
Time-LlaMA method outperforms the baselines on
most of the (task, prediction horizon) pairs. The
comparison against Time-LLM (Jin et al., 2023a)
and GPT4TS (Zhou et al., 2023) is particularly
meaningful. These two are very recent works
on adapting large language models to the time-
series forecasting tasks. When compared to the

1149



Methods Time-LlaMA TIME-LLM GPT4TS PatchTST DLinear TimesNet
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.377 0.398 0.386 0.409 0.376 0.397 0.378 0.405 0.375 0.399 0.384 0.402
192 0.410 0.426 0.414 0.421 0.416 0.418 0.413 0.421 0.405 0.416 0.436 0.429
336 0.421 0.437 0.423 0.436 0.442 0.433 0.422 0.436 0.439 0.443 0.491 0.469
720 0.443 0.464 0.481 0.478 0.477 0.456 0.447 0.466 0.472 0.490 0.521 0.500

ETTm1

96 0.291 0.343 0.298 0.356 0.292 0.346 0.290 0.342 0.299 0.343 0.338 0.375
192 0.326 0.366 0.334 0.377 0.332 0.372 0.332 0.369 0.335 0.365 0.374 0.387
336 0.352 0.384 0.365 0.389 0.366 0.394 0.366 0.392 0.369 0.386 0.410 0.411
720 0.405 0.416 0.413 0.418 0.417 0.421 0.416 0.420 0.425 0.421 0.478 0.450

Weather

96 0.151 0.207 0.154 0.208 0.162 0.212 0.149 0.198 0.176 0.237 0.172 0.220
192 0.193 0.240 0.198 0.247 0.204 0.248 0.194 0.241 0.220 0.282 0.219 0.261
336 0.242 0.287 0.251 0.282 0.254 0.286 0.245 0.282 0.265 0.319 0.280 0.306
720 0.313 0.332 0.317 0.338 0.326 0.337 0.314 0.334 0.333 0.362 0.365 0.359

ECL

96 0.128 0.224 0.137 0.235 0.139 0.238 0.129 0.222 0.140 0.237 0.168 0.272
192 0.152 0.247 0.158 0.242 0.153 0.251 0.157 0.240 0.153 0.249 0.184 0.289
336 0.161 0.256 0.164 0.261 0.169 0.266 0.163 0.259 0.169 0.267 0.198 0.300
720 0.198 0.292 0.204 0.293 0.206 0.297 0.197 0.290 0.203 0.301 0.220 0.320

Traffic

96 0.379 0.270 0.382 0.274 0.388 0.282 0.378 0.269 0.410 0.282 0.593 0.321
192 0.396 0.279 0.404 0.285 0.407 0.290 0.398 0.280 0.423 0.287 0.617 0.336
336 0.404 0.282 0.410 0.291 0.412 0.294 0.406 0.282 0.436 0.296 0.629 0.336
720 0.446 0.306 0.456 0.308 0.450 0.312 0.448 0.307 0.466 0.315 0.640 0.350

Table 1: Results for the long-term forecasting tasks. The prediction horizon TP is one of {24, 36, 48, 60} for ILI
and one of {96, 192, 336, 720} for the others. Lower value indicates better performance. Bold values represent the
best MSE score, while Underlined means the second best MSE score.

Methods Time-LlaMA TIME-LLM GPT4TS PatchTST DLinear TimesNet
SMAPE 11.96 12.01 12.69 12.06 13.63 12.88
MSAE 1.656 1.663 1.808 1.683 2.095 1.836
OWA 0.881 0.896 0.942 0.905 1.051 0.955

Table 2: Results for the short-term time series forecasting task, M4. The forecasting horizons are in {6, 48}. Lower
value indicates better performance. Bold values represent the best score, while Underlined means the second best.

