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Abstract

Large Language Models (LLMs) have revolu-
tionized Natural Language Processing (NLP),
but their success remains largely confined to
high-resource, general-purpose domains. In
contrast, applying LLMs to low-resource do-
mains poses significant challenges due to lim-
ited training data, domain drift, and strict ter-
minology constraints. This survey provides an
overview of the current landscape in domain-
specific, low-resource QA with LLMs. We be-
gin by analyzing the coverage and represen-
tativeness of specialized-domain QA datasets
against large-scale reference datasets what we
refer to as ParentQA. Building on this anal-
ysis, we survey data-centric strategies to en-
hance input diversity, including data augmen-
tation techniques. We further discuss evalu-
ation metrics for specialized tasks and con-
sider ethical concerns. By mapping current
methodologies and outlining open research
questions, this survey aims to guide future
efforts in adapting LLMs for robust and re-
sponsible use in resource-constrained, domain-
specific environments. To facilitate repro-
ducibility, we make our code available at
github.com/kentrachmat/survey-da.

1 Introduction

Over the years, large language models (LLMs)
(OpenAI et al., 2023; Gemini et al., 2024;
DeepSeek-AI et al., 2025) have demonstrated re-
markable performance across a variety of natural
language processing (NLP) tasks. However, these
advances remain largely confined to domains for
which massive training corpora are available (Ka-
plan et al., 2020). In contrast, low-resource datasets
(Ravichander et al., 2019; Möller et al., 2020) pose
significant challenges for LLMs due to data scarcity
and underrepresentation. The lack of sufficient
quantity and quality of data leads to gaps in lexical
coverage (Hangya et al., 2022), cultural knowl-
edge (Li et al., 2024), and syntactic nuances (Lucas

et al., 2024). Consequently, LLM performance in
low-resource settings is markedly inferior to that
observed with well-resourced datasets. This dis-
parity strongly limits AI progress in the affected
domains.

This survey article highlights the methods and
evaluations employed in low-resource and special-
ized domains. We argue that the diversity and qual-
ity of datasets are more important than the accu-
mulation of large volumes of mediocre data. This
perspective is supported by studies showing that
the quality of training data has a significant im-
pact on language model performance, especially in
low-resource environments (Micallef et al., 2022;
Sajith and Kathala, 2024). To mitigate data scarcity,
data augmentation has emerged as an effective so-
lution (Seo et al., 2024), allowing the generation of
additional examples to enhance model robustness.

Natural language processing encompasses a
broad range of tasks, such as text summarization,
topic modeling, and text generation (Wikipedia
LLMs, 2025). In this study, we focus explicitly on
the question answering (QA) task, as it represents
a particularly dynamic research area, especially in
low-resource contexts. In domain-specific applica-
tions notably in the private sector and independent
research settings, QA systems and chatbots (Afzal
et al., 2024; Megahed et al., 2024) are commonly
used to facilitate user interaction with datasets and
to evaluate model capabilities. Moreover, with the
advent of large language models, QA systems can
be adapted to perform other NLP tasks through
data restructuring and model fine-tuning. Nonethe-
less, despite these advances, domain-specific appli-
cations continue to face major challenges in low-
resource environments.

2 Problem Statement

Overview Low-resource environments for Large
Language Models (LLMs) are contexts in which
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Figure 1: Taxonomy of data-augmentation methods for low-resource QA across three axes and their subcategories
(see Appendix B for representative papers)

essential resources such as large and diverse cor-
pora, annotated datasets, domain expertise, or data
availability are severely limited or entirely ab-
sent. These constraints go well beyond the chal-
lenges typically associated with low-resource lan-
guages. Even in high-resource languages like En-
glish, many specialized domains, such as certain
branches of medicine or scientific research, suffer
from a chronic lack of data (Seo et al., 2024). Since
LLMs are primarily pretrained on large, generic
corpora, they often fail to generalize to tasks that re-
quire fine-grained and domain-specific knowledge.
For example, in the biomedical field, although there
is a large volume of general medical text, datasets
focused on rare diseases or specific clinical trials
remain scarce or even nonexistent, which leads
to distributional shifts and reduced model perfor-
mance (Chen et al., 2024b).

These limitations pose major challenges for
question-answering (QA) systems in low-resource
domains. QA systems require not only extensive
lexical coverage but also precise factual knowledge,
domain-specific reasoning abilities, and the capac-
ity to extract or infer information from context.
When specialized corpora are scarce, QA mod-
els struggle to learn the terminology, background
knowledge, and inference patterns necessary to pro-
duce accurate and relevant answers. Furthermore,
in the absence of expert-designed annotations, it
becomes difficult to adapt models to handle special-
ized question types, which increases the hallucina-
tion rate and reduces the reliability of responses.
Although there is no universally recognized thresh-
old to define a low-resource environment, we con-
sider a dataset to fall into this category when it is
not commonly used for the pretraining of large lan-
guage models, particularly in the case of datasets
absent from standard benchmarks.

Research Questions We also aim to explore sev-
eral research questions. First, it is essential to iden-
tify effective strategies to increase the quantity and
quality of domain-specific data using LLMs, partic-
ularly in areas where such data is scarce. Second,
we seek to understand which approaches can en-
hance the adaptation of LLMs to domain-specific
tasks. Third, it is necessary to establish robust
evaluation frameworks and metrics to accurately
assess model performance in these contexts. Fi-
nally, to consider the ethical, privacy, and fairness
implications when deploying LLMs in specialized
domains. Accordingly, we formulate the following
research questions:

• Q1: How can domain-specific data be effec-
tively expanded using LLMs?

• Q2: Which approaches improve the adapta-
tion of LLMs to domain-specific tasks?

• Q3: How can the performance of LLMs be
evaluated in low-resource settings?

• Q4: What ethical, privacy, and fairness con-
siderations must be addressed?

3 Taxonomy of Data Augmentation
Strategies

To enhance the clarity and structure of our survey,
we introduce a taxonomy (Figure 1) derived from
the evidence summarized in Table 1. This taxon-
omy offers a structured overview of augmentation
practices, evaluation approaches, and ethical con-
siderations in low-resource QA.

We organize the taxonomy along three axes:

• Data Augmentation Methods include (i)
Synthetic Task Generation, (ii) Retrieval-
Augmented Generation, and (iii) Corpus Re-
structuring, reflecting how data is created or
modified to increase coverage and diversity.
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Figure 2: Workflow for identifying relevant papers on dataset augmentation

• Evaluation Strategies consist of (i) QA Met-
rics, (ii) Cross-Task Benchmarks, and (iii) Ex-
pert Validation. QA metrics are particularly
prevalent due to their simplicity and general
applicability across datasets and domains.

• Ethical and Practical Aspects address (i)
Bias & Trustworthiness, (ii) Privacy, and (iii)
Scalability, especially relevant in sensitive do-
mains like biomedical and legal QA.

This taxonomy abstracts recurring patterns
across studies and highlights the methodological
and ethical clusters that shape the design and eval-
uation of low-resource QA systems.

4 Related Work

Ding et al. (2024a) propose a domain analysis
along two axes data and learning. They define
four “data perspectives” (creation, annotation, re-
formulation, co-annotation) and present various
learning paradigms ranging from supervised fine-
tuning to alignment-based learning. They also il-
lustrate concrete applications, such as Dr. LLaMA
for medical question answering (where ChatGPT
or GPT-4 rewrite or generate new question–answer
pairs) and the selective masking strategy of DALE.
Chai et al. (2025) complement this approach with
a clear technical taxonomy, encompassing simple
methods, prompt-based techniques, information
retrieval based approaches, and hybrid methods.
However, neither of these studies offers a system-
atic comparison of the different paradigms applied
to the specific constraints of low-resource biomedi-
cal or legal domains, such as privacy requirements
or distributional shifts.

Our survey builds on these contributions by fo-
cusing specifically on data augmentation for ques-
tion answering in low-resource biomedical and le-
gal contexts. Using targeted datasets, we evalu-

ate how well different augmentation techniques
address the unique constraints of these domains.
Rather than proposing a new theoretical framework,
our contribution lies in a detailed, data-driven com-
parison that highlights the practical relevance of
each approach in sensitive settings.

5 Literature Review and Analysis

5.1 Article Identification Methodology and
Analysis

Article Identification To conduct our analysis,
we aim to identify under-represented dataset sub-
sets within their respective domains. We focus
specifically on datasets in the biomedical and legal
fields, as these two areas have been extensively
studied in the large language model (LLM) re-
search community. Although a substantial body
of literature exists for these domains, it remains
difficult to locate publicly available low-resource
datasets, often due to privacy concerns, access re-
strictions, or the absence of standardized reposito-
ries. Consequently, for each domain, we restrict
our analysis to three or four dataset types that are
accessible and sufficiently documented to permit
analysis.

As illustrated in Figure 2, we implemented a
structured workflow to identify research on dataset
augmentation and synthetic data generation. To
explore this issue systematically, we performed a
literature review focusing on augmentation tech-
niques and synthetic data generation applied to our
selected datasets.