pre vious SOTA model PatchTST which is trained
from scratch on each task, Time-LlaMA can also
achieves advantages.
Results for short-term forecasting To demon-
strate that our method works in the short-term fore-
casting tasks, we utilize the M4 benchmark (Makri-
dakis et al., 2018). Table 2 reports the SMAPE,
MSAE and OWA scores. Our experimental results
demonstrate that our Time-LlaMA method con-
sistently surpasses all baselines when conducting
short-term time series predictions.
Results for the few-shot setting Note that a
great property of large language models is its great
few-shot learning capability. And it is interesting
to investigate whether this capability still stands
when they are adapted to model time series. We
experiment on the scenarios in which limited train-
ing data are available for training, that is, only 5%
of the training time steps in the original training

Methods Time-LlaMA TIME-LLM PatchTST
Metric MSE MAE MSE MAE MSE MAE

Weather

96 0.166 0.220 0.169 0.223 0.175 0.230
192 0.219 0.268 0.224 0.272 0.227 0.276
336 0.272 0.297 0.276 0.303 0.286 0.322
720 0.355 0.360 0.362 0.368 0.366 0.379

ETTh1

96 0.531 0.497 0.538 0.501 0.543 0.506
192 0.685 0.546 0.698 0.557 0.748 0.580
336 0.738 0.573 0.752 0.591 0.754 0.595
720 - - - - - -

Table 3: Results for the few-shot setting. The first 5% of
the training sets used in Table 1 are used for training. ’-’
means that 5% time series is not sufficient to constitute
a training set.

set are utilized for training. We experiment with
the Weather and ETTh1 tasks, and the results are
presented in Table 3.

From Table 3, we can observe that Time-LlaMA
excels over all the strong baseline methods. The
comparison between Time-LlaMA and the non-
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Full-data setting Few-shot setting
Methods Time-LlaMA Time-LLM Time-LlaMA Time-LLM

Results for Gemma 2B

Weather
96 0.153 0.157 0.169 0.173
192 0.198 0.204 0.226 0.231

ETTh1
96 0.379 0.401 0.553 0.566
192 0.421 0.432 0.706 0.718

Results for GPT-2 large (0.5B)

Weather
96 0.164 0.169 0.187 0.199
192 0.205 0.211 0.235 0.243

ETTh1
96 0.387 0.398 0.581 0.594
192 0.432 0.438 0.727 0.742

Table 4: Results on the other LLMs. For the few-shot setting, 5% of the original training set is utilized for training.
We report the MSE scores.

LLM method like PatchTST demonstrates the ad-
vantage of utilizing a pre-trained large language
model. The pre-trained LLM contains rich world
and semantically knowledge, thus providing a high-
quality model parameter initialization for the time-
series models. The results underscore the prowess
of LLMs as a powerful time series model. The
comparison against Time-LLM and GPT4TS em-
phasize our method’s advantage in both knowledge
activation and task adaptation, which are directly
due to the input-adaptive DynaLoRA module and
the modality alignment module.

4.5 Ablation studies and analysis
Ablation on the LLM backbones To validate
our framework’s wide applicability, we experi-
ment on two representative backbones Gemma
2B (Banks and Warkentin, 2024) and GPT-2 large
(Radford et al., 2019). The results on the Weather
and ETTh1 under the full-data and few-shot set-
ting are reported in Table 4. The Time-LlaMA
method also outperforms Time-LLM by clear mar-
gins, under both the full-data and few-shot settings,
demonstrating the effectiveness of our method with
different LLM backbones.
Ablation studies of our Time-LlaMA method
In order to understand the superiority of our Time-
LlaMA framework (as in Table Table 1, 2, and
3), we now conduct ablation studies on our Time-
LlaMA method. We consider the following vari-
ants for Time-LlaMA: (a) Time-LlaMA-1, which
removes the modality alignment module (Eq 3),
and directly feed the time series tokens to the LLM
backbone. (b) Time-LlaMA-2, which concatenate
the text prompt to the left of the time-series tokens,

serving as prefix. (c) Time-LlaMA-3 keeps the
LLM backbone entirely frozen. (d) Time-LlaMA-
4 substitutes our DynaLoRA mechanism to the
vanilla LoRA method. (e) Time-LlaMA-5 substi-
tutes DynaLoRA to a representative LoRA variant,
AdaLoRA (Zhang et al., 2023a). (f) Time-LlaMA-
6 substitutes DynaLoRA to MOELoRA (Liu et al.,
2023a).

The experiments are presented in Table 5. From
Table 5, we can observe that: (a) The comparison
between Time-LlaMA-1 and Time-LlaMA demon-
strates the necessity of the modality alignment mod-
ule. (b) Time-LlaMA-2 performs closely to Time-
LlaMA, demonstrating that with our modality align-
ment module, the text prompts containing the task
information are no longer needed. (c) The com-
parison between Time-LlaMA-3 and Time-LlaMA
shows that fine-tuning the LLM backbone in a
parameter-efficient style helps our Time-LlaMA
to achieve superior performance. (d) The com-
parisons among Time-LlaMA-4, Time-LlaMA-5,
Time-LlaMA-6 and Time-LlaMA demonstrate the
superiority of our method to the recent LoRA vari-
ants. Our DynaLoRA module adaptively adjust
which LoRA modules are used to conduct infer-
ence for the current test sample, achieving stronger
generalization capabilities.

Effects on the number of selected LoRA modules
n We now alter the number of selected LoRA
modules n to {1, 2, 3, 5, 6, 7}, and investigate
how this hyper-parameter affects our Time-LlaMA
method. The results are demonstrated in Figure
2. From the experiments, one can see that when n
changes from 1 to 7, the performance first becomes
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Figure 2: Performances under different numbers of selected LoRAs per Transformer block.

Methods
Weather ETTh1

96 192 96 192

Time-LlaMA 0.166 0.219 0.531 0.685
Time-LlaMA-1 0.172 0.226 0.538 0.697
Time-LlaMA-2 0.165 0.221 0.533 0.685
Time-LlaMA-3 0.178 0.232 0.542 0.705
Time-LlaMA-4 0.174 0.227 0.537 0.696
Time-LlaMA-5 0.179 0.231 0.540 0.703
Time-LlaMA-6 0.171 0.227 0.536 0.695

Table 5: Results for the ablation study.

better, and then drops. The observations are consis-
tent with ALoRA (Liu et al., 2024), which demon-
strates that reducing the number of LoRA modules
per block is beneficial for the LLM’s downstream
adaptation.
Efficiency analysis In our main experiments (Ta-
ble 1), we only utilize the first 6 blocks of the
LlaMA-3 1B model to encode the time-series in-
formation and make predictions. Thus, its infer-
ence speed is 10.47 test samples per second on the
test set of the Traffic task. Note that in the indus-
trial applications, efficiency is an important factor.
Thus, it is of value to compare the latency of our
method and the non-LLM method PatchTST. Note
that PatchTST transforms the multi-variate time
series task like Traffic into multiple single-variate
time series tasks. Thus, it has to conduct inference
for 862 single-variate series for a single sample
in Traffic. Following its original implementations,
PatchTST’s inference speed is 13.24 samples per
second. Time-LLM (Jin et al., 2023a) also utilizes
the patching mechanism in PatchTST. Thus, its
inference speed is 3.51 samples per second. The
comparisons demonstrate that through our Time-
LlaMA method is actually very efficient, even with

Figure 3: Distribution of activated LoRA experts.

LLM backbones.
Distributions of the selected LoRAs We now
compare the distribution of LoRA modules across
all Transformer layers on the Weather and ETTh1
tasks’ test sets (with TP = 192) in Figure 3. We
can observe that: (a) different Transformer layers
choose to select different LoRA experts via their
corresponding routers, and the maximum propor-
tion a LoRA expert can achieve is less than 25%.
The results are intuitive since Transformer layers
of different depths represent different knowledge,
requiring different LoRA experts to express. (b)
the LoRA distributions on different tasks are differ-
ent. For example, more layers activate LoRA G or
LoRA U on the Weather task than on the ETTh1
task.