Using Google Scholar, we searched for articles
containing either the keyword augmentation or the
keyword synthetic, written in English, then filtered
them to retain only those related to natural language
processing (NLP). These two keywords were cho-
sen to broadly cover the relevant literature on data
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Domain Papers Citing Datasets Q1 Q2 Q3 Q4

Medical

(Möller et al., 2020), COVID-QA – ✓ ✓ –
↪→ (Reddy et al., 2020) ✓ ✓ ✓ –
↪→ (Siriwardhana et al., 2023) ✓ ✓ ✓ –
↪→ (Samuel et al., 2024) ✓ ✓ ✓ –

(Wang et al., 2024), ReDis-QA ✓ ✓ ✓ –
↪→ (Li et al., 2025) ✓ ✓ – ✓
↪→ (Wang et al., 2025a) ✓ ✓ ✓ ✓

(Arias-Duart et al., 2025), CareQA ✓ ✓ ✓ –
↪→ (Wang et al., 2025b) ✓ ✓ ✓ ✓

(Chen et al., 2024a), Medbullets – – ✓ ✓
↪→ (Kim et al., 2025) ✓ ✓ ✓ ✓
↪→ (Wang et al., 2025b) ✓ ✓ ✓ ✓
↪→ (Wang et al., 2025a) ✓ ✓ ✓ ✓

Legal

(Ravichander et al., 2019), PrivacyQA – – ✓ –
↪→ (Vold and Conrad, 2021) – ✓ ✓ –
↪→ (Parvez et al., 2023) ✓ ✓ ✓ ✓
↪→ (Nayak et al., 2024) ✓ ✓ ✓ –

(Ahmad et al., 2020), PolicyQA – – ✓ –

(Lin et al., 2022), TruthfulQA – – ✓ ✓
↪→ (Wang et al., 2023) – ✓ ✓ ✓
↪→ (Kim et al., 2023) ✓ ✓ ✓ ✓
↪→ (Ding et al., 2024b) ✓ ✓ ✓ ✓

Table 1: Overview of the intersection between each research question (Q1 to Q4) and the articles describing corpora
in the two studied domains. A check mark ✓ indicates that the question is addressed, a dash indicates that it is not,
and arrows ↪→ denote the reuse of these datasets for various data augmentation methods

augmentation, and Google Scholar’s full-text index-
ing allowed us to identify works where these terms
appear beyond the title or abstract. This approach
facilitated the identification of potentially relevant
contributions. We then selected up to N research
articles each dataset, with N ≤ 31, excluding re-
view articles and those that mention augmentation
techniques only in their related work sections. Re-
view articles were excluded because, although they
provide useful overviews, they generally do not
present detailed methodological analyses or em-
pirical results specific to the datasets under study.
This filtering based on publication type enabled us
to concentrate on the most influential and techni-
cally substantial contributions to data augmentation
methodologies.

In Table 1, we adopt a structured approach to
analyze each of the four research questions in the
biomedical and legal domains. This framework
enables a systematic examination of augmenta-
tion techniques applied to various low-resource
datasets. We selected three to four datasets per
domain. By mapping augmentation approaches to
different dataset types, our study offers insights
for researchers aiming to improve the performance
of large language models (LLMs) in low-resource

1Some datasets are recent and still have few specialized
methods.

environments.

5.2 Embedding Model Selection

To analyze text distributions in embedding space,
we selected specialized models for each domain
based on the MTEB Leaderboard rankings2, limit-
ing our choices to models of up to 1 billion param-
eters to control computational costs. The selected
models are available in Table 2.

5.3 Biomedical Domain

5.3.1 Overview of Selected Datasets
The biomedical domain remains one of the most
critical for AI applications, given its potential to
transform diagnosis, treatment planning, and pa-
tient management. Despite these promises, this
field faces severe data limitations or inaccessibility
outside of hospital settings. Although medical data
can take many forms such as images, videos, and
other modalities. We restrict this study to textual
data to maintain a coherent scope.

Applying our methodology, we selected four
low-resource medical QA datasets for in-depth
analysis. To assess their representativeness, we
compared them against MedMCQA (Pal et al., 2022),
a large-scale dataset of 160,869 instances covering

2https://huggingface.co/spaces/mteb/
leaderboard
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various medical subdomains. We refer to this ref-
erence corpus as ParentQA. The four specialized
datasets are:

• COVID-QA (Möller et al., 2020): 2,019
expert-annotated question–answer pairs on
COVID-19, using a SQuAD-inspired anno-
tation protocol.