5 Conclusion

In this work, we propose a novel framework,
Time-LlaMA. First, Time-LlaMA tokenizes each
time series sample by considering each variate as
a token. Then we align the time series tokens to
the language modality by attending to text prompts’
embeddings. Third, the LLM backbone is fine-

1152



tuned by a novel LoRA method, DynaLoRA, that
adaptively selects different LoRA modules for dif-
ferent time series samples. Extensive experiments
have demonstrated that Time-LlaMA can outper-
form the recent SOTA baselines. In addition, our
method demonstrates inference efficiency, making
it applicable for the industry.

Limitations

In this work, we introduced the Time-LlaMA
framework to enhance the time series forecasting
performance when using LLM backbones as en-
coders. To address the drawbacks in the recents
works on LLM-based time series forecasting mod-
els, a novel LoRA method, DynaLoRA is proposed.
We have conducted experiments on various real-
world time series forecasting tasks, and the experi-
mental results demonstrate that our Time-LlaMA
method can outperform the recent baselines.

However, we acknowledge the following limita-
tions: (a) the more super-sized open-sourced LLMs,
such as 7B, 14b or 30B models, are not experi-
mented due to limited computation resources. (b)
Other time series modeling tasks are not explored,
like time series classification, anomaly detection.
But our framework can be easily transferred to
other backbone architectures and different types
of tasks. It would be of interest to investigate if
the superiority of our method holds for other large-
scaled backbone models and other types of time
series tasks. And we will explore it in future work.

Ethical statement

In this research, we have carefully considered the
ethical implications of developing Time-LlaMA, a
framework for time series forecasting using large
language models (LLMs). We ensured data privacy
by using only publicly available, anonymized, or
permitted datasets, avoiding sensitive or proprietary
information. To address potential biases, we em-
ployed diverse datasets and rigorous testing across
domains. We minimized environmental impact by
using efficient training techniques like DynaLoRA
and energy-efficient hardware. Transparency and
reproducibility were prioritized through detailed
methodology descriptions and plans to release code
and model weights. We also acknowledged dual-
use concerns, encouraging responsible application
of our work, and fostered inclusivity through col-
laborative and open research practices. These steps
align our research with ethical AI development

principles.
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A Appendix: Experimental settings

Now we provide more details for the experi-
ments presented in the main contents.

A.1 Implementation

We mainly follow the experimental configura-
tions in (Jin et al., 2023a) across all baselines within
a unified evaluation pipeline in the Time-Series-
Library3 for fair comparisons. We use Llama-2
7B (Touvron et al., 2023) as the default backbone
model, unless stated otherwise. All our experi-
ments are repeated three times and we report the
averaged results. Our method is implemented on
PyTorch (Paszke et al., 2019) with all experiments
conducted on NVIDIA L20 GPUs (48 GB RAM).

A.2 Datasets

We evaluate the long-term forecasting (ltf) per-
formance on the well-established eight different
benchmarks, including four ETT datasets (includ-
ing ETTh1, ETTh2, ETTm1, and ETTm2) from
(Zhou et al., 2021), Weather, Electricity, Traffic,
and ILI from (Wu et al., 2021). For short-term
time series forecasting (STF), we employ the M4
benchmark (Makridakis et al., 2018).