• ReDis-QA (Wang et al., 2024): 975 high-
quality question–answer pairs covering 205
rare diseases.

• MedBullets (Chen et al., 2024a): 616 real
clinical cases designed to evaluate reasoning
and decision-making in complex clinical sce-
narios.

• CareQA (Arias-Duart et al., 2025): 2,769 in-
stances annotated with both open- and closed-
ended questions spanning medicine, nursing,
biology, chemistry, psychology, and pharma-
cology.

5.3.2 Diversity Analysis

To assess lexical and semantic diversity of the low-
resource medical QA corpora relative to the large-
scale ParentQA, we conducted two complemen-
tary analyses: (i) lexical statistics including out-
of-vocabulary (OOV) rates and Shannon entropy
(Table 3), and (ii) semantic similarity and OOV
overlap analysis (Figure 3).

Lexical Statistics. Table 3 reports for each cor-
pus the unique vocabulary size |V|, the number of
vocabulary not found in ParentQA (OOV), and the
Shannon entropy

H = −
∑

w∈V
p(w) log2 p(w) ,

computed from the empirical unigram distribution
p(w). Higher entropy indicates more balanced and
extensive vocabulary usage; lower entropy signals
concentration on a few frequent terms. All special-
ized corpora exhibit much smaller |V| and lower
entropy than ParentQA (13.09 bits), reflecting their
narrow scope and data scarcity. OOV counts range
from 86 in MedBullets to 763 in CareQA, with ex-
amples like creatininuria and endosymbionts high-
lighting domain-specific terminology.

(a) Cosine similarity between each specialized corpus and
ParentQA

(b) Vocabulary overlap

Figure 3: Comparison of low-resource medical QA
datasets to ParentQA in terms of (a) cosine similarity
and (b) out-of-vocabulary (OOV) vocabulary overlap

Semantic Similarity and Implications. Fig-
ure 3(a) displays the distribution of cosine similari-
ties between sentence embeddings of each special-
ized corpus and those of ParentQA (embeddings
generated by the model detailed in Table 2).

The four low-resource corpora shift leftwards:
COVID-QA peaks near 0.17, CareQA around 0.20,
ReDis-QA at 0.22, and MedBullets at 0.27. Their
flatter, wider curves reveal greater internal hetero-
geneity in question phrasing. The more leftward
the distribution, the greater the semantic divergence
from ParentQA. The large gap relative to ParentQA
highlights significant domain-induced divergence,
both terminologically and syntactically. This “se-
mantic distance” arises from specialized medical
jargon (e.g., furin, creatininuria, arrhythmia) and
question structures unseen in generalist corpora.

Combined with low OOV overlap (Figure 3(b))
and reduced entropy (Table 3), these results con-
firm that each low-resource corpus is both lexically
limited and semantically distant from ParentQA.
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These disparities call for domain-sensitive strate-
gies such as targeted vocabulary augmentation,
specialized pre-training, or robust adaptation tech-
niques to overcome challenges in low-resource en-
vironments.

OOV Overlap. Figure 3(b) shows a heatmap of
OOV term overlap between specialized corpora.
The overlap is minimal (e.g., only 8 shared OOVs
between COVID-QA and CareQA), indicating that
each dataset introduces largely disjoint rare vocab-
ulary. This low overlap underscores the difficulty
of transferring lexical knowledge across special-
ized domains.

5.3.3 Positioning with Respect to the Research
Questions

Among the methods examined, Q1 (how to expand
domain-specific data) falls into two paradigms. On
one hand, few-shot generation followed by filtering
(e.g., round-trip consistency), as demonstrated in
(Samuel et al., 2024) on CovidQA, enables rapid
performance gains without requiring a massive pre-
existing corpus. On the other hand, large-scale
chain-of-thought pipelines combine reasoning ex-
traction, synthesis, and document-based revision to
generate hundreds of thousands or even billions of
medical tokens, but they require extensive access to
manuals, knowledge graphs, or clinical databases
(Kim et al., 2025; Wang et al., 2025b).

For Q2 (which approaches for LLM adaptation),
three main directions emerge. Fine-tuning on anno-
tated corpora (e.g., RoBERTa + COVID-QA) pro-
vides consistent improvements starting from just
a few thousand expert-labeled examples (Möller
et al., 2020). Chain-of-thought instruction tuning
improves accuracy across various medical bench-
marks by explicitly incorporating reasoning during
training (Kim et al., 2025). Finally, end-to-end or
multi-phase RAG architectures combine tailored re-
trieval with reinforcement learning stages for more
refined alignment with clinical criteria, but these
models are heavily dependent on external knowl-
edge and domain-specific metrics (Siriwardhana
et al., 2023; Wang et al., 2025b).