3https://github.com/thuml/Time-Series-Library

ETT The Electricity Transformer Temperature
(ETT) is a crucial indicator in the electric power
long-term deployment. This dataset consists of 2
years data from two separated counties in China.
To explore the granularity on the Long sequence
time-series forecasting (LSTF) problem, different
subsets are created, ETTh1, ETTh2 for 1-hour-level
and ETTm1 for 15-minutes-level. Each data point
consists of the target value ”oil temperature” and
6 power load features. The train/val/test is 12/4/4
months.
ECL Measurements of electric power consumption
in one household with a one-minute sampling rate
over a period of almost 4 years. Different electrical
quantities and some sub-metering values are avail-
able.This archive contains 2075259 measurements
gathered in a house located in Sceaux (7km of Paris,
France) between December 2006 and November
2010 (47 months).
Traffic Traffic is a collection of hourly data from
California Department of Transportation, which
describes the road occupancy rates measured by
different sensors on San Francisco Bay area free-
ways.
Weather Weather is recorded every 10 minutes for
the 2020 whole year, which contains 21 meteoro-
logical indicators, such as air temperature, humid-
ity, etc.
ILI The influenza-like illness (ILI) dataset contains
records of patients experiencing severe influenza
with complications.
M4 The M4 benchmark comprises 100K time se-
ries, amassed from various domains commonly
present in business, financial, and economic fore-
casting. These time series have been partitioned
into six distinctive datasets, each with varying sam-
pling frequencies that range from yearly to hourly.
These series are categorized into five different do-
mains: demographic, micro, macro, industry, and
finance.

The datasets’ statistics are presented in Table 6.

A.3 Evaluation metrics

We now specify the evaluation metrics we used
for comparing different models. We utilize the
mean square error (MSE) and mean absolute er-
ror (MAE) for long-term forecasting. For the
short-term forecasting task on M4 benchmark, we
adopt the symmetric mean absolute percentage er-
ror (SMAPE), mean absolute scaled error (MASE),
and overall weighted average (OWA), following
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Tasks Dataset Dim. Series Length Dataset Size Frequency Domain

Long-term Forecasting

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature
Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather
ILI 7 {24, 36, 48, 60} (617, 74, 170) 1 week Illness

Short-term Forecasting

M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance
M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry
M4-Weakly 1 13 (359, 0, 359) Weakly Macro
M4-Daily 1 14 (4227, 0, 4227) Daily Micro
M4-Hourly 1 48 (414, 0, 414) Hourly Other

Table 6: Dataset statistics. The dimension indicates the number of time series (i.e., channels), and the dataset size is
organized in (training, validation, testing).

(Oreshkin et al., 2019). The calculations of these
metrics are as follows:

MSE =
1

H

T∑

h=1

(Yh − Ŷh)
2, (12)

MAE =
1

H

H∑

h=1

|Yh − Ŷh|, (13)

SMAPE =
200

H

H∑

h=1

|Yh − Ŷh|
|Yh|+ |Ŷh|

, (14)

MAPE =
100

H

H∑

h=1

|Yh − Ŷh|
|Yh|

, (15)

MASE =
1

H

H∑

h=1

|Yh − Ŷh|
1

H−s

∑H
j=s+1 |Yj −Yj−s|

,

(16)

OWA =
1

2

[
SMAPE

SMAPENaive
+

MASE
MASENaive

]
,

(17)

(18)

where s is the periodicity of the time series data.
H denotes the number of data points (i.e., pre-
diction horizon in our cases). Yh and Ŷh are
the h-th ground truth and prediction where h ∈
{1, · · · , H}.

A.4 Configurations for training
We detail the configurations for each task in Ta-

ble 7.
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Task-Dataset
Model Hyperparameter Training Process

Layers TL TP K r n LR* Loss Batch Size Epochs

LTF - ETTh1 8 512 {96, 192, 336, 720} 8 8 4 10−3 MSE 16 20
LTF - ETTm1 8 512 {96, 192, 336, 720} 8 8 4 10−3 MSE 16 20
LTF - Weather 8 512 {96, 192, 336, 720} 8 8 4 10−3 MSE 16 20
LTF - Electricity 8 512 {96, 192, 336, 720} 8 8 4 10−2 MSE 16 20
LTF - Traffic 8 512 {96, 192, 336, 720} 8 8 4 10−2 MSE 12 20
LTF - ILI 8 96 {24, 36, 48, 60} 8 8 4 10−2 MSE 16 20
STF - M4 8 2× TP {6, 48} 8 8 4 10−3 SMAPE 32 30

Table 7: An overview of the experimental configurations for TIME-LlaMA. LTF and STF denote long-term and
short-term forecasting, respectively.
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