Regarding Q3 (evaluation and metrics), generic
close-ended indicators such as Exact Match, F1,
and perplexity remain foundational across all do-
mains (Möller et al., 2020; Samuel et al., 2024).
Semantic-based measures (e.g., BERTScore,
BLEURT) and automated judges like G-Eval (Chen
et al., 2024a; Arias-Duart et al., 2025) provide

deeper qualitative insights into generated responses,
while human evaluation remains essential for veri-
fying coherence and factual correctness in clinical
contexts (Wang et al., 2025a).

Finally, for Q4 (ethical principles), most articles
either omit these considerations or address them
only superficially, highlighting a critical gap in
healthcare applications, where patient safety, data
confidentiality, and equitable access are paramount
(Wang et al., 2025b,a). Given the potential risks
of biased or inaccurate medical advice (Li et al.,
2025), it is essential for future research to inte-
grate bias analysis, privacy-preserving protocols,
and regulatory frameworks into data augmentation
strategies for biomedical low-resource settings.

Overall, two families of methods can be distin-
guished: on one hand, generic methods such as
few-shot generation, chain-of-thought instruction
tuning, and light fine-tuning on small annotated
corpora, coupled with standard metrics like Exact
Match, F1, and perplexity, offer quick implementa-
tion and performance gains of 5–10% with just a
few dozen examples (Möller et al., 2020; Samuel
et al., 2024; Chen et al., 2024a). On the other
hand, domain-specific methods require access to
specialized resources (manuals, knowledge graphs,
expert annotations), careful prompt engineering, ar-
chitectural modifications, and integration into com-
plex fine-tuning pipelines. These methods are typi-
cally employed after applying generic techniques
to establish a baseline and then further optimize
performance by targeting domain-specific nuances.
However, their increased effectiveness comes at the
cost of reduced transferability, as they require prior
adaptation.

5.4 Legal Domain

5.4.1 Overview of Selected Datasets

As the volume of legal cases increases, artificial
intelligence plays a crucial role in reducing work-
loads, minimizing human errors, and accelerating
judicial decisions while ensuring their consistency.
By automating repetitive and time-consuming tasks
such as document analysis and legal research, AI
enables legal professionals to focus more on strate-
gic decision-making and nuanced case evaluations.
Furthermore, predictive analysis helps anticipate
outcomes, thus promoting transparency and consis-
tency in judicial decisions (Lai et al., 2024).

Applying our methodology to this domain, we
identified three relevant legal QA datasets for in-
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depth analysis. We selected a single dataset as
the ParentQA corpus: the legal subset of MMLU
(Hendrycks et al., 2021), which includes the cat-
egories international law, jurisprudence, logical
fallacies, moral disputes, moral scenarios, profes-
sional law, public relations, and US foreign policy.
These subsets, widely used for pretraining large
language models, contain approximately 3,790 ex-
amples. The eight specialized datasets selected for
this study are as follows:

• PolicyQA (Ahmad et al., 2020): a read-
ing comprehension dataset focused on web-
site privacy policies, comprising over 17 000
question-passage-answer triplets aimed at con-
cise responses.

• PrivacyQA (Ravichander et al., 2019): a
dataset of 7,137 question–answer pairs about
mobile app privacy policies, featuring legally
grounded annotations to support domain-
specific QA in the legal–computational con-
text.

• TruthfulQA (Lin et al., 2022): a benchmark
consisting of 790 questions, including a sub-
set dedicated to legal questions, designed to
evaluate the truthfulness of language model
outputs.

5.4.2 Diversity Analysis
To measure both vocabulary range and semantic
consistency across our three specialized QA sets
versus ParentQA, we ran two complementary anal-
yses: (i) lexical profiling via vocabulary size, out-
of-vocabulary (OOV) rates and Shannon entropy
(Table 4); and (ii) internal semantic similarity dis-
tributions alongside OOV-overlap statistics (Fig-
ure 4).

Lexical Statistics. As Table 4 shows, all three
specialized corpora possess drastically smaller vo-
cabularies and lower entropy than ParentQA (11.37
bits). PolicyQA exhibits the smallest vocabulary
(4 093 types) and lowest entropy (8.58 bits). Pri-
vacyQA is richer (2 541 types, 9.11 bits), mixing
policy-style prompts with occasional technical clar-
ifications, while TruthfulQA despite only 2 616
types, yields surprisingly high entropy (10.51 bits).
OOV counts against ParentQA mirror this pattern:
PolicyQA’s 1 242 unseen vocabulary (e.g. adverts,
prospectively) underscore domain-specific framing;
TruthfulQA’s 824 new terms (e.g. cage, gasper)

(a) Cosine similarity between each specialized corpus and
ParentQA

(b) Vocabulary overlap

Figure 4: Comparison of low-resource legal QA datasets
to ParentQA in terms of (a) cosine similarity and (b) out-
of-vocabulary (OOV) vocabulary overlap

reflect idiosyncratic references; PrivacyQA’s 588
OOVs (e.g. adverts, recordkeeping) occupy a mid-
dle ground.

Semantic Similarity and Implications. Fig-
ure 4(a) displays the distribution of cosine simi-
larities between sentence embeddings of each spe-
cialized corpus and those of ParentQA (embed-
dings generated by the model detailed in Table 2).
PolicyQA centers at ∼0.75 with a narrow spread
and the highest peak density, signifying highly
repetitive structure across its many examples. Pri-
vacyQA also peaks near 0.75 with a modestly
wider shoulder toward 0.65–0.70, indicating oc-
casional outlier phrasings alongside core policy-
style questions. By contrast, TruthfulQA peaks
lower, around 0.72, and displays the broadest distri-
bution (spanning 0.55–0.85), directly reflecting its
adversarial design to cover diverse topics and lin-
guistic traps. Compared to the biomedical datasets,
the legal corpora exhibit greater similarity to the
ParentQA distribution. This may be attributed to
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the relatively consistent legal vocabulary and fram-
ing, where core terms and concepts are reused
across different scenarios, even as the case con-
texts vary.

OOV Overlap. Complementing these semantics,
Figure 4(b) shows that OOV-sets are largely dis-
tinct: only 37 vocabulary overlap between Truth-
fulQA and PolicyQA, 24 between TruthfulQA and
PrivacyQA, but 304 between PolicyQA and Priva-
cyQA highlighting their shared legal/policy jargon.
Taken together, low entropy and high pairwise sim-
ilarity in PolicyQA argue for template-like redun-
dancy; TruthfulQA’s entropy and spread warn of
semantic unpredictability; and PrivacyQA sits in
between.

5.4.3 Positioning with Respect to the Research
Questions

Among the examined methods, Q1 (how to increase
domain-specific data) involves generation and re-
trieval strategies: generation of semantically equiv-
alent perturbations via paraphrasing with LLMs
(Ding et al., 2024b), corpus synthesis through out-
put comparison (Kim et al., 2023), example ex-
traction using multi-retrievers (Parvez et al., 2023),
and large-scale instruction generation from meta-
templates (Nayak et al., 2024).

Regarding Q2 (approaches for adapting LLMs),
the studies combine continual pretraining, fine-
tuning, and reinforcement learning: PolicyQA
fine-tunes a BERT model pretrained on a cor-
pus of privacy policies to adapt it specifically
to the task of extractive QA in this sensitive do-
main (Ahmad et al., 2020). Rowen activates a
generic "retrieve-only-when-needed" mechanism
(Ding et al., 2024b); ALMoST combines reward
modeling, synthetic demonstrations, and RL (Kim
et al., 2023); Citrus integrates CPT, SFT, and re-
flective RL for clinical tasks (Wang et al., 2025b);
and (Vold and Conrad, 2021) demonstrates perfor-
mance gains of +31% F1 and +41% MRR with
RoBERTa fine-tuned on PrivacyQA.

As for Q3 (evaluation and metrics), the studies
use standard metrics adapted to each task: EM and
F1 for extractive QA (Ahmad et al., 2020), and pre-
cision, recall, F1, and MRR for classification and
ranking (Ravichander et al., 2019). These metrics
are widely recognized for their robustness and abil-
ity to reflect performance in low-resource settings.

Finally, regarding Q4 (ethical principles), Truth-
fulQA warns against misinformation risks and the

erosion of user trust caused by misleading answers,
advocating for strong safeguards (Lin et al., 2022).
ALMoST relies on the HHH benchmark (helpful,
harmless, honest) to align models with human val-
ues and reduce harmful outputs (Kim et al., 2023).
However, most studies do not comprehensively ad-
dress ethical, privacy, or fairness concerns—yet
these dimensions are essential for ensuring user
trust, preventing algorithmic bias, and complying
with regulations.

Generic approaches rely on paraphrasing, re-
trieval, and knowledge transfer mechanisms. They
enable rapid prototyping and generalization across
low-resource domains, but are limited by the con-
sistency and depth of the base model (Kim et al.,
2023; Ding et al., 2024a; Nayak et al., 2024). In
contrast, domain-specific solutions leverage expert-
curated corpora and workflows to achieve peak
performance, at the cost of specialized data col-
lection, domain expertise, and computational re-
sources (Vold and Conrad, 2021; Wang et al., 2023).
Therefore, it is advisable to start with minimal fine-
tuning on a generic transformer, then progressively
integrate architectural modules and targeted cor-
pora to meet domain requirements and ensure ethi-
cal adoption.

Despite these advancements, a major challenge
remains in the availability and structure of legal
datasets. Many cases remain undocumented or in-
accessible, exacerbating the inherent complexity
of domain-specific language, frequent regulatory
changes, and the need for high-quality annotated
data (Abdallah et al., 2023). Furthermore, sev-
eral legal subdomains remain largely unexplored in
the context of LLMs including international trade
agreements3, space law4, Antarctic Treaty law5,
and patent law in biotechnology and genetics6,
among others. The datasets available in these areas
are still raw and unstructured, requiring significant
preprocessing before they can be effectively lever-
aged for legal research or analysis.

6 Conclusion

In this paper, we presented an in-depth analysis
of data augmentation strategies in low-resource
settings, focusing on the biomedical and legal do-

3https://datatopics.worldbank.org/dta/table.
html

4https://www.unoosa.org/oosa/en/ourwork/
spacelaw/index.html

5https://www.ats.aq
6https://www.wipo.int/wipolex/en/
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mains. We conducted our literature review by first
identifying articles that describe relevant datasets,
then analyzing papers on Google Scholar that pro-
pose data augmentation methods in relation to these
datasets. We assessed their treatment of four key re-
search questions: how to increase domain-specific
data, which approaches to use for adapting LLMs,
how to evaluate their performance, and what ethical
implications should be considered. The review was
supported by diversity analyses (cosine similarity
and lexical overlap) to highlight differences be-
tween specialized datasets and their parent corpora,
thereby revealing significant challenges related to
data scarcity and specificity.

As a continuation of this work, a compara-
tive empirical evaluation of different augmentation
strategies applied to each dataset represents an im-
portant next step. This initial study also paves the
way for identifying augmentation methods suited
to low-resource contexts, aligned with the objec-
tives of my thesis. I also plan to broaden this
work to multilingual settings and to low-resource
verticals such as renewable energy. Dedicated
QA benchmarks are still emerging, for example
WeQA (Meyur et al., 2024) had to generate its own
wind-energy permitting QA pairs directly from
Environmental Impact Statements (EIS). Another
study from NREL noted that building even a small
siting ordinance evaluation set required over 1,500
hours of expert annotation (Buster et al., 2024).
Underscoring the data scarcity in this domain and
reinforcing its value as a testbed for evaluating the
robustness and generalizability of augmentation
strategies.

7 Limitations

Although this study offers insights into data aug-
mentation and synthetic data generation for low-
resource datasets, several limitations must be ac-
knowledged.

Domain specificity This analysis is limited to the
biomedical and legal fields. While these domains
present diverse and complex challenges, expanding
the scope to sectors such as renewable energy or
other specialized areas could uncover further in-
sights and strengthen the broader applicability of
augmentation techniques.

Keyword-based search constraints The litera-
ture search relied exclusively on the keywords aug-
mentation and synthetic. This targeted approach

may have excluded relevant works that use alterna-
tive terminology or methodologies, thus limiting
the scope of our findings.

Parent dataset selection The parent dataset used
in our analysis consists of a single large-scale col-
lection, selected under the assumption that its di-
versity offers a robust reference point. However,
incorporating additional and more diverse parent
datasets would likely enhance the breadth and gen-
eralizability of our analysis.

Language bias We chose to use English-
language datasets due to their accessibility and
relative availability, which facilitated the identi-
fication of a broader literature base. However, this
choice may introduce biases: LLMs trained primar-
ily on English data tend to present Anglo-American
perspectives as universal truths, thereby overlook-
ing non-English viewpoints (Ramesh et al., 2023).
This phenomenon can lead to systematic sampling
bias and hinder faithful representation of the true
diversity of subjects and opinions.
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A Additional Analyses

Table 2 lists the embedding models we selected for the biomedical and legal domains, along with their
embedding dimensions and GPU memory requirements.

Domain Model Dim. GPU Mem. (GB)

Biomedical jasper_en_vision_language_v1 8960 3.8
Legal inf-retriever-v1-1.5b 1536 2.9

Table 2: Characteristics of the selected embedding models

Table 3 and Table 4 report lexical statistics for the medical and legal evaluation corpora, respectively,
including vocabulary size, out-of-vocabulary (OOV) counts relative to ParentQA, Shannon entropy, and
example OOV.

Corpus Vocab. Size OOV Count Entropy (bits) Sample OOV

ParentQA 275 944 — 13.09 —
COVIDQA 6 062 709 11.13 furin, endosymbionts, . . .
CareQA 9 943 763 11.87 creatininuria, cathodic, . . .
ReDisQA 3 041 118 10.42 arrhythmia, ophthalmos, . . .
MedBullets 4 280 86 9.97 escherchia, nonrebreather, . . .

Table 3: Lexical statistics of the evaluation corpora, including vocabulary size, OOV counts relative to ParentQA,
Shannon entropy, and example OOV

Corpus Vocab. Size OOV Count Entropy (bits) Sample OOV

ParentQA 13 656 — 11.37 —
PolicyQA 4 093 1 242 8.58 adverts, prospectively, registrations, . . .
TruthfulQA 2 616 824 10.51 gasper, cage, moderation, . . .
PrivacyQA 2 541 588 9.11 adverts, recordkeeping, acquirer, . . .

Table 4: Lexical statistics of the evaluation corpora: vocabulary size, out-of-vocabulary (OOV) counts and rate
relative to ParentQA, and example OOV terms
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B Representative Papers for Taxonomy Categories

[A] Synthetic Task Gener-
ation

(Reddy et al., 2020), (Samuel et al., 2024), (Wang et al., 2025a),
(Wang et al., 2025b), (Kim et al., 2025), (Nayak et al., 2024), (Kim
et al., 2023)

[B] Retrieval-Augmented
Generation

(Reddy et al., 2020), (Siriwardhana et al., 2023), (Wang et al., 2024),
(Li et al., 2025), (Parvez et al., 2023), (Wang et al., 2023), (Ding et al.,
2024b)

[C] Corpus Restructuring (Möller et al., 2020), (Reddy et al., 2020), (Wang et al., 2024), (Li
et al., 2025), (Wang et al., 2025a), (Ahmad et al., 2020), (Ravichander
et al., 2019), (Nayak et al., 2024)

[D] QA Metrics (Möller et al., 2020), (Reddy et al., 2020), (Siriwardhana et al., 2023),
(Samuel et al., 2024), (Wang et al., 2024), (Li et al., 2025), (Wang
et al., 2025a), (Arias-Duart et al., 2025), (Chen et al., 2024a), (Ahmad
et al., 2020), (Ravichander et al., 2019), (Vold and Conrad, 2021),
(Parvez et al., 2023), (Nayak et al., 2024), (Lin et al., 2022), (Wang
et al., 2023), (Kim et al., 2023), (Ding et al., 2024b)

[E] Cross-Task Bench-
marks

(Reddy et al., 2020), (Siriwardhana et al., 2023), (Samuel et al., 2024),
(Wang et al., 2024), (Arias-Duart et al., 2025), (Wang et al., 2025b),
(Chen et al., 2024a), (Kim et al., 2025), (Nayak et al., 2024), (Wang
et al., 2023), (Kim et al., 2023)

[F] Expert Validation (Möller et al., 2020), (Wang et al., 2025b), (Ravichander et al., 2019),
(Kim et al., 2023)

[G] Bias & Trustworthi-
ness

(Li et al., 2025), (Wang et al., 2025a), (Chen et al., 2024a), (Lin et al.,
2022), (Wang et al., 2023), (Ding et al., 2024b)

[H] Privacy (Wang et al., 2025b), (Ahmad et al., 2020), (Ravichander et al., 2019),
(Parvez et al., 2023), (Kim et al., 2023)

[I] Scalability (Reddy et al., 2020), (Siriwardhana et al., 2023), (Samuel et al., 2024),
(Wang et al., 2024), (Wang et al., 2025a), (Kim et al., 2025), (Ahmad
et al., 2020), (Ravichander et al., 2019), (Vold and Conrad, 2021),
(Parvez et al., 2023), (Nayak et al., 2024), (Wang et al., 2023), (Kim
et al., 2023), (Ding et al., 2024b)

Table 5: Mapping between taxonomy labels (Figure 1) and representative papers
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